Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.105.2.1
      1 /*	$NetBSD: cpu.c,v 1.105.2.1 2017/04/21 16:53:39 bouyer Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5  * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by RedBack Networks Inc.
     10  *
     11  * Author: Bill Sommerfeld
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*
     36  * Copyright (c) 1999 Stefan Grefen
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. All advertising materials mentioning features or use of this software
     47  *    must display the following acknowledgement:
     48  *      This product includes software developed by the NetBSD
     49  *      Foundation, Inc. and its contributors.
     50  * 4. Neither the name of The NetBSD Foundation nor the names of its
     51  *    contributors may be used to endorse or promote products derived
     52  *    from this software without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     55  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  */
     66 
     67 #include <sys/cdefs.h>
     68 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.105.2.1 2017/04/21 16:53:39 bouyer Exp $");
     69 
     70 #include "opt_ddb.h"
     71 #include "opt_multiprocessor.h"
     72 #include "opt_mpbios.h"		/* for MPDEBUG */
     73 #include "opt_mtrr.h"
     74 #include "opt_xen.h"
     75 
     76 #include "lapic.h"
     77 #include "ioapic.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/proc.h>
     81 #include <sys/systm.h>
     82 #include <sys/device.h>
     83 #include <sys/kmem.h>
     84 #include <sys/cpu.h>
     85 #include <sys/cpufreq.h>
     86 #include <sys/atomic.h>
     87 #include <sys/reboot.h>
     88 #include <sys/idle.h>
     89 
     90 #include <uvm/uvm.h>
     91 
     92 #include <machine/cpufunc.h>
     93 #include <machine/cpuvar.h>
     94 #include <machine/pmap.h>
     95 #include <machine/vmparam.h>
     96 #include <machine/mpbiosvar.h>
     97 #include <machine/pcb.h>
     98 #include <machine/specialreg.h>
     99 #include <machine/segments.h>
    100 #include <machine/gdt.h>
    101 #include <machine/mtrr.h>
    102 #include <machine/pio.h>
    103 
    104 #include <x86/fpu.h>
    105 
    106 #include <xen/xen.h>
    107 #include <xen/xen-public/vcpu.h>
    108 #include <xen/vcpuvar.h>
    109 
    110 #if NLAPIC > 0
    111 #include <machine/apicvar.h>
    112 #include <machine/i82489reg.h>
    113 #include <machine/i82489var.h>
    114 #endif
    115 
    116 #include <dev/ic/mc146818reg.h>
    117 #include <dev/isa/isareg.h>
    118 
    119 static int	cpu_match(device_t, cfdata_t, void *);
    120 static void	cpu_attach(device_t, device_t, void *);
    121 static void	cpu_defer(device_t);
    122 static int	cpu_rescan(device_t, const char *, const int *);
    123 static void	cpu_childdetached(device_t, device_t);
    124 static int	vcpu_match(device_t, cfdata_t, void *);
    125 static void	vcpu_attach(device_t, device_t, void *);
    126 static void	cpu_attach_common(device_t, device_t, void *);
    127 void		cpu_offline_md(void);
    128 
    129 struct cpu_softc {
    130 	device_t sc_dev;		/* device tree glue */
    131 	struct cpu_info *sc_info;	/* pointer to CPU info */
    132 	bool sc_wasonline;
    133 };
    134 
    135 int mp_cpu_start(struct cpu_info *, vaddr_t);
    136 void mp_cpu_start_cleanup(struct cpu_info *);
    137 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    138 				      mp_cpu_start_cleanup };
    139 
    140 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    141     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    142 
    143 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
    144     vcpu_match, vcpu_attach, NULL, NULL);
    145 
    146 /*
    147  * Statically-allocated CPU info for the primary CPU (or the only
    148  * CPU, on uniprocessors).  The CPU info list is initialized to
    149  * point at it.
