cpu.c revision 1.123 1 /* $NetBSD: cpu.c,v 1.123 2018/07/24 12:24:45 bouyer Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by RedBack Networks Inc.
10 *
11 * Author: Bill Sommerfeld
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Copyright (c) 1999 Stefan Grefen
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the NetBSD
49 * Foundation, Inc. and its contributors.
50 * 4. Neither the name of The NetBSD Foundation nor the names of its
51 * contributors may be used to endorse or promote products derived
52 * from this software without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
55 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 */
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.123 2018/07/24 12:24:45 bouyer Exp $");
69
70 #include "opt_ddb.h"
71 #include "opt_multiprocessor.h"
72 #include "opt_mpbios.h" /* for MPDEBUG */
73 #include "opt_mtrr.h"
74 #include "opt_xen.h"
75
76 #include "lapic.h"
77 #include "ioapic.h"
78
79 #include <sys/param.h>
80 #include <sys/proc.h>
81 #include <sys/systm.h>
82 #include <sys/device.h>
83 #include <sys/kmem.h>
84 #include <sys/cpu.h>
85 #include <sys/cpufreq.h>
86 #include <sys/atomic.h>
87 #include <sys/reboot.h>
88 #include <sys/idle.h>
89
90 #include <uvm/uvm.h>
91
92 #include <machine/cpu.h>
93 #include <machine/cpufunc.h>
94 #include <machine/cpuvar.h>
95 #include <machine/pmap.h>
96 #include <machine/vmparam.h>
97 #include <machine/mpbiosvar.h>
98 #include <machine/pcb.h>
99 #include <machine/specialreg.h>
100 #include <machine/segments.h>
101 #include <machine/gdt.h>
102 #include <machine/mtrr.h>
103 #include <machine/pio.h>
104
105 #include <x86/fpu.h>
106
107 #include <xen/xen.h>
108 #include <xen/xen-public/vcpu.h>
109 #include <xen/vcpuvar.h>
110
111 #if NLAPIC > 0
112 #include <machine/apicvar.h>
113 #include <machine/i82489reg.h>
114 #include <machine/i82489var.h>
115 #endif
116
117 #include <dev/ic/mc146818reg.h>
118 #include <dev/isa/isareg.h>
119
120 static int cpu_match(device_t, cfdata_t, void *);
121 static void cpu_attach(device_t, device_t, void *);
122 static void cpu_defer(device_t);
123 static int cpu_rescan(device_t, const char *, const int *);
124 static void cpu_childdetached(device_t, device_t);
125 static int vcpu_match(device_t, cfdata_t, void *);
126 static void vcpu_attach(device_t, device_t, void *);
127 static void cpu_attach_common(device_t, device_t, void *);
128 void cpu_offline_md(void);
129
130 struct cpu_softc {
131 device_t sc_dev; /* device tree glue */
132 struct cpu_info *sc_info; /* pointer to CPU info */
133 bool sc_wasonline;
134 };
135
136 int mp_cpu_start(struct cpu_info *, vaddr_t);
137 void mp_cpu_start_cleanup(struct cpu_info *);
138 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
139 mp_cpu_start_cleanup };
140
141 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
142 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
143
144 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
145 vcpu_match, vcpu_attach, NULL, NULL);
146
147 /*
148 * Statically-allocated CPU info for the primary CPU (or the only
149 * CPU, on uniprocessors). The CPU info list is initialized to
150 * point at it.
