cpu.c revision 1.121 1 /* $NetBSD: cpu.c,v 1.121 2018/06/23 09:51:34 maxv Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by RedBack Networks Inc.
10 *
11 * Author: Bill Sommerfeld
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Copyright (c) 1999 Stefan Grefen
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the NetBSD
49 * Foundation, Inc. and its contributors.
50 * 4. Neither the name of The NetBSD Foundation nor the names of its
51 * contributors may be used to endorse or promote products derived
52 * from this software without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
55 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 */
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.121 2018/06/23 09:51:34 maxv Exp $");
69
70 #include "opt_ddb.h"
71 #include "opt_multiprocessor.h"
72 #include "opt_mpbios.h" /* for MPDEBUG */
73 #include "opt_mtrr.h"
74 #include "opt_xen.h"
75
76 #include "lapic.h"
77 #include "ioapic.h"
78
79 #include <sys/param.h>
80 #include <sys/proc.h>
81 #include <sys/systm.h>
82 #include <sys/device.h>
83 #include <sys/kmem.h>
84 #include <sys/cpu.h>
85 #include <sys/cpufreq.h>
86 #include <sys/atomic.h>
87 #include <sys/reboot.h>
88 #include <sys/idle.h>
89
90 #include <uvm/uvm.h>
91
92 #include <machine/cpu.h>
93 #include <machine/cpufunc.h>
94 #include <machine/cpuvar.h>
95 #include <machine/pmap.h>
96 #include <machine/vmparam.h>
97 #include <machine/mpbiosvar.h>
98 #include <machine/pcb.h>
99 #include <machine/specialreg.h>
100 #include <machine/segments.h>
101 #include <machine/gdt.h>
102 #include <machine/mtrr.h>
103 #include <machine/pio.h>
104
105 #include <x86/fpu.h>
106
107 #include <xen/xen.h>
108 #include <xen/xen-public/vcpu.h>
109 #include <xen/vcpuvar.h>
110
111 #if NLAPIC > 0
112 #include <machine/apicvar.h>
113 #include <machine/i82489reg.h>
114 #include <machine/i82489var.h>
115 #endif
116
117 #include <dev/ic/mc146818reg.h>
118 #include <dev/isa/isareg.h>
119
120 static int cpu_match(device_t, cfdata_t, void *);
121 static void cpu_attach(device_t, device_t, void *);
122 static void cpu_defer(device_t);
123 static int cpu_rescan(device_t, const char *, const int *);
124 static void cpu_childdetached(device_t, device_t);
125 static int vcpu_match(device_t, cfdata_t, void *);
126 static void vcpu_attach(device_t, device_t, void *);
127 static void cpu_attach_common(device_t, device_t, void *);
128 void cpu_offline_md(void);
129
130 struct cpu_softc {
131 device_t sc_dev; /* device tree glue */
132 struct cpu_info *sc_info; /* pointer to CPU info */
133 bool sc_wasonline;
134 };
135
136 int mp_cpu_start(struct cpu_info *, vaddr_t);
137 void mp_cpu_start_cleanup(struct cpu_info *);
138 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
139 mp_cpu_start_cleanup };
140
141 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
142 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
143
144 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
145 vcpu_match, vcpu_attach, NULL, NULL);
146
147 /*
148 * Statically-allocated CPU info for the primary CPU (or the only
149 * CPU, on uniprocessors). The CPU info list is initialized to
150 * point at it.