    150  */
    151 #ifdef TRAPLOG
    152 #include <machine/tlog.h>
    153 struct tlog tlog_primary;
    154 #endif
    155 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    156 	.ci_dev = 0,
    157 	.ci_self = &cpu_info_primary,
    158 	.ci_idepth = -1,
    159 	.ci_curlwp = &lwp0,
    160 	.ci_curldt = -1,
    161 #ifdef TRAPLOG
    162 	.ci_tlog = &tlog_primary,
    163 #endif
    164 
    165 };
    166 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    167 	.ci_dev = 0,
    168 	.ci_self = &phycpu_info_primary,
    169 };
    170 
    171 struct cpu_info *cpu_info_list = &cpu_info_primary;
    172 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
    173 
    174 uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits
    175 			  *	[0] basic features %edx
    176 			  *	[1] basic features %ecx
    177 			  *	[2] extended features %edx
    178 			  *	[3] extended features %ecx
    179 			  *	[4] VIA padlock features
    180 			  *	[5] structured extended features cpuid.7:%ebx
    181 			  *	[6] structured extended features cpuid.7:%ecx
    182 			  */
    183 
    184 bool x86_mp_online;
    185 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    186 
    187 #if defined(MULTIPROCESSOR)
    188 void    	cpu_hatch(void *);
    189 static void    	cpu_boot_secondary(struct cpu_info *ci);
    190 static void    	cpu_start_secondary(struct cpu_info *ci);
    191 #endif	/* MULTIPROCESSOR */
    192 
    193 static int
    194 cpu_match(device_t parent, cfdata_t match, void *aux)
    195 {
    196 
    197 	return 1;
    198 }
    199 
    200 static void
    201 cpu_attach(device_t parent, device_t self, void *aux)
    202 {
    203 	struct cpu_softc *sc = device_private(self);
    204 	struct cpu_attach_args *caa = aux;
    205 	struct cpu_info *ci;
    206 	uintptr_t ptr;
    207 	static int nphycpu = 0;
    208 
    209 	sc->sc_dev = self;
    210 
    211 	/*
    212 	 * If we're an Application Processor, allocate a cpu_info
    213 	 * If we're the first attached CPU use the primary cpu_info,
    214 	 * otherwise allocate a new one
    215 	 */
    216 	aprint_naive("\n");
    217 	aprint_normal("\n");
    218 	if (nphycpu > 0) {
    219 		struct cpu_info *tmp;
    220 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    221 		    KM_SLEEP);
    222 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    223 		ci->ci_curldt = -1;
    224 
    225 		tmp = phycpu_info_list;
    226 		while (tmp->ci_next)
    227 			tmp = tmp->ci_next;
    228 
    229 		tmp->ci_next = ci;
    230 	} else {
    231 		ci = &phycpu_info_primary;
    232 	}
    233 
    234 	ci->ci_self = ci;
    235 	sc->sc_info = ci;
    236 
    237 	ci->ci_dev = self;
    238 	ci->ci_acpiid = caa->cpu_id;
    239 	ci->ci_cpuid = caa->cpu_number;
    240 	ci->ci_vcpu = NULL;
    241 	ci->ci_index = nphycpu++;
    242 
    243 	if (!pmf_device_register(self, NULL, NULL))
    244 		aprint_error_dev(self, "couldn't establish power handler\n");
    245 
    246 	(void)config_defer(self, cpu_defer);
    247 }
    248 
    249 static void
    250 cpu_defer(device_t self)
    251 {
    252 	cpu_rescan(self, NULL, NULL);
    253 }
    254 
    255 static int
    256 cpu_rescan(device_t self, const char *ifattr, const int *locators)
    257 {
    258 	struct cpu_softc *sc = device_private(self);
    259 	struct cpufeature_attach_args cfaa;
    260 	struct cpu_info *ci = sc->sc_info;
    261 
    262 	memset(&cfaa, 0, sizeof(cfaa));
    263 	cfaa.ci = ci;
    264 
    265 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    266 
    267 		if (ci->ci_frequency == NULL) {
    268 			cfaa.name = "frequency";
    269 			ci->ci_frequency = config_found_ia(self,
    270 			    "cpufeaturebus", &cfaa, NULL);
    271 		}
    272 	}
    273 
    274 	return 0;
    275 }
    276 
    277 static void
    278 cpu_childdetached(device_t self, device_t child)
    279 {
    280 	struct cpu_softc *sc = device_private(self);
    281 	struct cpu_info *ci = sc->sc_info;
    282 
    283 	if (ci->ci_frequency == child)
    284 		ci->ci_frequency = NULL;
    285 }
    286 
    287 static int
    288 vcpu_match(device_t parent, cfdata_t match, void *aux)
    289 {
    290 	struct vcpu_attach_args *vcaa = aux;
    291 	struct vcpu_runstate_info vcr;
    292 	int error;
    293 
    294 	if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
    295 		error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
    296 		    vcaa->vcaa_caa.cpu_number, &vcr);
    297 		switch (error) {
    298 		case 0:
    299 			return 1;
    300 		case -ENOENT:
    301 			return 0;
    302 		default:
    303 			panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
    304 		}
    305 	}
    306 
    307 	return 0;
    308 }
    309 
    310 static void
    311 vcpu_attach(device_t parent, device_t self, void *aux)
    312 {
    313 	struct vcpu_attach_args *vcaa = aux;
    314 
    315 	KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
    316 	vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
    317 	cpu_attach_common(parent, self, &vcaa->vcaa_caa);
    318 
    319 	if (!pmf_device_register(self, NULL, NULL))
    320 		aprint_error_dev(self, "couldn't establish power handler\n");
    321 }
    322 
    323 static int
    324 vcpu_is_up(struct cpu_info *ci)
    325 {
    326 	KASSERT(ci != NULL);
    327 	return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
    328 }
    329 
    330 static void
    331 cpu_vm_init(struct cpu_info *ci)
    332 {
    333 	int ncolors = 2, i;
    334 
    335 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    336 		struct x86_cache_info *cai;
    337 		int tcolors;
    338 
    339 		cai = &ci->ci_cinfo[i];
    340 
    341 		tcolors = atop(cai->cai_totalsize);
    342 		switch (cai->cai_associativity) {
    343 		case 0xff:
    344 			tcolors = 1; /* fully associative */
    345 			break;
    346 		case 0:
    347 		case 1:
    348 			break;
    349 		default:
    350 			tcolors /= cai->cai_associativity;
    351 		}
    352 		ncolors = max(ncolors, tcolors);
    353 	}
    354 
    355 	/*
    356 	 * Knowing the size of the largest cache on this CPU, potentially
    357 	 * re-color our pages.
