cpu.c revision 1.104.2.1 1 /* $NetBSD: cpu.c,v 1.104.2.1 2017/01/07 08:56:28 pgoyette Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by RedBack Networks Inc.
10 *
11 * Author: Bill Sommerfeld
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Copyright (c) 1999 Stefan Grefen
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the NetBSD
49 * Foundation, Inc. and its contributors.
50 * 4. Neither the name of The NetBSD Foundation nor the names of its
51 * contributors may be used to endorse or promote products derived
52 * from this software without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
55 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 */
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.104.2.1 2017/01/07 08:56:28 pgoyette Exp $");
69
70 #include "opt_ddb.h"
71 #include "opt_multiprocessor.h"
72 #include "opt_mpbios.h" /* for MPDEBUG */
73 #include "opt_mtrr.h"
74 #include "opt_xen.h"
75
76 #include "lapic.h"
77 #include "ioapic.h"
78
79 #include <sys/param.h>
80 #include <sys/proc.h>
81 #include <sys/systm.h>
82 #include <sys/device.h>
83 #include <sys/kmem.h>
84 #include <sys/cpu.h>
85 #include <sys/cpufreq.h>
86 #include <sys/atomic.h>
87 #include <sys/reboot.h>
88 #include <sys/idle.h>
89
90 #include <uvm/uvm.h>
91
92 #include <machine/cpufunc.h>
93 #include <machine/cpuvar.h>
94 #include <machine/pmap.h>
95 #include <machine/vmparam.h>
96 #include <machine/mpbiosvar.h>
97 #include <machine/pcb.h>
98 #include <machine/specialreg.h>
99 #include <machine/segments.h>
100 #include <machine/gdt.h>
101 #include <machine/mtrr.h>
102 #include <machine/pio.h>
103
104 #include <x86/fpu.h>
105
106 #include <xen/xen.h>
107 #include <xen/xen-public/vcpu.h>
108 #include <xen/vcpuvar.h>
109
110 #if NLAPIC > 0
111 #include <machine/apicvar.h>
112 #include <machine/i82489reg.h>
113 #include <machine/i82489var.h>
114 #endif
115
116 #include <dev/ic/mc146818reg.h>
117 #include <dev/isa/isareg.h>
118
119 static int cpu_match(device_t, cfdata_t, void *);
120 static void cpu_attach(device_t, device_t, void *);
121 static void cpu_defer(device_t);
122 static int cpu_rescan(device_t, const char *, const int *);
123 static void cpu_childdetached(device_t, device_t);
124 static int vcpu_match(device_t, cfdata_t, void *);
125 static void vcpu_attach(device_t, device_t, void *);
126 static void cpu_attach_common(device_t, device_t, void *);
127 void cpu_offline_md(void);
128
129 struct cpu_softc {
130 device_t sc_dev; /* device tree glue */
131 struct cpu_info *sc_info; /* pointer to CPU info */
132 bool sc_wasonline;
133 };
134
135 int mp_cpu_start(struct cpu_info *, vaddr_t);
136 void mp_cpu_start_cleanup(struct cpu_info *);
137 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
138 mp_cpu_start_cleanup };
139
140 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
141 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
142
143 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
144 vcpu_match, vcpu_attach, NULL, NULL);
145
146 /*
147 * Statically-allocated CPU info for the primary CPU (or the only
148 * CPU, on uniprocessors). The CPU info list is initialized to
149 * point at it.
