cpu.c revision 1.122 1 /* $NetBSD: cpu.c,v 1.122 2018/06/23 10:30:22 jdolecek Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by RedBack Networks Inc.
10 *
11 * Author: Bill Sommerfeld
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Copyright (c) 1999 Stefan Grefen
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the NetBSD
49 * Foundation, Inc. and its contributors.
50 * 4. Neither the name of The NetBSD Foundation nor the names of its
51 * contributors may be used to endorse or promote products derived
52 * from this software without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
55 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 */
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.122 2018/06/23 10:30:22 jdolecek Exp $");
69
70 #include "opt_ddb.h"
71 #include "opt_multiprocessor.h"
72 #include "opt_mpbios.h" /* for MPDEBUG */
73 #include "opt_mtrr.h"
74 #include "opt_xen.h"
75
76 #include "lapic.h"
77 #include "ioapic.h"
78
79 #include <sys/param.h>
80 #include <sys/proc.h>
81 #include <sys/systm.h>
82 #include <sys/device.h>
83 #include <sys/kmem.h>
84 #include <sys/cpu.h>
85 #include <sys/cpufreq.h>
86 #include <sys/atomic.h>
87 #include <sys/reboot.h>
88 #include <sys/idle.h>
89
90 #include <uvm/uvm.h>
91
92 #include <machine/cpu.h>
93 #include <machine/cpufunc.h>
94 #include <machine/cpuvar.h>
95 #include <machine/pmap.h>
96 #include <machine/vmparam.h>
97 #include <machine/mpbiosvar.h>
98 #include <machine/pcb.h>
99 #include <machine/specialreg.h>
100 #include <machine/segments.h>
101 #include <machine/gdt.h>
102 #include <machine/mtrr.h>
103 #include <machine/pio.h>
104
105 #include <x86/fpu.h>
106
107 #include <xen/xen.h>
108 #include <xen/xen-public/vcpu.h>
109 #include <xen/vcpuvar.h>
110
111 #if NLAPIC > 0
112 #include <machine/apicvar.h>
113 #include <machine/i82489reg.h>
114 #include <machine/i82489var.h>
115 #endif
116
117 #include <dev/ic/mc146818reg.h>
118 #include <dev/isa/isareg.h>
119
120 static int cpu_match(device_t, cfdata_t, void *);
121 static void cpu_attach(device_t, device_t, void *);
122 static void cpu_defer(device_t);
123 static int cpu_rescan(device_t, const char *, const int *);
124 static void cpu_childdetached(device_t, device_t);
125 static int vcpu_match(device_t, cfdata_t, void *);
126 static void vcpu_attach(device_t, device_t, void *);
127 static void cpu_attach_common(device_t, device_t, void *);
128 void cpu_offline_md(void);
129
130 struct cpu_softc {
131 device_t sc_dev; /* device tree glue */
132 struct cpu_info *sc_info; /* pointer to CPU info */
133 bool sc_wasonline;
134 };
135
136 int mp_cpu_start(struct cpu_info *, vaddr_t);
137 void mp_cpu_start_cleanup(struct cpu_info *);
138 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
139 mp_cpu_start_cleanup };
140
141 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
142 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
143
144 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
145 vcpu_match, vcpu_attach, NULL, NULL);
146
147 /*
148 * Statically-allocated CPU info for the primary CPU (or the only
149 * CPU, on uniprocessors). The CPU info list is initialized to
150 * point at it.
