cpu.c revision 1.115 1 /* $NetBSD: cpu.c,v 1.115 2017/11/11 09:10:19 bouyer Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by RedBack Networks Inc.
10 *
11 * Author: Bill Sommerfeld
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Copyright (c) 1999 Stefan Grefen
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the NetBSD
49 * Foundation, Inc. and its contributors.
50 * 4. Neither the name of The NetBSD Foundation nor the names of its
51 * contributors may be used to endorse or promote products derived
52 * from this software without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
55 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 */
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.115 2017/11/11 09:10:19 bouyer Exp $");
69
70 #include "opt_ddb.h"
71 #include "opt_multiprocessor.h"
72 #include "opt_mpbios.h" /* for MPDEBUG */
73 #include "opt_mtrr.h"
74 #include "opt_xen.h"
75
76 #include "lapic.h"
77 #include "ioapic.h"
78
79 #include <sys/param.h>
80 #include <sys/proc.h>
81 #include <sys/systm.h>
82 #include <sys/device.h>
83 #include <sys/kmem.h>
84 #include <sys/cpu.h>
85 #include <sys/cpufreq.h>
86 #include <sys/atomic.h>
87 #include <sys/reboot.h>
88 #include <sys/idle.h>
89
90 #include <uvm/uvm.h>
91
92 #include <machine/cpu.h>
93 #include <machine/cpufunc.h>
94 #include <machine/cpuvar.h>
95 #include <machine/pmap.h>
96 #include <machine/vmparam.h>
97 #include <machine/mpbiosvar.h>
98 #include <machine/pcb.h>
99 #include <machine/specialreg.h>
100 #include <machine/segments.h>
101 #include <machine/gdt.h>
102 #include <machine/mtrr.h>
103 #include <machine/pio.h>
104
105 #include <x86/fpu.h>
106
107 #include <xen/xen.h>
108 #include <xen/xen-public/vcpu.h>
109 #include <xen/vcpuvar.h>
110
111 #if NLAPIC > 0
112 #include <machine/apicvar.h>
113 #include <machine/i82489reg.h>
114 #include <machine/i82489var.h>
115 #endif
116
117 #include <dev/ic/mc146818reg.h>
118 #include <dev/isa/isareg.h>
119
120 static int cpu_match(device_t, cfdata_t, void *);
121 static void cpu_attach(device_t, device_t, void *);
122 static void cpu_defer(device_t);
123 static int cpu_rescan(device_t, const char *, const int *);
124 static void cpu_childdetached(device_t, device_t);
125 static int vcpu_match(device_t, cfdata_t, void *);
126 static void vcpu_attach(device_t, device_t, void *);
127 static void cpu_attach_common(device_t, device_t, void *);
128 void cpu_offline_md(void);
129
130 struct cpu_softc {
131 device_t sc_dev; /* device tree glue */
132 struct cpu_info *sc_info; /* pointer to CPU info */
133 bool sc_wasonline;
134 };
135
136 int mp_cpu_start(struct cpu_info *, vaddr_t);
137 void mp_cpu_start_cleanup(struct cpu_info *);
138 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
139 mp_cpu_start_cleanup };
140
141 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
142 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
143
144 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
145 vcpu_match, vcpu_attach, NULL, NULL);
146
147 /*
148 * Statically-allocated CPU info for the primary CPU (or the only
149 * CPU, on uniprocessors). The CPU info list is initialized to
150 * point at it.
