Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.112
      1 /*	$NetBSD: cpu.c,v 1.112 2017/09/17 09:04:51 maxv Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5  * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by RedBack Networks Inc.
     10  *
     11  * Author: Bill Sommerfeld
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*
     36  * Copyright (c) 1999 Stefan Grefen
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. All advertising materials mentioning features or use of this software
     47  *    must display the following acknowledgement:
     48  *      This product includes software developed by the NetBSD
     49  *      Foundation, Inc. and its contributors.
     50  * 4. Neither the name of The NetBSD Foundation nor the names of its
     51  *    contributors may be used to endorse or promote products derived
     52  *    from this software without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     55  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  */
     66 
     67 #include <sys/cdefs.h>
     68 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.112 2017/09/17 09:04:51 maxv Exp $");
     69 
     70 #include "opt_ddb.h"
     71 #include "opt_multiprocessor.h"
     72 #include "opt_mpbios.h"		/* for MPDEBUG */
     73 #include "opt_mtrr.h"
     74 #include "opt_xen.h"
     75 
     76 #include "lapic.h"
     77 #include "ioapic.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/proc.h>
     81 #include <sys/systm.h>
     82 #include <sys/device.h>
     83 #include <sys/kmem.h>
     84 #include <sys/cpu.h>
     85 #include <sys/cpufreq.h>
     86 #include <sys/atomic.h>
     87 #include <sys/reboot.h>
     88 #include <sys/idle.h>
     89 
     90 #include <uvm/uvm.h>
     91 
     92 #include <machine/cpufunc.h>
     93 #include <machine/cpuvar.h>
     94 #include <machine/pmap.h>
     95 #include <machine/vmparam.h>
     96 #include <machine/mpbiosvar.h>
     97 #include <machine/pcb.h>
     98 #include <machine/specialreg.h>
     99 #include <machine/segments.h>
    100 #include <machine/gdt.h>
    101 #include <machine/mtrr.h>
    102 #include <machine/pio.h>
    103 
    104 #include <x86/fpu.h>
    105 
    106 #include <xen/xen.h>
    107 #include <xen/xen-public/vcpu.h>
    108 #include <xen/vcpuvar.h>
    109 
    110 #if NLAPIC > 0
    111 #include <machine/apicvar.h>
    112 #include <machine/i82489reg.h>
    113 #include <machine/i82489var.h>
    114 #endif
    115 
    116 #include <dev/ic/mc146818reg.h>
    117 #include <dev/isa/isareg.h>
    118 
    119 static int	cpu_match(device_t, cfdata_t, void *);
    120 static void	cpu_attach(device_t, device_t, void *);
    121 static void	cpu_defer(device_t);
    122 static int	cpu_rescan(device_t, const char *, const int *);
    123 static void	cpu_childdetached(device_t, device_t);
    124 static int	vcpu_match(device_t, cfdata_t, void *);
    125 static void	vcpu_attach(device_t, device_t, void *);
    126 static void	cpu_attach_common(device_t, device_t, void *);
    127 void		cpu_offline_md(void);
    128 
    129 struct cpu_softc {
    130 	device_t sc_dev;		/* device tree glue */
    131 	struct cpu_info *sc_info;	/* pointer to CPU info */
    132 	bool sc_wasonline;
    133 };
    134 
    135 int mp_cpu_start(struct cpu_info *, vaddr_t);
    136 void mp_cpu_start_cleanup(struct cpu_info *);
    137 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    138 				      mp_cpu_start_cleanup };
    139 
    140 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    141     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    142 
    143 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
    144     vcpu_match, vcpu_attach, NULL, NULL);
    145 
    146 /*
    147  * Statically-allocated CPU info for the primary CPU (or the only
    148  * CPU, on uniprocessors).  The CPU info list is initialized to
    149  * point at it.