    358 	 */
    359 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    360 	uvm_page_recolor(ncolors);
    361 	pmap_tlb_cpu_init(ci);
    362 #ifndef __HAVE_DIRECT_MAP
    363 	pmap_vpage_cpu_init(ci);
    364 #endif
    365 }
    366 
    367 static void
    368 cpu_attach_common(device_t parent, device_t self, void *aux)
    369 {
    370 	struct cpu_softc *sc = device_private(self);
    371 	struct cpu_attach_args *caa = aux;
    372 	struct cpu_info *ci;
    373 	uintptr_t ptr;
    374 	int cpunum = caa->cpu_number;
    375 	static bool again = false;
    376 
    377 	sc->sc_dev = self;
    378 
    379 	/*
    380 	 * If we're an Application Processor, allocate a cpu_info
    381 	 * structure, otherwise use the primary's.
    382 	 */
    383 	if (caa->cpu_role == CPU_ROLE_AP) {
    384 		aprint_naive(": Application Processor\n");
    385 		ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    386 		    KM_SLEEP);
    387 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    388 		memset(ci, 0, sizeof(*ci));
    389 #ifdef TRAPLOG
    390 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
    391 #endif
    392 	} else {
    393 		aprint_naive(": %s Processor\n",
    394 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    395 		ci = &cpu_info_primary;
    396 	}
    397 
    398 	ci->ci_self = ci;
    399 	sc->sc_info = ci;
    400 	ci->ci_dev = self;
    401 	ci->ci_cpuid = cpunum;
    402 
    403 	KASSERT(HYPERVISOR_shared_info != NULL);
    404 	KASSERT(cpunum < XEN_LEGACY_MAX_VCPUS);
    405 	ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
    406 
    407 	KASSERT(ci->ci_func == 0);
    408 	ci->ci_func = caa->cpu_func;
    409 	aprint_normal("\n");
    410 
    411 	/* Must be called before mi_cpu_attach(). */
    412 	cpu_vm_init(ci);
    413 
    414 	if (caa->cpu_role == CPU_ROLE_AP) {
    415 		int error;
    416 
    417 		error = mi_cpu_attach(ci);
    418 
    419 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    420 		if (error != 0) {
    421 			aprint_error_dev(self,
    422 			    "mi_cpu_attach failed with %d\n", error);
    423 			return;
    424 		}
    425 
    426 	} else {
    427 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    428 	}
    429 
    430 	KASSERT(ci->ci_cpuid == ci->ci_index);
    431 #ifdef __x86_64__
    432 	/* No user PGD mapped for this CPU yet */
    433 	ci->ci_xen_current_user_pgd = 0;
    434 #endif
    435 #if defined(__x86_64__) || defined(PAE)
    436 	mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
    437 #endif
    438 	pmap_reference(pmap_kernel());
    439 	ci->ci_pmap = pmap_kernel();
    440 	ci->ci_tlbstate = TLBSTATE_STALE;
    441 
    442 	/*
    443 	 * Boot processor may not be attached first, but the below
    444 	 * must be done to allow booting other processors.
    445 	 */
    446 	if (!again) {
    447 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    448 		/* Basic init. */
    449 		cpu_intr_init(ci);
    450 		cpu_get_tsc_freq(ci);
    451 		cpu_init(ci);
    452 		pmap_cpu_init_late(ci);
    453 
    454 		/* Every processor needs to init its own ipi h/w (similar to lapic) */
    455 		xen_ipi_init();
    456 
    457 		/* Make sure DELAY() is initialized. */
    458 		DELAY(1);
    459 		again = true;
    460 	}
    461 
    462 	/* further PCB init done later. */
    463 
    464 	switch (caa->cpu_role) {
    465 	case CPU_ROLE_SP:
    466 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    467 		cpu_identify(ci);
    468 		x86_cpu_idle_init();
    469 		break;
    470 
    471 	case CPU_ROLE_BP:
    472 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    473 		cpu_identify(ci);
    474 		x86_cpu_idle_init();
    475 		break;
    476 
    477 	case CPU_ROLE_AP:
    478 		atomic_or_32(&ci->ci_flags, CPUF_AP);
    479 
    480 		/*
    481 		 * report on an AP
    482 		 */
    483 
    484 #if defined(MULTIPROCESSOR)
    485 		/* interrupt handler stack */
    486 		cpu_intr_init(ci);
    487 
    488 		/* Setup per-cpu memory for gdt */
    489 		gdt_alloc_cpu(ci);
    490 
    491 		pmap_cpu_init_late(ci);
    492 		cpu_start_secondary(ci);
    493 
    494 		if (ci->ci_flags & CPUF_PRESENT) {
    495 			struct cpu_info *tmp;
    496 
    497 			cpu_identify(ci);
    498 			tmp = cpu_info_list;
    499 			while (tmp->ci_next)
    500 				tmp = tmp->ci_next;
    501 
    502 			tmp->ci_next = ci;
    503 		}
    504 #else
    505 		aprint_error_dev(ci->ci_dev, "not started\n");
    506 #endif
    507 		break;
    508 
    509 	default:
    510 		panic("unknown processor type??\n");
    511 	}
    512 
    513 #ifdef MPVERBOSE
    514 	if (mp_verbose) {
    515 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    516 		struct pcb *pcb = lwp_getpcb(l);
    517 
    518 		aprint_verbose_dev(self,
    519 		    "idle lwp at %p, idle sp at 0x%p\n",
    520 		    l,
    521 #ifdef i386
    522 		    (void *)pcb->pcb_esp
    523 #else
    524 		    (void *)pcb->pcb_rsp
    525 #endif
    526 		);
    527 
    528 	}
    529 #endif /* MPVERBOSE */
    530 }
    531 
    532 /*
    533  * Initialize the processor appropriately.