151 */
152 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
153 .ci_dev = 0,
154 .ci_self = &cpu_info_primary,
155 .ci_idepth = -1,
156 .ci_curlwp = &lwp0,
157 .ci_curldt = -1,
158 };
159 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
160 .ci_dev = 0,
161 .ci_self = &phycpu_info_primary,
162 };
163
164 struct cpu_info *cpu_info_list = &cpu_info_primary;
165 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
166
167 uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits
168 * [0] basic features %edx
169 * [1] basic features %ecx
170 * [2] extended features %edx
171 * [3] extended features %ecx
172 * [4] VIA padlock features
173 * [5] structured extended features cpuid.7:%ebx
174 * [6] structured extended features cpuid.7:%ecx
175 */
176
177 bool x86_mp_online;
178 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
179
180 #if defined(MULTIPROCESSOR)
181 void cpu_hatch(void *);
182 static void cpu_boot_secondary(struct cpu_info *ci);
183 static void cpu_start_secondary(struct cpu_info *ci);
184 #endif /* MULTIPROCESSOR */
185
186 static int
187 cpu_match(device_t parent, cfdata_t match, void *aux)
188 {
189
190 return 1;
191 }
192
193 static void
194 cpu_attach(device_t parent, device_t self, void *aux)
195 {
196 struct cpu_softc *sc = device_private(self);
197 struct cpu_attach_args *caa = aux;
198 struct cpu_info *ci;
199 uintptr_t ptr;
200 static int nphycpu = 0;
201
202 sc->sc_dev = self;
203
204 /*
205 * If we're an Application Processor, allocate a cpu_info
206 * If we're the first attached CPU use the primary cpu_info,
207 * otherwise allocate a new one
208 */
209 aprint_naive("\n");
210 aprint_normal("\n");
211 if (nphycpu > 0) {
212 struct cpu_info *tmp;
213 ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
214 KM_SLEEP);
215 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
216 ci->ci_curldt = -1;
217
218 tmp = phycpu_info_list;
219 while (tmp->ci_next)
220 tmp = tmp->ci_next;
221
222 tmp->ci_next = ci;
223 } else {
224 ci = &phycpu_info_primary;
225 }
226
227 ci->ci_self = ci;
228 sc->sc_info = ci;
229
230 ci->ci_dev = self;
231 ci->ci_acpiid = caa->cpu_id;
232 ci->ci_cpuid = caa->cpu_number;
233 ci->ci_vcpu = NULL;
234 ci->ci_index = nphycpu++;
235
236 if (!pmf_device_register(self, NULL, NULL))
237 aprint_error_dev(self, "couldn't establish power handler\n");
238
239 (void)config_defer(self, cpu_defer);
240 }
241
242 static void
243 cpu_defer(device_t self)
244 {
245 cpu_rescan(self, NULL, NULL);
246 }
247
248 static int
249 cpu_rescan(device_t self, const char *ifattr, const int *locators)
250 {
251 struct cpu_softc *sc = device_private(self);
252 struct cpufeature_attach_args cfaa;
253 struct cpu_info *ci = sc->sc_info;
254
255 memset(&cfaa, 0, sizeof(cfaa));
256 cfaa.ci = ci;
257
258 if (ifattr_match(ifattr, "cpufeaturebus")) {
259
260 if (ci->ci_frequency == NULL) {
261 cfaa.name = "frequency";
262 ci->ci_frequency = config_found_ia(self,
263 "cpufeaturebus", &cfaa, NULL);
264 }
265 }
266
267 return 0;
268 }
269
270 static void
271 cpu_childdetached(device_t self, device_t child)
272 {
273 struct cpu_softc *sc = device_private(self);
274 struct cpu_info *ci = sc->sc_info;
275
276 if (ci->ci_frequency == child)
277 ci->ci_frequency = NULL;
278 }
279
280 static int
281 vcpu_match(device_t parent, cfdata_t match, void *aux)
282 {
283 struct vcpu_attach_args *vcaa = aux;
284 struct vcpu_runstate_info vcr;
285 int error;
286
287 if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
288 error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
289 vcaa->vcaa_caa.cpu_number, &vcr);
290 switch (error) {
291 case 0:
292 return 1;
293 case -ENOENT:
294 return 0;
295 default:
296 panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
297 }
298 }
299
300 return 0;
301 }
302
303 static void
304 vcpu_attach(device_t parent, device_t self, void *aux)
305 {
306 struct vcpu_attach_args *vcaa = aux;
307
308 KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
309 vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
310 cpu_attach_common(parent, self, &vcaa->vcaa_caa);
311
312 if (!pmf_device_register(self, NULL, NULL))
313 aprint_error_dev(self, "couldn't establish power handler\n");
314 }
315
316 static int
317 vcpu_is_up(struct cpu_info *ci)
318 {
319 KASSERT(ci != NULL);
320 return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
321 }
322
323 static void
324 cpu_vm_init(struct cpu_info *ci)
325 {
326 int ncolors = 2, i;
327
328 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
329 struct x86_cache_info *cai;
330 int tcolors;
331
332 cai = &ci->ci_cinfo[i];
333
334 tcolors = atop(cai->cai_totalsize);
335 switch (cai->cai_associativity) {
336 case 0xff:
337 tcolors = 1; /* fully associative */
338 break;
339 case 0:
340 case 1:
341 break;
342 default:
343 tcolors /= cai->cai_associativity;
344 }
345 ncolors = max(ncolors, tcolors);
346 }
347
348 /*
349 * Knowing the size of the largest cache on this CPU, potentially
350 * re-color our pages.
