Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.115
      1 /*	$NetBSD: cpu.c,v 1.115 2017/11/11 09:10:19 bouyer Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5  * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by RedBack Networks Inc.
     10  *
     11  * Author: Bill Sommerfeld
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*
     36  * Copyright (c) 1999 Stefan Grefen
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. All advertising materials mentioning features or use of this software
     47  *    must display the following acknowledgement:
     48  *      This product includes software developed by the NetBSD
     49  *      Foundation, Inc. and its contributors.
     50  * 4. Neither the name of The NetBSD Foundation nor the names of its
     51  *    contributors may be used to endorse or promote products derived
     52  *    from this software without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     55  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  */
     66 
     67 #include <sys/cdefs.h>
     68 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.115 2017/11/11 09:10:19 bouyer Exp $");
     69 
     70 #include "opt_ddb.h"
     71 #include "opt_multiprocessor.h"
     72 #include "opt_mpbios.h"		/* for MPDEBUG */
     73 #include "opt_mtrr.h"
     74 #include "opt_xen.h"
     75 
     76 #include "lapic.h"
     77 #include "ioapic.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/proc.h>
     81 #include <sys/systm.h>
     82 #include <sys/device.h>
     83 #include <sys/kmem.h>
     84 #include <sys/cpu.h>
     85 #include <sys/cpufreq.h>
     86 #include <sys/atomic.h>
     87 #include <sys/reboot.h>
     88 #include <sys/idle.h>
     89 
     90 #include <uvm/uvm.h>
     91 
     92 #include <machine/cpu.h>
     93 #include <machine/cpufunc.h>
     94 #include <machine/cpuvar.h>
     95 #include <machine/pmap.h>
     96 #include <machine/vmparam.h>
     97 #include <machine/mpbiosvar.h>
     98 #include <machine/pcb.h>
     99 #include <machine/specialreg.h>
    100 #include <machine/segments.h>
    101 #include <machine/gdt.h>
    102 #include <machine/mtrr.h>
    103 #include <machine/pio.h>
    104 
    105 #include <x86/fpu.h>
    106 
    107 #include <xen/xen.h>
    108 #include <xen/xen-public/vcpu.h>
    109 #include <xen/vcpuvar.h>
    110 
    111 #if NLAPIC > 0
    112 #include <machine/apicvar.h>
    113 #include <machine/i82489reg.h>
    114 #include <machine/i82489var.h>
    115 #endif
    116 
    117 #include <dev/ic/mc146818reg.h>
    118 #include <dev/isa/isareg.h>
    119 
    120 static int	cpu_match(device_t, cfdata_t, void *);
    121 static void	cpu_attach(device_t, device_t, void *);
    122 static void	cpu_defer(device_t);
    123 static int	cpu_rescan(device_t, const char *, const int *);
    124 static void	cpu_childdetached(device_t, device_t);
    125 static int	vcpu_match(device_t, cfdata_t, void *);
    126 static void	vcpu_attach(device_t, device_t, void *);
    127 static void	cpu_attach_common(device_t, device_t, void *);
    128 void		cpu_offline_md(void);
    129 
    130 struct cpu_softc {
    131 	device_t sc_dev;		/* device tree glue */
    132 	struct cpu_info *sc_info;	/* pointer to CPU info */
    133 	bool sc_wasonline;
    134 };
    135 
    136 int mp_cpu_start(struct cpu_info *, vaddr_t);
    137 void mp_cpu_start_cleanup(struct cpu_info *);
    138 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    139 				      mp_cpu_start_cleanup };
    140 
    141 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    142     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    143 
    144 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
    145     vcpu_match, vcpu_attach, NULL, NULL);
    146 
    147 /*
    148  * Statically-allocated CPU info for the primary CPU (or the only
    149  * CPU, on uniprocessors).  The CPU info list is initialized to
    150  * point at it.