    534  */
    535 
    536 void
    537 cpu_init(struct cpu_info *ci)
    538 {
    539 
    540 	/*
    541 	 * If we have FXSAVE/FXRESTOR, use them.
    542 	 */
    543 	if (cpu_feature[0] & CPUID_FXSR) {
    544 		lcr4(rcr4() | CR4_OSFXSR);
    545 
    546 		/*
    547 		 * If we have SSE/SSE2, enable XMM exceptions.
    548 		 */
    549 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    550 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    551 	}
    552 
    553 	atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    554 }
    555 
    556 
    557 #ifdef MULTIPROCESSOR
    558 
    559 void
    560 cpu_boot_secondary_processors(void)
    561 {
    562 	struct cpu_info *ci;
    563 	u_long i;
    564 	for (i = 0; i < maxcpus; i++) {
    565 		ci = cpu_lookup(i);
    566 		if (ci == NULL)
    567 			continue;
    568 		if (ci->ci_data.cpu_idlelwp == NULL)
    569 			continue;
    570 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    571 			continue;
    572 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    573 			continue;
    574 		cpu_boot_secondary(ci);
    575 	}
    576 
    577 	x86_mp_online = true;
    578 }
    579 
    580 static void
    581 cpu_init_idle_lwp(struct cpu_info *ci)
    582 {
    583 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    584 	struct pcb *pcb = lwp_getpcb(l);
    585 
    586 	pcb->pcb_cr0 = rcr0();
    587 }
    588 
    589 void
    590 cpu_init_idle_lwps(void)
    591 {
    592 	struct cpu_info *ci;
    593 	u_long i;
    594 
    595 	for (i = 0; i < maxcpus; i++) {
    596 		ci = cpu_lookup(i);
    597 		if (ci == NULL)
    598 			continue;
    599 		if (ci->ci_data.cpu_idlelwp == NULL)
    600 			continue;
    601 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    602 			continue;
    603 		cpu_init_idle_lwp(ci);
    604 	}
    605 }
    606 
    607 static void
    608 cpu_start_secondary(struct cpu_info *ci)
    609 {
    610 	int i;
    611 
    612 	aprint_debug_dev(ci->ci_dev, "starting\n");
    613 
    614 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    615 
    616 	if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
    617 		return;
    618 	}
    619 
    620 	/*
    621 	 * wait for it to become ready
    622 	 */
    623 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    624 		delay(10);
    625 	}
    626 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    627 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    628 #if defined(MPDEBUG) && defined(DDB)
    629 		printf("dropping into debugger; continue from here to resume boot\n");
    630 		Debugger();
    631 #endif
    632 	}
    633 
    634 	CPU_START_CLEANUP(ci);
    635 }
    636 
    637 void
    638 cpu_boot_secondary(struct cpu_info *ci)
    639 {
    640 	int i;
    641 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    642 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    643 		delay(10);
    644 	}
    645 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    646 		aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
    647 #if defined(MPDEBUG) && defined(DDB)
    648 		printf("dropping into debugger; continue from here to resume boot\n");
    649 		Debugger();
    650 #endif
    651 	}
    652 }
    653 
    654 /*
    655  * APs end up here immediately after initialisation and VCPUOP_up in
    656  * mp_cpu_start().
    657  * At this point, we are running in the idle pcb/idle stack of the new
    658  * CPU.  This function jumps to the idle loop and starts looking for
    659  * work.
