Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.102
      1 /*	$NetBSD: cpu.c,v 1.102 2015/12/13 15:22:31 christos Exp $	*/
      2 /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp  */
      3 
      4 /*-
      5  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      6  * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to The NetBSD Foundation
     10  * by RedBack Networks Inc.
     11  *
     12  * Author: Bill Sommerfeld
     13  *
     14  * Redistribution and use in source and binary forms, with or without
     15  * modification, are permitted provided that the following conditions
     16  * are met:
     17  * 1. Redistributions of source code must retain the above copyright
     18  *    notice, this list of conditions and the following disclaimer.
     19  * 2. Redistributions in binary form must reproduce the above copyright
     20  *    notice, this list of conditions and the following disclaimer in the
     21  *    documentation and/or other materials provided with the distribution.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 /*
     37  * Copyright (c) 1999 Stefan Grefen
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. All advertising materials mentioning features or use of this software
     48  *    must display the following acknowledgement:
     49  *      This product includes software developed by the NetBSD
     50  *      Foundation, Inc. and its contributors.
     51  * 4. Neither the name of The NetBSD Foundation nor the names of its
     52  *    contributors may be used to endorse or promote products derived
     53  *    from this software without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     56  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.102 2015/12/13 15:22:31 christos Exp $");
     70 
     71 #include "opt_ddb.h"
     72 #include "opt_multiprocessor.h"
     73 #include "opt_mpbios.h"		/* for MPDEBUG */
     74 #include "opt_mtrr.h"
     75 #include "opt_xen.h"
     76 
     77 #include "lapic.h"
     78 #include "ioapic.h"
     79 
     80 #include <sys/param.h>
     81 #include <sys/proc.h>
     82 #include <sys/systm.h>
     83 #include <sys/device.h>
     84 #include <sys/kmem.h>
     85 #include <sys/cpu.h>
     86 #include <sys/cpufreq.h>
     87 #include <sys/atomic.h>
     88 #include <sys/reboot.h>
     89 #include <sys/idle.h>
     90 
     91 #include <uvm/uvm.h>
     92 
     93 #include <machine/cpufunc.h>
     94 #include <machine/cpuvar.h>
     95 #include <machine/pmap.h>
     96 #include <machine/vmparam.h>
     97 #include <machine/mpbiosvar.h>
     98 #include <machine/pcb.h>
     99 #include <machine/specialreg.h>
    100 #include <machine/segments.h>
    101 #include <machine/gdt.h>
    102 #include <machine/mtrr.h>
    103 #include <machine/pio.h>
    104 
    105 #include <x86/fpu.h>
    106 
    107 #include <xen/xen.h>
    108 #include <xen/xen-public/vcpu.h>
    109 #include <xen/vcpuvar.h>
    110 
    111 #if NLAPIC > 0
    112 #include <machine/apicvar.h>
    113 #include <machine/i82489reg.h>
    114 #include <machine/i82489var.h>
    115 #endif
    116 
    117 #include <dev/ic/mc146818reg.h>
    118 #include <dev/isa/isareg.h>
    119 
    120 static int	cpu_match(device_t, cfdata_t, void *);
    121 static void	cpu_attach(device_t, device_t, void *);
    122 static void	cpu_defer(device_t);
    123 static int	cpu_rescan(device_t, const char *, const int *);
    124 static void	cpu_childdetached(device_t, device_t);
    125 static int	vcpu_match(device_t, cfdata_t, void *);
    126 static void	vcpu_attach(device_t, device_t, void *);
    127 static void	cpu_attach_common(device_t, device_t, void *);
    128 void		cpu_offline_md(void);
    129 
    130 struct cpu_softc {
    131 	device_t sc_dev;		/* device tree glue */
    132 	struct cpu_info *sc_info;	/* pointer to CPU info */
    133 	bool sc_wasonline;
    134 };
    135 
    136 int mp_cpu_start(struct cpu_info *, vaddr_t);
    137 void mp_cpu_start_cleanup(struct cpu_info *);
    138 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    139 				      mp_cpu_start_cleanup };
    140 
    141 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    142     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    143 
    144 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
    145     vcpu_match, vcpu_attach, NULL, NULL);
    146 
    147 /*
    148  * Statically-allocated CPU info for the primary CPU (or the only
    149  * CPU, on uniprocessors).  The CPU info list is initialized to
    150  * point at it.