151 */
152 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
153 .ci_dev = 0,
154 .ci_self = &cpu_info_primary,
155 .ci_idepth = -1,
156 .ci_curlwp = &lwp0,
157 .ci_curldt = -1,
158 };
159 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
160 .ci_dev = 0,
161 .ci_self = &phycpu_info_primary,
162 };
163
164 struct cpu_info *cpu_info_list = &cpu_info_primary;
165 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
166
167 uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits
168 * [0] basic features %edx
169 * [1] basic features %ecx
170 * [2] extended features %edx
171 * [3] extended features %ecx
172 * [4] VIA padlock features
173 * [5] structured extended features cpuid.7:%ebx
174 * [6] structured extended features cpuid.7:%ecx
175 */
176
177 bool x86_mp_online;
178 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
179
180 #if defined(MULTIPROCESSOR)
181 void cpu_hatch(void *);
182 static void cpu_boot_secondary(struct cpu_info *ci);
183 static void cpu_start_secondary(struct cpu_info *ci);
184 #endif /* MULTIPROCESSOR */
185
186 static int
187 cpu_match(device_t parent, cfdata_t match, void *aux)
188 {
189
190 return 1;
191 }
192
193 static void
194 cpu_attach(device_t parent, device_t self, void *aux)
195 {
196 struct cpu_softc *sc = device_private(self);
197 struct cpu_attach_args *caa = aux;
198 struct cpu_info *ci;
199 uintptr_t ptr;
200 static int nphycpu = 0;
201
202 sc->sc_dev = self;
203
204 /*
205 * If we're an Application Processor, allocate a cpu_info
206 * If we're the first attached CPU use the primary cpu_info,
207 * otherwise allocate a new one
208 */
209 aprint_naive("\n");
210 aprint_normal("\n");
211 if (nphycpu > 0) {
212 struct cpu_info *tmp;
213 ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
214 KM_SLEEP);
215 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
216 ci->ci_curldt = -1;
217
218 tmp = phycpu_info_list;
219 while (tmp->ci_next)
220 tmp = tmp->ci_next;
221
222 tmp->ci_next = ci;
223 } else {
224 ci = &phycpu_info_primary;
225 }
226
227 ci->ci_self = ci;
228 sc->sc_info = ci;
229
230 ci->ci_dev = self;
231 ci->ci_acpiid = caa->cpu_id;
232 ci->ci_cpuid = caa->cpu_number;
233 ci->ci_vcpu = NULL;
234 ci->ci_index = nphycpu++;
235
236 if (!pmf_device_register(self, NULL, NULL))
237 aprint_error_dev(self, "couldn't establish power handler\n");
238
239 (void)config_defer(self, cpu_defer);
240 }
241
242 static void
243 cpu_defer(device_t self)
244 {
245 cpu_rescan(self, NULL, NULL);
246 }
247
248 static int
249 cpu_rescan(device_t self, const char *ifattr, const int *locators)
250 {
251 struct cpu_softc *sc = device_private(self);
252 struct cpufeature_attach_args cfaa;
253 struct cpu_info *ci = sc->sc_info;
254
255 memset(&cfaa, 0, sizeof(cfaa));
256 cfaa.ci = ci;
257
258 if (ifattr_match(ifattr, "cpufeaturebus")) {
259
260 if (ci->ci_frequency == NULL) {
261 cfaa.name = "frequency";
262 ci->ci_frequency = config_found_ia(self,
263 "cpufeaturebus", &cfaa, NULL);
264 }
265 }
266
267 return 0;
268 }
269
270 static void
271 cpu_childdetached(device_t self, device_t child)
272 {
273 struct cpu_softc *sc = device_private(self);
274 struct cpu_info *ci = sc->sc_info;
275
276 if (ci->ci_frequency == child)
277 ci->ci_frequency = NULL;
278 }
279
280 static int
281 vcpu_match(device_t parent, cfdata_t match, void *aux)
282 {
283 struct vcpu_attach_args *vcaa = aux;
284 struct vcpu_runstate_info vcr;
285 int error;
286
287 if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
288 error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
289 vcaa->vcaa_caa.cpu_number, &vcr);
290 switch (error) {
291 case 0:
292 return 1;
293 case -ENOENT:
294 return 0;
295 default:
296 panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
297 }
298 }
299
300 return 0;
301 }
302
303 static void
304 vcpu_attach(device_t parent, device_t self, void *aux)
305 {
306 struct vcpu_attach_args *vcaa = aux;
307
308 KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
309 vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
310 cpu_attach_common(parent, self, &vcaa->vcaa_caa);
311
312 if (!pmf_device_register(self, NULL, NULL))
313 aprint_error_dev(self, "couldn't establish power handler\n");
314 }
315
316 static int
317 vcpu_is_up(struct cpu_info *ci)
318 {
319 KASSERT(ci != NULL);
320 return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
321 }
322
323 static void
324 cpu_vm_init(struct cpu_info *ci)
325 {
326 int ncolors = 2, i;
327
328 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
329 struct x86_cache_info *cai;
330 int tcolors;
331
332 cai = &ci->ci_cinfo[i];
333
334 tcolors = atop(cai->cai_totalsize);
335 switch (cai->cai_associativity) {
336 case 0xff:
337 tcolors = 1; /* fully associative */
338 break;
339 case 0:
340 case 1:
341 break;
342 default:
343 tcolors /= cai->cai_associativity;
344 }
345 ncolors = max(ncolors, tcolors);
346 }
347
348 /*
349 * Knowing the size of the largest cache on this CPU, potentially
350 * re-color our pages.