150 */
151 #ifdef TRAPLOG
152 #include <machine/tlog.h>
153 struct tlog tlog_primary;
154 #endif
155 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
156 .ci_dev = 0,
157 .ci_self = &cpu_info_primary,
158 .ci_idepth = -1,
159 .ci_curlwp = &lwp0,
160 .ci_curldt = -1,
161 #ifdef TRAPLOG
162 .ci_tlog = &tlog_primary,
163 #endif
164
165 };
166 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
167 .ci_dev = 0,
168 .ci_self = &phycpu_info_primary,
169 };
170
171 struct cpu_info *cpu_info_list = &cpu_info_primary;
172 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
173
174 uint32_t cpu_feature[7]; /* X86 CPUID feature bits
175 * [0] basic features %edx
176 * [1] basic features %ecx
177 * [2] extended features %edx
178 * [3] extended features %ecx
179 * [4] VIA padlock features
180 * [5] structured extended features cpuid.7:%ebx
181 * [6] structured extended features cpuid.7:%ecx
182 */
183
184 bool x86_mp_online;
185 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
186
187 #if defined(MULTIPROCESSOR)
188 void cpu_hatch(void *);
189 static void cpu_boot_secondary(struct cpu_info *ci);
190 static void cpu_start_secondary(struct cpu_info *ci);
191 #endif /* MULTIPROCESSOR */
192
193 static int
194 cpu_match(device_t parent, cfdata_t match, void *aux)
195 {
196
197 return 1;
198 }
199
200 static void
201 cpu_attach(device_t parent, device_t self, void *aux)
202 {
203 struct cpu_softc *sc = device_private(self);
204 struct cpu_attach_args *caa = aux;
205 struct cpu_info *ci;
206 uintptr_t ptr;
207 static int nphycpu = 0;
208
209 sc->sc_dev = self;
210
211 /*
212 * If we're an Application Processor, allocate a cpu_info
213 * If we're the first attached CPU use the primary cpu_info,
214 * otherwise allocate a new one
215 */
216 aprint_naive("\n");
217 aprint_normal("\n");
218 if (nphycpu > 0) {
219 struct cpu_info *tmp;
220 ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
221 KM_SLEEP);
222 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
223 ci->ci_curldt = -1;
224
225 tmp = phycpu_info_list;
226 while (tmp->ci_next)
227 tmp = tmp->ci_next;
228
229 tmp->ci_next = ci;
230 } else {
231 ci = &phycpu_info_primary;
232 }
233
234 ci->ci_self = ci;
235 sc->sc_info = ci;
236
237 ci->ci_dev = self;
238 ci->ci_acpiid = caa->cpu_id;
239 ci->ci_cpuid = caa->cpu_number;
240 ci->ci_vcpu = NULL;
241 ci->ci_index = nphycpu++;
242
243 if (!pmf_device_register(self, NULL, NULL))
244 aprint_error_dev(self, "couldn't establish power handler\n");
245
246 (void)config_defer(self, cpu_defer);
247 }
248
249 static void
250 cpu_defer(device_t self)
251 {
252 cpu_rescan(self, NULL, NULL);
253 }
254
255 static int
256 cpu_rescan(device_t self, const char *ifattr, const int *locators)
257 {
258 struct cpu_softc *sc = device_private(self);
259 struct cpufeature_attach_args cfaa;
260 struct cpu_info *ci = sc->sc_info;
261
262 memset(&cfaa, 0, sizeof(cfaa));
263 cfaa.ci = ci;
264
265 if (ifattr_match(ifattr, "cpufeaturebus")) {
266
267 if (ci->ci_frequency == NULL) {
268 cfaa.name = "frequency";
269 ci->ci_frequency = config_found_ia(self,
270 "cpufeaturebus", &cfaa, NULL);
271 }
272 }
273
274 return 0;
275 }
276
277 static void
278 cpu_childdetached(device_t self, device_t child)
279 {
280 struct cpu_softc *sc = device_private(self);
281 struct cpu_info *ci = sc->sc_info;
282
283 if (ci->ci_frequency == child)
284 ci->ci_frequency = NULL;
285 }
286
287 static int
288 vcpu_match(device_t parent, cfdata_t match, void *aux)
289 {
290 struct vcpu_attach_args *vcaa = aux;
291 struct vcpu_runstate_info vcr;
292 int error;
293
294 if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
295 error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
296 vcaa->vcaa_caa.cpu_number, &vcr);
297 switch (error) {
298 case 0:
299 return 1;
300 case -ENOENT:
301 return 0;
302 default:
303 panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
304 }
305 }
306
307 return 0;
308 }
309
310 static void
311 vcpu_attach(device_t parent, device_t self, void *aux)
312 {
313 struct vcpu_attach_args *vcaa = aux;
314
315 KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
316 vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
317 cpu_attach_common(parent, self, &vcaa->vcaa_caa);
318
319 if (!pmf_device_register(self, NULL, NULL))
320 aprint_error_dev(self, "couldn't establish power handler\n");
321 }
322
323 static int
324 vcpu_is_up(struct cpu_info *ci)
325 {
326 KASSERT(ci != NULL);
327 return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
328 }
329
330 static void
331 cpu_vm_init(struct cpu_info *ci)
332 {
333 int ncolors = 2, i;
334
335 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
336 struct x86_cache_info *cai;
337 int tcolors;
338
339 cai = &ci->ci_cinfo[i];
340
341 tcolors = atop(cai->cai_totalsize);
342 switch (cai->cai_associativity) {
343 case 0xff:
344 tcolors = 1; /* fully associative */
345 break;
346 case 0:
347 case 1:
348 break;
349 default:
350 tcolors /= cai->cai_associativity;
351 }
352 ncolors = max(ncolors, tcolors);
353 }
354
355 /*
356 * Knowing the size of the largest cache on this CPU, potentially
357 * re-color our pages.