151 */
152 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
153 .ci_dev = 0,
154 .ci_self = &cpu_info_primary,
155 .ci_idepth = -1,
156 .ci_curlwp = &lwp0,
157 .ci_curldt = -1,
158 };
159 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
160 .ci_dev = 0,
161 .ci_self = &phycpu_info_primary,
162 };
163
164 struct cpu_info *cpu_info_list = &cpu_info_primary;
165 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
166
167 uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits
168 * [0] basic features %edx
169 * [1] basic features %ecx
170 * [2] extended features %edx
171 * [3] extended features %ecx
172 * [4] VIA padlock features
173 * [5] structured extended features cpuid.7:%ebx
174 * [6] structured extended features cpuid.7:%ecx
175 */
176
177 bool x86_mp_online;
178 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
179
180 #if defined(MULTIPROCESSOR)
181 void cpu_hatch(void *);
182 static void cpu_boot_secondary(struct cpu_info *ci);
183 static void cpu_start_secondary(struct cpu_info *ci);
184 #endif /* MULTIPROCESSOR */
185
186 static int
187 cpu_match(device_t parent, cfdata_t match, void *aux)
188 {
189
190 return 1;
191 }
192
193 static void
194 cpu_attach(device_t parent, device_t self, void *aux)
195 {
196 struct cpu_softc *sc = device_private(self);
197 struct cpu_attach_args *caa = aux;
198 struct cpu_info *ci;
199 uintptr_t ptr;
200 static int nphycpu = 0;
201
202 sc->sc_dev = self;
203
204 /*
205 * If we're an Application Processor, allocate a cpu_info
206 * If we're the first attached CPU use the primary cpu_info,
207 * otherwise allocate a new one
208 */
209 aprint_naive("\n");
210 aprint_normal("\n");
211 if (nphycpu > 0) {
212 struct cpu_info *tmp;
213 ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
214 KM_SLEEP);
215 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
216 ci->ci_curldt = -1;
217
218 tmp = phycpu_info_list;
219 while (tmp->ci_next)
220 tmp = tmp->ci_next;
221
222 tmp->ci_next = ci;
223 } else {
224 ci = &phycpu_info_primary;
225 }
226
227 ci->ci_self = ci;
228 sc->sc_info = ci;
229
230 ci->ci_dev = self;
231 ci->ci_acpiid = caa->cpu_id;
232 ci->ci_cpuid = caa->cpu_number;
233 ci->ci_vcpu = NULL;
234 ci->ci_index = nphycpu++;
235
236 if (!pmf_device_register(self, NULL, NULL))
237 aprint_error_dev(self, "couldn't establish power handler\n");
238
239 (void)config_defer(self, cpu_defer);
240 }
241
242 static void
243 cpu_defer(device_t self)
244 {
245 cpu_rescan(self, NULL, NULL);
246 }
247
248 static int
249 cpu_rescan(device_t self, const char *ifattr, const int *locators)
250 {
251 struct cpu_softc *sc = device_private(self);
252 struct cpufeature_attach_args cfaa;
253 struct cpu_info *ci = sc->sc_info;
254
255 memset(&cfaa, 0, sizeof(cfaa));
256 cfaa.ci = ci;
257
258 if (ifattr_match(ifattr, "cpufeaturebus")) {
259
260 if (ci->ci_frequency == NULL) {
261 cfaa.name = "frequency";
262 ci->ci_frequency = config_found_ia(self,
263 "cpufeaturebus", &cfaa, NULL);
264 }
265 }
266
267 return 0;
268 }
269
270 static void
271 cpu_childdetached(device_t self, device_t child)
272 {
273 struct cpu_softc *sc = device_private(self);
274 struct cpu_info *ci = sc->sc_info;
275
276 if (ci->ci_frequency == child)
277 ci->ci_frequency = NULL;
278 }
279
280 static int
281 vcpu_match(device_t parent, cfdata_t match, void *aux)
282 {
283 struct vcpu_attach_args *vcaa = aux;
284 struct vcpu_runstate_info vcr;
285 int error;
286
287 if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
288 error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
289 vcaa->vcaa_caa.cpu_number, &vcr);
290 switch (error) {
291 case 0:
292 return 1;
293 case -ENOENT:
294 return 0;
295 default:
296 panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
297 }
298 }
299
300 return 0;
301 }
302
303 static void
304 vcpu_attach(device_t parent, device_t self, void *aux)
305 {
306 struct vcpu_attach_args *vcaa = aux;
307
308 KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
309 vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
310 cpu_attach_common(parent, self, &vcaa->vcaa_caa);
311
312 if (!pmf_device_register(self, NULL, NULL))
313 aprint_error_dev(self, "couldn't establish power handler\n");
314 }
315
316 static int
317 vcpu_is_up(struct cpu_info *ci)
318 {
319 KASSERT(ci != NULL);
320 return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
321 }
322
323 static void
324 cpu_vm_init(struct cpu_info *ci)
325 {
326 int ncolors = 2, i;
327
328 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
329 struct x86_cache_info *cai;
330 int tcolors;
331
332 cai = &ci->ci_cinfo[i];
333
334 tcolors = atop(cai->cai_totalsize);
335 switch (cai->cai_associativity) {
336 case 0xff:
337 tcolors = 1; /* fully associative */
338 break;
339 case 0:
340 case 1:
341 break;
342 default:
343 tcolors /= cai->cai_associativity;
344 }
345 ncolors = max(ncolors, tcolors);
346 }
347
348 /*
349 * Knowing the size of the largest cache on this CPU, potentially
350 * re-color our pages.