    151  */
    152 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    153 	.ci_dev = 0,
    154 	.ci_self = &cpu_info_primary,
    155 	.ci_idepth = -1,
    156 	.ci_curlwp = &lwp0,
    157 	.ci_curldt = -1,
    158 };
    159 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    160 	.ci_dev = 0,
    161 	.ci_self = &phycpu_info_primary,
    162 };
    163 
    164 struct cpu_info *cpu_info_list = &cpu_info_primary;
    165 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
    166 
    167 uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits
    168 			  *	[0] basic features %edx
    169 			  *	[1] basic features %ecx
    170 			  *	[2] extended features %edx
    171 			  *	[3] extended features %ecx
    172 			  *	[4] VIA padlock features
    173 			  *	[5] structured extended features cpuid.7:%ebx
    174 			  *	[6] structured extended features cpuid.7:%ecx
    175 			  */
    176 
    177 bool x86_mp_online;
    178 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    179 
    180 #if defined(MULTIPROCESSOR)
    181 void    	cpu_hatch(void *);
    182 static void    	cpu_boot_secondary(struct cpu_info *ci);
    183 static void    	cpu_start_secondary(struct cpu_info *ci);
    184 #endif	/* MULTIPROCESSOR */
    185 
    186 static int
    187 cpu_match(device_t parent, cfdata_t match, void *aux)
    188 {
    189 
    190 	return 1;
    191 }
    192 
    193 static void
    194 cpu_attach(device_t parent, device_t self, void *aux)
    195 {
    196 	struct cpu_softc *sc = device_private(self);
    197 	struct cpu_attach_args *caa = aux;
    198 	struct cpu_info *ci;
    199 	uintptr_t ptr;
    200 	static int nphycpu = 0;
    201 
    202 	sc->sc_dev = self;
    203 
    204 	/*
    205 	 * If we're an Application Processor, allocate a cpu_info
    206 	 * If we're the first attached CPU use the primary cpu_info,
    207 	 * otherwise allocate a new one
    208 	 */
    209 	aprint_naive("\n");
    210 	aprint_normal("\n");
    211 	if (nphycpu > 0) {
    212 		struct cpu_info *tmp;
    213 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    214 		    KM_SLEEP);
    215 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    216 		ci->ci_curldt = -1;
    217 
    218 		tmp = phycpu_info_list;
    219 		while (tmp->ci_next)
    220 			tmp = tmp->ci_next;
    221 
    222 		tmp->ci_next = ci;
    223 	} else {
    224 		ci = &phycpu_info_primary;
    225 	}
    226 
    227 	ci->ci_self = ci;
    228 	sc->sc_info = ci;
    229 
    230 	ci->ci_dev = self;
    231 	ci->ci_acpiid = caa->cpu_id;
    232 	ci->ci_cpuid = caa->cpu_number;
    233 	ci->ci_vcpu = NULL;
    234 	ci->ci_index = nphycpu++;
    235 
    236 	if (!pmf_device_register(self, NULL, NULL))
    237 		aprint_error_dev(self, "couldn't establish power handler\n");
    238 
    239 	(void)config_defer(self, cpu_defer);
    240 }
    241 
    242 static void
    243 cpu_defer(device_t self)
    244 {
    245 	cpu_rescan(self, NULL, NULL);
    246 }
    247 
    248 static int
    249 cpu_rescan(device_t self, const char *ifattr, const int *locators)
    250 {
    251 	struct cpu_softc *sc = device_private(self);
    252 	struct cpufeature_attach_args cfaa;
    253 	struct cpu_info *ci = sc->sc_info;
    254 
    255 	memset(&cfaa, 0, sizeof(cfaa));
    256 	cfaa.ci = ci;
    257 
    258 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    259 
    260 		if (ci->ci_frequency == NULL) {
    261 			cfaa.name = "frequency";
    262 			ci->ci_frequency = config_found_ia(self,
    263 			    "cpufeaturebus", &cfaa, NULL);
    264 		}
    265 	}
    266 
    267 	return 0;
    268 }
    269 
    270 static void
    271 cpu_childdetached(device_t self, device_t child)
    272 {
    273 	struct cpu_softc *sc = device_private(self);
    274 	struct cpu_info *ci = sc->sc_info;
    275 
    276 	if (ci->ci_frequency == child)
    277 		ci->ci_frequency = NULL;
    278 }
    279 
    280 static int
    281 vcpu_match(device_t parent, cfdata_t match, void *aux)
    282 {
    283 	struct vcpu_attach_args *vcaa = aux;
    284 	struct vcpu_runstate_info vcr;
    285 	int error;
    286 
    287 	if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
    288 		error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
    289 		    vcaa->vcaa_caa.cpu_number, &vcr);
    290 		switch (error) {
    291 		case 0:
    292 			return 1;
    293 		case -ENOENT:
    294 			return 0;
    295 		default:
    296 			panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
    297 		}
    298 	}
    299 
    300 	return 0;
    301 }
    302 
    303 static void
    304 vcpu_attach(device_t parent, device_t self, void *aux)
    305 {
    306 	struct vcpu_attach_args *vcaa = aux;
    307 
    308 	KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
    309 	vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
    310 	cpu_attach_common(parent, self, &vcaa->vcaa_caa);
    311 
    312 	if (!pmf_device_register(self, NULL, NULL))
    313 		aprint_error_dev(self, "couldn't establish power handler\n");
    314 }
    315 
    316 static int
    317 vcpu_is_up(struct cpu_info *ci)
    318 {
    319 	KASSERT(ci != NULL);
    320 	return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
    321 }
    322 
    323 static void
    324 cpu_vm_init(struct cpu_info *ci)
    325 {
    326 	int ncolors = 2, i;
    327 
    328 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    329 		struct x86_cache_info *cai;
    330 		int tcolors;
    331 
    332 		cai = &ci->ci_cinfo[i];
    333 
    334 		tcolors = atop(cai->cai_totalsize);
    335 		switch (cai->cai_associativity) {
    336 		case 0xff:
    337 			tcolors = 1; /* fully associative */
    338 			break;
    339 		case 0:
    340 		case 1:
    341 			break;
    342 		default:
    343 			tcolors /= cai->cai_associativity;
    344 		}
    345 		ncolors = max(ncolors, tcolors);
    346 	}
    347 
    348 	/*
    349 	 * Knowing the size of the largest cache on this CPU, potentially
    350 	 * re-color our pages.