358 */
359 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
360 uvm_page_recolor(ncolors);
361 pmap_tlb_cpu_init(ci);
362 }
363
364 static void
365 cpu_attach_common(device_t parent, device_t self, void *aux)
366 {
367 struct cpu_softc *sc = device_private(self);
368 struct cpu_attach_args *caa = aux;
369 struct cpu_info *ci;
370 uintptr_t ptr;
371 int cpunum = caa->cpu_number;
372 static bool again = false;
373
374 sc->sc_dev = self;
375
376 /*
377 * If we're an Application Processor, allocate a cpu_info
378 * structure, otherwise use the primary's.
379 */
380 if (caa->cpu_role == CPU_ROLE_AP) {
381 aprint_naive(": Application Processor\n");
382 ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
383 KM_SLEEP);
384 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
385 memset(ci, 0, sizeof(*ci));
386 #ifdef TRAPLOG
387 ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
388 #endif
389 } else {
390 aprint_naive(": %s Processor\n",
391 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
392 ci = &cpu_info_primary;
393 }
394
395 ci->ci_self = ci;
396 sc->sc_info = ci;
397 ci->ci_dev = self;
398 ci->ci_cpuid = cpunum;
399
400 KASSERT(HYPERVISOR_shared_info != NULL);
401 KASSERT(cpunum < XEN_LEGACY_MAX_VCPUS);
402 ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
403
404 KASSERT(ci->ci_func == 0);
405 ci->ci_func = caa->cpu_func;
406 aprint_normal("\n");
407
408 /* Must be called before mi_cpu_attach(). */
409 cpu_vm_init(ci);
410
411 if (caa->cpu_role == CPU_ROLE_AP) {
412 int error;
413
414 error = mi_cpu_attach(ci);
415
416 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
417 if (error != 0) {
418 aprint_error_dev(self,
419 "mi_cpu_attach failed with %d\n", error);
420 return;
421 }
422
423 } else {
424 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
425 }
426
427 KASSERT(ci->ci_cpuid == ci->ci_index);
428 #ifdef __x86_64__
429 /* No user PGD mapped for this CPU yet */
430 ci->ci_xen_current_user_pgd = 0;
431 #endif
432 #if defined(__x86_64__) || defined(PAE)
433 mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
434 #endif
435 pmap_reference(pmap_kernel());
436 ci->ci_pmap = pmap_kernel();
437 ci->ci_tlbstate = TLBSTATE_STALE;
438
439 /*
440 * Boot processor may not be attached first, but the below
441 * must be done to allow booting other processors.
442 */
443 if (!again) {
444 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
445 /* Basic init. */
446 cpu_intr_init(ci);
447 cpu_get_tsc_freq(ci);
448 cpu_init(ci);
449 pmap_cpu_init_late(ci);
450
451 /* Every processor needs to init its own ipi h/w (similar to lapic) */
452 xen_ipi_init();
453
454 /* Make sure DELAY() is initialized. */
455 DELAY(1);
456 again = true;
457 }
458
459 /* further PCB init done later. */
460
461 switch (caa->cpu_role) {
462 case CPU_ROLE_SP:
463 atomic_or_32(&ci->ci_flags, CPUF_SP);
464 cpu_identify(ci);
465 x86_cpu_idle_init();
466 break;
467
468 case CPU_ROLE_BP:
469 atomic_or_32(&ci->ci_flags, CPUF_BSP);
470 cpu_identify(ci);
471 x86_cpu_idle_init();
472 break;
473
474 case CPU_ROLE_AP:
475 atomic_or_32(&ci->ci_flags, CPUF_AP);
476
477 /*
478 * report on an AP
479 */
480
481 #if defined(MULTIPROCESSOR)
482 /* interrupt handler stack */
483 cpu_intr_init(ci);
484
485 /* Setup per-cpu memory for gdt */
486 gdt_alloc_cpu(ci);
487
488 pmap_cpu_init_late(ci);
489 cpu_start_secondary(ci);
490
491 if (ci->ci_flags & CPUF_PRESENT) {
492 struct cpu_info *tmp;
493
494 cpu_identify(ci);
495 tmp = cpu_info_list;
496 while (tmp->ci_next)
497 tmp = tmp->ci_next;
498
499 tmp->ci_next = ci;
500 }
501 #else
502 aprint_error_dev(ci->ci_dev, "not started\n");
503 #endif
504 break;
505
506 default:
507 panic("unknown processor type??\n");
508 }
509
510 #ifdef MPVERBOSE
511 if (mp_verbose) {
512 struct lwp *l = ci->ci_data.cpu_idlelwp;
513 struct pcb *pcb = lwp_getpcb(l);
514
515 aprint_verbose_dev(self,
516 "idle lwp at %p, idle sp at 0x%p\n",
517 l,
518 #ifdef i386
519 (void *)pcb->pcb_esp
520 #else
521 (void *)pcb->pcb_rsp
522 #endif
523 );
524
525 }
526 #endif /* MPVERBOSE */
527 }
528
529 /*
530 * Initialize the processor appropriately.