351 */
352 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
353 uvm_page_recolor(ncolors);
354 pmap_tlb_cpu_init(ci);
355 #ifndef __HAVE_DIRECT_MAP
356 pmap_vpage_cpu_init(ci);
357 #endif
358 }
359
360 static void
361 cpu_attach_common(device_t parent, device_t self, void *aux)
362 {
363 struct cpu_softc *sc = device_private(self);
364 struct cpu_attach_args *caa = aux;
365 struct cpu_info *ci;
366 uintptr_t ptr;
367 int cpunum = caa->cpu_number;
368 static bool again = false;
369
370 sc->sc_dev = self;
371
372 /*
373 * If we're an Application Processor, allocate a cpu_info
374 * structure, otherwise use the primary's.
375 */
376 if (caa->cpu_role == CPU_ROLE_AP) {
377 aprint_naive(": Application Processor\n");
378 ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
379 KM_SLEEP);
380 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
381 memset(ci, 0, sizeof(*ci));
382 cpu_init_tss(ci);
383 } else {
384 aprint_naive(": %s Processor\n",
385 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
386 ci = &cpu_info_primary;
387 }
388
389 ci->ci_self = ci;
390 sc->sc_info = ci;
391 ci->ci_dev = self;
392 ci->ci_cpuid = cpunum;
393
394 KASSERT(HYPERVISOR_shared_info != NULL);
395 KASSERT(cpunum < XEN_LEGACY_MAX_VCPUS);
396 ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
397
398 KASSERT(ci->ci_func == 0);
399 ci->ci_func = caa->cpu_func;
400 aprint_normal("\n");
401
402 /* Must be called before mi_cpu_attach(). */
403 cpu_vm_init(ci);
404
405 if (caa->cpu_role == CPU_ROLE_AP) {
406 int error;
407
408 error = mi_cpu_attach(ci);
409
410 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
411 if (error != 0) {
412 aprint_error_dev(self,
413 "mi_cpu_attach failed with %d\n", error);
414 return;
415 }
416
417 } else {
418 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
419 }
420
421 KASSERT(ci->ci_cpuid == ci->ci_index);
422 #ifdef __x86_64__
423 /* No user PGD mapped for this CPU yet */
424 ci->ci_xen_current_user_pgd = 0;
425 #endif
426 #if defined(__x86_64__) || defined(PAE)
427 mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
428 #endif
429 pmap_reference(pmap_kernel());
430 ci->ci_pmap = pmap_kernel();
431 ci->ci_tlbstate = TLBSTATE_STALE;
432
433 /*
434 * Boot processor may not be attached first, but the below
435 * must be done to allow booting other processors.