    351 	 */
    352 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    353 	uvm_page_recolor(ncolors);
    354 	pmap_tlb_cpu_init(ci);
    355 #ifndef __HAVE_DIRECT_MAP
    356 	pmap_vpage_cpu_init(ci);
    357 #endif
    358 }
    359 
    360 static void
    361 cpu_attach_common(device_t parent, device_t self, void *aux)
    362 {
    363 	struct cpu_softc *sc = device_private(self);
    364 	struct cpu_attach_args *caa = aux;
    365 	struct cpu_info *ci;
    366 	uintptr_t ptr;
    367 	int cpunum = caa->cpu_number;
    368 	static bool again = false;
    369 
    370 	sc->sc_dev = self;
    371 
    372 	/*
    373 	 * If we're an Application Processor, allocate a cpu_info
    374 	 * structure, otherwise use the primary's.
    375 	 */
    376 	if (caa->cpu_role == CPU_ROLE_AP) {
    377 		aprint_naive(": Application Processor\n");
    378 		ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    379 		    KM_SLEEP);
    380 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    381 		memset(ci, 0, sizeof(*ci));
    382 	} else {
    383 		aprint_naive(": %s Processor\n",
    384 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    385 		ci = &cpu_info_primary;
    386 	}
    387 
    388 	ci->ci_self = ci;
    389 	sc->sc_info = ci;
    390 	ci->ci_dev = self;
    391 	ci->ci_cpuid = cpunum;
    392 
    393 	KASSERT(HYPERVISOR_shared_info != NULL);
    394 	KASSERT(cpunum < XEN_LEGACY_MAX_VCPUS);
    395 	ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
    396 
    397 	KASSERT(ci->ci_func == 0);
    398 	ci->ci_func = caa->cpu_func;
    399 	aprint_normal("\n");
    400 
    401 	/* Must be called before mi_cpu_attach(). */
    402 	cpu_vm_init(ci);
    403 
    404 	if (caa->cpu_role == CPU_ROLE_AP) {
    405 		int error;
    406 
    407 		error = mi_cpu_attach(ci);
    408 
    409 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    410 		if (error != 0) {
    411 			aprint_error_dev(self,
    412 			    "mi_cpu_attach failed with %d\n", error);
    413 			return;
    414 		}
    415 
    416 	} else {
    417 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    418 	}
    419 
    420 	KASSERT(ci->ci_cpuid == ci->ci_index);
    421 #ifdef __x86_64__
    422 	/* No user PGD mapped for this CPU yet */
    423 	ci->ci_xen_current_user_pgd = 0;
    424 #endif
    425 #if defined(__x86_64__) || defined(PAE)
    426 	mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
    427 #endif
    428 	pmap_reference(pmap_kernel());
    429 	ci->ci_pmap = pmap_kernel();
    430 	ci->ci_tlbstate = TLBSTATE_STALE;
    431 
    432 	/*
    433 	 * Boot processor may not be attached first, but the below
    434 	 * must be done to allow booting other processors.
    435 	 */
    436 	if (!again) {
    437 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    438 		/* Basic init. */
    439 		cpu_intr_init(ci);
    440 		cpu_get_tsc_freq(ci);
    441 		cpu_init(ci);
    442 		pmap_cpu_init_late(ci);
    443 
    444 		/* Every processor needs to init its own ipi h/w (similar to lapic) */
    445 		xen_ipi_init();
    446 
    447 		/* Make sure DELAY() is initialized. */
    448 		DELAY(1);
    449 		again = true;
    450 	}
    451 
    452 	/* further PCB init done later. */
    453 
    454 	switch (caa->cpu_role) {
    455 	case CPU_ROLE_SP:
    456 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    457 		cpu_identify(ci);
    458 		x86_cpu_idle_init();
    459 		break;
    460 
    461 	case CPU_ROLE_BP:
    462 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    463 		cpu_identify(ci);
    464 		x86_cpu_idle_init();
    465 		break;
    466 
    467 	case CPU_ROLE_AP:
    468 		atomic_or_32(&ci->ci_flags, CPUF_AP);
    469 
    470 		/*
    471 		 * report on an AP
    472 		 */
    473 
    474 #if defined(MULTIPROCESSOR)
    475 		/* interrupt handler stack */
    476 		cpu_intr_init(ci);
    477 
    478 		/* Setup per-cpu memory for gdt */
    479 		gdt_alloc_cpu(ci);
    480 
    481 		pmap_cpu_init_late(ci);
    482 		cpu_start_secondary(ci);
    483 
    484 		if (ci->ci_flags & CPUF_PRESENT) {
    485 			struct cpu_info *tmp;
    486 
    487 			cpu_identify(ci);
    488 			tmp = cpu_info_list;
    489 			while (tmp->ci_next)
    490 				tmp = tmp->ci_next;
    491 
    492 			tmp->ci_next = ci;
    493 		}
    494 #else
    495 		aprint_error_dev(ci->ci_dev, "not started\n");
    496 #endif
    497 		break;
    498 
    499 	default:
    500 		panic("unknown processor type??\n");
    501 	}
    502 
    503 #ifdef MPVERBOSE
    504 	if (mp_verbose) {
    505 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    506 		struct pcb *pcb = lwp_getpcb(l);
    507 
    508 		aprint_verbose_dev(self,
    509 		    "idle lwp at %p, idle sp at 0x%p\n",
    510 		    l,
    511 #ifdef i386
    512 		    (void *)pcb->pcb_esp
    513 #else
    514 		    (void *)pcb->pcb_rsp
    515 #endif
    516 		);
    517 
    518 	}
    519 #endif /* MPVERBOSE */
    520 }
    521 
    522 /*
    523  * Initialize the processor appropriately.