    151  */
    152 #ifdef TRAPLOG
    153 #include <machine/tlog.h>
    154 struct tlog tlog_primary;
    155 #endif
    156 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    157 	.ci_dev = 0,
    158 	.ci_self = &cpu_info_primary,
    159 	.ci_idepth = -1,
    160 	.ci_curlwp = &lwp0,
    161 	.ci_curldt = -1,
    162 #ifdef TRAPLOG
    163 	.ci_tlog = &tlog_primary,
    164 #endif
    165 
    166 };
    167 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    168 	.ci_dev = 0,
    169 	.ci_self = &phycpu_info_primary,
    170 };
    171 
    172 struct cpu_info *cpu_info_list = &cpu_info_primary;
    173 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
    174 
    175 extern uint32_t cpu_feature[]; /* X86 CPUID feature bits
    176 			  *	[0] basic features %edx
    177 			  *	[1] basic features %ecx
    178 			  *	[2] extended features %edx
    179 			  *	[3] extended features %ecx
    180 			  *	[4] VIA padlock features
    181 			  *	[5] structured extended features cpuid.7:%ebx
    182 			  *	[6] structured extended features cpuid.7:%ecx
    183 			  */
    184 
    185 bool x86_mp_online;
    186 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    187 
    188 #if defined(MULTIPROCESSOR)
    189 void    	cpu_hatch(void *);
    190 static void    	cpu_boot_secondary(struct cpu_info *ci);
    191 static void    	cpu_start_secondary(struct cpu_info *ci);
    192 #endif	/* MULTIPROCESSOR */
    193 
    194 static int
    195 cpu_match(device_t parent, cfdata_t match, void *aux)
    196 {
    197 
    198 	return 1;
    199 }
    200 
    201 static void
    202 cpu_attach(device_t parent, device_t self, void *aux)
    203 {
    204 	struct cpu_softc *sc = device_private(self);
    205 	struct cpu_attach_args *caa = aux;
    206 	struct cpu_info *ci;
    207 	uintptr_t ptr;
    208 	static int nphycpu = 0;
    209 
    210 	sc->sc_dev = self;
    211 
    212 	/*
    213 	 * If we're an Application Processor, allocate a cpu_info
    214 	 * If we're the first attached CPU use the primary cpu_info,
    215 	 * otherwise allocate a new one
    216 	 */
    217 	aprint_naive("\n");
    218 	aprint_normal("\n");
    219 	if (nphycpu > 0) {
    220 		struct cpu_info *tmp;
    221 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    222 		    KM_SLEEP);
    223 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    224 		ci->ci_curldt = -1;
    225 
    226 		tmp = phycpu_info_list;
    227 		while (tmp->ci_next)
    228 			tmp = tmp->ci_next;
    229 
    230 		tmp->ci_next = ci;
    231 	} else {
    232 		ci = &phycpu_info_primary;
    233 	}
    234 
    235 	ci->ci_self = ci;
    236 	sc->sc_info = ci;
    237 
    238 	ci->ci_dev = self;
    239 	ci->ci_acpiid = caa->cpu_id;
    240 	ci->ci_cpuid = caa->cpu_number;
    241 	ci->ci_vcpu = NULL;
    242 	ci->ci_index = nphycpu++;
    243 
    244 	if (!pmf_device_register(self, NULL, NULL))
    245 		aprint_error_dev(self, "couldn't establish power handler\n");
    246 
    247 	(void)config_defer(self, cpu_defer);
    248 }
    249 
    250 static void
    251 cpu_defer(device_t self)
    252 {
    253 	cpu_rescan(self, NULL, NULL);
    254 }
    255 
    256 static int
    257 cpu_rescan(device_t self, const char *ifattr, const int *locators)
    258 {
    259 	struct cpu_softc *sc = device_private(self);
    260 	struct cpufeature_attach_args cfaa;
    261 	struct cpu_info *ci = sc->sc_info;
    262 
    263 	memset(&cfaa, 0, sizeof(cfaa));
    264 	cfaa.ci = ci;
    265 
    266 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    267 
    268 		if (ci->ci_frequency == NULL) {
    269 			cfaa.name = "frequency";
    270 			ci->ci_frequency = config_found_ia(self,
    271 			    "cpufeaturebus", &cfaa, NULL);
    272 		}
    273 	}
    274 
    275 	return 0;
    276 }
    277 
    278 static void
    279 cpu_childdetached(device_t self, device_t child)
    280 {
    281 	struct cpu_softc *sc = device_private(self);
    282 	struct cpu_info *ci = sc->sc_info;
    283 
    284 	if (ci->ci_frequency == child)
    285 		ci->ci_frequency = NULL;
    286 }
    287 
    288 static int
    289 vcpu_match(device_t parent, cfdata_t match, void *aux)
    290 {
    291 	struct vcpu_attach_args *vcaa = aux;
    292 	struct vcpu_runstate_info vcr;
    293 	int error;
    294 
    295 	if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
    296 		error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
    297 					   vcaa->vcaa_caa.cpu_number,
    298 					   &vcr);
    299 		switch (error) {
    300 		case 0:
    301 			return 1;
    302 		case -ENOENT:
    303 			return 0;
    304 		default:
    305 			panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
    306 		}
    307 	}
    308 
    309 	return 0;
    310 }
    311 
    312 static void
    313 vcpu_attach(device_t parent, device_t self, void *aux)
    314 {
    315 	struct vcpu_attach_args *vcaa = aux;
    316 
    317 	KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
    318 	vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
    319 	cpu_attach_common(parent, self, &vcaa->vcaa_caa);
    320 
    321 	if (!pmf_device_register(self, NULL, NULL))
    322 		aprint_error_dev(self, "couldn't establish power handler\n");
    323 }
    324 
    325 static int
    326 vcpu_is_up(struct cpu_info *ci)
    327 {
    328 	KASSERT(ci != NULL);
    329 	return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
    330 }
    331 
    332 static void
    333 cpu_vm_init(struct cpu_info *ci)
    334 {
    335 	int ncolors = 2, i;
    336 
    337 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    338 		struct x86_cache_info *cai;
    339 		int tcolors;
    340 
    341 		cai = &ci->ci_cinfo[i];
    342 
    343 		tcolors = atop(cai->cai_totalsize);
    344 		switch(cai->cai_associativity) {
    345 		case 0xff:
    346 			tcolors = 1; /* fully associative */
    347 			break;
    348 		case 0:
    349 		case 1:
    350 			break;
    351 		default:
    352 			tcolors /= cai->cai_associativity;
    353 		}
    354 		ncolors = max(ncolors, tcolors);
    355 	}
    356 
    357 	/*
    358 	 * Knowing the size of the largest cache on this CPU, potentially
    359 	 * re-color our pages.