436 */
437 if (!again) {
438 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
439 /* Basic init. */
440 cpu_intr_init(ci);
441 cpu_get_tsc_freq(ci);
442 cpu_init(ci);
443 pmap_cpu_init_late(ci);
444
445 /* Every processor needs to init its own ipi h/w (similar to lapic) */
446 xen_ipi_init();
447
448 /* Make sure DELAY() is initialized. */
449 DELAY(1);
450 again = true;
451 }
452
453 /* further PCB init done later. */
454
455 switch (caa->cpu_role) {
456 case CPU_ROLE_SP:
457 atomic_or_32(&ci->ci_flags, CPUF_SP);
458 cpu_identify(ci);
459 x86_cpu_idle_init();
460 break;
461
462 case CPU_ROLE_BP:
463 atomic_or_32(&ci->ci_flags, CPUF_BSP);
464 cpu_identify(ci);
465 x86_cpu_idle_init();
466 break;
467
468 case CPU_ROLE_AP:
469 atomic_or_32(&ci->ci_flags, CPUF_AP);
470
471 /*
472 * report on an AP
473 */
474
475 #if defined(MULTIPROCESSOR)
476 /* interrupt handler stack */
477 cpu_intr_init(ci);
478
479 /* Setup per-cpu memory for gdt */
480 gdt_alloc_cpu(ci);
481
482 pmap_cpu_init_late(ci);
483 cpu_start_secondary(ci);
484
485 if (ci->ci_flags & CPUF_PRESENT) {
486 struct cpu_info *tmp;
487
488 cpu_identify(ci);
489 tmp = cpu_info_list;
490 while (tmp->ci_next)
491 tmp = tmp->ci_next;
492
493 tmp->ci_next = ci;
494 }
495 #else
496 aprint_error_dev(ci->ci_dev, "not started\n");
497 #endif
498 break;
499
500 default:
501 panic("unknown processor type??\n");
502 }
503
504 #ifdef MPVERBOSE
505 if (mp_verbose) {
506 struct lwp *l = ci->ci_data.cpu_idlelwp;
507 struct pcb *pcb = lwp_getpcb(l);
508
509 aprint_verbose_dev(self,
510 "idle lwp at %p, idle sp at 0x%p\n",
511 l,
512 #ifdef i386
513 (void *)pcb->pcb_esp
514 #else
515 (void *)pcb->pcb_rsp
516 #endif
517 );
518
519 }
520 #endif /* MPVERBOSE */
521 }
522
523 /*
524 * Initialize the processor appropriately.
525 */
526
527 void
528 cpu_init(struct cpu_info *ci)
529 {
530 uint32_t cr4 = 0;
531
532 /*
533 * If we have FXSAVE/FXRESTOR, use them.
534 */
535 if (cpu_feature[0] & CPUID_FXSR) {
536 cr4 |= CR4_OSFXSR;
537
538 /*
539 * If we have SSE/SSE2, enable XMM exceptions.
540 */
541 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
542 cr4 |= CR4_OSXMMEXCPT;
543 }
544
545 /* If xsave is supported, enable it */
546 if (cpu_feature[1] & CPUID2_XSAVE && x86_fpu_save >= FPU_SAVE_XSAVE)
547 cr4 |= CR4_OSXSAVE;
548
549 if (cr4) {
550 cr4 |= rcr4();
551 lcr4(cr4);
552 }
553
554 if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
555 fpuinit_mxcsr_mask();
556 }
557
558 /*
559 * Changing CR4 register may change cpuid values. For example, setting
560 * CR4_OSXSAVE sets CPUID2_OSXSAVE. The CPUID2_OSXSAVE is in
561 * ci_feat_val[1], so update it.
562 * XXX Other than ci_feat_val[1] might be changed.