    524  */
    525 
    526 void
    527 cpu_init(struct cpu_info *ci)
    528 {
    529 
    530 	/*
    531 	 * If we have FXSAVE/FXRESTOR, use them.
    532 	 */
    533 	if (cpu_feature[0] & CPUID_FXSR) {
    534 		lcr4(rcr4() | CR4_OSFXSR);
    535 
    536 		/*
    537 		 * If we have SSE/SSE2, enable XMM exceptions.
    538 		 */
    539 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    540 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    541 	}
    542 
    543 	atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    544 }
    545 
    546 
    547 #ifdef MULTIPROCESSOR
    548 
    549 void
    550 cpu_boot_secondary_processors(void)
    551 {
    552 	struct cpu_info *ci;
    553 	u_long i;
    554 	for (i = 0; i < maxcpus; i++) {
    555 		ci = cpu_lookup(i);
    556 		if (ci == NULL)
    557 			continue;
    558 		if (ci->ci_data.cpu_idlelwp == NULL)
    559 			continue;
    560 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    561 			continue;
    562 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    563 			continue;
    564 		cpu_boot_secondary(ci);
    565 	}
    566 
    567 	x86_mp_online = true;
    568 }
    569 
    570 static void
    571 cpu_init_idle_lwp(struct cpu_info *ci)
    572 {
    573 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    574 	struct pcb *pcb = lwp_getpcb(l);
    575 
    576 	pcb->pcb_cr0 = rcr0();
    577 }
    578 
    579 void
    580 cpu_init_idle_lwps(void)
    581 {
    582 	struct cpu_info *ci;
    583 	u_long i;
    584 
    585 	for (i = 0; i < maxcpus; i++) {
    586 		ci = cpu_lookup(i);
    587 		if (ci == NULL)
    588 			continue;
    589 		if (ci->ci_data.cpu_idlelwp == NULL)
    590 			continue;
    591 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    592 			continue;
    593 		cpu_init_idle_lwp(ci);
    594 	}
    595 }
    596 
    597 static void
    598 cpu_start_secondary(struct cpu_info *ci)
    599 {
    600 	int i;
    601 
    602 	aprint_debug_dev(ci->ci_dev, "starting\n");
    603 
    604 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    605 
    606 	if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
    607 		return;
    608 	}
    609 
    610 	/*
    611 	 * wait for it to become ready
    612 	 */
    613 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    614 		delay(10);
    615 	}
    616 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    617 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    618 #if defined(MPDEBUG) && defined(DDB)
    619 		printf("dropping into debugger; continue from here to resume boot\n");
    620 		Debugger();
    621 #endif
    622 	}
    623 
    624 	CPU_START_CLEANUP(ci);
    625 }
    626 
    627 void
    628 cpu_boot_secondary(struct cpu_info *ci)
    629 {
    630 	int i;
    631 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    632 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    633 		delay(10);
    634 	}
    635 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    636 		aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
    637 #if defined(MPDEBUG) && defined(DDB)
    638 		printf("dropping into debugger; continue from here to resume boot\n");
    639 		Debugger();
    640 #endif
    641 	}
    642 }
    643 
    644 /*
    645  * APs end up here immediately after initialisation and VCPUOP_up in
    646  * mp_cpu_start().
    647  * At this point, we are running in the idle pcb/idle stack of the new
    648  * CPU.  This function jumps to the idle loop and starts looking for
    649  * work.
    650  */
    651 extern void x86_64_tls_switch(struct lwp *);
    652 void
    653 cpu_hatch(void *v)
    654 {
    655 	struct cpu_info *ci = (struct cpu_info *)v;
    656 	struct pcb *pcb;
    657 	int s, i;
    658 
    659 	/* Setup TLS and kernel GS/FS */
    660 	cpu_init_msrs(ci, true);
    661 	cpu_init_idt();
    662 	gdt_init_cpu(ci);
    663 
    664 	cpu_probe(ci);
    665 
    666 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    667 
    668 	while ((ci->ci_flags & CPUF_GO) == 0) {
    669 		/* Don't use delay, boot CPU may be patching the text. */
    670 		for (i = 10000; i != 0; i--)
    671 			x86_pause();
    672 	}
    673 
    674 	/* Because the text may have been patched in x86_patch(). */
    675 	x86_flush();
    676 	tlbflushg();
    677 
    678 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    679 
    680 	pcb = lwp_getpcb(curlwp);
    681 	pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0);
    682 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    683 
    684 	xen_ipi_init();
    685 
    686 	xen_initclocks();
    687 
    688 #ifdef __x86_64__
    689 	fpuinit(ci);
    690 #endif
    691 
    692 	lldt(GSEL(GLDT_SEL, SEL_KPL));
    693 
    694 	cpu_init(ci);
    695 	cpu_get_tsc_freq(ci);
    696 
    697 	s = splhigh();
    698 	x86_enable_intr();
    699 	splx(s);
    700 
    701 	aprint_debug_dev(ci->ci_dev, "running\n");
    702 
    703 	cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
    704 
    705 	idle_loop(NULL);
    706 	KASSERT(false);
    707 }
    708 
    709 #if defined(DDB)
    710 
    711 #include <ddb/db_output.h>
    712 #include <machine/db_machdep.h>
    713 
    714 /*
    715  * Dump CPU information from ddb.