351 */
352 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
353 uvm_page_recolor(ncolors);
354 pmap_tlb_cpu_init(ci);
355 #ifndef __HAVE_DIRECT_MAP
356 pmap_vpage_cpu_init(ci);
357 #endif
358 }
359
360 static void
361 cpu_attach_common(device_t parent, device_t self, void *aux)
362 {
363 struct cpu_softc *sc = device_private(self);
364 struct cpu_attach_args *caa = aux;
365 struct cpu_info *ci;
366 uintptr_t ptr;
367 int cpunum = caa->cpu_number;
368 static bool again = false;
369
370 sc->sc_dev = self;
371
372 /*
373 * If we're an Application Processor, allocate a cpu_info
374 * structure, otherwise use the primary's.
375 */
376 if (caa->cpu_role == CPU_ROLE_AP) {
377 aprint_naive(": Application Processor\n");
378 ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
379 KM_SLEEP);
380 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
381 memset(ci, 0, sizeof(*ci));
382 } else {
383 aprint_naive(": %s Processor\n",
384 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
385 ci = &cpu_info_primary;
386 }
387
388 ci->ci_self = ci;
389 sc->sc_info = ci;
390 ci->ci_dev = self;
391 ci->ci_cpuid = cpunum;
392
393 KASSERT(HYPERVISOR_shared_info != NULL);
394 KASSERT(cpunum < XEN_LEGACY_MAX_VCPUS);
395 ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
396
397 KASSERT(ci->ci_func == 0);
398 ci->ci_func = caa->cpu_func;
399 aprint_normal("\n");
400
401 /* Must be called before mi_cpu_attach(). */
402 cpu_vm_init(ci);
403
404 if (caa->cpu_role == CPU_ROLE_AP) {
405 int error;
406
407 error = mi_cpu_attach(ci);
408
409 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
410 if (error != 0) {
411 aprint_error_dev(self,
412 "mi_cpu_attach failed with %d\n", error);
413 return;
414 }
415
416 } else {
417 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
418 }
419
420 KASSERT(ci->ci_cpuid == ci->ci_index);
421 #ifdef __x86_64__
422 /* No user PGD mapped for this CPU yet */
423 ci->ci_xen_current_user_pgd = 0;
424 #endif
425 #if defined(__x86_64__) || defined(PAE)
426 mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
427 #endif
428 pmap_reference(pmap_kernel());
429 ci->ci_pmap = pmap_kernel();
430 ci->ci_tlbstate = TLBSTATE_STALE;
431
432 /*
433 * Boot processor may not be attached first, but the below
434 * must be done to allow booting other processors.
435 */
436 if (!again) {
437 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
438 /* Basic init. */
439 cpu_intr_init(ci);
440 cpu_get_tsc_freq(ci);
441 cpu_init(ci);
442 pmap_cpu_init_late(ci);
443
444 /* Every processor needs to init its own ipi h/w (similar to lapic) */
445 xen_ipi_init();
446
447 /* Make sure DELAY() is initialized. */
448 DELAY(1);
449 again = true;
450 }
451
452 /* further PCB init done later. */
453
454 switch (caa->cpu_role) {
455 case CPU_ROLE_SP:
456 atomic_or_32(&ci->ci_flags, CPUF_SP);
457 cpu_identify(ci);
458 x86_cpu_idle_init();
459 break;
460
461 case CPU_ROLE_BP:
462 atomic_or_32(&ci->ci_flags, CPUF_BSP);
463 cpu_identify(ci);
464 x86_cpu_idle_init();
465 break;
466
467 case CPU_ROLE_AP:
468 atomic_or_32(&ci->ci_flags, CPUF_AP);
469
470 /*
471 * report on an AP
472 */
473
474 #if defined(MULTIPROCESSOR)
475 /* interrupt handler stack */
476 cpu_intr_init(ci);
477
478 /* Setup per-cpu memory for gdt */
479 gdt_alloc_cpu(ci);
480
481 pmap_cpu_init_late(ci);
482 cpu_start_secondary(ci);
483
484 if (ci->ci_flags & CPUF_PRESENT) {
485 struct cpu_info *tmp;
486
487 cpu_identify(ci);
488 tmp = cpu_info_list;
489 while (tmp->ci_next)
490 tmp = tmp->ci_next;
491
492 tmp->ci_next = ci;
493 }
494 #else
495 aprint_error_dev(ci->ci_dev, "not started\n");
496 #endif
497 break;
498
499 default:
500 panic("unknown processor type??\n");
501 }
502
503 #ifdef MPVERBOSE
504 if (mp_verbose) {
505 struct lwp *l = ci->ci_data.cpu_idlelwp;
506 struct pcb *pcb = lwp_getpcb(l);
507
508 aprint_verbose_dev(self,
509 "idle lwp at %p, idle sp at 0x%p\n",
510 l,
511 #ifdef i386
512 (void *)pcb->pcb_esp
513 #else
514 (void *)pcb->pcb_rsp
515 #endif
516 );
517
518 }
519 #endif /* MPVERBOSE */
520 }
521
522 /*
523 * Initialize the processor appropriately.