351 */
352 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
353 uvm_page_recolor(ncolors);
354 pmap_tlb_cpu_init(ci);
355 #ifndef __HAVE_DIRECT_MAP
356 pmap_vpage_cpu_init(ci);
357 #endif
358 }
359
360 static void
361 cpu_attach_common(device_t parent, device_t self, void *aux)
362 {
363 struct cpu_softc *sc = device_private(self);
364 struct cpu_attach_args *caa = aux;
365 struct cpu_info *ci;
366 uintptr_t ptr;
367 int cpunum = caa->cpu_number;
368 static bool again = false;
369
370 sc->sc_dev = self;
371
372 /*
373 * If we're an Application Processor, allocate a cpu_info
374 * structure, otherwise use the primary's.
375 */
376 if (caa->cpu_role == CPU_ROLE_AP) {
377 aprint_naive(": Application Processor\n");
378 ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
379 KM_SLEEP);
380 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
381 memset(ci, 0, sizeof(*ci));
382 cpu_init_tss(ci);
383 } else {
384 aprint_naive(": %s Processor\n",
385 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
386 ci = &cpu_info_primary;
387 }
388
389 ci->ci_self = ci;
390 sc->sc_info = ci;
391 ci->ci_dev = self;
392 ci->ci_cpuid = cpunum;
393
394 KASSERT(HYPERVISOR_shared_info != NULL);
395 KASSERT(cpunum < XEN_LEGACY_MAX_VCPUS);
396 ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
397
398 KASSERT(ci->ci_func == 0);
399 ci->ci_func = caa->cpu_func;
400 aprint_normal("\n");
401
402 /* Must be called before mi_cpu_attach(). */
403 cpu_vm_init(ci);
404
405 if (caa->cpu_role == CPU_ROLE_AP) {
406 int error;
407
408 error = mi_cpu_attach(ci);
409
410 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
411 if (error != 0) {
412 aprint_error_dev(self,
413 "mi_cpu_attach failed with %d\n", error);
414 return;
415 }
416
417 } else {
418 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
419 }
420
421 KASSERT(ci->ci_cpuid == ci->ci_index);
422 #ifdef __x86_64__
423 /* No user PGD mapped for this CPU yet */
424 ci->ci_xen_current_user_pgd = 0;
425 #endif
426 #if defined(__x86_64__) || defined(PAE)
427 mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
428 #endif
429 pmap_reference(pmap_kernel());
430 ci->ci_pmap = pmap_kernel();
431 ci->ci_tlbstate = TLBSTATE_STALE;
432
433 /*
434 * Boot processor may not be attached first, but the below
435 * must be done to allow booting other processors.
436 */
437 if (!again) {
438 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
439 /* Basic init. */
440 cpu_intr_init(ci);
441 cpu_get_tsc_freq(ci);
442 cpu_init(ci);
443 pmap_cpu_init_late(ci);
444
445 /* Every processor needs to init its own ipi h/w (similar to lapic) */
446 xen_ipi_init();
447
448 /* Make sure DELAY() is initialized. */
449 DELAY(1);
450 again = true;
451 }
452
453 /* further PCB init done later. */
454
455 switch (caa->cpu_role) {
456 case CPU_ROLE_SP:
457 atomic_or_32(&ci->ci_flags, CPUF_SP);
458 cpu_identify(ci);
459 x86_cpu_idle_init();
460 break;
461
462 case CPU_ROLE_BP:
463 atomic_or_32(&ci->ci_flags, CPUF_BSP);
464 cpu_identify(ci);
465 x86_cpu_idle_init();
466 break;
467
468 case CPU_ROLE_AP:
469 atomic_or_32(&ci->ci_flags, CPUF_AP);
470
471 /*
472 * report on an AP
473 */
474
475 #if defined(MULTIPROCESSOR)
476 /* interrupt handler stack */
477 cpu_intr_init(ci);
478
479 /* Setup per-cpu memory for gdt */
480 gdt_alloc_cpu(ci);
481
482 pmap_cpu_init_late(ci);
483 cpu_start_secondary(ci);
484
485 if (ci->ci_flags & CPUF_PRESENT) {
486 struct cpu_info *tmp;
487
488 cpu_identify(ci);
489 tmp = cpu_info_list;
490 while (tmp->ci_next)
491 tmp = tmp->ci_next;
492
493 tmp->ci_next = ci;
494 }
495 #else
496 aprint_error_dev(ci->ci_dev, "not started\n");
497 #endif
498 break;
499
500 default:
501 panic("unknown processor type??\n");
502 }
503
504 #ifdef MPVERBOSE
505 if (mp_verbose) {
506 struct lwp *l = ci->ci_data.cpu_idlelwp;
507 struct pcb *pcb = lwp_getpcb(l);
508
509 aprint_verbose_dev(self,
510 "idle lwp at %p, idle sp at 0x%p\n",
511 l,
512 #ifdef i386
513 (void *)pcb->pcb_esp
514 #else
515 (void *)pcb->pcb_rsp
516 #endif
517 );
518
519 }
520 #endif /* MPVERBOSE */
521 }
522
523 /*
524 * Initialize the processor appropriately.