    360 	 */
    361 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    362 	uvm_page_recolor(ncolors);
    363 	pmap_tlb_cpu_init(ci);
    364 }
    365 
    366 static void
    367 cpu_attach_common(device_t parent, device_t self, void *aux)
    368 {
    369 	struct cpu_softc *sc = device_private(self);
    370 	struct cpu_attach_args *caa = aux;
    371 	struct cpu_info *ci;
    372 	uintptr_t ptr;
    373 	int cpunum = caa->cpu_number;
    374 	static bool again = false;
    375 
    376 	sc->sc_dev = self;
    377 
    378 	/*
    379 	 * If we're an Application Processor, allocate a cpu_info
    380 	 * structure, otherwise use the primary's.
    381 	 */
    382 	if (caa->cpu_role == CPU_ROLE_AP) {
    383 		aprint_naive(": Application Processor\n");
    384 		ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    385 		    KM_SLEEP);
    386 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    387 		memset(ci, 0, sizeof(*ci));
    388 #ifdef TRAPLOG
    389 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
    390 #endif
    391 	} else {
    392 		aprint_naive(": %s Processor\n",
    393 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    394 		ci = &cpu_info_primary;
    395 	}
    396 
    397 	ci->ci_self = ci;
    398 	sc->sc_info = ci;
    399 	ci->ci_dev = self;
    400 	ci->ci_cpuid = cpunum;
    401 
    402 	KASSERT(HYPERVISOR_shared_info != NULL);
    403 	KASSERT(cpunum < XEN_LEGACY_MAX_VCPUS);
    404 	ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
    405 
    406 	KASSERT(ci->ci_func == 0);
    407 	ci->ci_func = caa->cpu_func;
    408 	aprint_normal("\n");
    409 
    410 	/* Must be called before mi_cpu_attach(). */
    411 	cpu_vm_init(ci);
    412 
    413 	if (caa->cpu_role == CPU_ROLE_AP) {
    414 		int error;
    415 
    416 		error = mi_cpu_attach(ci);
    417 
    418 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    419 		if (error != 0) {
    420 			aprint_error_dev(self,
    421 			    "mi_cpu_attach failed with %d\n", error);
    422 			return;
    423 		}
    424 
    425 	} else {
    426 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    427 	}
    428 
    429 	KASSERT(ci->ci_cpuid == ci->ci_index);
    430 #ifdef __x86_64__
    431 	/* No user PGD mapped for this CPU yet */
    432 	ci->ci_xen_current_user_pgd = 0;
    433 #endif
    434 #if defined(__x86_64__) || defined(PAE)
    435 	mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
    436 #endif
    437 	pmap_reference(pmap_kernel());
    438 	ci->ci_pmap = pmap_kernel();
    439 	ci->ci_tlbstate = TLBSTATE_STALE;
    440 
    441 	/*
    442 	 * Boot processor may not be attached first, but the below
    443 	 * must be done to allow booting other processors.
    444 	 */
    445 	if (!again) {
    446 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    447 		/* Basic init. */
    448 		cpu_intr_init(ci);
    449 		cpu_get_tsc_freq(ci);
    450 		cpu_init(ci);
    451 		pmap_cpu_init_late(ci);
    452 
    453 		/* Every processor needs to init its own ipi h/w (similar to lapic) */
    454 		xen_ipi_init();
    455 
    456 		/* Make sure DELAY() is initialized. */
    457 		DELAY(1);
    458 		again = true;
    459 	}
    460 
    461 	/* further PCB init done later. */
    462 
    463 	switch (caa->cpu_role) {
    464 	case CPU_ROLE_SP:
    465 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    466 		cpu_identify(ci);
    467 		x86_cpu_idle_init();
    468 
    469 		break;
    470 
    471 	case CPU_ROLE_BP:
    472 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    473 		cpu_identify(ci);
    474 		x86_cpu_idle_init();
    475 
    476 		break;
    477 
    478 	case CPU_ROLE_AP:
    479 		atomic_or_32(&ci->ci_flags, CPUF_AP);
    480 
    481 		/*
    482 		 * report on an AP
    483 		 */
    484 
    485 #if defined(MULTIPROCESSOR)
    486 		/* interrupt handler stack */
    487 		cpu_intr_init(ci);
    488 
    489 		/* Setup per-cpu memory for gdt */
    490 		gdt_alloc_cpu(ci);
    491 
    492 		pmap_cpu_init_late(ci);
    493 		cpu_start_secondary(ci);
    494 
    495 		if (ci->ci_flags & CPUF_PRESENT) {
    496 			struct cpu_info *tmp;
    497 
    498 			cpu_identify(ci);
    499 			tmp = cpu_info_list;
    500 			while (tmp->ci_next)
    501 				tmp = tmp->ci_next;
    502 
    503 			tmp->ci_next = ci;
    504 		}
    505 #else
    506 		aprint_error_dev(ci->ci_dev, "not started\n");
    507 #endif
    508 		break;
    509 
    510 	default:
    511 		panic("unknown processor type??\n");
    512 	}
    513 
    514 #ifdef MPVERBOSE
    515 	if (mp_verbose) {
    516 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    517 		struct pcb *pcb = lwp_getpcb(l);
    518 
    519 		aprint_verbose_dev(self,
    520 		    "idle lwp at %p, idle sp at 0x%p\n",
    521 		    l,
    522 #ifdef i386
    523 		    (void *)pcb->pcb_esp
    524 #else /* i386 */
    525 		    (void *)pcb->pcb_rsp
    526 #endif /* i386 */
    527 		);
    528 
    529 	}
    530 #endif /* MPVERBOSE */
    531 }
    532 
    533 /*
    534  * Initialize the processor appropriately.