531 */
532
533 void
534 cpu_init(struct cpu_info *ci)
535 {
536
537 /*
538 * If we have FXSAVE/FXRESTOR, use them.
539 */
540 if (cpu_feature[0] & CPUID_FXSR) {
541 lcr4(rcr4() | CR4_OSFXSR);
542
543 /*
544 * If we have SSE/SSE2, enable XMM exceptions.
545 */
546 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
547 lcr4(rcr4() | CR4_OSXMMEXCPT);
548 }
549
550 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
551 }
552
553
554 #ifdef MULTIPROCESSOR
555
556 void
557 cpu_boot_secondary_processors(void)
558 {
559 struct cpu_info *ci;
560 u_long i;
561 for (i = 0; i < maxcpus; i++) {
562 ci = cpu_lookup(i);
563 if (ci == NULL)
564 continue;
565 if (ci->ci_data.cpu_idlelwp == NULL)
566 continue;
567 if ((ci->ci_flags & CPUF_PRESENT) == 0)
568 continue;
569 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
570 continue;
571 cpu_boot_secondary(ci);
572 }
573
574 x86_mp_online = true;
575 }
576
577 static void
578 cpu_init_idle_lwp(struct cpu_info *ci)
579 {
580 struct lwp *l = ci->ci_data.cpu_idlelwp;
581 struct pcb *pcb = lwp_getpcb(l);
582
583 pcb->pcb_cr0 = rcr0();
584 }
585
586 void
587 cpu_init_idle_lwps(void)
588 {
589 struct cpu_info *ci;
590 u_long i;
591
592 for (i = 0; i < maxcpus; i++) {
593 ci = cpu_lookup(i);
594 if (ci == NULL)
595 continue;
596 if (ci->ci_data.cpu_idlelwp == NULL)
597 continue;
598 if ((ci->ci_flags & CPUF_PRESENT) == 0)
599 continue;
600 cpu_init_idle_lwp(ci);
601 }
602 }
603
604 static void
605 cpu_start_secondary(struct cpu_info *ci)
606 {
607 int i;
608
609 aprint_debug_dev(ci->ci_dev, "starting\n");
610
611 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
612
613 if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
614 return;
615 }
616
617 /*
618 * wait for it to become ready
619 */
620 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
621 delay(10);
622 }
623 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
624 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
625 #if defined(MPDEBUG) && defined(DDB)
626 printf("dropping into debugger; continue from here to resume boot\n");
627 Debugger();
628 #endif
629 }
630
631 CPU_START_CLEANUP(ci);
632 }
633
634 void
635 cpu_boot_secondary(struct cpu_info *ci)
636 {
637 int i;
638 atomic_or_32(&ci->ci_flags, CPUF_GO);
639 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
640 delay(10);
641 }
642 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
643 aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
644 #if defined(MPDEBUG) && defined(DDB)
645 printf("dropping into debugger; continue from here to resume boot\n");
646 Debugger();
647 #endif
648 }
649 }
650
651 /*
652 * APs end up here immediately after initialisation and VCPUOP_up in
653 * mp_cpu_start().
654 * At this point, we are running in the idle pcb/idle stack of the new
655 * CPU. This function jumps to the idle loop and starts looking for
656 * work.