525 */
526
527 void
528 cpu_init(struct cpu_info *ci)
529 {
530
531 /*
532 * If we have FXSAVE/FXRESTOR, use them.
533 */
534 if (cpu_feature[0] & CPUID_FXSR) {
535 lcr4(rcr4() | CR4_OSFXSR);
536
537 /*
538 * If we have SSE/SSE2, enable XMM exceptions.
539 */
540 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
541 lcr4(rcr4() | CR4_OSXMMEXCPT);
542 }
543
544 if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
545 fpuinit_mxcsr_mask();
546 }
547
548 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
549 }
550
551
552 #ifdef MULTIPROCESSOR
553
554 void
555 cpu_boot_secondary_processors(void)
556 {
557 struct cpu_info *ci;
558 u_long i;
559 for (i = 0; i < maxcpus; i++) {
560 ci = cpu_lookup(i);
561 if (ci == NULL)
562 continue;
563 if (ci->ci_data.cpu_idlelwp == NULL)
564 continue;
565 if ((ci->ci_flags & CPUF_PRESENT) == 0)
566 continue;
567 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
568 continue;
569 cpu_boot_secondary(ci);
570 }
571
572 x86_mp_online = true;
573 }
574
575 static void
576 cpu_init_idle_lwp(struct cpu_info *ci)
577 {
578 struct lwp *l = ci->ci_data.cpu_idlelwp;
579 struct pcb *pcb = lwp_getpcb(l);
580
581 pcb->pcb_cr0 = rcr0();
582 }
583
584 void
585 cpu_init_idle_lwps(void)
586 {
587 struct cpu_info *ci;
588 u_long i;
589
590 for (i = 0; i < maxcpus; i++) {
591 ci = cpu_lookup(i);
592 if (ci == NULL)
593 continue;
594 if (ci->ci_data.cpu_idlelwp == NULL)
595 continue;
596 if ((ci->ci_flags & CPUF_PRESENT) == 0)
597 continue;
598 cpu_init_idle_lwp(ci);
599 }
600 }
601
602 static void
603 cpu_start_secondary(struct cpu_info *ci)
604 {
605 int i;
606
607 aprint_debug_dev(ci->ci_dev, "starting\n");
608
609 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
610
611 if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
612 return;
613 }
614
615 /*
616 * wait for it to become ready
617 */
618 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
619 delay(10);
620 }
621 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
622 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
623 #if defined(MPDEBUG) && defined(DDB)
624 printf("dropping into debugger; continue from here to resume boot\n");
625 Debugger();
626 #endif
627 }
628
629 CPU_START_CLEANUP(ci);
630 }
631
632 void
633 cpu_boot_secondary(struct cpu_info *ci)
634 {
635 int i;
636 atomic_or_32(&ci->ci_flags, CPUF_GO);
637 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
638 delay(10);
639 }
640 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
641 aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
642 #if defined(MPDEBUG) && defined(DDB)
643 printf("dropping into debugger; continue from here to resume boot\n");
644 Debugger();
645 #endif
646 }
647 }
648
649 /*
650 * APs end up here immediately after initialisation and VCPUOP_up in
651 * mp_cpu_start().
652 * At this point, we are running in the idle pcb/idle stack of the new
653 * CPU. This function jumps to the idle loop and starts looking for
654 * work.