    150  */
    151 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    152 	.ci_dev = 0,
    153 	.ci_self = &cpu_info_primary,
    154 	.ci_idepth = -1,
    155 	.ci_curlwp = &lwp0,
    156 	.ci_curldt = -1,
    157 };
    158 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    159 	.ci_dev = 0,
    160 	.ci_self = &phycpu_info_primary,
    161 };
    162 
    163 struct cpu_info *cpu_info_list = &cpu_info_primary;
    164 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
    165 
    166 uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits
    167 			  *	[0] basic features %edx
    168 			  *	[1] basic features %ecx
    169 			  *	[2] extended features %edx
    170 			  *	[3] extended features %ecx
    171 			  *	[4] VIA padlock features
    172 			  *	[5] structured extended features cpuid.7:%ebx
    173 			  *	[6] structured extended features cpuid.7:%ecx
    174 			  */
    175 
    176 bool x86_mp_online;
    177 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    178 
    179 #if defined(MULTIPROCESSOR)
    180 void    	cpu_hatch(void *);
    181 static void    	cpu_boot_secondary(struct cpu_info *ci);
    182 static void    	cpu_start_secondary(struct cpu_info *ci);
    183 #endif	/* MULTIPROCESSOR */
    184 
    185 static int
    186 cpu_match(device_t parent, cfdata_t match, void *aux)
    187 {
    188 
    189 	return 1;
    190 }
    191 
    192 static void
    193 cpu_attach(device_t parent, device_t self, void *aux)
    194 {
    195 	struct cpu_softc *sc = device_private(self);
    196 	struct cpu_attach_args *caa = aux;
    197 	struct cpu_info *ci;
    198 	uintptr_t ptr;
    199 	static int nphycpu = 0;
    200 
    201 	sc->sc_dev = self;
    202 
    203 	/*
    204 	 * If we're an Application Processor, allocate a cpu_info
    205 	 * If we're the first attached CPU use the primary cpu_info,
    206 	 * otherwise allocate a new one
    207 	 */
    208 	aprint_naive("\n");
    209 	aprint_normal("\n");
    210 	if (nphycpu > 0) {
    211 		struct cpu_info *tmp;
    212 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    213 		    KM_SLEEP);
    214 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    215 		ci->ci_curldt = -1;
    216 
    217 		tmp = phycpu_info_list;
    218 		while (tmp->ci_next)
    219 			tmp = tmp->ci_next;
    220 
    221 		tmp->ci_next = ci;
    222 	} else {
    223 		ci = &phycpu_info_primary;
    224 	}
    225 
    226 	ci->ci_self = ci;
    227 	sc->sc_info = ci;
    228 
    229 	ci->ci_dev = self;
    230 	ci->ci_acpiid = caa->cpu_id;
    231 	ci->ci_cpuid = caa->cpu_number;
    232 	ci->ci_vcpu = NULL;
    233 	ci->ci_index = nphycpu++;
    234 
    235 	if (!pmf_device_register(self, NULL, NULL))
    236 		aprint_error_dev(self, "couldn't establish power handler\n");
    237 
    238 	(void)config_defer(self, cpu_defer);
    239 }
    240 
    241 static void
    242 cpu_defer(device_t self)
    243 {
    244 	cpu_rescan(self, NULL, NULL);
    245 }
    246 
    247 static int
    248 cpu_rescan(device_t self, const char *ifattr, const int *locators)
    249 {
    250 	struct cpu_softc *sc = device_private(self);
    251 	struct cpufeature_attach_args cfaa;
    252 	struct cpu_info *ci = sc->sc_info;
    253 
    254 	memset(&cfaa, 0, sizeof(cfaa));
    255 	cfaa.ci = ci;
    256 
    257 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    258 
    259 		if (ci->ci_frequency == NULL) {
    260 			cfaa.name = "frequency";
    261 			ci->ci_frequency = config_found_ia(self,
    262 			    "cpufeaturebus", &cfaa, NULL);
    263 		}
    264 	}
    265 
    266 	return 0;
    267 }
    268 
    269 static void
    270 cpu_childdetached(device_t self, device_t child)
    271 {
    272 	struct cpu_softc *sc = device_private(self);
    273 	struct cpu_info *ci = sc->sc_info;
    274 
    275 	if (ci->ci_frequency == child)
    276 		ci->ci_frequency = NULL;
    277 }
    278 
    279 static int
    280 vcpu_match(device_t parent, cfdata_t match, void *aux)
    281 {
    282 	struct vcpu_attach_args *vcaa = aux;
    283 	struct vcpu_runstate_info vcr;
    284 	int error;
    285 
    286 	if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
    287 		error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
    288 		    vcaa->vcaa_caa.cpu_number, &vcr);
    289 		switch (error) {
    290 		case 0:
    291 			return 1;
    292 		case -ENOENT:
    293 			return 0;
    294 		default:
    295 			panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
    296 		}
    297 	}
    298 
    299 	return 0;
    300 }
    301 
    302 static void
    303 vcpu_attach(device_t parent, device_t self, void *aux)
    304 {
    305 	struct vcpu_attach_args *vcaa = aux;
    306 
    307 	KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
    308 	vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
    309 	cpu_attach_common(parent, self, &vcaa->vcaa_caa);
    310 
    311 	if (!pmf_device_register(self, NULL, NULL))
    312 		aprint_error_dev(self, "couldn't establish power handler\n");
    313 }
    314 
    315 static int
    316 vcpu_is_up(struct cpu_info *ci)
    317 {
    318 	KASSERT(ci != NULL);
    319 	return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
    320 }
    321 
    322 static void
    323 cpu_vm_init(struct cpu_info *ci)
    324 {
    325 	int ncolors = 2, i;
    326 
    327 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    328 		struct x86_cache_info *cai;
    329 		int tcolors;
    330 
    331 		cai = &ci->ci_cinfo[i];
    332 
    333 		tcolors = atop(cai->cai_totalsize);
    334 		switch (cai->cai_associativity) {
    335 		case 0xff:
    336 			tcolors = 1; /* fully associative */
    337 			break;
    338 		case 0:
    339 		case 1:
    340 			break;
    341 		default:
    342 			tcolors /= cai->cai_associativity;
    343 		}
    344 		ncolors = max(ncolors, tcolors);
    345 	}
    346 
    347 	/*
    348 	 * Knowing the size of the largest cache on this CPU, potentially
    349 	 * re-color our pages.