    535  */
    536 
    537 void
    538 cpu_init(struct cpu_info *ci)
    539 {
    540 
    541 	/*
    542 	 * If we have FXSAVE/FXRESTOR, use them.
    543 	 */
    544 	if (cpu_feature[0] & CPUID_FXSR) {
    545 		lcr4(rcr4() | CR4_OSFXSR);
    546 
    547 		/*
    548 		 * If we have SSE/SSE2, enable XMM exceptions.
    549 		 */
    550 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    551 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    552 	}
    553 
    554 	atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    555 }
    556 
    557 
    558 #ifdef MULTIPROCESSOR
    559 
    560 void
    561 cpu_boot_secondary_processors(void)
    562 {
    563 	struct cpu_info *ci;
    564 	u_long i;
    565 	for (i = 0; i < maxcpus; i++) {
    566 		ci = cpu_lookup(i);
    567 		if (ci == NULL)
    568 			continue;
    569 		if (ci->ci_data.cpu_idlelwp == NULL)
    570 			continue;
    571 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    572 			continue;
    573 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    574 			continue;
    575 		cpu_boot_secondary(ci);
    576 	}
    577 
    578 	x86_mp_online = true;
    579 }
    580 
    581 static void
    582 cpu_init_idle_lwp(struct cpu_info *ci)
    583 {
    584 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    585 	struct pcb *pcb = lwp_getpcb(l);
    586 
    587 	pcb->pcb_cr0 = rcr0();
    588 }
    589 
    590 void
    591 cpu_init_idle_lwps(void)
    592 {
    593 	struct cpu_info *ci;
    594 	u_long i;
    595 
    596 	for (i = 0; i < maxcpus; i++) {
    597 		ci = cpu_lookup(i);
    598 		if (ci == NULL)
    599 			continue;
    600 		if (ci->ci_data.cpu_idlelwp == NULL)
    601 			continue;
    602 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    603 			continue;
    604 		cpu_init_idle_lwp(ci);
    605 	}
    606 }
    607 
    608 static void
    609 cpu_start_secondary(struct cpu_info *ci)
    610 {
    611 	int i;
    612 
    613 	aprint_debug_dev(ci->ci_dev, "starting\n");
    614 
    615 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    616 
    617 	if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
    618 		return;
    619 	}
    620 
    621 	/*
    622 	 * wait for it to become ready
    623 	 */
    624 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    625 		delay(10);
    626 	}
    627 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    628 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    629 #if defined(MPDEBUG) && defined(DDB)
    630 		printf("dropping into debugger; continue from here to resume boot\n");
    631 		Debugger();
    632 #endif
    633 	}
    634 
    635 	CPU_START_CLEANUP(ci);
    636 }
    637 
    638 void
    639 cpu_boot_secondary(struct cpu_info *ci)
    640 {
    641 	int i;
    642 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    643 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    644 		delay(10);
    645 	}
    646 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    647 		aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
    648 #if defined(MPDEBUG) && defined(DDB)
    649 		printf("dropping into debugger; continue from here to resume boot\n");
    650 		Debugger();
    651 #endif
    652 	}
    653 }
    654 
    655 /*
    656  * APs end up here immediately after initialisation and VCPUOP_up in
    657  * mp_cpu_start().
    658  * At this point, we are running in the idle pcb/idle stack of the new
    659  * CPU.  This function jumps to the idle loop and starts looking for
    660  * work.