524 */
525
526 void
527 cpu_init(struct cpu_info *ci)
528 {
529
530 /*
531 * If we have FXSAVE/FXRESTOR, use them.
532 */
533 if (cpu_feature[0] & CPUID_FXSR) {
534 lcr4(rcr4() | CR4_OSFXSR);
535
536 /*
537 * If we have SSE/SSE2, enable XMM exceptions.
538 */
539 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
540 lcr4(rcr4() | CR4_OSXMMEXCPT);
541 }
542
543 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
544 }
545
546
547 #ifdef MULTIPROCESSOR
548
549 void
550 cpu_boot_secondary_processors(void)
551 {
552 struct cpu_info *ci;
553 u_long i;
554 for (i = 0; i < maxcpus; i++) {
555 ci = cpu_lookup(i);
556 if (ci == NULL)
557 continue;
558 if (ci->ci_data.cpu_idlelwp == NULL)
559 continue;
560 if ((ci->ci_flags & CPUF_PRESENT) == 0)
561 continue;
562 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
563 continue;
564 cpu_boot_secondary(ci);
565 }
566
567 x86_mp_online = true;
568 }
569
570 static void
571 cpu_init_idle_lwp(struct cpu_info *ci)
572 {
573 struct lwp *l = ci->ci_data.cpu_idlelwp;
574 struct pcb *pcb = lwp_getpcb(l);
575
576 pcb->pcb_cr0 = rcr0();
577 }
578
579 void
580 cpu_init_idle_lwps(void)
581 {
582 struct cpu_info *ci;
583 u_long i;
584
585 for (i = 0; i < maxcpus; i++) {
586 ci = cpu_lookup(i);
587 if (ci == NULL)
588 continue;
589 if (ci->ci_data.cpu_idlelwp == NULL)
590 continue;
591 if ((ci->ci_flags & CPUF_PRESENT) == 0)
592 continue;
593 cpu_init_idle_lwp(ci);
594 }
595 }
596
597 static void
598 cpu_start_secondary(struct cpu_info *ci)
599 {
600 int i;
601
602 aprint_debug_dev(ci->ci_dev, "starting\n");
603
604 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
605
606 if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
607 return;
608 }
609
610 /*
611 * wait for it to become ready
612 */
613 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
614 delay(10);
615 }
616 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
617 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
618 #if defined(MPDEBUG) && defined(DDB)
619 printf("dropping into debugger; continue from here to resume boot\n");
620 Debugger();
621 #endif
622 }
623
624 CPU_START_CLEANUP(ci);
625 }
626
627 void
628 cpu_boot_secondary(struct cpu_info *ci)
629 {
630 int i;
631 atomic_or_32(&ci->ci_flags, CPUF_GO);
632 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
633 delay(10);
634 }
635 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
636 aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
637 #if defined(MPDEBUG) && defined(DDB)
638 printf("dropping into debugger; continue from here to resume boot\n");
639 Debugger();
640 #endif
641 }
642 }
643
644 /*
645 * APs end up here immediately after initialisation and VCPUOP_up in
646 * mp_cpu_start().
647 * At this point, we are running in the idle pcb/idle stack of the new
648 * CPU. This function jumps to the idle loop and starts looking for
649 * work.