    716  */
    717 void
    718 cpu_debug_dump(void)
    719 {
    720 	struct cpu_info *ci;
    721 	CPU_INFO_ITERATOR cii;
    722 
    723 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    724 	for (CPU_INFO_FOREACH(cii, ci)) {
    725 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    726 		    ci,
    727 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    728 		    (long)ci->ci_cpuid,
    729 		    ci->ci_flags, ci->ci_ipis,
    730 		    ci->ci_curlwp,
    731 		    ci->ci_fpcurlwp);
    732 	}
    733 }
    734 #endif /* DDB */
    735 
    736 #endif /* MULTIPROCESSOR */
    737 
    738 extern void hypervisor_callback(void);
    739 extern void failsafe_callback(void);
    740 #ifdef __x86_64__
    741 typedef void (vector)(void);
    742 extern vector Xsyscall, Xsyscall32;
    743 #endif
    744 
    745 /*
    746  * Setup the "trampoline". On Xen, we setup nearly all cpu context
    747  * outside a trampoline, so we prototype and call targetip like so:
    748  * void targetip(struct cpu_info *);
    749  */
    750 
    751 static void
    752 gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
    753 {
    754 	int i;
    755 	for (i = 0; i < entries; i++) {
    756 		frames[i] = ((paddr_t)xpmap_ptetomach(
    757 		    (pt_entry_t *)(base + (i << PAGE_SHIFT)))) >> PAGE_SHIFT;
    758 
    759 		/* Mark Read-only */
    760 		pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
    761 		    PG_RW);
    762 	}
    763 }
    764 
    765 #ifdef __x86_64__
    766 extern char *ldtstore;
    767 
    768 static void
    769 xen_init_amd64_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
    770     void targetrip(struct cpu_info *))
    771 {
    772 	/* page frames to point at GDT */
    773 	extern int gdt_size;
    774 	paddr_t frames[16];
    775 	psize_t gdt_ents;
    776 
    777 	struct lwp *l;
    778 	struct pcb *pcb;
    779 
    780 	volatile struct vcpu_info *vci;
    781 
    782 	KASSERT(ci != NULL);
    783 	KASSERT(ci != &cpu_info_primary);
    784 	KASSERT(initctx != NULL);
    785 	KASSERT(targetrip != NULL);
    786 
    787 	memset(initctx, 0, sizeof(*initctx));
    788 
    789 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
    790 	KASSERT(gdt_ents <= 16);
    791 
    792 	gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
    793 
    794 	/* Initialise the vcpu context: We use idle_loop()'s pcb context. */
    795 
    796 	l = ci->ci_data.cpu_idlelwp;
    797 
    798 	KASSERT(l != NULL);
    799 	pcb = lwp_getpcb(l);
    800 	KASSERT(pcb != NULL);
    801 
    802 	/* resume with interrupts off */
    803 	vci = ci->ci_vcpu;
    804 	vci->evtchn_upcall_mask = 1;
    805 	xen_mb();
    806 
    807 	/* resume in kernel-mode */
    808 	initctx->flags = VGCF_in_kernel | VGCF_online;
    809 
    810 	/* Stack and entry points:
    811 	 * We arrange for the stack frame for cpu_hatch() to
    812 	 * appear as a callee frame of lwp_trampoline(). Being a
    813 	 * leaf frame prevents trampling on any of the MD stack setup
    814 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
    815 	 */
    816 
    817 	initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
    818 	initctx->user_regs.rip = (vaddr_t) targetrip;
    819 
    820 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
    821 
    822 	initctx->user_regs.rflags = pcb->pcb_flags;
    823 	initctx->user_regs.rsp = pcb->pcb_rsp;
    824 
    825 	/* Data segments */
    826 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
    827 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
    828 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
    829 
    830 	/* GDT */
    831 	memcpy(initctx->gdt_frames, frames, sizeof(frames));
    832 	initctx->gdt_ents = gdt_ents;
    833 
    834 	/* LDT */
    835 	initctx->ldt_base = (unsigned long)ldtstore;
    836 	initctx->ldt_ents = LDT_SIZE >> 3;
    837 
    838 	/* Kernel context state */
    839 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
    840 	initctx->kernel_sp = pcb->pcb_rsp0;
    841 	initctx->ctrlreg[0] = pcb->pcb_cr0;
    842 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
    843 	initctx->ctrlreg[2] = (vaddr_t)targetrip;
    844 	/*
    845 	 * Use pmap_kernel() L4 PD directly, until we setup the
    846 	 * per-cpu L4 PD in pmap_cpu_init_late()
    847 	 */
    848 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
    849 	initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
    850 
    851 	/* Xen callbacks */
    852 	initctx->event_callback_eip = (unsigned long)hypervisor_callback;
    853 	initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