    350 	 */
    351 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    352 	uvm_page_recolor(ncolors);
    353 	pmap_tlb_cpu_init(ci);
    354 #ifndef __HAVE_DIRECT_MAP
    355 	pmap_vpage_cpu_init(ci);
    356 #endif
    357 }
    358 
    359 static void
    360 cpu_attach_common(device_t parent, device_t self, void *aux)
    361 {
    362 	struct cpu_softc *sc = device_private(self);
    363 	struct cpu_attach_args *caa = aux;
    364 	struct cpu_info *ci;
    365 	uintptr_t ptr;
    366 	int cpunum = caa->cpu_number;
    367 	static bool again = false;
    368 
    369 	sc->sc_dev = self;
    370 
    371 	/*
    372 	 * If we're an Application Processor, allocate a cpu_info
    373 	 * structure, otherwise use the primary's.
    374 	 */
    375 	if (caa->cpu_role == CPU_ROLE_AP) {
    376 		aprint_naive(": Application Processor\n");
    377 		ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    378 		    KM_SLEEP);
    379 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    380 		memset(ci, 0, sizeof(*ci));
    381 	} else {
    382 		aprint_naive(": %s Processor\n",
    383 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    384 		ci = &cpu_info_primary;
    385 	}
    386 
    387 	ci->ci_self = ci;
    388 	sc->sc_info = ci;
    389 	ci->ci_dev = self;
    390 	ci->ci_cpuid = cpunum;
    391 
    392 	KASSERT(HYPERVISOR_shared_info != NULL);
    393 	KASSERT(cpunum < XEN_LEGACY_MAX_VCPUS);
    394 	ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
    395 
    396 	KASSERT(ci->ci_func == 0);
    397 	ci->ci_func = caa->cpu_func;
    398 	aprint_normal("\n");
    399 
    400 	/* Must be called before mi_cpu_attach(). */
    401 	cpu_vm_init(ci);
    402 
    403 	if (caa->cpu_role == CPU_ROLE_AP) {
    404 		int error;
    405 
    406 		error = mi_cpu_attach(ci);
    407 
    408 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    409 		if (error != 0) {
    410 			aprint_error_dev(self,
    411 			    "mi_cpu_attach failed with %d\n", error);
    412 			return;
    413 		}
    414 
    415 	} else {
    416 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    417 	}
    418 
    419 	KASSERT(ci->ci_cpuid == ci->ci_index);
    420 #ifdef __x86_64__
    421 	/* No user PGD mapped for this CPU yet */
    422 	ci->ci_xen_current_user_pgd = 0;
    423 #endif
    424 #if defined(__x86_64__) || defined(PAE)
    425 	mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
    426 #endif
    427 	pmap_reference(pmap_kernel());
    428 	ci->ci_pmap = pmap_kernel();
    429 	ci->ci_tlbstate = TLBSTATE_STALE;
    430 
    431 	/*
    432 	 * Boot processor may not be attached first, but the below
    433 	 * must be done to allow booting other processors.
    434 	 */
    435 	if (!again) {
    436 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    437 		/* Basic init. */
    438 		cpu_intr_init(ci);
    439 		cpu_get_tsc_freq(ci);
    440 		cpu_init(ci);
    441 		pmap_cpu_init_late(ci);
    442 
    443 		/* Every processor needs to init its own ipi h/w (similar to lapic) */
    444 		xen_ipi_init();
    445 
    446 		/* Make sure DELAY() is initialized. */
    447 		DELAY(1);
    448 		again = true;
    449 	}
    450 
    451 	/* further PCB init done later. */
    452 
    453 	switch (caa->cpu_role) {
    454 	case CPU_ROLE_SP:
    455 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    456 		cpu_identify(ci);
    457 		x86_cpu_idle_init();
    458 		break;
    459 
    460 	case CPU_ROLE_BP:
    461 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    462 		cpu_identify(ci);
    463 		x86_cpu_idle_init();
    464 		break;
    465 
    466 	case CPU_ROLE_AP:
    467 		atomic_or_32(&ci->ci_flags, CPUF_AP);
    468 
    469 		/*
    470 		 * report on an AP
    471 		 */
    472 
    473 #if defined(MULTIPROCESSOR)
    474 		/* interrupt handler stack */
    475 		cpu_intr_init(ci);
    476 
    477 		/* Setup per-cpu memory for gdt */
    478 		gdt_alloc_cpu(ci);
    479 
    480 		pmap_cpu_init_late(ci);
    481 		cpu_start_secondary(ci);
    482 
    483 		if (ci->ci_flags & CPUF_PRESENT) {
    484 			struct cpu_info *tmp;
    485 
    486 			cpu_identify(ci);
    487 			tmp = cpu_info_list;
    488 			while (tmp->ci_next)
    489 				tmp = tmp->ci_next;
    490 
    491 			tmp->ci_next = ci;
    492 		}
    493 #else
    494 		aprint_error_dev(ci->ci_dev, "not started\n");
    495 #endif
    496 		break;
    497 
    498 	default:
    499 		panic("unknown processor type??\n");
    500 	}
    501 
    502 #ifdef MPVERBOSE
    503 	if (mp_verbose) {
    504 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    505 		struct pcb *pcb = lwp_getpcb(l);
    506 
    507 		aprint_verbose_dev(self,
    508 		    "idle lwp at %p, idle sp at 0x%p\n",
    509 		    l,
    510 #ifdef i386
    511 		    (void *)pcb->pcb_esp
    512 #else
    513 		    (void *)pcb->pcb_rsp
    514 #endif
    515 		);
    516 
    517 	}
    518 #endif /* MPVERBOSE */
    519 }
    520 
    521 /*
    522  * Initialize the processor appropriately.