151 */
152 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
153 .ci_dev = 0,
154 .ci_self = &cpu_info_primary,
155 .ci_idepth = -1,
156 .ci_curlwp = &lwp0,
157 .ci_curldt = -1,
158 };
159 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
160 .ci_dev = 0,
161 .ci_self = &phycpu_info_primary,
162 };
163
164 struct cpu_info *cpu_info_list = &cpu_info_primary;
165 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
166
167 uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits
168 * [0] basic features %edx
169 * [1] basic features %ecx
170 * [2] extended features %edx
171 * [3] extended features %ecx
172 * [4] VIA padlock features
173 * [5] structured extended features cpuid.7:%ebx
174 * [6] structured extended features cpuid.7:%ecx
175 */
176
177 bool x86_mp_online;
178 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
179
180 #if defined(MULTIPROCESSOR)
181 void cpu_hatch(void *);
182 static void cpu_boot_secondary(struct cpu_info *ci);
183 static void cpu_start_secondary(struct cpu_info *ci);
184 #endif /* MULTIPROCESSOR */
185
186 static int
187 cpu_match(device_t parent, cfdata_t match, void *aux)
188 {
189
190 return 1;
191 }
192
193 static void
194 cpu_attach(device_t parent, device_t self, void *aux)
195 {
196 struct cpu_softc *sc = device_private(self);
197 struct cpu_attach_args *caa = aux;
198 struct cpu_info *ci;
199 uintptr_t ptr;
200 static int nphycpu = 0;
201
202 sc->sc_dev = self;
203
204 /*
205 * If we're an Application Processor, allocate a cpu_info
206 * If we're the first attached CPU use the primary cpu_info,
207 * otherwise allocate a new one
208 */
209 aprint_naive("\n");
210 aprint_normal("\n");
211 if (nphycpu > 0) {
212 struct cpu_info *tmp;
213 ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
214 KM_SLEEP);
215 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
216 ci->ci_curldt = -1;
217
218 tmp = phycpu_info_list;
219 while (tmp->ci_next)
220 tmp = tmp->ci_next;
221
222 tmp->ci_next = ci;
223 } else {
224 ci = &phycpu_info_primary;
225 }
226
227 ci->ci_self = ci;
228 sc->sc_info = ci;
229
230 ci->ci_dev = self;
231 ci->ci_acpiid = caa->cpu_id;
232 ci->ci_cpuid = caa->cpu_number;
233 ci->ci_vcpu = NULL;
234 ci->ci_index = nphycpu++;
235
236 if (!pmf_device_register(self, NULL, NULL))
237 aprint_error_dev(self, "couldn't establish power handler\n");
238
239 (void)config_defer(self, cpu_defer);
240 }
241
242 static void
243 cpu_defer(device_t self)
244 {
245 cpu_rescan(self, NULL, NULL);
246 }
247
248 static int
249 cpu_rescan(device_t self, const char *ifattr, const int *locators)
250 {
251 struct cpu_softc *sc = device_private(self);
252 struct cpufeature_attach_args cfaa;
253 struct cpu_info *ci = sc->sc_info;
254
255 memset(&cfaa, 0, sizeof(cfaa));
256 cfaa.ci = ci;
257
258 if (ifattr_match(ifattr, "cpufeaturebus")) {
259
260 if (ci->ci_frequency == NULL) {
261 cfaa.name = "frequency";
262 ci->ci_frequency = config_found_ia(self,
263 "cpufeaturebus", &cfaa, NULL);
264 }
265 }
266
267 return 0;
268 }
269
270 static void
271 cpu_childdetached(device_t self, device_t child)
272 {
273 struct cpu_softc *sc = device_private(self);
274 struct cpu_info *ci = sc->sc_info;
275
276 if (ci->ci_frequency == child)
277 ci->ci_frequency = NULL;
278 }
279
280 static int
281 vcpu_match(device_t parent, cfdata_t match, void *aux)
282 {
283 struct vcpu_attach_args *vcaa = aux;
284 struct vcpu_runstate_info vcr;
285 int error;
286
287 if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
288 error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
289 vcaa->vcaa_caa.cpu_number, &vcr);
290 switch (error) {
291 case 0:
292 return 1;
293 case -ENOENT:
294 return 0;
295 default:
296 panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
297 }
298 }
299
300 return 0;
301 }
302
303 static void
304 vcpu_attach(device_t parent, device_t self, void *aux)
305 {
306 struct vcpu_attach_args *vcaa = aux;
307
308 KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
309 vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
310 cpu_attach_common(parent, self, &vcaa->vcaa_caa);
311
312 if (!pmf_device_register(self, NULL, NULL))
313 aprint_error_dev(self, "couldn't establish power handler\n");
314 }
315
316 static int
317 vcpu_is_up(struct cpu_info *ci)
318 {
319 KASSERT(ci != NULL);
320 return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
321 }
322
323 static void
324 cpu_vm_init(struct cpu_info *ci)
325 {
326 int ncolors = 2, i;
327
328 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
329 struct x86_cache_info *cai;
330 int tcolors;
331
332 cai = &ci->ci_cinfo[i];
333
334 tcolors = atop(cai->cai_totalsize);
335 switch (cai->cai_associativity) {
336 case 0xff:
337 tcolors = 1; /* fully associative */
338 break;
339 case 0:
340 case 1:
341 break;
342 default:
343 tcolors /= cai->cai_associativity;
344 }
345 ncolors = max(ncolors, tcolors);
346 }
347
348 /*
349 * Knowing the size of the largest cache on this CPU, potentially
350 * re-color our pages.