650 */
651 extern void x86_64_tls_switch(struct lwp *);
652 void
653 cpu_hatch(void *v)
654 {
655 struct cpu_info *ci = (struct cpu_info *)v;
656 struct pcb *pcb;
657 int s, i;
658
659 /* Setup TLS and kernel GS/FS */
660 cpu_init_msrs(ci, true);
661 cpu_init_idt();
662 gdt_init_cpu(ci);
663
664 cpu_probe(ci);
665
666 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
667
668 while ((ci->ci_flags & CPUF_GO) == 0) {
669 /* Don't use delay, boot CPU may be patching the text. */
670 for (i = 10000; i != 0; i--)
671 x86_pause();
672 }
673
674 /* Because the text may have been patched in x86_patch(). */
675 x86_flush();
676 tlbflushg();
677
678 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
679
680 pcb = lwp_getpcb(curlwp);
681 pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0);
682 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
683
684 xen_ipi_init();
685
686 xen_initclocks();
687
688 #ifdef __x86_64__
689 fpuinit(ci);
690 #endif
691
692 lldt(GSEL(GLDT_SEL, SEL_KPL));
693
694 cpu_init(ci);
695 cpu_get_tsc_freq(ci);
696
697 s = splhigh();
698 x86_enable_intr();
699 splx(s);
700
701 aprint_debug_dev(ci->ci_dev, "running\n");
702
703 cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
704
705 idle_loop(NULL);
706 KASSERT(false);
707 }
708
709 #if defined(DDB)
710
711 #include <ddb/db_output.h>
712 #include <machine/db_machdep.h>
713
714 /*
715 * Dump CPU information from ddb.
716 */
717 void
718 cpu_debug_dump(void)
719 {
720 struct cpu_info *ci;
721 CPU_INFO_ITERATOR cii;
722
723 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
724 for (CPU_INFO_FOREACH(cii, ci)) {
725 db_printf("%p %s %ld %x %x %10p %10p\n",
726 ci,
727 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
728 (long)ci->ci_cpuid,
729 ci->ci_flags, ci->ci_ipis,
730 ci->ci_curlwp,
731 ci->ci_fpcurlwp);
732 }
733 }
734 #endif /* DDB */
735
736 #endif /* MULTIPROCESSOR */
737
738 extern void hypervisor_callback(void);
739 extern void failsafe_callback(void);
740 #ifdef __x86_64__
741 typedef void (vector)(void);
742 extern vector Xsyscall, Xsyscall32;
743 #endif
744
745 /*
746 * Setup the "trampoline". On Xen, we setup nearly all cpu context
747 * outside a trampoline, so we prototype and call targetip like so:
748 * void targetip(struct cpu_info *);
749 */
750
751 static void
752 gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
753 {
754 int i;
755 for (i = 0; i < entries; i++) {
756 frames[i] = ((paddr_t)xpmap_ptetomach(
757 (pt_entry_t *)(base + (i << PAGE_SHIFT)))) >> PAGE_SHIFT;
758
759 /* Mark Read-only */
760 pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
761 PG_RW);
762 }
763 }
764
765 #ifdef __x86_64__
766 extern char *ldtstore;
767
768 static void
769 xen_init_amd64_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
770 void targetrip(struct cpu_info *))
771 {
772 /* page frames to point at GDT */
773 extern int gdt_size;
774 paddr_t frames[16];
775 psize_t gdt_ents;
776
777 struct lwp *l;
778 struct pcb *pcb;
779
780 volatile struct vcpu_info *vci;
781
782 KASSERT(ci != NULL);
783 KASSERT(ci != &cpu_info_primary);
784 KASSERT(initctx != NULL);
785 KASSERT(targetrip != NULL);
786
787 memset(initctx, 0, sizeof(*initctx));
788
789 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
790 KASSERT(gdt_ents <= 16);
791
792 gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
793
794 /* Initialise the vcpu context: We use idle_loop()'s pcb context. */
795
796 l = ci->ci_data.cpu_idlelwp;
797
798 KASSERT(l != NULL);
799 pcb = lwp_getpcb(l);
800 KASSERT(pcb != NULL);
801
802 /* resume with interrupts off */
803 vci = ci->ci_vcpu;
804 vci->evtchn_upcall_mask = 1;
805 xen_mb();
806
807 /* resume in kernel-mode */
808 initctx->flags = VGCF_in_kernel | VGCF_online;
809
810 /* Stack and entry points:
811 * We arrange for the stack frame for cpu_hatch() to
812 * appear as a callee frame of lwp_trampoline(). Being a
813 * leaf frame prevents trampling on any of the MD stack setup
814 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
815 */
816
817 initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
818 initctx->user_regs.rip = (vaddr_t) targetrip;
819
820 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
821
822 initctx->user_regs.rflags = pcb->pcb_flags;
823 initctx->user_regs.rsp = pcb->pcb_rsp;
824
825 /* Data segments */
826 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
827 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