    661  */
    662 extern void x86_64_tls_switch(struct lwp *);
    663 void
    664 cpu_hatch(void *v)
    665 {
    666 	struct cpu_info *ci = (struct cpu_info *)v;
    667 	struct pcb *pcb;
    668 	int s, i;
    669 
    670 	/* Setup TLS and kernel GS/FS */
    671 	cpu_init_msrs(ci, true);
    672 	cpu_init_idt();
    673 	gdt_init_cpu(ci);
    674 
    675 	cpu_probe(ci);
    676 
    677 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    678 
    679 	while ((ci->ci_flags & CPUF_GO) == 0) {
    680 		/* Don't use delay, boot CPU may be patching the text. */
    681 		for (i = 10000; i != 0; i--)
    682 			x86_pause();
    683 	}
    684 
    685 	/* Because the text may have been patched in x86_patch(). */
    686 	x86_flush();
    687 	tlbflushg();
    688 
    689 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    690 
    691 	pcb = lwp_getpcb(curlwp);
    692 	pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0);
    693 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    694 
    695 	xen_ipi_init();
    696 
    697 	xen_initclocks();
    698 
    699 #ifdef __x86_64__
    700 	fpuinit(ci);
    701 #endif
    702 
    703 	lldt(GSEL(GLDT_SEL, SEL_KPL));
    704 
    705 	cpu_init(ci);
    706 	cpu_get_tsc_freq(ci);
    707 
    708 	s = splhigh();
    709 	x86_enable_intr();
    710 	splx(s);
    711 
    712 	aprint_debug_dev(ci->ci_dev, "running\n");
    713 
    714 	cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
    715 
    716 	idle_loop(NULL);
    717 	KASSERT(false);
    718 }
    719 
    720 #if defined(DDB)
    721 
    722 #include <ddb/db_output.h>
    723 #include <machine/db_machdep.h>
    724 
    725 /*
    726  * Dump CPU information from ddb.
    727  */
    728 void
    729 cpu_debug_dump(void)
    730 {
    731 	struct cpu_info *ci;
    732 	CPU_INFO_ITERATOR cii;
    733 
    734 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    735 	for (CPU_INFO_FOREACH(cii, ci)) {
    736 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    737 		    ci,
    738 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    739 		    (long)ci->ci_cpuid,
    740 		    ci->ci_flags, ci->ci_ipis,
    741 		    ci->ci_curlwp,
    742 		    ci->ci_fpcurlwp);
    743 	}
    744 }
    745 #endif /* DDB */
    746 
    747 #endif /* MULTIPROCESSOR */
    748 
    749 extern void hypervisor_callback(void);
    750 extern void failsafe_callback(void);
    751 #ifdef __x86_64__
    752 typedef void (vector)(void);
    753 extern vector Xsyscall, Xsyscall32;
    754 #endif
    755 
    756 /*
    757  * Setup the "trampoline". On Xen, we setup nearly all cpu context
    758  * outside a trampoline, so we prototype and call targetip like so:
    759  * void targetip(struct cpu_info *);
    760  */
    761 
    762 static void
    763 gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
    764 {
    765 	int i;
    766 	for (i = 0; i < roundup(entries, PAGE_SIZE) >> PAGE_SHIFT; i++) {
    767 
    768 		frames[i] = ((paddr_t) xpmap_ptetomach(
    769 				(pt_entry_t *) (base + (i << PAGE_SHIFT))))
    770 			>> PAGE_SHIFT;
    771 
    772 		/* Mark Read-only */
    773 		pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
    774 		    PG_RW);
    775 	}
    776 }
    777 
    778 #ifdef __x86_64__
    779 extern char *ldtstore;
    780 
    781 static void
    782 xen_init_amd64_vcpuctxt(struct cpu_info *ci,
    783 			struct vcpu_guest_context *initctx,
    784 			void targetrip(struct cpu_info *))
    785 {
    786 	/* page frames to point at GDT */
    787 	extern int gdt_size;
    788 	paddr_t frames[16];
    789 	psize_t gdt_ents;
    790 
    791 	struct lwp *l;
    792 	struct pcb *pcb;
    793 
    794 	volatile struct vcpu_info *vci;
    795 
    796 	KASSERT(ci != NULL);
    797 	KASSERT(ci != &cpu_info_primary);
    798 	KASSERT(initctx != NULL);
    799 	KASSERT(targetrip != NULL);
    800 
    801 	memset(initctx, 0, sizeof *initctx);
    802 
    803 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
    804 	KASSERT(gdt_ents <= 16);
    805 
    806 	gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
    807 
    808 	/* Initialise the vcpu context: We use idle_loop()'s pcb context. */
    809 
    810 	l = ci->ci_data.cpu_idlelwp;
    811 
    812 	KASSERT(l != NULL);
    813 	pcb = lwp_getpcb(l);
    814 	KASSERT(pcb != NULL);
    815 
    816 	/* resume with interrupts off */
    817 	vci = ci->ci_vcpu;
    818 	vci->evtchn_upcall_mask = 1;
    819 	xen_mb();
    820 
    821 	/* resume in kernel-mode */
    822 	initctx->flags = VGCF_in_kernel | VGCF_online;
    823 
    824 	/* Stack and entry points:
    825 	 * We arrange for the stack frame for cpu_hatch() to
    826 	 * appear as a callee frame of lwp_trampoline(). Being a
    827 	 * leaf frame prevents trampling on any of the MD stack setup
    828 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
    829 	 */
    830 
    831 	initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
    832 	initctx->user_regs.rip = (vaddr_t) targetrip;
    833 
    834 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
    835 
    836 	initctx->user_regs.rflags = pcb->pcb_flags;
    837 	initctx->user_regs.rsp = pcb->pcb_rsp;
    838 
    839 	/* Data segments */
    840 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