    660  */
    661 extern void x86_64_tls_switch(struct lwp *);
    662 void
    663 cpu_hatch(void *v)
    664 {
    665 	struct cpu_info *ci = (struct cpu_info *)v;
    666 	struct pcb *pcb;
    667 	int s, i;
    668 
    669 	/* Setup TLS and kernel GS/FS */
    670 	cpu_init_msrs(ci, true);
    671 	cpu_init_idt();
    672 	gdt_init_cpu(ci);
    673 
    674 	cpu_probe(ci);
    675 
    676 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    677 
    678 	while ((ci->ci_flags & CPUF_GO) == 0) {
    679 		/* Don't use delay, boot CPU may be patching the text. */
    680 		for (i = 10000; i != 0; i--)
    681 			x86_pause();
    682 	}
    683 
    684 	/* Because the text may have been patched in x86_patch(). */
    685 	x86_flush();
    686 	tlbflushg();
    687 
    688 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    689 
    690 	pcb = lwp_getpcb(curlwp);
    691 	pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0);
    692 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    693 
    694 	xen_ipi_init();
    695 
    696 	xen_initclocks();
    697 
    698 #ifdef __x86_64__
    699 	fpuinit(ci);
    700 #endif
    701 
    702 	lldt(GSEL(GLDT_SEL, SEL_KPL));
    703 
    704 	cpu_init(ci);
    705 	cpu_get_tsc_freq(ci);
    706 
    707 	s = splhigh();
    708 	x86_enable_intr();
    709 	splx(s);
    710 
    711 	aprint_debug_dev(ci->ci_dev, "running\n");
    712 
    713 	cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
    714 
    715 	idle_loop(NULL);
    716 	KASSERT(false);
    717 }
    718 
    719 #if defined(DDB)
    720 
    721 #include <ddb/db_output.h>
    722 #include <machine/db_machdep.h>
    723 
    724 /*
    725  * Dump CPU information from ddb.
    726  */
    727 void
    728 cpu_debug_dump(void)
    729 {
    730 	struct cpu_info *ci;
    731 	CPU_INFO_ITERATOR cii;
    732 
    733 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    734 	for (CPU_INFO_FOREACH(cii, ci)) {
    735 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    736 		    ci,
    737 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    738 		    (long)ci->ci_cpuid,
    739 		    ci->ci_flags, ci->ci_ipis,
    740 		    ci->ci_curlwp,
    741 		    ci->ci_fpcurlwp);
    742 	}
    743 }
    744 #endif /* DDB */
    745 
    746 #endif /* MULTIPROCESSOR */
    747 
    748 extern void hypervisor_callback(void);
    749 extern void failsafe_callback(void);
    750 #ifdef __x86_64__
    751 typedef void (vector)(void);
    752 extern vector Xsyscall, Xsyscall32;
    753 #endif
    754 
    755 /*
    756  * Setup the "trampoline". On Xen, we setup nearly all cpu context
    757  * outside a trampoline, so we prototype and call targetip like so:
    758  * void targetip(struct cpu_info *);
    759  */
    760 
    761 static void
    762 gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
    763 {
    764 	int i;
    765 	for (i = 0; i < roundup(entries, PAGE_SIZE) >> PAGE_SHIFT; i++) {
    766 		frames[i] = ((paddr_t)xpmap_ptetomach(
    767 		    (pt_entry_t *)(base + (i << PAGE_SHIFT)))) >> PAGE_SHIFT;
    768 
    769 		/* Mark Read-only */
    770 		pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
    771 		    PG_RW);
    772 	}
    773 }
    774 
    775 #ifdef __x86_64__
    776 extern char *ldtstore;
    777 
    778 static void
    779 xen_init_amd64_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
    780     void targetrip(struct cpu_info *))
    781 {
    782 	/* page frames to point at GDT */
    783 	extern int gdt_size;
    784 	paddr_t frames[16];
    785 	psize_t gdt_ents;
    786 
    787 	struct lwp *l;
    788 	struct pcb *pcb;
    789 
    790 	volatile struct vcpu_info *vci;
    791 
    792 	KASSERT(ci != NULL);
    793 	KASSERT(ci != &cpu_info_primary);
    794 	KASSERT(initctx != NULL);
    795 	KASSERT(targetrip != NULL);
    796 
    797 	memset(initctx, 0, sizeof(*initctx));
    798 
    799 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
    800 	KASSERT(gdt_ents <= 16);
    801 
    802 	gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
    803 
    804 	/* Initialise the vcpu context: We use idle_loop()'s pcb context. */
    805 
    806 	l = ci->ci_data.cpu_idlelwp;
    807 
    808 	KASSERT(l != NULL);
    809 	pcb = lwp_getpcb(l);
    810 	KASSERT(pcb != NULL);
    811 
    812 	/* resume with interrupts off */
    813 	vci = ci->ci_vcpu;
    814 	vci->evtchn_upcall_mask = 1;
    815 	xen_mb();
    816 
    817 	/* resume in kernel-mode */
    818 	initctx->flags = VGCF_in_kernel | VGCF_online;
    819 
    820 	/* Stack and entry points:
    821 	 * We arrange for the stack frame for cpu_hatch() to
    822 	 * appear as a callee frame of lwp_trampoline(). Being a
    823 	 * leaf frame prevents trampling on any of the MD stack setup
    824 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
    825 	 */
    826 
    827 	initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
    828 	initctx->user_regs.rip = (vaddr_t) targetrip;
    829 
    830 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
    831 
    832 	initctx->user_regs.rflags = pcb->pcb_flags;
    833 	initctx->user_regs.rsp = pcb->pcb_rsp;
    834 
    835 	/* Data segments */