828 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
829
830 /* GDT */
831 memcpy(initctx->gdt_frames, frames, sizeof(frames));
832 initctx->gdt_ents = gdt_ents;
833
834 /* LDT */
835 initctx->ldt_base = (unsigned long)ldtstore;
836 initctx->ldt_ents = LDT_SIZE >> 3;
837
838 /* Kernel context state */
839 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
840 initctx->kernel_sp = pcb->pcb_rsp0;
841 initctx->ctrlreg[0] = pcb->pcb_cr0;
842 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
843 initctx->ctrlreg[2] = (vaddr_t)targetrip;
844 /*
845 * Use pmap_kernel() L4 PD directly, until we setup the
846 * per-cpu L4 PD in pmap_cpu_init_late()
847 */
848 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
849 initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
850
851 /* Xen callbacks */
852 initctx->event_callback_eip = (unsigned long)hypervisor_callback;
853 initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
854 initctx->syscall_callback_eip = (unsigned long)Xsyscall;
855
856 return;
857 }
858 #else /* i386 */
859 extern union descriptor *ldtstore;
860 extern void Xsyscall(void);
861
862 static void
863 xen_init_i386_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
864 void targeteip(struct cpu_info *))
865 {
866 /* page frames to point at GDT */
867 extern int gdt_size;
868 paddr_t frames[16];
869 psize_t gdt_ents;
870
871 struct lwp *l;
872 struct pcb *pcb;
873
874 volatile struct vcpu_info *vci;
875
876 KASSERT(ci != NULL);
877 KASSERT(ci != &cpu_info_primary);
878 KASSERT(initctx != NULL);
879 KASSERT(targeteip != NULL);
880
881 memset(initctx, 0, sizeof(*initctx));
882
883 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
884 KASSERT(gdt_ents <= 16);
885
886 gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
887
888 /*
889 * Initialise the vcpu context:
890 * We use this cpu's idle_loop() pcb context.
891 */
892
893 l = ci->ci_data.cpu_idlelwp;
894
895 KASSERT(l != NULL);
896 pcb = lwp_getpcb(l);
897 KASSERT(pcb != NULL);
898
899 /* resume with interrupts off */
900 vci = ci->ci_vcpu;
901 vci->evtchn_upcall_mask = 1;
902 xen_mb();
903
904 /* resume in kernel-mode */
905 initctx->flags = VGCF_in_kernel | VGCF_online;
906
907 /* Stack frame setup for cpu_hatch():
908 * We arrange for the stack frame for cpu_hatch() to
909 * appear as a callee frame of lwp_trampoline(). Being a
910 * leaf frame prevents trampling on any of the MD stack setup
911 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
912 */
913
914 initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
915 arg1 */
916 {
917 /* targeteip(ci); */
918 uint32_t *arg = (uint32_t *)initctx->user_regs.esp;
919 arg[1] = (uint32_t)ci; /* arg1 */
920 }
921
922 initctx->user_regs.eip = (vaddr_t)targeteip;
923 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
924 initctx->user_regs.eflags |= pcb->pcb_iopl;
925
926 /* Data segments */
927 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
928 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
929 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
930 initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
931
932 /* GDT */
933 memcpy(initctx->gdt_frames, frames, sizeof(frames));
934 initctx->gdt_ents = gdt_ents;
935
936 /* LDT */
937 initctx->ldt_base = (unsigned long)ldtstore;
938 initctx->ldt_ents = NLDT;
939
940 /* Kernel context state */
941 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
942 initctx->kernel_sp = pcb->pcb_esp0;
943 initctx->ctrlreg[0] = pcb->pcb_cr0;
944 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
945 initctx->ctrlreg[2] = (vaddr_t)targeteip;
946 #ifdef PAE
947 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
948 #else
949 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(pcb->pcb_cr3)));
950 #endif
951 initctx->ctrlreg[4] = /* CR4_PAE | */CR4_OSFXSR | CR4_OSXMMEXCPT;
952
953 /* Xen callbacks */
954 initctx->event_callback_eip = (unsigned long)hypervisor_callback;
955 initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
956 initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
957 initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
958
959 return;
960 }
961 #endif /* __x86_64__ */
962
963 int
964 mp_cpu_start(struct cpu_info *ci, vaddr_t target)
965 {
966 int hyperror;
967 struct vcpu_guest_context vcpuctx;
968
969 KASSERT(ci != NULL);
970 KASSERT(ci != &cpu_info_primary);
971 KASSERT(ci->ci_flags & CPUF_AP);
972
973 #ifdef __x86_64__
974 xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