    841 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
    842 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
    843 
    844 	/* GDT */
    845 	memcpy(initctx->gdt_frames, frames, sizeof frames);
    846 	initctx->gdt_ents = gdt_ents;
    847 
    848 	/* LDT */
    849 	initctx->ldt_base = (unsigned long) ldtstore;
    850 	initctx->ldt_ents = LDT_SIZE >> 3;
    851 
    852 	/* Kernel context state */
    853 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
    854 	initctx->kernel_sp = pcb->pcb_rsp0;
    855 	initctx->ctrlreg[0] = pcb->pcb_cr0;
    856 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
    857 	initctx->ctrlreg[2] = (vaddr_t) targetrip;
    858 	/*
    859 	 * Use pmap_kernel() L4 PD directly, until we setup the
    860 	 * per-cpu L4 PD in pmap_cpu_init_late()
    861 	 */
    862 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
    863 	initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
    864 
    865 
    866 	/* Xen callbacks */
    867 	initctx->event_callback_eip = (unsigned long) hypervisor_callback;
    868 	initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
    869 	initctx->syscall_callback_eip = (unsigned long) Xsyscall;
    870 
    871 	return;
    872 }
    873 #else /* i386 */
    874 extern union descriptor *ldt;
    875 extern void Xsyscall(void);
    876 
    877 static void
    878 xen_init_i386_vcpuctxt(struct cpu_info *ci,
    879 			struct vcpu_guest_context *initctx,
    880 			void targeteip(struct cpu_info *))
    881 {
    882 	/* page frames to point at GDT */
    883 	extern int gdt_size;
    884 	paddr_t frames[16];
    885 	psize_t gdt_ents;
    886 
    887 	struct lwp *l;
    888 	struct pcb *pcb;
    889 
    890 	volatile struct vcpu_info *vci;
    891 
    892 	KASSERT(ci != NULL);
    893 	KASSERT(ci != &cpu_info_primary);
    894 	KASSERT(initctx != NULL);
    895 	KASSERT(targeteip != NULL);
    896 
    897 	memset(initctx, 0, sizeof *initctx);
    898 
    899 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
    900 	KASSERT(gdt_ents <= 16);
    901 
    902 	gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
    903 
    904 	/*
    905 	 * Initialise the vcpu context:
    906 	 * We use this cpu's idle_loop() pcb context.
    907 	 */
    908 
    909 	l = ci->ci_data.cpu_idlelwp;
    910 
    911 	KASSERT(l != NULL);
    912 	pcb = lwp_getpcb(l);
    913 	KASSERT(pcb != NULL);
    914 
    915 	/* resume with interrupts off */
    916 	vci = ci->ci_vcpu;
    917 	vci->evtchn_upcall_mask = 1;
    918 	xen_mb();
    919 
    920 	/* resume in kernel-mode */
    921 	initctx->flags = VGCF_in_kernel | VGCF_online;
    922 
    923 	/* Stack frame setup for cpu_hatch():
    924 	 * We arrange for the stack frame for cpu_hatch() to
    925 	 * appear as a callee frame of lwp_trampoline(). Being a
    926 	 * leaf frame prevents trampling on any of the MD stack setup
    927 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
    928 	 */
    929 
    930 	initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
    931 						      arg1 */
    932 	{ /* targeteip(ci); */
    933 		uint32_t *arg = (uint32_t *) initctx->user_regs.esp;
    934 		arg[1] = (uint32_t) ci; /* arg1 */
    935 
    936 	}
    937 
    938 	initctx->user_regs.eip = (vaddr_t) targeteip;
    939 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
    940 	initctx->user_regs.eflags |= pcb->pcb_iopl;
    941 
    942 	/* Data segments */
    943 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
    944 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
    945 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
    946 	initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
    947 
    948 	/* GDT */
    949 	memcpy(initctx->gdt_frames, frames, sizeof frames);
    950 	initctx->gdt_ents = gdt_ents;
    951 
    952 	/* LDT */
    953 	initctx->ldt_base = (unsigned long) ldt;
    954 	initctx->ldt_ents = NLDT;
    955 
    956 	/* Kernel context state */
    957 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
    958 	initctx->kernel_sp = pcb->pcb_esp0;
    959 	initctx->ctrlreg[0] = pcb->pcb_cr0;
    960 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
    961 	initctx->ctrlreg[2] = (vaddr_t) targeteip;
    962 #ifdef PAE
    963 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
    964 #else /* PAE */
    965 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(pcb->pcb_cr3)));
    966 #endif /* PAE */
    967 	initctx->ctrlreg[4] = /* CR4_PAE |  */CR4_OSFXSR | CR4_OSXMMEXCPT;
    968 
    969 
    970 	/* Xen callbacks */
    971 	initctx->event_callback_eip = (unsigned long) hypervisor_callback;
    972 	initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
    973 	initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
    974 	initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
    975 
    976 	return;
    977 }
    978 #endif /* __x86_64__ */
    979 
    980 int
    981 mp_cpu_start(struct cpu_info *ci, vaddr_t target)
    982 {
    983 
    984 	int hyperror;
    985 	struct vcpu_guest_context vcpuctx;
    986 
    987 	KASSERT(ci != NULL);
    988 	KASSERT(ci != &cpu_info_primary);
    989 	KASSERT(ci->ci_flags & CPUF_AP);
    990 
    991 #ifdef __x86_64__