    836 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
    837 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
    838 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
    839 
    840 	/* GDT */
    841 	memcpy(initctx->gdt_frames, frames, sizeof(frames));
    842 	initctx->gdt_ents = gdt_ents;
    843 
    844 	/* LDT */
    845 	initctx->ldt_base = (unsigned long)ldtstore;
    846 	initctx->ldt_ents = LDT_SIZE >> 3;
    847 
    848 	/* Kernel context state */
    849 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
    850 	initctx->kernel_sp = pcb->pcb_rsp0;
    851 	initctx->ctrlreg[0] = pcb->pcb_cr0;
    852 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
    853 	initctx->ctrlreg[2] = (vaddr_t)targetrip;
    854 	/*
    855 	 * Use pmap_kernel() L4 PD directly, until we setup the
    856 	 * per-cpu L4 PD in pmap_cpu_init_late()
    857 	 */
    858 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
    859 	initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
    860 
    861 	/* Xen callbacks */
    862 	initctx->event_callback_eip = (unsigned long)hypervisor_callback;
    863 	initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
    864 	initctx->syscall_callback_eip = (unsigned long)Xsyscall;
    865 
    866 	return;
    867 }
    868 #else /* i386 */
    869 extern union descriptor *ldtstore;
    870 extern void Xsyscall(void);
    871 
    872 static void
    873 xen_init_i386_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
    874     void targeteip(struct cpu_info *))
    875 {
    876 	/* page frames to point at GDT */
    877 	extern int gdt_size;
    878 	paddr_t frames[16];
    879 	psize_t gdt_ents;
    880 
    881 	struct lwp *l;
    882 	struct pcb *pcb;
    883 
    884 	volatile struct vcpu_info *vci;
    885 
    886 	KASSERT(ci != NULL);
    887 	KASSERT(ci != &cpu_info_primary);
    888 	KASSERT(initctx != NULL);
    889 	KASSERT(targeteip != NULL);
    890 
    891 	memset(initctx, 0, sizeof(*initctx));
    892 
    893 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
    894 	KASSERT(gdt_ents <= 16);
    895 
    896 	gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
    897 
    898 	/*
    899 	 * Initialise the vcpu context:
    900 	 * We use this cpu's idle_loop() pcb context.
    901 	 */
    902 
    903 	l = ci->ci_data.cpu_idlelwp;
    904 
    905 	KASSERT(l != NULL);
    906 	pcb = lwp_getpcb(l);
    907 	KASSERT(pcb != NULL);
    908 
    909 	/* resume with interrupts off */
    910 	vci = ci->ci_vcpu;
    911 	vci->evtchn_upcall_mask = 1;
    912 	xen_mb();
    913 
    914 	/* resume in kernel-mode */
    915 	initctx->flags = VGCF_in_kernel | VGCF_online;
    916 
    917 	/* Stack frame setup for cpu_hatch():
    918 	 * We arrange for the stack frame for cpu_hatch() to
    919 	 * appear as a callee frame of lwp_trampoline(). Being a
    920 	 * leaf frame prevents trampling on any of the MD stack setup
    921 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
    922 	 */
    923 
    924 	initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
    925 						      arg1 */
    926 	{
    927 		/* targeteip(ci); */
    928 		uint32_t *arg = (uint32_t *)initctx->user_regs.esp;
    929 		arg[1] = (uint32_t)ci; /* arg1 */
    930 	}
    931 
    932 	initctx->user_regs.eip = (vaddr_t)targeteip;
    933 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
    934 	initctx->user_regs.eflags |= pcb->pcb_iopl;
    935 
    936 	/* Data segments */
    937 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
    938 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
    939 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
    940 	initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
    941 
    942 	/* GDT */
    943 	memcpy(initctx->gdt_frames, frames, sizeof(frames));
    944 	initctx->gdt_ents = gdt_ents;
    945 
    946 	/* LDT */
    947 	initctx->ldt_base = (unsigned long)ldtstore;
    948 	initctx->ldt_ents = NLDT;
    949 
    950 	/* Kernel context state */
    951 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
    952 	initctx->kernel_sp = pcb->pcb_esp0;
    953 	initctx->ctrlreg[0] = pcb->pcb_cr0;
    954 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
    955 	initctx->ctrlreg[2] = (vaddr_t)targeteip;
    956 #ifdef PAE
    957 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
    958 #else
    959 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(pcb->pcb_cr3)));
    960 #endif
    961 	initctx->ctrlreg[4] = /* CR4_PAE | */CR4_OSFXSR | CR4_OSXMMEXCPT;
    962 
    963 	/* Xen callbacks */
    964 	initctx->event_callback_eip = (unsigned long)hypervisor_callback;
    965 	initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
    966 	initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
    967 	initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
    968 
    969 	return;
    970 }
    971 #endif /* __x86_64__ */
    972 
    973 int
    974 mp_cpu_start(struct cpu_info *ci, vaddr_t target)
    975 {
    976 	int hyperror;
    977 	struct vcpu_guest_context vcpuctx;
    978 
    979 	KASSERT(ci != NULL);
    980 	KASSERT(ci != &cpu_info_primary);
    981 	KASSERT(ci->ci_flags & CPUF_AP);
    982 
    983 #ifdef __x86_64__