351 */
352 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
353 uvm_page_recolor(ncolors);
354 pmap_tlb_cpu_init(ci);
355 #ifndef __HAVE_DIRECT_MAP
356 pmap_vpage_cpu_init(ci);
357 #endif
358 }
359
360 static void
361 cpu_attach_common(device_t parent, device_t self, void *aux)
362 {
363 struct cpu_softc *sc = device_private(self);
364 struct cpu_attach_args *caa = aux;
365 struct cpu_info *ci;
366 uintptr_t ptr;
367 int cpunum = caa->cpu_number;
368 static bool again = false;
369
370 sc->sc_dev = self;
371
372 /*
373 * If we're an Application Processor, allocate a cpu_info
374 * structure, otherwise use the primary's.
375 */
376 if (caa->cpu_role == CPU_ROLE_AP) {
377 aprint_naive(": Application Processor\n");
378 ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
379 KM_SLEEP);
380 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
381 memset(ci, 0, sizeof(*ci));
382 cpu_init_tss(ci);
383 } else {
384 aprint_naive(": %s Processor\n",
385 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
386 ci = &cpu_info_primary;
387 }
388
389 ci->ci_self = ci;
390 sc->sc_info = ci;
391 ci->ci_dev = self;
392 ci->ci_cpuid = cpunum;
393
394 KASSERT(HYPERVISOR_shared_info != NULL);
395 KASSERT(cpunum < XEN_LEGACY_MAX_VCPUS);
396 ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
397
398 KASSERT(ci->ci_func == 0);
399 ci->ci_func = caa->cpu_func;
400 aprint_normal("\n");
401
402 /* Must be called before mi_cpu_attach(). */
403 cpu_vm_init(ci);
404
405 if (caa->cpu_role == CPU_ROLE_AP) {
406 int error;
407
408 error = mi_cpu_attach(ci);
409
410 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
411 if (error != 0) {
412 aprint_error_dev(self,
413 "mi_cpu_attach failed with %d\n", error);
414 return;
415 }
416
417 } else {
418 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
419 }
420
421 KASSERT(ci->ci_cpuid == ci->ci_index);
422 #ifdef __x86_64__
423 /* No user PGD mapped for this CPU yet */
424 ci->ci_xen_current_user_pgd = 0;
425 #endif
426 #if defined(__x86_64__) || defined(PAE)
427 mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
428 #endif
429 pmap_reference(pmap_kernel());
430 ci->ci_pmap = pmap_kernel();
431 ci->ci_tlbstate = TLBSTATE_STALE;
432
433 /*
434 * Boot processor may not be attached first, but the below
435 * must be done to allow booting other processors.
436 */
437 if (!again) {
438 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
439 /* Basic init. */
440 cpu_intr_init(ci);
441 cpu_get_tsc_freq(ci);
442 cpu_init(ci);
443 pmap_cpu_init_late(ci);
444
445 /* Every processor needs to init its own ipi h/w (similar to lapic) */
446 xen_ipi_init();
447
448 /* Make sure DELAY() is initialized. */
449 DELAY(1);
450 again = true;
451 }
452
453 /* further PCB init done later. */
454
455 switch (caa->cpu_role) {
456 case CPU_ROLE_SP:
457 atomic_or_32(&ci->ci_flags, CPUF_SP);
458 cpu_identify(ci);
459 x86_cpu_idle_init();
460 break;
461
462 case CPU_ROLE_BP:
463 atomic_or_32(&ci->ci_flags, CPUF_BSP);
464 cpu_identify(ci);
465 x86_cpu_idle_init();
466 break;
467
468 case CPU_ROLE_AP:
469 atomic_or_32(&ci->ci_flags, CPUF_AP);
470
471 /*
472 * report on an AP
473 */
474
475 #if defined(MULTIPROCESSOR)
476 /* interrupt handler stack */
477 cpu_intr_init(ci);
478
479 /* Setup per-cpu memory for gdt */
480 gdt_alloc_cpu(ci);
481
482 pmap_cpu_init_late(ci);
483 cpu_start_secondary(ci);
484
485 if (ci->ci_flags & CPUF_PRESENT) {
486 struct cpu_info *tmp;
487
488 cpu_identify(ci);
489 tmp = cpu_info_list;
490 while (tmp->ci_next)
491 tmp = tmp->ci_next;
492
493 tmp->ci_next = ci;
494 }
495 #else
496 aprint_error_dev(ci->ci_dev, "not started\n");
497 #endif
498 break;
499
500 default:
501 panic("unknown processor type??\n");
502 }
503
504 #ifdef MPVERBOSE
505 if (mp_verbose) {
506 struct lwp *l = ci->ci_data.cpu_idlelwp;
507 struct pcb *pcb = lwp_getpcb(l);
508
509 aprint_verbose_dev(self,
510 "idle lwp at %p, idle sp at 0x%p\n",
511 l,
512 #ifdef i386
513 (void *)pcb->pcb_esp
514 #else
515 (void *)pcb->pcb_rsp
516 #endif
517 );
518
519 }
520 #endif /* MPVERBOSE */
521 }
522
523 /*
524 * Initialize the processor appropriately.