    992 	xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
    993 #else  /* i386 */
    994 	xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
    995 #endif /* __x86_64__ */
    996 
    997 	/* Initialise the given vcpu to execute cpu_hatch(ci); */
    998 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
    999 		aprint_error(": context initialisation failed. errno = %d\n", hyperror);
   1000 		return hyperror;
   1001 	}
   1002 
   1003 	/* Start it up */
   1004 
   1005 	/* First bring it down */
   1006 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
   1007 		aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
   1008 		return hyperror;
   1009 	}
   1010 
   1011 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
   1012 		aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
   1013 		return hyperror;
   1014 	}
   1015 
   1016 	if (!vcpu_is_up(ci)) {
   1017 		aprint_error(": did not come up\n");
   1018 		return -1;
   1019 	}
   1020 
   1021 	return 0;
   1022 }
   1023 
   1024 void
   1025 mp_cpu_start_cleanup(struct cpu_info *ci)
   1026 {
   1027 	if (vcpu_is_up(ci)) {
   1028 		aprint_debug_dev(ci->ci_dev, "is started.\n");
   1029 	}
   1030 	else {
   1031 		aprint_error_dev(ci->ci_dev, "did not start up.\n");
   1032 	}
   1033 
   1034 }
   1035 
   1036 void
   1037 cpu_init_msrs(struct cpu_info *ci, bool full)
   1038 {
   1039 #ifdef __x86_64__
   1040 	if (full) {
   1041 		HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
   1042 		HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
   1043 		HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
   1044 	}
   1045 #endif	/* __x86_64__ */
   1046 
   1047 	if (cpu_feature[2] & CPUID_NOX)
   1048 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1049 
   1050 }
   1051 
   1052 void
   1053 cpu_offline_md(void)
   1054 {
   1055         int s;
   1056 
   1057         s = splhigh();
   1058         fpusave_cpu(true);
   1059         splx(s);
   1060 }
   1061 
   1062 void
   1063 cpu_get_tsc_freq(struct cpu_info *ci)
   1064 {
   1065 	uint32_t vcpu_tversion;
   1066 	const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
   1067 
   1068 	vcpu_tversion = tinfo->version;
   1069 	while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
   1070 
   1071 	uint64_t freq = 1000000000ULL << 32;
   1072 	freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
   1073 	if ( tinfo->tsc_shift < 0 )
   1074 		freq = freq << -tinfo->tsc_shift;
   1075 	else
   1076 		freq = freq >> tinfo->tsc_shift;
   1077 	ci->ci_data.cpu_cc_freq = freq;
   1078 }
   1079 
   1080 void
   1081 x86_cpu_idle_xen(void)
   1082 {
   1083 	struct cpu_info *ci = curcpu();
   1084 
   1085 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1086 
   1087 	x86_disable_intr();
   1088 	if (!__predict_false(ci->ci_want_resched)) {
   1089 		idle_block();
   1090 	} else {
   1091 		x86_enable_intr();
   1092 	}
   1093 }
   1094 
   1095 /*
   1096  * Loads pmap for the current CPU.
   1097  */
   1098 void
   1099 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
   1100 {
   1101 	KASSERT(pmap != pmap_kernel());
   1102 
   1103 #if defined(__x86_64__) || defined(PAE)
   1104 	struct cpu_info *ci = curcpu();
   1105 	cpuid_t cid = cpu_index(ci);
   1106 
   1107 	mutex_enter(&ci->ci_kpm_mtx);
   1108 	/* make new pmap visible to xen_kpm_sync() */
   1109 	kcpuset_atomic_set(pmap->pm_xen_ptp_cpus, cid);
   1110 #endif
   1111 #ifdef i386
   1112 #ifdef PAE
   1113 	{
   1114 		int i;
   1115 		paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
   1116 		/* don't update the kernel L3 slot */
   1117 		for (i = 0 ; i < PDP_SIZE - 1; i++) {
   1118 			xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
   1119 			    xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
   1120 		}
   1121 		tlbflush();
   1122 	}
   1123 #else /* PAE */
   1124 	lcr3(pmap_pdirpa(pmap, 0));
   1125 #endif /* PAE */
   1126 #endif /* i386 */
   1127 
   1128 #ifdef __x86_64__
   1129 	{
   1130 		int i;
   1131 		pd_entry_t *new_pgd;
   1132 		paddr_t l4_pd_ma;
   1133 
   1134 		l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
   1135 
   1136 		/*
   1137 		 * Map user space address in kernel space and load
   1138 		 * user cr3
   1139 		 */
   1140 		new_pgd = pmap->pm_pdir;
   1141 		KASSERT(pmap == ci->ci_pmap);
   1142 
   1143 		/* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
   1144 		for (i = 0; i < PDIR_SLOT_PTE; i++) {
   1145 			KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
   1146 			if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
   1147 				xpq_queue_pte_update(
   1148 				   l4_pd_ma + i * sizeof(pd_entry_t),
   1149 				    new_pgd[i]);
   1150 			}
   1151 		}
   1152 
   1153 		xen_set_user_pgd(pmap_pdirpa(pmap, 0));
   1154 		ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
   1155 
   1156 		tlbflush();
   1157 	}
   1158 
   1159 #endif /* __x86_64__ */
   1160 #if defined(__x86_64__) || defined(PAE)
   1161 	/* old pmap no longer visible to xen_kpm_sync() */
   1162 	if (oldpmap != pmap_kernel()) {
   1163 		kcpuset_atomic_clear(oldpmap->pm_xen_ptp_cpus, cid);
   1164 	}
   1165 	mutex_exit(&ci->ci_kpm_mtx);
   1166 #endif
   1167 }
   1168 
   1169  /*
   1170   * pmap_cpu_init_late: perform late per-CPU initialization.