563 */
564 if (cpuid_level >= 1) {
565 u_int descs[4];
566
567 x86_cpuid(1, descs);
568 ci->ci_feat_val[1] = descs[2];
569 }
570
571 /* If xsave is enabled, enable all fpu features */
572 if (cr4 & CR4_OSXSAVE) {
573 wrxcr(0, x86_xsave_features & XCR0_FPU);
574 }
575
576 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
577 }
578
579
580 #ifdef MULTIPROCESSOR
581
582 void
583 cpu_boot_secondary_processors(void)
584 {
585 struct cpu_info *ci;
586 kcpuset_t *cpus;
587 u_long i;
588
589 kcpuset_create(&cpus, true);
590 kcpuset_set(cpus, cpu_index(curcpu()));
591 for (i = 0; i < maxcpus; i++) {
592 ci = cpu_lookup(i);
593 if (ci == NULL)
594 continue;
595 if (ci->ci_data.cpu_idlelwp == NULL)
596 continue;
597 if ((ci->ci_flags & CPUF_PRESENT) == 0)
598 continue;
599 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
600 continue;
601 cpu_boot_secondary(ci);
602 kcpuset_set(cpus, cpu_index(ci));
603 }
604 while (!kcpuset_match(cpus, kcpuset_running))
605 ;
606 kcpuset_destroy(cpus);
607
608 x86_mp_online = true;
609 }
610
611 static void
612 cpu_init_idle_lwp(struct cpu_info *ci)
613 {
614 struct lwp *l = ci->ci_data.cpu_idlelwp;
615 struct pcb *pcb = lwp_getpcb(l);
616
617 pcb->pcb_cr0 = rcr0();
618 }
619
620 void
621 cpu_init_idle_lwps(void)
622 {
623 struct cpu_info *ci;
624 u_long i;
625
626 for (i = 0; i < maxcpus; i++) {
627 ci = cpu_lookup(i);
628 if (ci == NULL)
629 continue;
630 if (ci->ci_data.cpu_idlelwp == NULL)
631 continue;
632 if ((ci->ci_flags & CPUF_PRESENT) == 0)
633 continue;
634 cpu_init_idle_lwp(ci);
635 }
636 }
637
638 static void
639 cpu_start_secondary(struct cpu_info *ci)
640 {
641 int i;
642
643 aprint_debug_dev(ci->ci_dev, "starting\n");
644
645 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
646
647 if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
648 return;
649 }
650
651 /*
652 * wait for it to become ready
653 */
654 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
655 delay(10);
656 }
657 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
658 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
659 #if defined(MPDEBUG) && defined(DDB)
660 printf("dropping into debugger; continue from here to resume boot\n");
661 Debugger();
662 #endif
663 }
664
665 CPU_START_CLEANUP(ci);
666 }
667
668 void
669 cpu_boot_secondary(struct cpu_info *ci)
670 {
671 int i;
672 atomic_or_32(&ci->ci_flags, CPUF_GO);
673 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
674 delay(10);
675 }
676 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
677 aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
678 #if defined(MPDEBUG) && defined(DDB)
679 printf("dropping into debugger; continue from here to resume boot\n");
680 Debugger();
681 #endif
682 }
683 }
684
685 /*
686 * APs end up here immediately after initialisation and VCPUOP_up in
687 * mp_cpu_start().
688 * At this point, we are running in the idle pcb/idle stack of the new
689 * CPU. This function jumps to the idle loop and starts looking for
690 * work.
691 */
692 extern void x86_64_tls_switch(struct lwp *);
693 void
694 cpu_hatch(void *v)
695 {
696 struct cpu_info *ci = (struct cpu_info *)v;
697 struct pcb *pcb;
698 int s, i;
699
700 /* Setup TLS and kernel GS/FS */
701 cpu_init_msrs(ci, true);
702 cpu_init_idt();
703 gdt_init_cpu(ci);
704
705 cpu_probe(ci);
706
707 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
708
709 while ((ci->ci_flags & CPUF_GO) == 0) {
710 /* Don't use delay, boot CPU may be patching the text. */
711 for (i = 10000; i != 0; i--)
712 x86_pause();
713 }
714
715 /* Because the text may have been patched in x86_patch(). */
716 x86_flush();
717 tlbflushg();
718
719 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
720
721 pcb = lwp_getpcb(curlwp);
722 pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0);
723 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
724
725 xen_ipi_init();
726
727 xen_initclocks();
728
729 #ifdef __x86_64__
730 fpuinit(ci);
731 #endif
732
733 lldt(GSEL(GLDT_SEL, SEL_KPL));
734
735 cpu_init(ci);
736 cpu_get_tsc_freq(ci);
737
738 s = splhigh();
739 x86_enable_intr();
740 splx(s);
741
742 aprint_debug_dev(ci->ci_dev, "running\n");
743
744 cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
745
746 idle_loop(NULL);
747 KASSERT(false);
748 }
749
750 #if defined(DDB)
751
752 #include <ddb/db_output.h>
753 #include <machine/db_machdep.h>
754
755 /*
756 * Dump CPU information from ddb.