    523  */
    524 
    525 void
    526 cpu_init(struct cpu_info *ci)
    527 {
    528 
    529 	/*
    530 	 * If we have FXSAVE/FXRESTOR, use them.
    531 	 */
    532 	if (cpu_feature[0] & CPUID_FXSR) {
    533 		lcr4(rcr4() | CR4_OSFXSR);
    534 
    535 		/*
    536 		 * If we have SSE/SSE2, enable XMM exceptions.
    537 		 */
    538 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    539 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    540 	}
    541 
    542 	atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    543 }
    544 
    545 
    546 #ifdef MULTIPROCESSOR
    547 
    548 void
    549 cpu_boot_secondary_processors(void)
    550 {
    551 	struct cpu_info *ci;
    552 	u_long i;
    553 	for (i = 0; i < maxcpus; i++) {
    554 		ci = cpu_lookup(i);
    555 		if (ci == NULL)
    556 			continue;
    557 		if (ci->ci_data.cpu_idlelwp == NULL)
    558 			continue;
    559 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    560 			continue;
    561 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    562 			continue;
    563 		cpu_boot_secondary(ci);
    564 	}
    565 
    566 	x86_mp_online = true;
    567 }
    568 
    569 static void
    570 cpu_init_idle_lwp(struct cpu_info *ci)
    571 {
    572 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    573 	struct pcb *pcb = lwp_getpcb(l);
    574 
    575 	pcb->pcb_cr0 = rcr0();
    576 }
    577 
    578 void
    579 cpu_init_idle_lwps(void)
    580 {
    581 	struct cpu_info *ci;
    582 	u_long i;
    583 
    584 	for (i = 0; i < maxcpus; i++) {
    585 		ci = cpu_lookup(i);
    586 		if (ci == NULL)
    587 			continue;
    588 		if (ci->ci_data.cpu_idlelwp == NULL)
    589 			continue;
    590 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    591 			continue;
    592 		cpu_init_idle_lwp(ci);
    593 	}
    594 }
    595 
    596 static void
    597 cpu_start_secondary(struct cpu_info *ci)
    598 {
    599 	int i;
    600 
    601 	aprint_debug_dev(ci->ci_dev, "starting\n");
    602 
    603 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    604 
    605 	if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
    606 		return;
    607 	}
    608 
    609 	/*
    610 	 * wait for it to become ready
    611 	 */
    612 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    613 		delay(10);
    614 	}
    615 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    616 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    617 #if defined(MPDEBUG) && defined(DDB)
    618 		printf("dropping into debugger; continue from here to resume boot\n");
    619 		Debugger();
    620 #endif
    621 	}
    622 
    623 	CPU_START_CLEANUP(ci);
    624 }
    625 
    626 void
    627 cpu_boot_secondary(struct cpu_info *ci)
    628 {
    629 	int i;
    630 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    631 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    632 		delay(10);
    633 	}
    634 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    635 		aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
    636 #if defined(MPDEBUG) && defined(DDB)
    637 		printf("dropping into debugger; continue from here to resume boot\n");
    638 		Debugger();
    639 #endif
    640 	}
    641 }
    642 
    643 /*
    644  * APs end up here immediately after initialisation and VCPUOP_up in
    645  * mp_cpu_start().
    646  * At this point, we are running in the idle pcb/idle stack of the new
    647  * CPU.  This function jumps to the idle loop and starts looking for
    648  * work.
    649  */
    650 extern void x86_64_tls_switch(struct lwp *);
    651 void
    652 cpu_hatch(void *v)
    653 {
    654 	struct cpu_info *ci = (struct cpu_info *)v;
    655 	struct pcb *pcb;
    656 	int s, i;
    657 
    658 	/* Setup TLS and kernel GS/FS */
    659 	cpu_init_msrs(ci, true);
    660 	cpu_init_idt();
    661 	gdt_init_cpu(ci);
    662 
    663 	cpu_probe(ci);
    664 
    665 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    666 
    667 	while ((ci->ci_flags & CPUF_GO) == 0) {
    668 		/* Don't use delay, boot CPU may be patching the text. */
    669 		for (i = 10000; i != 0; i--)
    670 			x86_pause();
    671 	}
    672 
    673 	/* Because the text may have been patched in x86_patch(). */
    674 	x86_flush();
    675 	tlbflushg();
    676 
    677 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    678 
    679 	pcb = lwp_getpcb(curlwp);
    680 	pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0);
    681 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    682 
    683 	xen_ipi_init();
    684 
    685 	xen_initclocks();
    686 
    687 #ifdef __x86_64__
    688 	fpuinit(ci);
    689 #endif
    690 
    691 	lldt(GSEL(GLDT_SEL, SEL_KPL));
    692 
    693 	cpu_init(ci);
    694 	cpu_get_tsc_freq(ci);
    695 
    696 	s = splhigh();
    697 	x86_enable_intr();
    698 	splx(s);
    699 
    700 	aprint_debug_dev(ci->ci_dev, "running\n");
    701 
    702 	cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
    703 
    704 	idle_loop(NULL);
    705 	KASSERT(false);
    706 }
    707 
    708 #if defined(DDB)
    709 
    710 #include <ddb/db_output.h>
    711 #include <machine/db_machdep.h>
    712 
    713 /*
    714  * Dump CPU information from ddb.