655 */
656 extern void x86_64_tls_switch(struct lwp *);
657 void
658 cpu_hatch(void *v)
659 {
660 struct cpu_info *ci = (struct cpu_info *)v;
661 struct pcb *pcb;
662 int s, i;
663
664 /* Setup TLS and kernel GS/FS */
665 cpu_init_msrs(ci, true);
666 cpu_init_idt();
667 gdt_init_cpu(ci);
668
669 cpu_probe(ci);
670
671 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
672
673 while ((ci->ci_flags & CPUF_GO) == 0) {
674 /* Don't use delay, boot CPU may be patching the text. */
675 for (i = 10000; i != 0; i--)
676 x86_pause();
677 }
678
679 /* Because the text may have been patched in x86_patch(). */
680 x86_flush();
681 tlbflushg();
682
683 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
684
685 pcb = lwp_getpcb(curlwp);
686 pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0);
687 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
688
689 xen_ipi_init();
690
691 xen_initclocks();
692
693 #ifdef __x86_64__
694 fpuinit(ci);
695 #endif
696
697 lldt(GSEL(GLDT_SEL, SEL_KPL));
698
699 cpu_init(ci);
700 cpu_get_tsc_freq(ci);
701
702 s = splhigh();
703 x86_enable_intr();
704 splx(s);
705
706 aprint_debug_dev(ci->ci_dev, "running\n");
707
708 cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
709
710 idle_loop(NULL);
711 KASSERT(false);
712 }
713
714 #if defined(DDB)
715
716 #include <ddb/db_output.h>
717 #include <machine/db_machdep.h>
718
719 /*
720 * Dump CPU information from ddb.
721 */
722 void
723 cpu_debug_dump(void)
724 {
725 struct cpu_info *ci;
726 CPU_INFO_ITERATOR cii;
727
728 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
729 for (CPU_INFO_FOREACH(cii, ci)) {
730 db_printf("%p %s %ld %x %x %10p %10p\n",
731 ci,
732 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
733 (long)ci->ci_cpuid,
734 ci->ci_flags, ci->ci_ipis,
735 ci->ci_curlwp,
736 ci->ci_fpcurlwp);
737 }
738 }
739 #endif /* DDB */
740
741 #endif /* MULTIPROCESSOR */
742
743 extern void hypervisor_callback(void);
744 extern void failsafe_callback(void);
745 #ifdef __x86_64__
746 typedef void (vector)(void);
747 extern vector Xsyscall, Xsyscall32;
748 #endif
749
750 /*
751 * Setup the "trampoline". On Xen, we setup nearly all cpu context
752 * outside a trampoline, so we prototype and call targetip like so:
753 * void targetip(struct cpu_info *);
754 */
755
756 static void
757 gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
758 {
759 int i;
760 for (i = 0; i < entries; i++) {
761 frames[i] = ((paddr_t)xpmap_ptetomach(
762 (pt_entry_t *)(base + (i << PAGE_SHIFT)))) >> PAGE_SHIFT;
763
764 /* Mark Read-only */
765 pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
766 PG_RW);
767 }
768 }
769
770 #ifdef __x86_64__
771 extern char *ldtstore;
772
773 static void
774 xen_init_amd64_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
775 void targetrip(struct cpu_info *))
776 {
777 /* page frames to point at GDT */
778 extern int gdt_size;
779 paddr_t frames[16];
780 psize_t gdt_ents;
781
782 struct lwp *l;
783 struct pcb *pcb;
784
785 volatile struct vcpu_info *vci;
786
787 KASSERT(ci != NULL);
788 KASSERT(ci != &cpu_info_primary);
789 KASSERT(initctx != NULL);
790 KASSERT(targetrip != NULL);
791
792 memset(initctx, 0, sizeof(*initctx));
793
794 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
795 KASSERT(gdt_ents <= 16);
796
797 gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
798
799 /* Initialise the vcpu context: We use idle_loop()'s pcb context. */
800
801 l = ci->ci_data.cpu_idlelwp;
802
803 KASSERT(l != NULL);
804 pcb = lwp_getpcb(l);
805 KASSERT(pcb != NULL);
806
807 /* resume with interrupts off */
808 vci = ci->ci_vcpu;
809 vci->evtchn_upcall_mask = 1;
810 xen_mb();
811
812 /* resume in kernel-mode */
813 initctx->flags = VGCF_in_kernel | VGCF_online;
814
815 /* Stack and entry points:
816 * We arrange for the stack frame for cpu_hatch() to
817 * appear as a callee frame of lwp_trampoline(). Being a
818 * leaf frame prevents trampling on any of the MD stack setup
819 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
820 */
821
822 initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
823 initctx->user_regs.rip = (vaddr_t) targetrip;
824
825 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
826
827 initctx->user_regs.rflags = pcb->pcb_flags;
828 initctx->user_regs.rsp = pcb->pcb_rsp;
829
830 /* Data segments */
831 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
832 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