    854 	initctx->syscall_callback_eip = (unsigned long)Xsyscall;
    855 
    856 	return;
    857 }
    858 #else /* i386 */
    859 extern union descriptor *ldtstore;
    860 extern void Xsyscall(void);
    861 
    862 static void
    863 xen_init_i386_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
    864     void targeteip(struct cpu_info *))
    865 {
    866 	/* page frames to point at GDT */
    867 	extern int gdt_size;
    868 	paddr_t frames[16];
    869 	psize_t gdt_ents;
    870 
    871 	struct lwp *l;
    872 	struct pcb *pcb;
    873 
    874 	volatile struct vcpu_info *vci;
    875 
    876 	KASSERT(ci != NULL);
    877 	KASSERT(ci != &cpu_info_primary);
    878 	KASSERT(initctx != NULL);
    879 	KASSERT(targeteip != NULL);
    880 
    881 	memset(initctx, 0, sizeof(*initctx));
    882 
    883 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
    884 	KASSERT(gdt_ents <= 16);
    885 
    886 	gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
    887 
    888 	/*
    889 	 * Initialise the vcpu context:
    890 	 * We use this cpu's idle_loop() pcb context.
    891 	 */
    892 
    893 	l = ci->ci_data.cpu_idlelwp;
    894 
    895 	KASSERT(l != NULL);
    896 	pcb = lwp_getpcb(l);
    897 	KASSERT(pcb != NULL);
    898 
    899 	/* resume with interrupts off */
    900 	vci = ci->ci_vcpu;
    901 	vci->evtchn_upcall_mask = 1;
    902 	xen_mb();
    903 
    904 	/* resume in kernel-mode */
    905 	initctx->flags = VGCF_in_kernel | VGCF_online;
    906 
    907 	/* Stack frame setup for cpu_hatch():
    908 	 * We arrange for the stack frame for cpu_hatch() to
    909 	 * appear as a callee frame of lwp_trampoline(). Being a
    910 	 * leaf frame prevents trampling on any of the MD stack setup
    911 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
    912 	 */
    913 
    914 	initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
    915 						      arg1 */
    916 	{
    917 		/* targeteip(ci); */
    918 		uint32_t *arg = (uint32_t *)initctx->user_regs.esp;
    919 		arg[1] = (uint32_t)ci; /* arg1 */
    920 	}
    921 
    922 	initctx->user_regs.eip = (vaddr_t)targeteip;
    923 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
    924 	initctx->user_regs.eflags |= pcb->pcb_iopl;
    925 
    926 	/* Data segments */
    927 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
    928 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
    929 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
    930 	initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
    931 
    932 	/* GDT */
    933 	memcpy(initctx->gdt_frames, frames, sizeof(frames));
    934 	initctx->gdt_ents = gdt_ents;
    935 
    936 	/* LDT */
    937 	initctx->ldt_base = (unsigned long)ldtstore;
    938 	initctx->ldt_ents = NLDT;
    939 
    940 	/* Kernel context state */
    941 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
    942 	initctx->kernel_sp = pcb->pcb_esp0;
    943 	initctx->ctrlreg[0] = pcb->pcb_cr0;
    944 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
    945 	initctx->ctrlreg[2] = (vaddr_t)targeteip;
    946 #ifdef PAE
    947 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
    948 #else
    949 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(pcb->pcb_cr3)));
    950 #endif
    951 	initctx->ctrlreg[4] = /* CR4_PAE | */CR4_OSFXSR | CR4_OSXMMEXCPT;
    952 
    953 	/* Xen callbacks */
    954 	initctx->event_callback_eip = (unsigned long)hypervisor_callback;
    955 	initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
    956 	initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
    957 	initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
    958 
    959 	return;
    960 }
    961 #endif /* __x86_64__ */
    962 
    963 int
    964 mp_cpu_start(struct cpu_info *ci, vaddr_t target)
    965 {
    966 	int hyperror;
    967 	struct vcpu_guest_context vcpuctx;
    968 
    969 	KASSERT(ci != NULL);
    970 	KASSERT(ci != &cpu_info_primary);
    971 	KASSERT(ci->ci_flags & CPUF_AP);
    972 
    973 #ifdef __x86_64__
    974 	xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
    975 #else
    976 	xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
    977 #endif
    978 
    979 	/* Initialise the given vcpu to execute cpu_hatch(ci); */
    980 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
    981 		aprint_error(": context initialisation failed. errno = %d\n", hyperror);
    982 		return hyperror;
    983 	}
    984 
    985 	/* Start it up */
    986 
    987 	/* First bring it down */
    988 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