525 */
526
527 void
528 cpu_init(struct cpu_info *ci)
529 {
530 uint32_t cr4 = 0;
531
532 /*
533 * If we have FXSAVE/FXRESTOR, use them.
534 */
535 if (cpu_feature[0] & CPUID_FXSR) {
536 cr4 |= CR4_OSFXSR;
537
538 /*
539 * If we have SSE/SSE2, enable XMM exceptions.
540 */
541 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
542 cr4 |= CR4_OSXMMEXCPT;
543 }
544
545 /* If xsave is supported, enable it */
546 if (cpu_feature[1] & CPUID2_XSAVE && x86_fpu_save >= FPU_SAVE_XSAVE)
547 cr4 |= CR4_OSXSAVE;
548
549 if (cr4) {
550 cr4 |= rcr4();
551 lcr4(cr4);
552 }
553
554 if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
555 fpuinit_mxcsr_mask();
556 }
557
558 /*
559 * Changing CR4 register may change cpuid values. For example, setting
560 * CR4_OSXSAVE sets CPUID2_OSXSAVE. The CPUID2_OSXSAVE is in
561 * ci_feat_val[1], so update it.
562 * XXX Other than ci_feat_val[1] might be changed.
563 */
564 if (cpuid_level >= 1) {
565 u_int descs[4];
566
567 x86_cpuid(1, descs);
568 ci->ci_feat_val[1] = descs[2];
569 }
570
571 /* If xsave is enabled, enable all fpu features */
572 if (cr4 & CR4_OSXSAVE) {
573 wrxcr(0, x86_xsave_features & XCR0_FPU);
574 }
575
576 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
577 }
578
579
580 #ifdef MULTIPROCESSOR
581
582 void
583 cpu_boot_secondary_processors(void)
584 {
585 struct cpu_info *ci;
586 u_long i;
587 for (i = 0; i < maxcpus; i++) {
588 ci = cpu_lookup(i);
589 if (ci == NULL)
590 continue;
591 if (ci->ci_data.cpu_idlelwp == NULL)
592 continue;
593 if ((ci->ci_flags & CPUF_PRESENT) == 0)
594 continue;
595 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
596 continue;
597 cpu_boot_secondary(ci);
598 }
599
600 x86_mp_online = true;
601 }
602
603 static void
604 cpu_init_idle_lwp(struct cpu_info *ci)
605 {
606 struct lwp *l = ci->ci_data.cpu_idlelwp;
607 struct pcb *pcb = lwp_getpcb(l);
608
609 pcb->pcb_cr0 = rcr0();
610 }
611
612 void
613 cpu_init_idle_lwps(void)
614 {
615 struct cpu_info *ci;
616 u_long i;
617
618 for (i = 0; i < maxcpus; i++) {
619 ci = cpu_lookup(i);
620 if (ci == NULL)
621 continue;
622 if (ci->ci_data.cpu_idlelwp == NULL)
623 continue;
624 if ((ci->ci_flags & CPUF_PRESENT) == 0)
625 continue;
626 cpu_init_idle_lwp(ci);
627 }
628 }
629
630 static void
631 cpu_start_secondary(struct cpu_info *ci)
632 {
633 int i;
634
635 aprint_debug_dev(ci->ci_dev, "starting\n");
636
637 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
638
639 if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
640 return;
641 }
642
643 /*
644 * wait for it to become ready
645 */
646 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
647 delay(10);
648 }
649 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
650 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
651 #if defined(MPDEBUG) && defined(DDB)
652 printf("dropping into debugger; continue from here to resume boot\n");
653 Debugger();
654 #endif
655 }
656
657 CPU_START_CLEANUP(ci);
658 }
659
660 void
661 cpu_boot_secondary(struct cpu_info *ci)
662 {
663 int i;
664 atomic_or_32(&ci->ci_flags, CPUF_GO);
665 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
666 delay(10);
667 }
668 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
669 aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
670 #if defined(MPDEBUG) && defined(DDB)
671 printf("dropping into debugger; continue from here to resume boot\n");
672 Debugger();
673 #endif
674 }
675 }
676
677 /*
678 * APs end up here immediately after initialisation and VCPUOP_up in
679 * mp_cpu_start().
680 * At this point, we are running in the idle pcb/idle stack of the new
681 * CPU. This function jumps to the idle loop and starts looking for
682 * work.