    984 	xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
    985 #else
    986 	xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
    987 #endif
    988 
    989 	/* Initialise the given vcpu to execute cpu_hatch(ci); */
    990 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
    991 		aprint_error(": context initialisation failed. errno = %d\n", hyperror);
    992 		return hyperror;
    993 	}
    994 
    995 	/* Start it up */
    996 
    997 	/* First bring it down */
    998 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
    999 		aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
   1000 		return hyperror;
   1001 	}
   1002 
   1003 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
   1004 		aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
   1005 		return hyperror;
   1006 	}
   1007 
   1008 	if (!vcpu_is_up(ci)) {
   1009 		aprint_error(": did not come up\n");
   1010 		return -1;
   1011 	}
   1012 
   1013 	return 0;
   1014 }
   1015 
   1016 void
   1017 mp_cpu_start_cleanup(struct cpu_info *ci)
   1018 {
   1019 	if (vcpu_is_up(ci)) {
   1020 		aprint_debug_dev(ci->ci_dev, "is started.\n");
   1021 	} else {
   1022 		aprint_error_dev(ci->ci_dev, "did not start up.\n");
   1023 	}
   1024 }
   1025 
   1026 void
   1027 cpu_init_msrs(struct cpu_info *ci, bool full)
   1028 {
   1029 #ifdef __x86_64__
   1030 	if (full) {
   1031 		HYPERVISOR_set_segment_base(SEGBASE_FS, 0);
   1032 		HYPERVISOR_set_segment_base(SEGBASE_GS_KERNEL, (uint64_t)ci);
   1033 		HYPERVISOR_set_segment_base(SEGBASE_GS_USER, 0);
   1034 	}
   1035 #endif
   1036 
   1037 	if (cpu_feature[2] & CPUID_NOX)
   1038 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1039 }
   1040 
   1041 void
   1042 cpu_offline_md(void)
   1043 {
   1044 	int s;
   1045 
   1046 	s = splhigh();
   1047 	fpusave_cpu(true);
   1048 	splx(s);
   1049 }
   1050 
   1051 void
   1052 cpu_get_tsc_freq(struct cpu_info *ci)
   1053 {
   1054 	uint32_t vcpu_tversion;
   1055 	const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
   1056 
   1057 	vcpu_tversion = tinfo->version;
   1058 	while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
   1059 
   1060 	uint64_t freq = 1000000000ULL << 32;
   1061 	freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
   1062 	if (tinfo->tsc_shift < 0)
   1063 		freq = freq << -tinfo->tsc_shift;
   1064 	else
   1065 		freq = freq >> tinfo->tsc_shift;
   1066 	ci->ci_data.cpu_cc_freq = freq;
   1067 }
   1068 
   1069 void
   1070 x86_cpu_idle_xen(void)
   1071 {
   1072 	struct cpu_info *ci = curcpu();
   1073 
   1074 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1075 
   1076 	x86_disable_intr();
   1077 	if (!__predict_false(ci->ci_want_resched)) {
   1078 		idle_block();
   1079 	} else {
   1080 		x86_enable_intr();
   1081 	}
   1082 }
   1083 
   1084 /*
   1085  * Loads pmap for the current CPU.
   1086  */
   1087 void
   1088 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
   1089 {
   1090 	KASSERT(pmap != pmap_kernel());
   1091 
   1092 #if defined(__x86_64__) || defined(PAE)
   1093 	struct cpu_info *ci = curcpu();
   1094 	cpuid_t cid = cpu_index(ci);
   1095 
   1096 	mutex_enter(&ci->ci_kpm_mtx);
   1097 	/* make new pmap visible to xen_kpm_sync() */
   1098 	kcpuset_atomic_set(pmap->pm_xen_ptp_cpus, cid);
   1099 #endif
   1100 
   1101 #ifdef i386
   1102 #ifdef PAE
   1103 	{
   1104 		int i;
   1105 		paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
   1106 		/* don't update the kernel L3 slot */
   1107 		for (i = 0 ; i < PDP_SIZE - 1; i++) {
   1108 			xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
   1109 			    xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
   1110 		}
   1111 		tlbflush();
   1112 	}
   1113 #else /* PAE */
   1114 	lcr3(pmap_pdirpa(pmap, 0));
   1115 #endif /* PAE */
   1116 #endif /* i386 */
   1117 
   1118 #ifdef __x86_64__
   1119 	{
   1120 		int i;
   1121 		pd_entry_t *new_pgd;
   1122 		paddr_t l4_pd_ma;
   1123 
   1124 		l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
   1125 
   1126 		/*
   1127 		 * Map user space address in kernel space and load
   1128 		 * user cr3
   1129 		 */
   1130 		new_pgd = pmap->pm_pdir;
   1131 		KASSERT(pmap == ci->ci_pmap);
   1132 
   1133 		/* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
   1134 		for (i = 0; i < PDIR_SLOT_PTE; i++) {
   1135 			KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
   1136 			if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
   1137 				xpq_queue_pte_update(
   1138 				    l4_pd_ma + i * sizeof(pd_entry_t),
   1139 				    new_pgd[i]);
   1140 			}
   1141 		}
   1142 
   1143 		xen_set_user_pgd(pmap_pdirpa(pmap, 0));
   1144 		ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
   1145 
   1146 		tlbflush();
   1147 	}
   1148 #endif /* __x86_64__ */
   1149 
   1150 #if defined(__x86_64__) || defined(PAE)
   1151 	/* old pmap no longer visible to xen_kpm_sync() */
   1152 	if (oldpmap != pmap_kernel()) {
   1153 		kcpuset_atomic_clear(oldpmap->pm_xen_ptp_cpus, cid);
   1154 	}
   1155 	mutex_exit(&ci->ci_kpm_mtx);
   1156 #endif
   1157 }
   1158 
   1159 /*
   1160  * pmap_cpu_init_late: perform late per-CPU initialization.