657 */
658 extern void x86_64_tls_switch(struct lwp *);
659 void
660 cpu_hatch(void *v)
661 {
662 struct cpu_info *ci = (struct cpu_info *)v;
663 struct pcb *pcb;
664 int s, i;
665
666 /* Setup TLS and kernel GS/FS */
667 cpu_init_msrs(ci, true);
668 cpu_init_idt();
669 gdt_init_cpu(ci);
670
671 cpu_probe(ci);
672
673 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
674
675 while ((ci->ci_flags & CPUF_GO) == 0) {
676 /* Don't use delay, boot CPU may be patching the text. */
677 for (i = 10000; i != 0; i--)
678 x86_pause();
679 }
680
681 /* Because the text may have been patched in x86_patch(). */
682 x86_flush();
683 tlbflushg();
684
685 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
686
687 pcb = lwp_getpcb(curlwp);
688 pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0);
689 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
690
691 xen_ipi_init();
692
693 xen_initclocks();
694
695 #ifdef __x86_64__
696 fpuinit(ci);
697 #endif
698
699 lldt(GSEL(GLDT_SEL, SEL_KPL));
700
701 cpu_init(ci);
702 cpu_get_tsc_freq(ci);
703
704 s = splhigh();
705 x86_enable_intr();
706 splx(s);
707
708 aprint_debug_dev(ci->ci_dev, "running\n");
709
710 cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
711
712 idle_loop(NULL);
713 KASSERT(false);
714 }
715
716 #if defined(DDB)
717
718 #include <ddb/db_output.h>
719 #include <machine/db_machdep.h>
720
721 /*
722 * Dump CPU information from ddb.
723 */
724 void
725 cpu_debug_dump(void)
726 {
727 struct cpu_info *ci;
728 CPU_INFO_ITERATOR cii;
729
730 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
731 for (CPU_INFO_FOREACH(cii, ci)) {
732 db_printf("%p %s %ld %x %x %10p %10p\n",
733 ci,
734 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
735 (long)ci->ci_cpuid,
736 ci->ci_flags, ci->ci_ipis,
737 ci->ci_curlwp,
738 ci->ci_fpcurlwp);
739 }
740 }
741 #endif /* DDB */
742
743 #endif /* MULTIPROCESSOR */
744
745 extern void hypervisor_callback(void);
746 extern void failsafe_callback(void);
747 #ifdef __x86_64__
748 typedef void (vector)(void);
749 extern vector Xsyscall, Xsyscall32;
750 #endif
751
752 /*
753 * Setup the "trampoline". On Xen, we setup nearly all cpu context
754 * outside a trampoline, so we prototype and call targetip like so:
755 * void targetip(struct cpu_info *);
756 */
757
758 static void
759 gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
760 {
761 int i;
762 for (i = 0; i < roundup(entries, PAGE_SIZE) >> PAGE_SHIFT; i++) {
763 frames[i] = ((paddr_t)xpmap_ptetomach(
764 (pt_entry_t *)(base + (i << PAGE_SHIFT)))) >> PAGE_SHIFT;
765
766 /* Mark Read-only */
767 pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
768 PG_RW);
769 }
770 }
771
772 #ifdef __x86_64__
773 extern char *ldtstore;
774
775 static void
776 xen_init_amd64_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
777 void targetrip(struct cpu_info *))
778 {
779 /* page frames to point at GDT */
780 extern int gdt_size;
781 paddr_t frames[16];
782 psize_t gdt_ents;
783
784 struct lwp *l;
785 struct pcb *pcb;
786
787 volatile struct vcpu_info *vci;
788
789 KASSERT(ci != NULL);
790 KASSERT(ci != &cpu_info_primary);
791 KASSERT(initctx != NULL);
792 KASSERT(targetrip != NULL);
793
794 memset(initctx, 0, sizeof(*initctx));
795
796 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
797 KASSERT(gdt_ents <= 16);
798
799 gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
800
801 /* Initialise the vcpu context: We use idle_loop()'s pcb context. */
802
803 l = ci->ci_data.cpu_idlelwp;
804
805 KASSERT(l != NULL);
806 pcb = lwp_getpcb(l);
807 KASSERT(pcb != NULL);
808
809 /* resume with interrupts off */
810 vci = ci->ci_vcpu;
811 vci->evtchn_upcall_mask = 1;
812 xen_mb();
813
814 /* resume in kernel-mode */
815 initctx->flags = VGCF_in_kernel | VGCF_online;
816
817 /* Stack and entry points:
818 * We arrange for the stack frame for cpu_hatch() to
819 * appear as a callee frame of lwp_trampoline(). Being a
820 * leaf frame prevents trampling on any of the MD stack setup
821 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
822 */
823
824 initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
825 initctx->user_regs.rip = (vaddr_t) targetrip;
826
827 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
828
829 initctx->user_regs.rflags = pcb->pcb_flags;
830 initctx->user_regs.rsp = pcb->pcb_rsp;
831
832 /* Data segments */
833 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
834 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