683 */
684 extern void x86_64_tls_switch(struct lwp *);
685 void
686 cpu_hatch(void *v)
687 {
688 struct cpu_info *ci = (struct cpu_info *)v;
689 struct pcb *pcb;
690 int s, i;
691
692 /* Setup TLS and kernel GS/FS */
693 cpu_init_msrs(ci, true);
694 cpu_init_idt();
695 gdt_init_cpu(ci);
696
697 cpu_probe(ci);
698
699 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
700
701 while ((ci->ci_flags & CPUF_GO) == 0) {
702 /* Don't use delay, boot CPU may be patching the text. */
703 for (i = 10000; i != 0; i--)
704 x86_pause();
705 }
706
707 /* Because the text may have been patched in x86_patch(). */
708 x86_flush();
709 tlbflushg();
710
711 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
712
713 pcb = lwp_getpcb(curlwp);
714 pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0);
715 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
716
717 xen_ipi_init();
718
719 xen_initclocks();
720
721 #ifdef __x86_64__
722 fpuinit(ci);
723 #endif
724
725 lldt(GSEL(GLDT_SEL, SEL_KPL));
726
727 cpu_init(ci);
728 cpu_get_tsc_freq(ci);
729
730 s = splhigh();
731 x86_enable_intr();
732 splx(s);
733
734 aprint_debug_dev(ci->ci_dev, "running\n");
735
736 cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
737
738 idle_loop(NULL);
739 KASSERT(false);
740 }
741
742 #if defined(DDB)
743
744 #include <ddb/db_output.h>
745 #include <machine/db_machdep.h>
746
747 /*
748 * Dump CPU information from ddb.
749 */
750 void
751 cpu_debug_dump(void)
752 {
753 struct cpu_info *ci;
754 CPU_INFO_ITERATOR cii;
755
756 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
757 for (CPU_INFO_FOREACH(cii, ci)) {
758 db_printf("%p %s %ld %x %x %10p %10p\n",
759 ci,
760 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
761 (long)ci->ci_cpuid,
762 ci->ci_flags, ci->ci_ipis,
763 ci->ci_curlwp,
764 ci->ci_fpcurlwp);
765 }
766 }
767 #endif /* DDB */
768
769 #endif /* MULTIPROCESSOR */
770
771 extern void hypervisor_callback(void);
772 extern void failsafe_callback(void);
773 #ifdef __x86_64__
774 typedef void (vector)(void);
775 extern vector Xsyscall, Xsyscall32;
776 #endif
777
778 /*
779 * Setup the "trampoline". On Xen, we setup nearly all cpu context
780 * outside a trampoline, so we prototype and call targetip like so:
781 * void targetip(struct cpu_info *);
782 */
783
784 static void
785 gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
786 {
787 int i;
788 for (i = 0; i < entries; i++) {
789 frames[i] = ((paddr_t)xpmap_ptetomach(
790 (pt_entry_t *)(base + (i << PAGE_SHIFT)))) >> PAGE_SHIFT;
791
792 /* Mark Read-only */
793 pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
794 PG_RW);
795 }
796 }
797
798 #ifdef __x86_64__
799 extern char *ldtstore;
800
801 static void
802 xen_init_amd64_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
803 void targetrip(struct cpu_info *))
804 {
805 /* page frames to point at GDT */
806 extern int gdt_size;
807 paddr_t frames[16];
808 psize_t gdt_ents;
809
810 struct lwp *l;
811 struct pcb *pcb;
812
813 volatile struct vcpu_info *vci;
814
815 KASSERT(ci != NULL);
816 KASSERT(ci != &cpu_info_primary);
817 KASSERT(initctx != NULL);
818 KASSERT(targetrip != NULL);
819
820 memset(initctx, 0, sizeof(*initctx));
821
822 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
823 KASSERT(gdt_ents <= 16);
824
825 gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
826
827 /* Initialise the vcpu context: We use idle_loop()'s pcb context. */
828
829 l = ci->ci_data.cpu_idlelwp;
830
831 KASSERT(l != NULL);
832 pcb = lwp_getpcb(l);
833 KASSERT(pcb != NULL);
834
835 /* resume with interrupts off */
836 vci = ci->ci_vcpu;
837 vci->evtchn_upcall_mask = 1;
838 xen_mb();
839
840 /* resume in kernel-mode */
841 initctx->flags = VGCF_in_kernel | VGCF_online;
842
843 /* Stack and entry points:
844 * We arrange for the stack frame for cpu_hatch() to
845 * appear as a callee frame of lwp_trampoline(). Being a
846 * leaf frame prevents trampling on any of the MD stack setup
847 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
848 */
849
850 initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
851 initctx->user_regs.rip = (vaddr_t) targetrip;
852
853 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
854
855 initctx->user_regs.rflags = pcb->pcb_flags;
856 initctx->user_regs.rsp = pcb->pcb_rsp;
857
858 /* Data segments */
859 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
860 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