    989 		aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
    990 		return hyperror;
    991 	}
    992 
    993 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
    994 		aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
    995 		return hyperror;
    996 	}
    997 
    998 	if (!vcpu_is_up(ci)) {
    999 		aprint_error(": did not come up\n");
   1000 		return -1;
   1001 	}
   1002 
   1003 	return 0;
   1004 }
   1005 
   1006 void
   1007 mp_cpu_start_cleanup(struct cpu_info *ci)
   1008 {
   1009 	if (vcpu_is_up(ci)) {
   1010 		aprint_debug_dev(ci->ci_dev, "is started.\n");
   1011 	} else {
   1012 		aprint_error_dev(ci->ci_dev, "did not start up.\n");
   1013 	}
   1014 }
   1015 
   1016 void
   1017 cpu_init_msrs(struct cpu_info *ci, bool full)
   1018 {
   1019 #ifdef __x86_64__
   1020 	if (full) {
   1021 		HYPERVISOR_set_segment_base(SEGBASE_FS, 0);
   1022 		HYPERVISOR_set_segment_base(SEGBASE_GS_KERNEL, (uint64_t)ci);
   1023 		HYPERVISOR_set_segment_base(SEGBASE_GS_USER, 0);
   1024 	}
   1025 #endif
   1026 
   1027 	if (cpu_feature[2] & CPUID_NOX)
   1028 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1029 }
   1030 
   1031 void
   1032 cpu_offline_md(void)
   1033 {
   1034 	int s;
   1035 
   1036 	s = splhigh();
   1037 	fpusave_cpu(true);
   1038 	splx(s);
   1039 }
   1040 
   1041 void
   1042 cpu_get_tsc_freq(struct cpu_info *ci)
   1043 {
   1044 	uint32_t vcpu_tversion;
   1045 	const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
   1046 
   1047 	vcpu_tversion = tinfo->version;
   1048 	while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
   1049 
   1050 	uint64_t freq = 1000000000ULL << 32;
   1051 	freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
   1052 	if (tinfo->tsc_shift < 0)
   1053 		freq = freq << -tinfo->tsc_shift;
   1054 	else
   1055 		freq = freq >> tinfo->tsc_shift;
   1056 	ci->ci_data.cpu_cc_freq = freq;
   1057 }
   1058 
   1059 void
   1060 x86_cpu_idle_xen(void)
   1061 {
   1062 	struct cpu_info *ci = curcpu();
   1063 
   1064 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1065 
   1066 	x86_disable_intr();
   1067 	if (!__predict_false(ci->ci_want_resched)) {
   1068 		idle_block();
   1069 	} else {
   1070 		x86_enable_intr();
   1071 	}
   1072 }
   1073 
   1074 /*
   1075  * Loads pmap for the current CPU.
   1076  */
   1077 void
   1078 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
   1079 {
   1080 	KASSERT(pmap != pmap_kernel());
   1081 
   1082 #if defined(__x86_64__) || defined(PAE)
   1083 	struct cpu_info *ci = curcpu();
   1084 	cpuid_t cid = cpu_index(ci);
   1085 
   1086 	mutex_enter(&ci->ci_kpm_mtx);
   1087 	/* make new pmap visible to xen_kpm_sync() */
   1088 	kcpuset_atomic_set(pmap->pm_xen_ptp_cpus, cid);
   1089 #endif
   1090 
   1091 #ifdef i386
   1092 #ifdef PAE
   1093 	{
   1094 		int i;
   1095 		paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
   1096 		/* don't update the kernel L3 slot */
   1097 		for (i = 0 ; i < PDP_SIZE - 1; i++) {
   1098 			xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
   1099 			    xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
   1100 		}
   1101 		tlbflush();
   1102 	}
   1103 #else /* PAE */
   1104 	lcr3(pmap_pdirpa(pmap, 0));
   1105 #endif /* PAE */
   1106 #endif /* i386 */
   1107 
   1108 #ifdef __x86_64__
   1109 	{
   1110 		int i;
   1111 		pd_entry_t *new_pgd;
   1112 		paddr_t l4_pd_ma;
   1113 
   1114 		l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
   1115 
   1116 		/*
   1117 		 * Map user space address in kernel space and load
   1118 		 * user cr3
   1119 		 */
   1120 		new_pgd = pmap->pm_pdir;
   1121 		KASSERT(pmap == ci->ci_pmap);
   1122 
   1123 		/* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
   1124 		for (i = 0; i < PDIR_SLOT_PTE; i++) {
   1125 			KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
   1126 			if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
   1127 				xpq_queue_pte_update(
   1128 				    l4_pd_ma + i * sizeof(pd_entry_t),
   1129 				    new_pgd[i]);
   1130 			}
   1131 		}
   1132 
   1133 		xen_set_user_pgd(pmap_pdirpa(pmap, 0));
   1134 		ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
   1135 
   1136 		tlbflush();
   1137 	}
   1138 #endif /* __x86_64__ */
   1139 
   1140 #if defined(__x86_64__) || defined(PAE)
   1141 	/* old pmap no longer visible to xen_kpm_sync() */
   1142 	if (oldpmap != pmap_kernel()) {
   1143 		kcpuset_atomic_clear(oldpmap->pm_xen_ptp_cpus, cid);
   1144 	}
   1145 	mutex_exit(&ci->ci_kpm_mtx);
   1146 #endif
   1147 }
   1148 
   1149 /*
   1150  * pmap_cpu_init_late: perform late per-CPU initialization.