833 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
834
835 /* GDT */
836 memcpy(initctx->gdt_frames, frames, sizeof(frames));
837 initctx->gdt_ents = gdt_ents;
838
839 /* LDT */
840 initctx->ldt_base = (unsigned long)ldtstore;
841 initctx->ldt_ents = LDT_SIZE >> 3;
842
843 /* Kernel context state */
844 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
845 initctx->kernel_sp = pcb->pcb_rsp0;
846 initctx->ctrlreg[0] = pcb->pcb_cr0;
847 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
848 initctx->ctrlreg[2] = (vaddr_t)targetrip;
849 /*
850 * Use pmap_kernel() L4 PD directly, until we setup the
851 * per-cpu L4 PD in pmap_cpu_init_late()
852 */
853 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
854 initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
855
856 /* Xen callbacks */
857 initctx->event_callback_eip = (unsigned long)hypervisor_callback;
858 initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
859 initctx->syscall_callback_eip = (unsigned long)Xsyscall;
860
861 return;
862 }
863 #else /* i386 */
864 extern union descriptor *ldtstore;
865 extern void Xsyscall(void);
866
867 static void
868 xen_init_i386_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
869 void targeteip(struct cpu_info *))
870 {
871 /* page frames to point at GDT */
872 extern int gdt_size;
873 paddr_t frames[16];
874 psize_t gdt_ents;
875
876 struct lwp *l;
877 struct pcb *pcb;
878
879 volatile struct vcpu_info *vci;
880
881 KASSERT(ci != NULL);
882 KASSERT(ci != &cpu_info_primary);
883 KASSERT(initctx != NULL);
884 KASSERT(targeteip != NULL);
885
886 memset(initctx, 0, sizeof(*initctx));
887
888 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
889 KASSERT(gdt_ents <= 16);
890
891 gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
892
893 /*
894 * Initialise the vcpu context:
895 * We use this cpu's idle_loop() pcb context.
896 */
897
898 l = ci->ci_data.cpu_idlelwp;
899
900 KASSERT(l != NULL);
901 pcb = lwp_getpcb(l);
902 KASSERT(pcb != NULL);
903
904 /* resume with interrupts off */
905 vci = ci->ci_vcpu;
906 vci->evtchn_upcall_mask = 1;
907 xen_mb();
908
909 /* resume in kernel-mode */
910 initctx->flags = VGCF_in_kernel | VGCF_online;
911
912 /* Stack frame setup for cpu_hatch():
913 * We arrange for the stack frame for cpu_hatch() to
914 * appear as a callee frame of lwp_trampoline(). Being a
915 * leaf frame prevents trampling on any of the MD stack setup
916 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
917 */
918
919 initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
920 arg1 */
921 {
922 /* targeteip(ci); */
923 uint32_t *arg = (uint32_t *)initctx->user_regs.esp;
924 arg[1] = (uint32_t)ci; /* arg1 */
925 }
926
927 initctx->user_regs.eip = (vaddr_t)targeteip;
928 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
929 initctx->user_regs.eflags |= pcb->pcb_iopl;
930
931 /* Data segments */
932 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
933 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
934 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
935 initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
936
937 /* GDT */
938 memcpy(initctx->gdt_frames, frames, sizeof(frames));
939 initctx->gdt_ents = gdt_ents;
940
941 /* LDT */
942 initctx->ldt_base = (unsigned long)ldtstore;
943 initctx->ldt_ents = NLDT;
944
945 /* Kernel context state */
946 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
947 initctx->kernel_sp = pcb->pcb_esp0;
948 initctx->ctrlreg[0] = pcb->pcb_cr0;
949 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
950 initctx->ctrlreg[2] = (vaddr_t)targeteip;
951 #ifdef PAE
952 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
953 #else
954 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(pcb->pcb_cr3)));
955 #endif
956 initctx->ctrlreg[4] = /* CR4_PAE | */CR4_OSFXSR | CR4_OSXMMEXCPT;
957
958 /* Xen callbacks */
959 initctx->event_callback_eip = (unsigned long)hypervisor_callback;
960 initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
961 initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
962 initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
963
964 return;
965 }
966 #endif /* __x86_64__ */
967
968 int
969 mp_cpu_start(struct cpu_info *ci, vaddr_t target)
970 {
971 int hyperror;
972 struct vcpu_guest_context vcpuctx;
973
974 KASSERT(ci != NULL);
975 KASSERT(ci != &cpu_info_primary);
976 KASSERT(ci->ci_flags & CPUF_AP);
977
978 #ifdef __x86_64__
979 xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