    715  */
    716 void
    717 cpu_debug_dump(void)
    718 {
    719 	struct cpu_info *ci;
    720 	CPU_INFO_ITERATOR cii;
    721 
    722 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    723 	for (CPU_INFO_FOREACH(cii, ci)) {
    724 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    725 		    ci,
    726 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    727 		    (long)ci->ci_cpuid,
    728 		    ci->ci_flags, ci->ci_ipis,
    729 		    ci->ci_curlwp,
    730 		    ci->ci_fpcurlwp);
    731 	}
    732 }
    733 #endif /* DDB */
    734 
    735 #endif /* MULTIPROCESSOR */
    736 
    737 extern void hypervisor_callback(void);
    738 extern void failsafe_callback(void);
    739 #ifdef __x86_64__
    740 typedef void (vector)(void);
    741 extern vector Xsyscall, Xsyscall32;
    742 #endif
    743 
    744 /*
    745  * Setup the "trampoline". On Xen, we setup nearly all cpu context
    746  * outside a trampoline, so we prototype and call targetip like so:
    747  * void targetip(struct cpu_info *);
    748  */
    749 
    750 static void
    751 gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
    752 {
    753 	int i;
    754 	for (i = 0; i < entries; i++) {
    755 		frames[i] = ((paddr_t)xpmap_ptetomach(
    756 		    (pt_entry_t *)(base + (i << PAGE_SHIFT)))) >> PAGE_SHIFT;
    757 
    758 		/* Mark Read-only */
    759 		pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
    760 		    PG_RW);
    761 	}
    762 }
    763 
    764 #ifdef __x86_64__
    765 extern char *ldtstore;
    766 
    767 static void
    768 xen_init_amd64_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
    769     void targetrip(struct cpu_info *))
    770 {
    771 	/* page frames to point at GDT */
    772 	extern int gdt_size;
    773 	paddr_t frames[16];
    774 	psize_t gdt_ents;
    775 
    776 	struct lwp *l;
    777 	struct pcb *pcb;
    778 
    779 	volatile struct vcpu_info *vci;
    780 
    781 	KASSERT(ci != NULL);
    782 	KASSERT(ci != &cpu_info_primary);
    783 	KASSERT(initctx != NULL);
    784 	KASSERT(targetrip != NULL);
    785 
    786 	memset(initctx, 0, sizeof(*initctx));
    787 
    788 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
    789 	KASSERT(gdt_ents <= 16);
    790 
    791 	gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
    792 
    793 	/* Initialise the vcpu context: We use idle_loop()'s pcb context. */
    794 
    795 	l = ci->ci_data.cpu_idlelwp;
    796 
    797 	KASSERT(l != NULL);
    798 	pcb = lwp_getpcb(l);
    799 	KASSERT(pcb != NULL);
    800 
    801 	/* resume with interrupts off */
    802 	vci = ci->ci_vcpu;
    803 	vci->evtchn_upcall_mask = 1;
    804 	xen_mb();
    805 
    806 	/* resume in kernel-mode */
    807 	initctx->flags = VGCF_in_kernel | VGCF_online;
    808 
    809 	/* Stack and entry points:
    810 	 * We arrange for the stack frame for cpu_hatch() to
    811 	 * appear as a callee frame of lwp_trampoline(). Being a
    812 	 * leaf frame prevents trampling on any of the MD stack setup
    813 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
    814 	 */
    815 
    816 	initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
    817 	initctx->user_regs.rip = (vaddr_t) targetrip;
    818 
    819 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
    820 
    821 	initctx->user_regs.rflags = pcb->pcb_flags;
    822 	initctx->user_regs.rsp = pcb->pcb_rsp;
    823 
    824 	/* Data segments */
    825 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
    826 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
    827 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
    828 
    829 	/* GDT */
    830 	memcpy(initctx->gdt_frames, frames, sizeof(frames));
    831 	initctx->gdt_ents = gdt_ents;
    832 
    833 	/* LDT */
    834 	initctx->ldt_base = (unsigned long)ldtstore;
    835 	initctx->ldt_ents = LDT_SIZE >> 3;
    836 
    837 	/* Kernel context state */
    838 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
    839 	initctx->kernel_sp = pcb->pcb_rsp0;
    840 	initctx->ctrlreg[0] = pcb->pcb_cr0;
    841 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
    842 	initctx->ctrlreg[2] = (vaddr_t)targetrip;
    843 	/*
    844 	 * Use pmap_kernel() L4 PD directly, until we setup the
    845 	 * per-cpu L4 PD in pmap_cpu_init_late()
    846 	 */
    847 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
    848 	initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
    849 
    850 	/* Xen callbacks */
    851 	initctx->event_callback_eip = (unsigned long)hypervisor_callback;
    852 	initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