835 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
836
837 /* GDT */
838 memcpy(initctx->gdt_frames, frames, sizeof(frames));
839 initctx->gdt_ents = gdt_ents;
840
841 /* LDT */
842 initctx->ldt_base = (unsigned long)ldtstore;
843 initctx->ldt_ents = LDT_SIZE >> 3;
844
845 /* Kernel context state */
846 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
847 initctx->kernel_sp = pcb->pcb_rsp0;
848 initctx->ctrlreg[0] = pcb->pcb_cr0;
849 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
850 initctx->ctrlreg[2] = (vaddr_t)targetrip;
851 /*
852 * Use pmap_kernel() L4 PD directly, until we setup the
853 * per-cpu L4 PD in pmap_cpu_init_late()
854 */
855 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
856 initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
857
858 /* Xen callbacks */
859 initctx->event_callback_eip = (unsigned long)hypervisor_callback;
860 initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
861 initctx->syscall_callback_eip = (unsigned long)Xsyscall;
862
863 return;
864 }
865 #else /* i386 */
866 extern union descriptor *ldt;
867 extern void Xsyscall(void);
868
869 static void
870 xen_init_i386_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
871 void targeteip(struct cpu_info *))
872 {
873 /* page frames to point at GDT */
874 extern int gdt_size;
875 paddr_t frames[16];
876 psize_t gdt_ents;
877
878 struct lwp *l;
879 struct pcb *pcb;
880
881 volatile struct vcpu_info *vci;
882
883 KASSERT(ci != NULL);
884 KASSERT(ci != &cpu_info_primary);
885 KASSERT(initctx != NULL);
886 KASSERT(targeteip != NULL);
887
888 memset(initctx, 0, sizeof(*initctx));
889
890 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
891 KASSERT(gdt_ents <= 16);
892
893 gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
894
895 /*
896 * Initialise the vcpu context:
897 * We use this cpu's idle_loop() pcb context.
898 */
899
900 l = ci->ci_data.cpu_idlelwp;
901
902 KASSERT(l != NULL);
903 pcb = lwp_getpcb(l);
904 KASSERT(pcb != NULL);
905
906 /* resume with interrupts off */
907 vci = ci->ci_vcpu;
908 vci->evtchn_upcall_mask = 1;
909 xen_mb();
910
911 /* resume in kernel-mode */
912 initctx->flags = VGCF_in_kernel | VGCF_online;
913
914 /* Stack frame setup for cpu_hatch():
915 * We arrange for the stack frame for cpu_hatch() to
916 * appear as a callee frame of lwp_trampoline(). Being a
917 * leaf frame prevents trampling on any of the MD stack setup
918 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
919 */
920
921 initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
922 arg1 */
923 {
924 /* targeteip(ci); */
925 uint32_t *arg = (uint32_t *)initctx->user_regs.esp;
926 arg[1] = (uint32_t)ci; /* arg1 */
927 }
928
929 initctx->user_regs.eip = (vaddr_t)targeteip;
930 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
931 initctx->user_regs.eflags |= pcb->pcb_iopl;
932
933 /* Data segments */
934 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
935 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
936 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
937 initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
938
939 /* GDT */
940 memcpy(initctx->gdt_frames, frames, sizeof(frames));
941 initctx->gdt_ents = gdt_ents;
942
943 /* LDT */
944 initctx->ldt_base = (unsigned long)ldt;
945 initctx->ldt_ents = NLDT;
946
947 /* Kernel context state */
948 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
949 initctx->kernel_sp = pcb->pcb_esp0;
950 initctx->ctrlreg[0] = pcb->pcb_cr0;
951 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
952 initctx->ctrlreg[2] = (vaddr_t)targeteip;
953 #ifdef PAE
954 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
955 #else
956 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(pcb->pcb_cr3)));
957 #endif
958 initctx->ctrlreg[4] = /* CR4_PAE | */CR4_OSFXSR | CR4_OSXMMEXCPT;
959
960 /* Xen callbacks */
961 initctx->event_callback_eip = (unsigned long)hypervisor_callback;
962 initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
963 initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
964 initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
965
966 return;
967 }
968 #endif /* __x86_64__ */
969
970 int
971 mp_cpu_start(struct cpu_info *ci, vaddr_t target)
972 {
973 int hyperror;
974 struct vcpu_guest_context vcpuctx;
975
976 KASSERT(ci != NULL);
977 KASSERT(ci != &cpu_info_primary);
978 KASSERT(ci->ci_flags & CPUF_AP);
979
980 #ifdef __x86_64__
981 xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