861 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
862
863 /* GDT */
864 memcpy(initctx->gdt_frames, frames, sizeof(frames));
865 initctx->gdt_ents = gdt_ents;
866
867 /* LDT */
868 initctx->ldt_base = (unsigned long)ldtstore;
869 initctx->ldt_ents = LDT_SIZE >> 3;
870
871 /* Kernel context state */
872 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
873 initctx->kernel_sp = pcb->pcb_rsp0;
874 initctx->ctrlreg[0] = pcb->pcb_cr0;
875 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
876 initctx->ctrlreg[2] = (vaddr_t)targetrip;
877 /*
878 * Use pmap_kernel() L4 PD directly, until we setup the
879 * per-cpu L4 PD in pmap_cpu_init_late()
880 */
881 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
882 initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
883
884 /* Xen callbacks */
885 initctx->event_callback_eip = (unsigned long)hypervisor_callback;
886 initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
887 initctx->syscall_callback_eip = (unsigned long)Xsyscall;
888
889 return;
890 }
891 #else /* i386 */
892 extern union descriptor *ldtstore;
893 extern void Xsyscall(void);
894
895 static void
896 xen_init_i386_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
897 void targeteip(struct cpu_info *))
898 {
899 /* page frames to point at GDT */
900 extern int gdt_size;
901 paddr_t frames[16];
902 psize_t gdt_ents;
903
904 struct lwp *l;
905 struct pcb *pcb;
906
907 volatile struct vcpu_info *vci;
908
909 KASSERT(ci != NULL);
910 KASSERT(ci != &cpu_info_primary);
911 KASSERT(initctx != NULL);
912 KASSERT(targeteip != NULL);
913
914 memset(initctx, 0, sizeof(*initctx));
915
916 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
917 KASSERT(gdt_ents <= 16);
918
919 gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
920
921 /*
922 * Initialise the vcpu context:
923 * We use this cpu's idle_loop() pcb context.
924 */
925
926 l = ci->ci_data.cpu_idlelwp;
927
928 KASSERT(l != NULL);
929 pcb = lwp_getpcb(l);
930 KASSERT(pcb != NULL);
931
932 /* resume with interrupts off */
933 vci = ci->ci_vcpu;
934 vci->evtchn_upcall_mask = 1;
935 xen_mb();
936
937 /* resume in kernel-mode */
938 initctx->flags = VGCF_in_kernel | VGCF_online;
939
940 /* Stack frame setup for cpu_hatch():
941 * We arrange for the stack frame for cpu_hatch() to
942 * appear as a callee frame of lwp_trampoline(). Being a
943 * leaf frame prevents trampling on any of the MD stack setup
944 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
945 */
946
947 initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
948 arg1 */
949 {
950 /* targeteip(ci); */
951 uint32_t *arg = (uint32_t *)initctx->user_regs.esp;
952 arg[1] = (uint32_t)ci; /* arg1 */
953 }
954
955 initctx->user_regs.eip = (vaddr_t)targeteip;
956 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
957 initctx->user_regs.eflags |= pcb->pcb_iopl;
958
959 /* Data segments */
960 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
961 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
962 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
963 initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
964
965 /* GDT */
966 memcpy(initctx->gdt_frames, frames, sizeof(frames));
967 initctx->gdt_ents = gdt_ents;
968
969 /* LDT */
970 initctx->ldt_base = (unsigned long)ldtstore;
971 initctx->ldt_ents = NLDT;
972
973 /* Kernel context state */
974 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
975 initctx->kernel_sp = pcb->pcb_esp0;
976 initctx->ctrlreg[0] = pcb->pcb_cr0;
977 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
978 initctx->ctrlreg[2] = (vaddr_t)targeteip;
979 #ifdef PAE
980 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
981 #else
982 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(pcb->pcb_cr3)));
983 #endif
984 initctx->ctrlreg[4] = /* CR4_PAE | */CR4_OSFXSR | CR4_OSXMMEXCPT;
985
986 /* Xen callbacks */
987 initctx->event_callback_eip = (unsigned long)hypervisor_callback;
988 initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
989 initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
990 initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
991
992 return;
993 }
994 #endif /* __x86_64__ */
995
996 int
997 mp_cpu_start(struct cpu_info *ci, vaddr_t target)
998 {
999 int hyperror;
1000 struct vcpu_guest_context vcpuctx;
1001
1002 KASSERT(ci != NULL);
1003 KASSERT(ci != &cpu_info_primary);
1004 KASSERT(ci->ci_flags & CPUF_AP);
1005
1006 #ifdef __x86_64__
1007 xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