    853 	initctx->syscall_callback_eip = (unsigned long)Xsyscall;
    854 
    855 	return;
    856 }
    857 #else /* i386 */
    858 extern union descriptor *ldtstore;
    859 extern void Xsyscall(void);
    860 
    861 static void
    862 xen_init_i386_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
    863     void targeteip(struct cpu_info *))
    864 {
    865 	/* page frames to point at GDT */
    866 	extern int gdt_size;
    867 	paddr_t frames[16];
    868 	psize_t gdt_ents;
    869 
    870 	struct lwp *l;
    871 	struct pcb *pcb;
    872 
    873 	volatile struct vcpu_info *vci;
    874 
    875 	KASSERT(ci != NULL);
    876 	KASSERT(ci != &cpu_info_primary);
    877 	KASSERT(initctx != NULL);
    878 	KASSERT(targeteip != NULL);
    879 
    880 	memset(initctx, 0, sizeof(*initctx));
    881 
    882 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
    883 	KASSERT(gdt_ents <= 16);
    884 
    885 	gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
    886 
    887 	/*
    888 	 * Initialise the vcpu context:
    889 	 * We use this cpu's idle_loop() pcb context.
    890 	 */
    891 
    892 	l = ci->ci_data.cpu_idlelwp;
    893 
    894 	KASSERT(l != NULL);
    895 	pcb = lwp_getpcb(l);
    896 	KASSERT(pcb != NULL);
    897 
    898 	/* resume with interrupts off */
    899 	vci = ci->ci_vcpu;
    900 	vci->evtchn_upcall_mask = 1;
    901 	xen_mb();
    902 
    903 	/* resume in kernel-mode */
    904 	initctx->flags = VGCF_in_kernel | VGCF_online;
    905 
    906 	/* Stack frame setup for cpu_hatch():
    907 	 * We arrange for the stack frame for cpu_hatch() to
    908 	 * appear as a callee frame of lwp_trampoline(). Being a
    909 	 * leaf frame prevents trampling on any of the MD stack setup
    910 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
    911 	 */
    912 
    913 	initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
    914 						      arg1 */
    915 	{
    916 		/* targeteip(ci); */
    917 		uint32_t *arg = (uint32_t *)initctx->user_regs.esp;
    918 		arg[1] = (uint32_t)ci; /* arg1 */
    919 	}
    920 
    921 	initctx->user_regs.eip = (vaddr_t)targeteip;
    922 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
    923 	initctx->user_regs.eflags |= pcb->pcb_iopl;
    924 
    925 	/* Data segments */
    926 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
    927 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
    928 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
    929 	initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
    930 
    931 	/* GDT */
    932 	memcpy(initctx->gdt_frames, frames, sizeof(frames));
    933 	initctx->gdt_ents = gdt_ents;
    934 
    935 	/* LDT */
    936 	initctx->ldt_base = (unsigned long)ldtstore;
    937 	initctx->ldt_ents = NLDT;
    938 
    939 	/* Kernel context state */
    940 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
    941 	initctx->kernel_sp = pcb->pcb_esp0;
    942 	initctx->ctrlreg[0] = pcb->pcb_cr0;
    943 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
    944 	initctx->ctrlreg[2] = (vaddr_t)targeteip;
    945 #ifdef PAE
    946 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
    947 #else
    948 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(pcb->pcb_cr3)));
    949 #endif
    950 	initctx->ctrlreg[4] = /* CR4_PAE | */CR4_OSFXSR | CR4_OSXMMEXCPT;
    951 
    952 	/* Xen callbacks */
    953 	initctx->event_callback_eip = (unsigned long)hypervisor_callback;
    954 	initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
    955 	initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
    956 	initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
    957 
    958 	return;
    959 }
    960 #endif /* __x86_64__ */
    961 
    962 int
    963 mp_cpu_start(struct cpu_info *ci, vaddr_t target)
    964 {
    965 	int hyperror;
    966 	struct vcpu_guest_context vcpuctx;
    967 
    968 	KASSERT(ci != NULL);
    969 	KASSERT(ci != &cpu_info_primary);
    970 	KASSERT(ci->ci_flags & CPUF_AP);
    971 
    972 #ifdef __x86_64__
    973 	xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
    974 #else
    975 	xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
    976 #endif
    977 
    978 	/* Initialise the given vcpu to execute cpu_hatch(ci); */
    979 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
    980 		aprint_error(": context initialisation failed. errno = %d\n", hyperror);
    981 		return hyperror;
    982 	}
    983 
    984 	/* Start it up */
    985 
    986 	/* First bring it down */
    987 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