975 #else
976 xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
977 #endif
978
979 /* Initialise the given vcpu to execute cpu_hatch(ci); */
980 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
981 aprint_error(": context initialisation failed. errno = %d\n", hyperror);
982 return hyperror;
983 }
984
985 /* Start it up */
986
987 /* First bring it down */
988 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
989 aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
990 return hyperror;
991 }
992
993 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
994 aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
995 return hyperror;
996 }
997
998 if (!vcpu_is_up(ci)) {
999 aprint_error(": did not come up\n");
1000 return -1;
1001 }
1002
1003 return 0;
1004 }
1005
1006 void
1007 mp_cpu_start_cleanup(struct cpu_info *ci)
1008 {
1009 if (vcpu_is_up(ci)) {
1010 aprint_debug_dev(ci->ci_dev, "is started.\n");
1011 } else {
1012 aprint_error_dev(ci->ci_dev, "did not start up.\n");
1013 }
1014 }
1015
1016 void
1017 cpu_init_msrs(struct cpu_info *ci, bool full)
1018 {
1019 #ifdef __x86_64__
1020 if (full) {
1021 HYPERVISOR_set_segment_base(SEGBASE_FS, 0);
1022 HYPERVISOR_set_segment_base(SEGBASE_GS_KERNEL, (uint64_t)ci);
1023 HYPERVISOR_set_segment_base(SEGBASE_GS_USER, 0);
1024 }
1025 #endif
1026
1027 if (cpu_feature[2] & CPUID_NOX)
1028 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1029 }
1030
1031 void
1032 cpu_offline_md(void)
1033 {
1034 int s;
1035
1036 s = splhigh();
1037 fpusave_cpu(true);
1038 splx(s);
1039 }
1040
1041 void
1042 cpu_get_tsc_freq(struct cpu_info *ci)
1043 {
1044 uint32_t vcpu_tversion;
1045 const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1046
1047 vcpu_tversion = tinfo->version;
1048 while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
1049
1050 uint64_t freq = 1000000000ULL << 32;
1051 freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1052 if (tinfo->tsc_shift < 0)
1053 freq = freq << -tinfo->tsc_shift;
1054 else
1055 freq = freq >> tinfo->tsc_shift;
1056 ci->ci_data.cpu_cc_freq = freq;
1057 }
1058
1059 void
1060 x86_cpu_idle_xen(void)
1061 {
1062 struct cpu_info *ci = curcpu();
1063
1064 KASSERT(ci->ci_ilevel == IPL_NONE);
1065
1066 x86_disable_intr();
1067 if (!__predict_false(ci->ci_want_resched)) {
1068 idle_block();
1069 } else {
1070 x86_enable_intr();
1071 }
1072 }
1073
1074 /*
1075 * Loads pmap for the current CPU.
1076 */
1077 void
1078 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1079 {
1080 KASSERT(pmap != pmap_kernel());
1081
1082 #if defined(__x86_64__) || defined(PAE)
1083 struct cpu_info *ci = curcpu();
1084 cpuid_t cid = cpu_index(ci);
1085
1086 mutex_enter(&ci->ci_kpm_mtx);
1087 /* make new pmap visible to xen_kpm_sync() */
1088 kcpuset_atomic_set(pmap->pm_xen_ptp_cpus, cid);
1089 #endif
1090
1091 #ifdef i386
1092 #ifdef PAE
1093 {
1094 int i;
1095 paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
1096 /* don't update the kernel L3 slot */
1097 for (i = 0 ; i < PDP_SIZE - 1; i++) {
1098 xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
1099 xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
1100 }
1101 tlbflush();
1102 }
1103 #else /* PAE */
1104 lcr3(pmap_pdirpa(pmap, 0));
1105 #endif /* PAE */
1106 #endif /* i386 */
1107
1108 #ifdef __x86_64__
1109 {
1110 int i;
1111 pd_entry_t *new_pgd;
1112 paddr_t l4_pd_ma;
1113
1114 l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
1115
1116 /*
1117 * Map user space address in kernel space and load
1118 * user cr3
1119 */
1120 new_pgd = pmap->pm_pdir;
1121 KASSERT(pmap == ci->ci_pmap);
1122
1123 /* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
1124 for (i = 0; i < PDIR_SLOT_PTE; i++) {
1125 KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
1126 if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
1127 xpq_queue_pte_update(
1128 l4_pd_ma + i * sizeof(pd_entry_t),
1129 new_pgd[i]);
1130 }
1131 }
1132
1133 xen_set_user_pgd(pmap_pdirpa(pmap, 0));
1134 ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
1135
1136 tlbflush();
1137 }
1138 #endif /* __x86_64__ */
1139
1140 #if defined(__x86_64__) || defined(PAE)
1141 /* old pmap no longer visible to xen_kpm_sync() */
1142 if (oldpmap != pmap_kernel()) {
1143 kcpuset_atomic_clear(oldpmap->pm_xen_ptp_cpus, cid);
1144 }
1145 mutex_exit(&ci->ci_kpm_mtx);
1146 #endif
1147 }
1148
1149 /*
1150 * pmap_cpu_init_late: perform late per-CPU initialization.