757 */
758 void
759 cpu_debug_dump(void)
760 {
761 struct cpu_info *ci;
762 CPU_INFO_ITERATOR cii;
763
764 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
765 for (CPU_INFO_FOREACH(cii, ci)) {
766 db_printf("%p %s %ld %x %x %10p %10p\n",
767 ci,
768 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
769 (long)ci->ci_cpuid,
770 ci->ci_flags, ci->ci_ipis,
771 ci->ci_curlwp,
772 ci->ci_fpcurlwp);
773 }
774 }
775 #endif /* DDB */
776
777 #endif /* MULTIPROCESSOR */
778
779 extern void hypervisor_callback(void);
780 extern void failsafe_callback(void);
781 #ifdef __x86_64__
782 typedef void (vector)(void);
783 extern vector Xsyscall, Xsyscall32;
784 #endif
785
786 /*
787 * Setup the "trampoline". On Xen, we setup nearly all cpu context
788 * outside a trampoline, so we prototype and call targetip like so:
789 * void targetip(struct cpu_info *);
790 */
791
792 static void
793 gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
794 {
795 int i;
796 for (i = 0; i < entries; i++) {
797 frames[i] = ((paddr_t)xpmap_ptetomach(
798 (pt_entry_t *)(base + (i << PAGE_SHIFT)))) >> PAGE_SHIFT;
799
800 /* Mark Read-only */
801 pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
802 PG_RW);
803 }
804 }
805
806 #ifdef __x86_64__
807 extern char *ldtstore;
808
809 static void
810 xen_init_amd64_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
811 void targetrip(struct cpu_info *))
812 {
813 /* page frames to point at GDT */
814 extern int gdt_size;
815 paddr_t frames[16];
816 psize_t gdt_ents;
817
818 struct lwp *l;
819 struct pcb *pcb;
820
821 volatile struct vcpu_info *vci;
822
823 KASSERT(ci != NULL);
824 KASSERT(ci != &cpu_info_primary);
825 KASSERT(initctx != NULL);
826 KASSERT(targetrip != NULL);
827
828 memset(initctx, 0, sizeof(*initctx));
829
830 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
831 KASSERT(gdt_ents <= 16);
832
833 gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
834
835 /* Initialise the vcpu context: We use idle_loop()'s pcb context. */
836
837 l = ci->ci_data.cpu_idlelwp;
838
839 KASSERT(l != NULL);
840 pcb = lwp_getpcb(l);
841 KASSERT(pcb != NULL);
842
843 /* resume with interrupts off */
844 vci = ci->ci_vcpu;
845 vci->evtchn_upcall_mask = 1;
846 xen_mb();
847
848 /* resume in kernel-mode */
849 initctx->flags = VGCF_in_kernel | VGCF_online;
850
851 /* Stack and entry points:
852 * We arrange for the stack frame for cpu_hatch() to
853 * appear as a callee frame of lwp_trampoline(). Being a
854 * leaf frame prevents trampling on any of the MD stack setup
855 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
856 */
857
858 initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
859 initctx->user_regs.rip = (vaddr_t) targetrip;
860
861 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
862
863 initctx->user_regs.rflags = pcb->pcb_flags;
864 initctx->user_regs.rsp = pcb->pcb_rsp;
865
866 /* Data segments */
867 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
868 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
869 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
870
871 /* GDT */
872 memcpy(initctx->gdt_frames, frames, sizeof(frames));
873 initctx->gdt_ents = gdt_ents;
874
875 /* LDT */
876 initctx->ldt_base = (unsigned long)ldtstore;
877 initctx->ldt_ents = LDT_SIZE >> 3;
878
879 /* Kernel context state */
880 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
881 initctx->kernel_sp = pcb->pcb_rsp0;
882 initctx->ctrlreg[0] = pcb->pcb_cr0;
883 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
884 initctx->ctrlreg[2] = (vaddr_t)targetrip;
885 /*
886 * Use pmap_kernel() L4 PD directly, until we setup the
887 * per-cpu L4 PD in pmap_cpu_init_late()
888 */
889 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
890 initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
891
892 /* Xen callbacks */
893 initctx->event_callback_eip = (unsigned long)hypervisor_callback;
894 initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
895 initctx->syscall_callback_eip = (unsigned long)Xsyscall;
896
897 return;
898 }
899 #else /* i386 */
900 extern union descriptor *ldtstore;
901 extern void Xsyscall(void);
902
903 static void
904 xen_init_i386_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
905 void targeteip(struct cpu_info *))
906 {
907 /* page frames to point at GDT */
908 extern int gdt_size;
909 paddr_t frames[16];
910 psize_t gdt_ents;
911
912 struct lwp *l;
913 struct pcb *pcb;
914
915 volatile struct vcpu_info *vci;
916
917 KASSERT(ci != NULL);
918 KASSERT(ci != &cpu_info_primary);
919 KASSERT(initctx != NULL);
920 KASSERT(targeteip != NULL);
921
922 memset(initctx, 0, sizeof(*initctx));
923
924 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
925 KASSERT(gdt_ents <= 16);
926
927 gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
928
929 /*
930 * Initialise the vcpu context:
931 * We use this cpu's idle_loop() pcb context.