1008 #else
1009 xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
1010 #endif
1011
1012 /* Initialise the given vcpu to execute cpu_hatch(ci); */
1013 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
1014 aprint_error(": context initialisation failed. errno = %d\n", hyperror);
1015 return hyperror;
1016 }
1017
1018 /* Start it up */
1019
1020 /* First bring it down */
1021 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
1022 aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
1023 return hyperror;
1024 }
1025
1026 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
1027 aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
1028 return hyperror;
1029 }
1030
1031 if (!vcpu_is_up(ci)) {
1032 aprint_error(": did not come up\n");
1033 return -1;
1034 }
1035
1036 return 0;
1037 }
1038
1039 void
1040 mp_cpu_start_cleanup(struct cpu_info *ci)
1041 {
1042 if (vcpu_is_up(ci)) {
1043 aprint_debug_dev(ci->ci_dev, "is started.\n");
1044 } else {
1045 aprint_error_dev(ci->ci_dev, "did not start up.\n");
1046 }
1047 }
1048
1049 void
1050 cpu_init_msrs(struct cpu_info *ci, bool full)
1051 {
1052 #ifdef __x86_64__
1053 if (full) {
1054 HYPERVISOR_set_segment_base(SEGBASE_FS, 0);
1055 HYPERVISOR_set_segment_base(SEGBASE_GS_KERNEL, (uint64_t)ci);
1056 HYPERVISOR_set_segment_base(SEGBASE_GS_USER, 0);
1057 }
1058 #endif
1059
1060 if (cpu_feature[2] & CPUID_NOX)
1061 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1062 }
1063
1064 void
1065 cpu_offline_md(void)
1066 {
1067 int s;
1068
1069 s = splhigh();
1070 fpusave_cpu(true);
1071 splx(s);
1072 }
1073
1074 void
1075 cpu_get_tsc_freq(struct cpu_info *ci)
1076 {
1077 uint32_t vcpu_tversion;
1078 const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1079
1080 vcpu_tversion = tinfo->version;
1081 while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
1082
1083 uint64_t freq = 1000000000ULL << 32;
1084 freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1085 if (tinfo->tsc_shift < 0)
1086 freq = freq << -tinfo->tsc_shift;
1087 else
1088 freq = freq >> tinfo->tsc_shift;
1089 ci->ci_data.cpu_cc_freq = freq;
1090 }
1091
1092 void
1093 x86_cpu_idle_xen(void)
1094 {
1095 struct cpu_info *ci = curcpu();
1096
1097 KASSERT(ci->ci_ilevel == IPL_NONE);
1098
1099 x86_disable_intr();
1100 if (!__predict_false(ci->ci_want_resched)) {
1101 idle_block();
1102 } else {
1103 x86_enable_intr();
1104 }
1105 }
1106
1107 /*
1108 * Loads pmap for the current CPU.
1109 */
1110 void
1111 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1112 {
1113 KASSERT(pmap != pmap_kernel());
1114
1115 #if defined(__x86_64__) || defined(PAE)
1116 struct cpu_info *ci = curcpu();
1117 cpuid_t cid = cpu_index(ci);
1118
1119 mutex_enter(&ci->ci_kpm_mtx);
1120 /* make new pmap visible to xen_kpm_sync() */
1121 kcpuset_atomic_set(pmap->pm_xen_ptp_cpus, cid);
1122 #endif
1123
1124 #ifdef i386
1125 #ifdef PAE
1126 {
1127 int i;
1128 paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
1129 /* don't update the kernel L3 slot */
1130 for (i = 0 ; i < PDP_SIZE - 1; i++) {
1131 xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
1132 xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
1133 }
1134 tlbflush();
1135 }
1136 #else /* PAE */
1137 lcr3(pmap_pdirpa(pmap, 0));
1138 #endif /* PAE */
1139 #endif /* i386 */
1140
1141 #ifdef __x86_64__
1142 {
1143 int i;
1144 pd_entry_t *new_pgd;
1145 paddr_t l4_pd_ma;
1146
1147 l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
1148
1149 /*
1150 * Map user space address in kernel space and load
1151 * user cr3
1152 */
1153 new_pgd = pmap->pm_pdir;
1154 KASSERT(pmap == ci->ci_pmap);
1155
1156 /* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
1157 for (i = 0; i < PDIR_SLOT_PTE; i++) {
1158 KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
1159 if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
1160 xpq_queue_pte_update(
1161 l4_pd_ma + i * sizeof(pd_entry_t),
1162 new_pgd[i]);
1163 }
1164 }
1165
1166 xen_set_user_pgd(pmap_pdirpa(pmap, 0));
1167 ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
1168
1169 tlbflush();
1170 }
1171 #endif /* __x86_64__ */
1172
1173 #if defined(__x86_64__) || defined(PAE)
1174 /* old pmap no longer visible to xen_kpm_sync() */
1175 if (oldpmap != pmap_kernel()) {
1176 kcpuset_atomic_clear(oldpmap->pm_xen_ptp_cpus, cid);
1177 }
1178 mutex_exit(&ci->ci_kpm_mtx);
1179 #endif
1180 }
1181
1182 /*
1183 * pmap_cpu_init_late: perform late per-CPU initialization.