1151 *
1152 * Short note about percpu PDIR pages. Both the PAE and __x86_64__ architectures
1153 * have per-cpu PDIR tables, for two different reasons:
1154 * - on PAE, this is to get around Xen's pagetable setup constraints (multiple
1155 * L3[3]s cannot point to the same L2 - Xen will refuse to pin a table set up
1156 * this way).
1157 * - on __x86_64__, this is for multiple CPUs to map in different user pmaps
1158 * (see cpu_load_pmap()).
1159 *
1160 * What this means for us is that the PDIR of the pmap_kernel() is considered
1161 * to be a canonical "SHADOW" PDIR with the following properties:
1162 * - its recursive mapping points to itself
1163 * - per-cpu recursive mappings point to themselves on __x86_64__
1164 * - per-cpu L4 pages' kernel entries are expected to be in sync with
1165 * the shadow
1166 */
1167
1168 void
1169 pmap_cpu_init_late(struct cpu_info *ci)
1170 {
1171 #if defined(PAE) || defined(__x86_64__)
1172 /*
1173 * The BP has already its own PD page allocated during early
1174 * MD startup.
1175 */
1176
1177 #if defined(__x86_64__)
1178 /* Setup per-cpu normal_pdes */
1179 int i;
1180 extern pd_entry_t * const normal_pdes[];
1181 for (i = 0;i < PTP_LEVELS - 1;i++) {
1182 ci->ci_normal_pdes[i] = normal_pdes[i];
1183 }
1184 #endif /* __x86_64__ */
1185
1186 if (ci == &cpu_info_primary)
1187 return;
1188
1189 KASSERT(ci != NULL);
1190
1191 #if defined(PAE)
1192 cpu_alloc_l3_page(ci);
1193 KASSERT(ci->ci_pae_l3_pdirpa != 0);
1194
1195 /* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
1196 int i;
1197 for (i = 0 ; i < PDP_SIZE - 1; i++) {
1198 ci->ci_pae_l3_pdir[i] =
1199 xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PG_V;
1200 }
1201 #endif /* PAE */
1202
1203 ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1204 UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
1205
1206 if (ci->ci_kpm_pdir == NULL) {
1207 panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
1208 __func__, cpu_index(ci));
1209 }
1210 ci->ci_kpm_pdirpa = vtophys((vaddr_t)ci->ci_kpm_pdir);
1211 KASSERT(ci->ci_kpm_pdirpa != 0);
1212
1213 #if defined(__x86_64__)
1214 extern pt_entry_t xpmap_pg_nx;
1215
1216 /* Copy over the pmap_kernel() shadow L4 entries */
1217 memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
1218
1219 /* Recursive kernel mapping */
1220 ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa)
1221 | PG_V | xpmap_pg_nx;
1222 #elif defined(PAE)
1223 /* Copy over the pmap_kernel() shadow L2 entries */
1224 memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN,
1225 nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
1226 #endif
1227
1228 /* Xen wants a RO pdir. */
1229 pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
1230 (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
1231 pmap_update(pmap_kernel());
1232 #if defined(PAE)
1233 /*
1234 * Initialize L3 entry 3. This mapping is shared across all pmaps and is
1235 * static, ie: loading a new pmap will not update this entry.
1236 */
1237 ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_V;
1238
1239 /* Xen wants a RO L3. */
1240 pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
1241 (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
1242 pmap_update(pmap_kernel());
1243
1244 xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
1245
1246 #elif defined(__x86_64__)
1247 xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
1248 #endif /* PAE , __x86_64__ */
1249 #endif /* defined(PAE) || defined(__x86_64__) */
1250 }
1251
1252 /*
1253 * Notify all other cpus to halt.
1254 */
1255
1256 void
1257 cpu_broadcast_halt(void)
1258 {
1259 xen_broadcast_ipi(XEN_IPI_HALT);
1260 }
1261
1262 /*
1263 * Send a dummy ipi to a cpu.
1264 */
1265
1266 void
1267 cpu_kick(struct cpu_info *ci)
1268 {
1269 (void)xen_send_ipi(ci, XEN_IPI_KICK);
1270 }
1271