980 #else
981 xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
982 #endif
983
984 /* Initialise the given vcpu to execute cpu_hatch(ci); */
985 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
986 aprint_error(": context initialisation failed. errno = %d\n", hyperror);
987 return hyperror;
988 }
989
990 /* Start it up */
991
992 /* First bring it down */
993 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
994 aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
995 return hyperror;
996 }
997
998 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
999 aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
1000 return hyperror;
1001 }
1002
1003 if (!vcpu_is_up(ci)) {
1004 aprint_error(": did not come up\n");
1005 return -1;
1006 }
1007
1008 return 0;
1009 }
1010
1011 void
1012 mp_cpu_start_cleanup(struct cpu_info *ci)
1013 {
1014 if (vcpu_is_up(ci)) {
1015 aprint_debug_dev(ci->ci_dev, "is started.\n");
1016 } else {
1017 aprint_error_dev(ci->ci_dev, "did not start up.\n");
1018 }
1019 }
1020
1021 void
1022 cpu_init_msrs(struct cpu_info *ci, bool full)
1023 {
1024 #ifdef __x86_64__
1025 if (full) {
1026 HYPERVISOR_set_segment_base(SEGBASE_FS, 0);
1027 HYPERVISOR_set_segment_base(SEGBASE_GS_KERNEL, (uint64_t)ci);
1028 HYPERVISOR_set_segment_base(SEGBASE_GS_USER, 0);
1029 }
1030 #endif
1031
1032 if (cpu_feature[2] & CPUID_NOX)
1033 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1034 }
1035
1036 void
1037 cpu_offline_md(void)
1038 {
1039 int s;
1040
1041 s = splhigh();
1042 fpusave_cpu(true);
1043 splx(s);
1044 }
1045
1046 void
1047 cpu_get_tsc_freq(struct cpu_info *ci)
1048 {
1049 uint32_t vcpu_tversion;
1050 const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1051
1052 vcpu_tversion = tinfo->version;
1053 while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
1054
1055 uint64_t freq = 1000000000ULL << 32;
1056 freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1057 if (tinfo->tsc_shift < 0)
1058 freq = freq << -tinfo->tsc_shift;
1059 else
1060 freq = freq >> tinfo->tsc_shift;
1061 ci->ci_data.cpu_cc_freq = freq;
1062 }
1063
1064 void
1065 x86_cpu_idle_xen(void)
1066 {
1067 struct cpu_info *ci = curcpu();
1068
1069 KASSERT(ci->ci_ilevel == IPL_NONE);
1070
1071 x86_disable_intr();
1072 if (!__predict_false(ci->ci_want_resched)) {
1073 idle_block();
1074 } else {
1075 x86_enable_intr();
1076 }
1077 }
1078
1079 /*
1080 * Loads pmap for the current CPU.
1081 */
1082 void
1083 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1084 {
1085 KASSERT(pmap != pmap_kernel());
1086
1087 #if defined(__x86_64__) || defined(PAE)
1088 struct cpu_info *ci = curcpu();
1089 cpuid_t cid = cpu_index(ci);
1090
1091 mutex_enter(&ci->ci_kpm_mtx);
1092 /* make new pmap visible to xen_kpm_sync() */
1093 kcpuset_atomic_set(pmap->pm_xen_ptp_cpus, cid);
1094 #endif
1095
1096 #ifdef i386
1097 #ifdef PAE
1098 {
1099 int i;
1100 paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
1101 /* don't update the kernel L3 slot */
1102 for (i = 0 ; i < PDP_SIZE - 1; i++) {
1103 xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
1104 xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
1105 }
1106 tlbflush();
1107 }
1108 #else /* PAE */
1109 lcr3(pmap_pdirpa(pmap, 0));
1110 #endif /* PAE */
1111 #endif /* i386 */
1112
1113 #ifdef __x86_64__
1114 {
1115 int i;
1116 pd_entry_t *new_pgd;
1117 paddr_t l4_pd_ma;
1118
1119 l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
1120
1121 /*
1122 * Map user space address in kernel space and load
1123 * user cr3
1124 */
1125 new_pgd = pmap->pm_pdir;
1126 KASSERT(pmap == ci->ci_pmap);
1127
1128 /* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
1129 for (i = 0; i < PDIR_SLOT_PTE; i++) {
1130 KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
1131 if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
1132 xpq_queue_pte_update(
1133 l4_pd_ma + i * sizeof(pd_entry_t),
1134 new_pgd[i]);
1135 }
1136 }
1137
1138 xen_set_user_pgd(pmap_pdirpa(pmap, 0));
1139 ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
1140
1141 tlbflush();
1142 }
1143 #endif /* __x86_64__ */
1144
1145 #if defined(__x86_64__) || defined(PAE)
1146 /* old pmap no longer visible to xen_kpm_sync() */
1147 if (oldpmap != pmap_kernel()) {
1148 kcpuset_atomic_clear(oldpmap->pm_xen_ptp_cpus, cid);
1149 }
1150 mutex_exit(&ci->ci_kpm_mtx);
1151 #endif
1152 }
1153
1154 /*
1155 * pmap_cpu_init_late: perform late per-CPU initialization.