932 */
933
934 l = ci->ci_data.cpu_idlelwp;
935
936 KASSERT(l != NULL);
937 pcb = lwp_getpcb(l);
938 KASSERT(pcb != NULL);
939
940 /* resume with interrupts off */
941 vci = ci->ci_vcpu;
942 vci->evtchn_upcall_mask = 1;
943 xen_mb();
944
945 /* resume in kernel-mode */
946 initctx->flags = VGCF_in_kernel | VGCF_online;
947
948 /* Stack frame setup for cpu_hatch():
949 * We arrange for the stack frame for cpu_hatch() to
950 * appear as a callee frame of lwp_trampoline(). Being a
951 * leaf frame prevents trampling on any of the MD stack setup
952 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
953 */
954
955 initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
956 arg1 */
957 {
958 /* targeteip(ci); */
959 uint32_t *arg = (uint32_t *)initctx->user_regs.esp;
960 arg[1] = (uint32_t)ci; /* arg1 */
961 }
962
963 initctx->user_regs.eip = (vaddr_t)targeteip;
964 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
965 initctx->user_regs.eflags |= pcb->pcb_iopl;
966
967 /* Data segments */
968 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
969 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
970 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
971 initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
972
973 /* GDT */
974 memcpy(initctx->gdt_frames, frames, sizeof(frames));
975 initctx->gdt_ents = gdt_ents;
976
977 /* LDT */
978 initctx->ldt_base = (unsigned long)ldtstore;
979 initctx->ldt_ents = NLDT;
980
981 /* Kernel context state */
982 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
983 initctx->kernel_sp = pcb->pcb_esp0;
984 initctx->ctrlreg[0] = pcb->pcb_cr0;
985 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
986 initctx->ctrlreg[2] = (vaddr_t)targeteip;
987 #ifdef PAE
988 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
989 #else
990 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(pcb->pcb_cr3)));
991 #endif
992 initctx->ctrlreg[4] = /* CR4_PAE | */CR4_OSFXSR | CR4_OSXMMEXCPT;
993
994 /* Xen callbacks */
995 initctx->event_callback_eip = (unsigned long)hypervisor_callback;
996 initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
997 initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
998 initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
999
1000 return;
1001 }
1002 #endif /* __x86_64__ */
1003
1004 int
1005 mp_cpu_start(struct cpu_info *ci, vaddr_t target)
1006 {
1007 int hyperror;
1008 struct vcpu_guest_context vcpuctx;
1009
1010 KASSERT(ci != NULL);
1011 KASSERT(ci != &cpu_info_primary);
1012 KASSERT(ci->ci_flags & CPUF_AP);
1013
1014 #ifdef __x86_64__
1015 xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
1016 #else
1017 xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
1018 #endif
1019
1020 /* Initialise the given vcpu to execute cpu_hatch(ci); */
1021 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
1022 aprint_error(": context initialisation failed. errno = %d\n", hyperror);
1023 return hyperror;
1024 }
1025
1026 /* Start it up */
1027
1028 /* First bring it down */
1029 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
1030 aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
1031 return hyperror;
1032 }
1033
1034 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
1035 aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
1036 return hyperror;