982 #else
983 xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
984 #endif
985
986 /* Initialise the given vcpu to execute cpu_hatch(ci); */
987 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
988 aprint_error(": context initialisation failed. errno = %d\n", hyperror);
989 return hyperror;
990 }
991
992 /* Start it up */
993
994 /* First bring it down */
995 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
996 aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
997 return hyperror;
998 }
999
1000 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
1001 aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
1002 return hyperror;
1003 }
1004
1005 if (!vcpu_is_up(ci)) {
1006 aprint_error(": did not come up\n");
1007 return -1;
1008 }
1009
1010 return 0;
1011 }
1012
1013 void
1014 mp_cpu_start_cleanup(struct cpu_info *ci)
1015 {
1016 if (vcpu_is_up(ci)) {
1017 aprint_debug_dev(ci->ci_dev, "is started.\n");
1018 } else {
1019 aprint_error_dev(ci->ci_dev, "did not start up.\n");
1020 }
1021 }
1022
1023 void
1024 cpu_init_msrs(struct cpu_info *ci, bool full)
1025 {
1026 #ifdef __x86_64__
1027 if (full) {
1028 HYPERVISOR_set_segment_base(SEGBASE_FS, 0);
1029 HYPERVISOR_set_segment_base(SEGBASE_GS_KERNEL, (uint64_t)ci);
1030 HYPERVISOR_set_segment_base(SEGBASE_GS_USER, 0);
1031 }
1032 #endif
1033
1034 if (cpu_feature[2] & CPUID_NOX)
1035 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1036 }
1037
1038 void
1039 cpu_offline_md(void)
1040 {
1041 int s;
1042
1043 s = splhigh();
1044 fpusave_cpu(true);
1045 splx(s);
1046 }
1047
1048 void
1049 cpu_get_tsc_freq(struct cpu_info *ci)
1050 {
1051 uint32_t vcpu_tversion;
1052 const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1053
1054 vcpu_tversion = tinfo->version;
1055 while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
1056
1057 uint64_t freq = 1000000000ULL << 32;
1058 freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1059 if (tinfo->tsc_shift < 0)
1060 freq = freq << -tinfo->tsc_shift;
1061 else
1062 freq = freq >> tinfo->tsc_shift;
1063 ci->ci_data.cpu_cc_freq = freq;
1064 }
1065
1066 void
1067 x86_cpu_idle_xen(void)
1068 {
1069 struct cpu_info *ci = curcpu();
1070
1071 KASSERT(ci->ci_ilevel == IPL_NONE);
1072
1073 x86_disable_intr();
1074 if (!__predict_false(ci->ci_want_resched)) {
1075 idle_block();
1076 } else {
1077 x86_enable_intr();
1078 }
1079 }
1080
1081 /*
1082 * Loads pmap for the current CPU.
1083 */
1084 void
1085 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1086 {
1087 KASSERT(pmap != pmap_kernel());
1088
1089 #if defined(__x86_64__) || defined(PAE)
1090 struct cpu_info *ci = curcpu();
1091 cpuid_t cid = cpu_index(ci);
1092
1093 mutex_enter(&ci->ci_kpm_mtx);
1094 /* make new pmap visible to xen_kpm_sync() */
1095 kcpuset_atomic_set(pmap->pm_xen_ptp_cpus, cid);
1096 #endif
1097
1098 #ifdef i386
1099 #ifdef PAE
1100 {
1101 int i;
1102 paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
1103 /* don't update the kernel L3 slot */
1104 for (i = 0 ; i < PDP_SIZE - 1; i++) {
1105 xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
1106 xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
1107 }
1108 tlbflush();
1109 }
1110 #else /* PAE */
1111 lcr3(pmap_pdirpa(pmap, 0));
1112 #endif /* PAE */
1113 #endif /* i386 */
1114
1115 #ifdef __x86_64__
1116 {
1117 int i;
1118 pd_entry_t *new_pgd;
1119 paddr_t l4_pd_ma;
1120
1121 l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
1122
1123 /*
1124 * Map user space address in kernel space and load
1125 * user cr3
1126 */
1127 new_pgd = pmap->pm_pdir;
1128 KASSERT(pmap == ci->ci_pmap);
1129
1130 /* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
1131 for (i = 0; i < PDIR_SLOT_PTE; i++) {
1132 KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
1133 if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
1134 xpq_queue_pte_update(
1135 l4_pd_ma + i * sizeof(pd_entry_t),
1136 new_pgd[i]);
1137 }
1138 }
1139
1140 xen_set_user_pgd(pmap_pdirpa(pmap, 0));
1141 ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
1142
1143 tlbflush();
1144 }
1145 #endif /* __x86_64__ */
1146
1147 #if defined(__x86_64__) || defined(PAE)
1148 /* old pmap no longer visible to xen_kpm_sync() */
1149 if (oldpmap != pmap_kernel()) {
1150 kcpuset_atomic_clear(oldpmap->pm_xen_ptp_cpus, cid);
1151 }
1152 mutex_exit(&ci->ci_kpm_mtx);
1153 #endif
1154 }
1155
1156 /*
1157 * pmap_cpu_init_late: perform late per-CPU initialization.