1184 *
1185 * Short note about percpu PDIR pages. Both the PAE and __x86_64__ architectures
1186 * have per-cpu PDIR tables, for two different reasons:
1187 * - on PAE, this is to get around Xen's pagetable setup constraints (multiple
1188 * L3[3]s cannot point to the same L2 - Xen will refuse to pin a table set up
1189 * this way).
1190 * - on __x86_64__, this is for multiple CPUs to map in different user pmaps
1191 * (see cpu_load_pmap()).
1192 *
1193 * What this means for us is that the PDIR of the pmap_kernel() is considered
1194 * to be a canonical "SHADOW" PDIR with the following properties:
1195 * - its recursive mapping points to itself
1196 * - per-cpu recursive mappings point to themselves on __x86_64__
1197 * - per-cpu L4 pages' kernel entries are expected to be in sync with
1198 * the shadow
1199 */
1200
1201 void
1202 pmap_cpu_init_late(struct cpu_info *ci)
1203 {
1204 #if defined(PAE) || defined(__x86_64__)
1205 /*
1206 * The BP has already its own PD page allocated during early
1207 * MD startup.
1208 */
1209
1210 #if defined(__x86_64__)
1211 /* Setup per-cpu normal_pdes */
1212 int i;
1213 extern pd_entry_t * const normal_pdes[];
1214 for (i = 0;i < PTP_LEVELS - 1;i++) {
1215 ci->ci_normal_pdes[i] = normal_pdes[i];
1216 }
1217 #endif /* __x86_64__ */
1218
1219 if (ci == &cpu_info_primary)
1220 return;
1221
1222 KASSERT(ci != NULL);
1223
1224 #if defined(PAE)
1225 cpu_alloc_l3_page(ci);
1226 KASSERT(ci->ci_pae_l3_pdirpa != 0);
1227
1228 /* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
1229 int i;
1230 for (i = 0 ; i < PDP_SIZE - 1; i++) {
1231 ci->ci_pae_l3_pdir[i] =
1232 xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PG_V;
1233 }
1234 #endif /* PAE */
1235
1236 ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1237 UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
1238
1239 if (ci->ci_kpm_pdir == NULL) {
1240 panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
1241 __func__, cpu_index(ci));
1242 }
1243 ci->ci_kpm_pdirpa = vtophys((vaddr_t)ci->ci_kpm_pdir);
1244 KASSERT(ci->ci_kpm_pdirpa != 0);
1245
1246 #if defined(__x86_64__)
1247 extern pt_entry_t xpmap_pg_nx;
1248
1249 /* Copy over the pmap_kernel() shadow L4 entries */
1250 memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
1251
1252 /* Recursive kernel mapping */
1253 ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa)
1254 | PG_V | xpmap_pg_nx;
1255 #elif defined(PAE)
1256 /* Copy over the pmap_kernel() shadow L2 entries */
1257 memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN,
1258 nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
1259 #endif
1260
1261 /* Xen wants a RO pdir. */
1262 pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
1263 (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
1264 pmap_update(pmap_kernel());
1265 #if defined(PAE)
1266 /*
1267 * Initialize L3 entry 3. This mapping is shared across all pmaps and is
1268 * static, ie: loading a new pmap will not update this entry.
1269 */
1270 ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_V;
1271
1272 /* Xen wants a RO L3. */
1273 pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
1274 (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
1275 pmap_update(pmap_kernel());
1276
1277 xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
1278
1279 #elif defined(__x86_64__)
1280 xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
1281 #endif /* PAE , __x86_64__ */
1282 #endif /* defined(PAE) || defined(__x86_64__) */
1283 }
1284
1285 /*
1286 * Notify all other cpus to halt.
1287 */
1288
1289 void
1290 cpu_broadcast_halt(void)
1291 {
1292 xen_broadcast_ipi(XEN_IPI_HALT);
1293 }
1294
1295 /*
1296 * Send a dummy ipi to a cpu.
1297 */
1298
1299 void
1300 cpu_kick(struct cpu_info *ci)
1301 {
1302 (void)xen_send_ipi(ci, XEN_IPI_KICK);
1303 }
1304