    988 		aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
    989 		return hyperror;
    990 	}
    991 
    992 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
    993 		aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
    994 		return hyperror;
    995 	}
    996 
    997 	if (!vcpu_is_up(ci)) {
    998 		aprint_error(": did not come up\n");
    999 		return -1;
   1000 	}
   1001 
   1002 	return 0;
   1003 }
   1004 
   1005 void
   1006 mp_cpu_start_cleanup(struct cpu_info *ci)
   1007 {
   1008 	if (vcpu_is_up(ci)) {
   1009 		aprint_debug_dev(ci->ci_dev, "is started.\n");
   1010 	} else {
   1011 		aprint_error_dev(ci->ci_dev, "did not start up.\n");
   1012 	}
   1013 }
   1014 
   1015 void
   1016 cpu_init_msrs(struct cpu_info *ci, bool full)
   1017 {
   1018 #ifdef __x86_64__
   1019 	if (full) {
   1020 		HYPERVISOR_set_segment_base(SEGBASE_FS, 0);
   1021 		HYPERVISOR_set_segment_base(SEGBASE_GS_KERNEL, (uint64_t)ci);
   1022 		HYPERVISOR_set_segment_base(SEGBASE_GS_USER, 0);
   1023 	}
   1024 #endif
   1025 
   1026 	if (cpu_feature[2] & CPUID_NOX)
   1027 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1028 }
   1029 
   1030 void
   1031 cpu_offline_md(void)
   1032 {
   1033 	int s;
   1034 
   1035 	s = splhigh();
   1036 	fpusave_cpu(true);
   1037 	splx(s);
   1038 }
   1039 
   1040 void
   1041 cpu_get_tsc_freq(struct cpu_info *ci)
   1042 {
   1043 	uint32_t vcpu_tversion;
   1044 	const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
   1045 
   1046 	vcpu_tversion = tinfo->version;
   1047 	while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
   1048 
   1049 	uint64_t freq = 1000000000ULL << 32;
   1050 	freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
   1051 	if (tinfo->tsc_shift < 0)
   1052 		freq = freq << -tinfo->tsc_shift;
   1053 	else
   1054 		freq = freq >> tinfo->tsc_shift;
   1055 	ci->ci_data.cpu_cc_freq = freq;
   1056 }
   1057 
   1058 void
   1059 x86_cpu_idle_xen(void)
   1060 {
   1061 	struct cpu_info *ci = curcpu();
   1062 
   1063 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1064 
   1065 	x86_disable_intr();
   1066 	if (!__predict_false(ci->ci_want_resched)) {
   1067 		idle_block();
   1068 	} else {
   1069 		x86_enable_intr();
   1070 	}
   1071 }
   1072 
   1073 /*
   1074  * Loads pmap for the current CPU.
   1075  */
   1076 void
   1077 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
   1078 {
   1079 	KASSERT(pmap != pmap_kernel());
   1080 
   1081 #if defined(__x86_64__) || defined(PAE)
   1082 	struct cpu_info *ci = curcpu();
   1083 	cpuid_t cid = cpu_index(ci);
   1084 
   1085 	mutex_enter(&ci->ci_kpm_mtx);
   1086 	/* make new pmap visible to xen_kpm_sync() */
   1087 	kcpuset_atomic_set(pmap->pm_xen_ptp_cpus, cid);
   1088 #endif
   1089 
   1090 #ifdef i386
   1091 #ifdef PAE
   1092 	{
   1093 		int i;
   1094 		paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
   1095 		/* don't update the kernel L3 slot */
   1096 		for (i = 0 ; i < PDP_SIZE - 1; i++) {
   1097 			xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
   1098 			    xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
   1099 		}
   1100 		tlbflush();
   1101 	}
   1102 #else /* PAE */
   1103 	lcr3(pmap_pdirpa(pmap, 0));
   1104 #endif /* PAE */
   1105 #endif /* i386 */
   1106 
   1107 #ifdef __x86_64__
   1108 	{
   1109 		int i;
   1110 		pd_entry_t *new_pgd;
   1111 		paddr_t l4_pd_ma;
   1112 
   1113 		l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
   1114 
   1115 		/*
   1116 		 * Map user space address in kernel space and load
   1117 		 * user cr3
   1118 		 */
   1119 		new_pgd = pmap->pm_pdir;
   1120 		KASSERT(pmap == ci->ci_pmap);
   1121 
   1122 		/* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
   1123 		for (i = 0; i < PDIR_SLOT_PTE; i++) {
   1124 			KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
   1125 			if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
   1126 				xpq_queue_pte_update(
   1127 				    l4_pd_ma + i * sizeof(pd_entry_t),
   1128 				    new_pgd[i]);
   1129 			}
   1130 		}
   1131 
   1132 		xen_set_user_pgd(pmap_pdirpa(pmap, 0));
   1133 		ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
   1134 
   1135 		tlbflush();
   1136 	}
   1137 #endif /* __x86_64__ */
   1138 
   1139 #if defined(__x86_64__) || defined(PAE)
   1140 	/* old pmap no longer visible to xen_kpm_sync() */
   1141 	if (oldpmap != pmap_kernel()) {
   1142 		kcpuset_atomic_clear(oldpmap->pm_xen_ptp_cpus, cid);
   1143 	}
   1144 	mutex_exit(&ci->ci_kpm_mtx);
   1145 #endif
   1146 }
   1147 
   1148 /*
   1149  * pmap_cpu_init_late: perform late per-CPU initialization.