   1161  *
   1162  * Short note about percpu PDIR pages. Both the PAE and __x86_64__ architectures
   1163  * have per-cpu PDIR tables, for two different reasons:
   1164  *  - on PAE, this is to get around Xen's pagetable setup constraints (multiple
   1165  *    L3[3]s cannot point to the same L2 - Xen will refuse to pin a table set up
   1166  *    this way).
   1167  *  - on __x86_64__, this is for multiple CPUs to map in different user pmaps
   1168  *    (see cpu_load_pmap()).
   1169  *
   1170  * What this means for us is that the PDIR of the pmap_kernel() is considered
   1171  * to be a canonical "SHADOW" PDIR with the following properties:
   1172  *  - its recursive mapping points to itself
   1173  *  - per-cpu recursive mappings point to themselves on __x86_64__
   1174  *  - per-cpu L4 pages' kernel entries are expected to be in sync with
   1175  *    the shadow
   1176  */
   1177 
   1178 void
   1179 pmap_cpu_init_late(struct cpu_info *ci)
   1180 {
   1181 #if defined(PAE) || defined(__x86_64__)
   1182 	/*
   1183 	 * The BP has already its own PD page allocated during early
   1184 	 * MD startup.
   1185 	 */
   1186 
   1187 #if defined(__x86_64__)
   1188 	/* Setup per-cpu normal_pdes */
   1189 	int i;
   1190 	extern pd_entry_t * const normal_pdes[];
   1191 	for (i = 0;i < PTP_LEVELS - 1;i++) {
   1192 		ci->ci_normal_pdes[i] = normal_pdes[i];
   1193 	}
   1194 #endif /* __x86_64__ */
   1195 
   1196 	if (ci == &cpu_info_primary)
   1197 		return;
   1198 
   1199 	KASSERT(ci != NULL);
   1200 
   1201 #if defined(PAE)
   1202 	cpu_alloc_l3_page(ci);
   1203 	KASSERT(ci->ci_pae_l3_pdirpa != 0);
   1204 
   1205 	/* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
   1206 	int i;
   1207 	for (i = 0 ; i < PDP_SIZE - 1; i++) {
   1208 		ci->ci_pae_l3_pdir[i] =
   1209 		    xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PG_V;
   1210 	}
   1211 #endif /* PAE */
   1212 
   1213 	ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1214 	    UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
   1215 
   1216 	if (ci->ci_kpm_pdir == NULL) {
   1217 		panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
   1218 		    __func__, cpu_index(ci));
   1219 	}
   1220 	ci->ci_kpm_pdirpa = vtophys((vaddr_t)ci->ci_kpm_pdir);
   1221 	KASSERT(ci->ci_kpm_pdirpa != 0);
   1222 
   1223 #if defined(__x86_64__)
   1224 	extern pt_entry_t xpmap_pg_nx;
   1225 
   1226 	/* Copy over the pmap_kernel() shadow L4 entries */
   1227 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
   1228 
   1229 	/* Recursive kernel mapping */
   1230 	ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa)
   1231 	    | PG_V | xpmap_pg_nx;
   1232 #elif defined(PAE)
   1233 	/* Copy over the pmap_kernel() shadow L2 entries */
   1234 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN,
   1235 	    nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
   1236 #endif
   1237 
   1238 	/* Xen wants a RO pdir. */
   1239 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
   1240 	    (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
   1241 	pmap_update(pmap_kernel());
   1242 #if defined(PAE)
   1243 	/*
   1244 	 * Initialize L3 entry 3. This mapping is shared across all pmaps and is
   1245 	 * static, ie: loading a new pmap will not update this entry.
   1246 	 */
   1247 	ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_V;
   1248 
   1249 	/* Xen wants a RO L3. */
   1250 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
   1251 	    (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
   1252 	pmap_update(pmap_kernel());
   1253 
   1254 	xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
   1255 
   1256 #elif defined(__x86_64__)
   1257 	xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
   1258 #endif /* PAE , __x86_64__ */
   1259 #endif /* defined(PAE) || defined(__x86_64__) */
   1260 }
   1261 
   1262 /*
   1263  * Notify all other cpus to halt.
   1264  */
   1265 
   1266 void
   1267 cpu_broadcast_halt(void)
   1268 {
   1269 	xen_broadcast_ipi(XEN_IPI_HALT);
   1270 }
   1271 
   1272 /*
   1273  * Send a dummy ipi to a cpu.
   1274  */
   1275 
   1276 void
   1277 cpu_kick(struct cpu_info *ci)
   1278 {
   1279 	(void)xen_send_ipi(ci, XEN_IPI_KICK);
   1280 }
   1281