1158 *
1159 * Short note about percpu PDIR pages. Both the PAE and __x86_64__ architectures
1160 * have per-cpu PDIR tables, for two different reasons:
1161 * - on PAE, this is to get around Xen's pagetable setup constraints (multiple
1162 * L3[3]s cannot point to the same L2 - Xen will refuse to pin a table set up
1163 * this way).
1164 * - on __x86_64__, this is for multiple CPUs to map in different user pmaps
1165 * (see cpu_load_pmap()).
1166 *
1167 * What this means for us is that the PDIR of the pmap_kernel() is considered
1168 * to be a canonical "SHADOW" PDIR with the following properties:
1169 * - its recursive mapping points to itself
1170 * - per-cpu recursive mappings point to themselves on __x86_64__
1171 * - per-cpu L4 pages' kernel entries are expected to be in sync with
1172 * the shadow
1173 */
1174
1175 void
1176 pmap_cpu_init_late(struct cpu_info *ci)
1177 {
1178 #if defined(PAE) || defined(__x86_64__)
1179 /*
1180 * The BP has already its own PD page allocated during early
1181 * MD startup.
1182 */
1183
1184 #if defined(__x86_64__)
1185 /* Setup per-cpu normal_pdes */
1186 int i;
1187 extern pd_entry_t * const normal_pdes[];
1188 for (i = 0;i < PTP_LEVELS - 1;i++) {
1189 ci->ci_normal_pdes[i] = normal_pdes[i];
1190 }
1191 #endif /* __x86_64__ */
1192
1193 if (ci == &cpu_info_primary)
1194 return;
1195
1196 KASSERT(ci != NULL);
1197
1198 #if defined(PAE)
1199 cpu_alloc_l3_page(ci);
1200 KASSERT(ci->ci_pae_l3_pdirpa != 0);
1201
1202 /* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
1203 int i;
1204 for (i = 0 ; i < PDP_SIZE - 1; i++) {
1205 ci->ci_pae_l3_pdir[i] =
1206 xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PG_V;
1207 }
1208 #endif /* PAE */
1209
1210 ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1211 UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
1212
1213 if (ci->ci_kpm_pdir == NULL) {
1214 panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
1215 __func__, cpu_index(ci));
1216 }
1217 ci->ci_kpm_pdirpa = vtophys((vaddr_t)ci->ci_kpm_pdir);
1218 KASSERT(ci->ci_kpm_pdirpa != 0);
1219
1220 #if defined(__x86_64__)
1221 /*
1222 * Copy over the pmap_kernel() shadow L4 entries
1223 */
1224
1225 memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
1226
1227 /* Recursive kernel mapping */
1228 ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa)
1229 | PG_k | PG_V;
1230 #elif defined(PAE)
1231 /* Copy over the pmap_kernel() shadow L2 entries that map the kernel */
1232 memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN,
1233 nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
1234 #endif /* __x86_64__ else PAE */
1235
1236 /* Xen wants a RO pdir. */
1237 pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
1238 (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
1239 pmap_update(pmap_kernel());
1240 #if defined(PAE)
1241 /*
1242 * Initialize L3 entry 3. This mapping is shared across all pmaps and is
1243 * static, ie: loading a new pmap will not update this entry.
1244 */
1245 ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
1246
1247 /* Xen wants a RO L3. */
1248 pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
1249 (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
1250 pmap_update(pmap_kernel());
1251
1252 xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
1253
1254 #elif defined(__x86_64__)
1255 xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
1256 #endif /* PAE , __x86_64__ */
1257 #endif /* defined(PAE) || defined(__x86_64__) */
1258 }
1259
1260 /*
1261 * Notify all other cpus to halt.
1262 */
1263
1264 void
1265 cpu_broadcast_halt(void)
1266 {
1267 xen_broadcast_ipi(XEN_IPI_HALT);
1268 }
1269
1270 /*
1271 * Send a dummy ipi to a cpu.
1272 */
1273
1274 void
1275 cpu_kick(struct cpu_info *ci)
1276 {
1277 (void)xen_send_ipi(ci, XEN_IPI_KICK);
1278 }
1279