   1171   * Short note about percpu PDIR pages:
   1172   * Both the PAE and __x86_64__ architectures have per-cpu PDIR
   1173   * tables. This is to get around Xen's pagetable setup constraints for
   1174   * PAE (multiple L3[3]s cannot point to the same L2 - Xen
   1175   * will refuse to pin a table setup this way.) and for multiple cpus
   1176   * to map in different user pmaps on __x86_64__ (see: cpu_load_pmap())
   1177   *
   1178   * What this means for us is that the PDIR of the pmap_kernel() is
   1179   * considered to be a canonical "SHADOW" PDIR with the following
   1180   * properties:
   1181   * - Its recursive mapping points to itself
   1182   * - per-cpu recursive mappings point to themselves on __x86_64__
   1183   * - per-cpu L4 pages' kernel entries are expected to be in sync with
   1184   *   the shadow
   1185   */
   1186 
   1187 void
   1188 pmap_cpu_init_late(struct cpu_info *ci)
   1189 {
   1190 #if defined(PAE) || defined(__x86_64__)
   1191 	/*
   1192 	 * The BP has already its own PD page allocated during early
   1193 	 * MD startup.
   1194 	 */
   1195 
   1196 #if defined(__x86_64__)
   1197 	/* Setup per-cpu normal_pdes */
   1198 	int i;
   1199 	extern pd_entry_t * const normal_pdes[];
   1200 	for (i = 0;i < PTP_LEVELS - 1;i++) {
   1201 		ci->ci_normal_pdes[i] = normal_pdes[i];
   1202 	}
   1203 #endif /* __x86_64__ */
   1204 
   1205 	if (ci == &cpu_info_primary)
   1206 		return;
   1207 
   1208 	KASSERT(ci != NULL);
   1209 
   1210 #if defined(PAE)
   1211 	cpu_alloc_l3_page(ci);
   1212 	KASSERT(ci->ci_pae_l3_pdirpa != 0);
   1213 
   1214 	/* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
   1215 	int i;
   1216 	for (i = 0 ; i < PDP_SIZE - 1; i++) {
   1217 		ci->ci_pae_l3_pdir[i] =
   1218 		    xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PG_V;
   1219 	}
   1220 #endif /* PAE */
   1221 
   1222 	ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1223 	    UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
   1224 
   1225 	if (ci->ci_kpm_pdir == NULL) {
   1226 		panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
   1227 		      __func__, cpu_index(ci));
   1228 	}
   1229 	ci->ci_kpm_pdirpa = vtophys((vaddr_t) ci->ci_kpm_pdir);
   1230 	KASSERT(ci->ci_kpm_pdirpa != 0);
   1231 
   1232 #if defined(__x86_64__)
   1233 	/*
   1234 	 * Copy over the pmap_kernel() shadow L4 entries
   1235 	 */
   1236 
   1237 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
   1238 
   1239 	/* Recursive kernel mapping */
   1240 	ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
   1241 #elif defined(PAE)
   1242 	/* Copy over the pmap_kernel() shadow L2 entries that map the kernel */
   1243 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN, nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
   1244 #endif /* __x86_64__ else PAE */
   1245 
   1246 	/* Xen wants R/O */
   1247 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
   1248 	    (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
   1249 	pmap_update(pmap_kernel());
   1250 #if defined(PAE)
   1251 	/* Initialise L3 entry 3. This mapping is shared across all
   1252 	 * pmaps and is static, ie; loading a new pmap will not update
   1253 	 * this entry.
   1254 	 */
   1255 
   1256 	ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
   1257 
   1258 	/* Mark L3 R/O (Xen wants this) */
   1259 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
   1260 	    (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
   1261 	pmap_update(pmap_kernel());
   1262 
   1263 	xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
   1264 
   1265 #elif defined(__x86_64__)
   1266 	xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
   1267 #endif /* PAE , __x86_64__ */
   1268 #endif /* defined(PAE) || defined(__x86_64__) */
   1269 }
   1270 
   1271 /*
   1272  * Notify all other cpus to halt.
   1273  */
   1274 
   1275 void
   1276 cpu_broadcast_halt(void)
   1277 {
   1278 	xen_broadcast_ipi(XEN_IPI_HALT);
   1279 }
   1280 
   1281 /*
   1282  * Send a dummy ipi to a cpu.
   1283  */
   1284 
   1285 void
   1286 cpu_kick(struct cpu_info *ci)
   1287 {
   1288 	(void)xen_send_ipi(ci, XEN_IPI_KICK);
   1289 }
   1290