1156 *
1157 * Short note about percpu PDIR pages. Both the PAE and __x86_64__ architectures
1158 * have per-cpu PDIR tables, for two different reasons:
1159 * - on PAE, this is to get around Xen's pagetable setup constraints (multiple
1160 * L3[3]s cannot point to the same L2 - Xen will refuse to pin a table set up
1161 * this way).
1162 * - on __x86_64__, this is for multiple CPUs to map in different user pmaps
1163 * (see cpu_load_pmap()).
1164 *
1165 * What this means for us is that the PDIR of the pmap_kernel() is considered
1166 * to be a canonical "SHADOW" PDIR with the following properties:
1167 * - its recursive mapping points to itself
1168 * - per-cpu recursive mappings point to themselves on __x86_64__
1169 * - per-cpu L4 pages' kernel entries are expected to be in sync with
1170 * the shadow
1171 */
1172
1173 void
1174 pmap_cpu_init_late(struct cpu_info *ci)
1175 {
1176 #if defined(PAE) || defined(__x86_64__)
1177 /*
1178 * The BP has already its own PD page allocated during early
1179 * MD startup.
1180 */
1181
1182 #if defined(__x86_64__)
1183 /* Setup per-cpu normal_pdes */
1184 int i;
1185 extern pd_entry_t * const normal_pdes[];
1186 for (i = 0;i < PTP_LEVELS - 1;i++) {
1187 ci->ci_normal_pdes[i] = normal_pdes[i];
1188 }
1189 #endif /* __x86_64__ */
1190
1191 if (ci == &cpu_info_primary)
1192 return;
1193
1194 KASSERT(ci != NULL);
1195
1196 #if defined(PAE)
1197 cpu_alloc_l3_page(ci);
1198 KASSERT(ci->ci_pae_l3_pdirpa != 0);
1199
1200 /* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
1201 int i;
1202 for (i = 0 ; i < PDP_SIZE - 1; i++) {
1203 ci->ci_pae_l3_pdir[i] =
1204 xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PG_V;
1205 }
1206 #endif /* PAE */
1207
1208 ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1209 UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
1210
1211 if (ci->ci_kpm_pdir == NULL) {
1212 panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
1213 __func__, cpu_index(ci));
1214 }
1215 ci->ci_kpm_pdirpa = vtophys((vaddr_t)ci->ci_kpm_pdir);
1216 KASSERT(ci->ci_kpm_pdirpa != 0);
1217
1218 #if defined(__x86_64__)
1219 extern pt_entry_t xpmap_pg_nx;
1220
1221 /* Copy over the pmap_kernel() shadow L4 entries */
1222 memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
1223
1224 /* Recursive kernel mapping */
1225 ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa)
1226 | PG_V | xpmap_pg_nx;
1227 #elif defined(PAE)
1228 /* Copy over the pmap_kernel() shadow L2 entries */
1229 memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN,
1230 nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
1231 #endif
1232
1233 /* Xen wants a RO pdir. */
1234 pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
1235 (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
1236 pmap_update(pmap_kernel());
1237 #if defined(PAE)
1238 /*
1239 * Initialize L3 entry 3. This mapping is shared across all pmaps and is
1240 * static, ie: loading a new pmap will not update this entry.
1241 */
1242 ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_V;
1243
1244 /* Xen wants a RO L3. */
1245 pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
1246 (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
1247 pmap_update(pmap_kernel());
1248
1249 xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
1250
1251 #elif defined(__x86_64__)
1252 xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
1253 #endif /* PAE , __x86_64__ */
1254 #endif /* defined(PAE) || defined(__x86_64__) */
1255 }
1256
1257 /*
1258 * Notify all other cpus to halt.
1259 */
1260
1261 void
1262 cpu_broadcast_halt(void)
1263 {
1264 xen_broadcast_ipi(XEN_IPI_HALT);
1265 }
1266
1267 /*
1268 * Send a dummy ipi to a cpu.
1269 */
1270
1271 void
1272 cpu_kick(struct cpu_info *ci)
1273 {
1274 (void)xen_send_ipi(ci, XEN_IPI_KICK);
1275 }
1276