   1151  *
   1152  * Short note about percpu PDIR pages. Both the PAE and __x86_64__ architectures
   1153  * have per-cpu PDIR tables, for two different reasons:
   1154  *  - on PAE, this is to get around Xen's pagetable setup constraints (multiple
   1155  *    L3[3]s cannot point to the same L2 - Xen will refuse to pin a table set up
   1156  *    this way).
   1157  *  - on __x86_64__, this is for multiple CPUs to map in different user pmaps
   1158  *    (see cpu_load_pmap()).
   1159  *
   1160  * What this means for us is that the PDIR of the pmap_kernel() is considered
   1161  * to be a canonical "SHADOW" PDIR with the following properties:
   1162  *  - its recursive mapping points to itself
   1163  *  - per-cpu recursive mappings point to themselves on __x86_64__
   1164  *  - per-cpu L4 pages' kernel entries are expected to be in sync with
   1165  *    the shadow
   1166  */
   1167 
   1168 void
   1169 pmap_cpu_init_late(struct cpu_info *ci)
   1170 {
   1171 #if defined(PAE) || defined(__x86_64__)
   1172 	/*
   1173 	 * The BP has already its own PD page allocated during early
   1174 	 * MD startup.
   1175 	 */
   1176 
   1177 #if defined(__x86_64__)
   1178 	/* Setup per-cpu normal_pdes */
   1179 	int i;
   1180 	extern pd_entry_t * const normal_pdes[];
   1181 	for (i = 0;i < PTP_LEVELS - 1;i++) {
   1182 		ci->ci_normal_pdes[i] = normal_pdes[i];
   1183 	}
   1184 #endif /* __x86_64__ */
   1185 
   1186 	if (ci == &cpu_info_primary)
   1187 		return;
   1188 
   1189 	KASSERT(ci != NULL);
   1190 
   1191 #if defined(PAE)
   1192 	cpu_alloc_l3_page(ci);
   1193 	KASSERT(ci->ci_pae_l3_pdirpa != 0);
   1194 
   1195 	/* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
   1196 	int i;
   1197 	for (i = 0 ; i < PDP_SIZE - 1; i++) {
   1198 		ci->ci_pae_l3_pdir[i] =
   1199 		    xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PG_V;
   1200 	}
   1201 #endif /* PAE */
   1202 
   1203 	ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1204 	    UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
   1205 
   1206 	if (ci->ci_kpm_pdir == NULL) {
   1207 		panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
   1208 		    __func__, cpu_index(ci));
   1209 	}
   1210 	ci->ci_kpm_pdirpa = vtophys((vaddr_t)ci->ci_kpm_pdir);
   1211 	KASSERT(ci->ci_kpm_pdirpa != 0);
   1212 
   1213 #if defined(__x86_64__)
   1214 	extern pt_entry_t xpmap_pg_nx;
   1215 
   1216 	/* Copy over the pmap_kernel() shadow L4 entries */
   1217 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
   1218 
   1219 	/* Recursive kernel mapping */
   1220 	ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa)
   1221 	    | PG_V | xpmap_pg_nx;
   1222 #elif defined(PAE)
   1223 	/* Copy over the pmap_kernel() shadow L2 entries */
   1224 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN,
   1225 	    nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
   1226 #endif
   1227 
   1228 	/* Xen wants a RO pdir. */
   1229 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
   1230 	    (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
   1231 	pmap_update(pmap_kernel());
   1232 #if defined(PAE)
   1233 	/*
   1234 	 * Initialize L3 entry 3. This mapping is shared across all pmaps and is
   1235 	 * static, ie: loading a new pmap will not update this entry.
   1236 	 */
   1237 	ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_V;
   1238 
   1239 	/* Xen wants a RO L3. */
   1240 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
   1241 	    (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
   1242 	pmap_update(pmap_kernel());
   1243 
   1244 	xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
   1245 
   1246 #elif defined(__x86_64__)
   1247 	xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
   1248 #endif /* PAE , __x86_64__ */
   1249 #endif /* defined(PAE) || defined(__x86_64__) */
   1250 }
   1251 
   1252 /*
   1253  * Notify all other cpus to halt.
   1254  */
   1255 
   1256 void
   1257 cpu_broadcast_halt(void)
   1258 {
   1259 	xen_broadcast_ipi(XEN_IPI_HALT);
   1260 }
   1261 
   1262 /*
   1263  * Send a dummy ipi to a cpu.
   1264  */
   1265 
   1266 void
   1267 cpu_kick(struct cpu_info *ci)
   1268 {
   1269 	(void)xen_send_ipi(ci, XEN_IPI_KICK);
   1270 }
   1271