   1150  *
   1151  * Short note about percpu PDIR pages. Both the PAE and __x86_64__ architectures
   1152  * have per-cpu PDIR tables, for two different reasons:
   1153  *  - on PAE, this is to get around Xen's pagetable setup constraints (multiple
   1154  *    L3[3]s cannot point to the same L2 - Xen will refuse to pin a table set up
   1155  *    this way).
   1156  *  - on __x86_64__, this is for multiple CPUs to map in different user pmaps
   1157  *    (see cpu_load_pmap()).
   1158  *
   1159  * What this means for us is that the PDIR of the pmap_kernel() is considered
   1160  * to be a canonical "SHADOW" PDIR with the following properties:
   1161  *  - its recursive mapping points to itself
   1162  *  - per-cpu recursive mappings point to themselves on __x86_64__
   1163  *  - per-cpu L4 pages' kernel entries are expected to be in sync with
   1164  *    the shadow
   1165  */
   1166 
   1167 void
   1168 pmap_cpu_init_late(struct cpu_info *ci)
   1169 {
   1170 #if defined(PAE) || defined(__x86_64__)
   1171 	/*
   1172 	 * The BP has already its own PD page allocated during early
   1173 	 * MD startup.
   1174 	 */
   1175 
   1176 #if defined(__x86_64__)
   1177 	/* Setup per-cpu normal_pdes */
   1178 	int i;
   1179 	extern pd_entry_t * const normal_pdes[];
   1180 	for (i = 0;i < PTP_LEVELS - 1;i++) {
   1181 		ci->ci_normal_pdes[i] = normal_pdes[i];
   1182 	}
   1183 #endif /* __x86_64__ */
   1184 
   1185 	if (ci == &cpu_info_primary)
   1186 		return;
   1187 
   1188 	KASSERT(ci != NULL);
   1189 
   1190 #if defined(PAE)
   1191 	cpu_alloc_l3_page(ci);
   1192 	KASSERT(ci->ci_pae_l3_pdirpa != 0);
   1193 
   1194 	/* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
   1195 	int i;
   1196 	for (i = 0 ; i < PDP_SIZE - 1; i++) {
   1197 		ci->ci_pae_l3_pdir[i] =
   1198 		    xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PG_V;
   1199 	}
   1200 #endif /* PAE */
   1201 
   1202 	ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1203 	    UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
   1204 
   1205 	if (ci->ci_kpm_pdir == NULL) {
   1206 		panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
   1207 		    __func__, cpu_index(ci));
   1208 	}
   1209 	ci->ci_kpm_pdirpa = vtophys((vaddr_t)ci->ci_kpm_pdir);
   1210 	KASSERT(ci->ci_kpm_pdirpa != 0);
   1211 
   1212 #if defined(__x86_64__)
   1213 	extern pt_entry_t xpmap_pg_nx;
   1214 
   1215 	/* Copy over the pmap_kernel() shadow L4 entries */
   1216 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
   1217 
   1218 	/* Recursive kernel mapping */
   1219 	ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa)
   1220 	    | PG_V | xpmap_pg_nx;
   1221 #elif defined(PAE)
   1222 	/* Copy over the pmap_kernel() shadow L2 entries */
   1223 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN,
   1224 	    nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
   1225 #endif
   1226 
   1227 	/* Xen wants a RO pdir. */
   1228 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
   1229 	    (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
   1230 	pmap_update(pmap_kernel());
   1231 #if defined(PAE)
   1232 	/*
   1233 	 * Initialize L3 entry 3. This mapping is shared across all pmaps and is
   1234 	 * static, ie: loading a new pmap will not update this entry.
   1235 	 */
   1236 	ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_V;
   1237 
   1238 	/* Xen wants a RO L3. */
   1239 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
   1240 	    (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
   1241 	pmap_update(pmap_kernel());
   1242 
   1243 	xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
   1244 
   1245 #elif defined(__x86_64__)
   1246 	xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
   1247 #endif /* PAE , __x86_64__ */
   1248 #endif /* defined(PAE) || defined(__x86_64__) */
   1249 }
   1250 
   1251 /*
   1252  * Notify all other cpus to halt.
   1253  */
   1254 
   1255 void
   1256 cpu_broadcast_halt(void)
   1257 {
   1258 	xen_broadcast_ipi(XEN_IPI_HALT);
   1259 }
   1260 
   1261 /*
   1262  * Send a dummy ipi to a cpu.
   1263  */
   1264 
   1265 void
   1266 cpu_kick(struct cpu_info *ci)
   1267 {
   1268 	(void)xen_send_ipi(ci, XEN_IPI_KICK);
   1269 }
   1270