1037 }
1038
1039 if (!vcpu_is_up(ci)) {
1040 aprint_error(": did not come up\n");
1041 return -1;
1042 }
1043
1044 return 0;
1045 }
1046
1047 void
1048 mp_cpu_start_cleanup(struct cpu_info *ci)
1049 {
1050 if (vcpu_is_up(ci)) {
1051 aprint_debug_dev(ci->ci_dev, "is started.\n");
1052 } else {
1053 aprint_error_dev(ci->ci_dev, "did not start up.\n");
1054 }
1055 }
1056
1057 void
1058 cpu_init_msrs(struct cpu_info *ci, bool full)
1059 {
1060 #ifdef __x86_64__
1061 if (full) {
1062 HYPERVISOR_set_segment_base(SEGBASE_FS, 0);
1063 HYPERVISOR_set_segment_base(SEGBASE_GS_KERNEL, (uint64_t)ci);
1064 HYPERVISOR_set_segment_base(SEGBASE_GS_USER, 0);
1065 }
1066 #endif
1067
1068 if (cpu_feature[2] & CPUID_NOX)
1069 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1070 }
1071
1072 void
1073 cpu_offline_md(void)
1074 {
1075 int s;
1076
1077 s = splhigh();
1078 fpusave_cpu(true);
1079 splx(s);
1080 }
1081
1082 void
1083 cpu_get_tsc_freq(struct cpu_info *ci)
1084 {
1085 uint32_t vcpu_tversion;
1086 const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1087
1088 vcpu_tversion = tinfo->version;
1089 while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
1090
1091 uint64_t freq = 1000000000ULL << 32;
1092 freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1093 if (tinfo->tsc_shift < 0)
1094 freq = freq << -tinfo->tsc_shift;
1095 else
1096 freq = freq >> tinfo->tsc_shift;
1097 ci->ci_data.cpu_cc_freq = freq;
1098 }
1099
1100 void
1101 x86_cpu_idle_xen(void)
1102 {
1103 struct cpu_info *ci = curcpu();
1104
1105 KASSERT(ci->ci_ilevel == IPL_NONE);
1106
1107 x86_disable_intr();
1108 if (!__predict_false(ci->ci_want_resched)) {
1109 idle_block();
1110 } else {
1111 x86_enable_intr();
1112 }
1113 }
1114
1115 /*
1116 * Loads pmap for the current CPU.
1117 */
1118 void
1119 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1120 {
1121 KASSERT(pmap != pmap_kernel());
1122
1123 #if defined(__x86_64__) || defined(PAE)
1124 struct cpu_info *ci = curcpu();
1125 cpuid_t cid = cpu_index(ci);
1126
1127 mutex_enter(&ci->ci_kpm_mtx);
1128 /* make new pmap visible to xen_kpm_sync() */
1129 kcpuset_atomic_set(pmap->pm_xen_ptp_cpus, cid);
1130 #endif
1131
1132 #ifdef i386
1133 #ifdef PAE
1134 {
1135 int i;
1136 paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
1137 /* don't update the kernel L3 slot */
1138 for (i = 0 ; i < PDP_SIZE - 1; i++) {
1139 xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
1140 xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
1141 }
1142 tlbflush();
1143 }
1144 #else /* PAE */
1145 lcr3(pmap_pdirpa(pmap, 0));
1146 #endif /* PAE */
1147 #endif /* i386 */
1148
1149 #ifdef __x86_64__
1150 {
1151 int i;
1152 pd_entry_t *new_pgd;
1153 paddr_t l4_pd_ma;
1154
1155 l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
1156
1157 /*
1158 * Map user space address in kernel space and load
1159 * user cr3
1160 */
1161 new_pgd = pmap->pm_pdir;
1162 KASSERT(pmap == ci->ci_pmap);
1163
1164 /* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
1165 for (i = 0; i < PDIR_SLOT_PTE; i++) {
1166 KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
1167 if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
1168 xpq_queue_pte_update(
1169 l4_pd_ma + i * sizeof(pd_entry_t),
1170 new_pgd[i]);
1171 }
1172 }
1173
1174 xen_set_user_pgd(pmap_pdirpa(pmap, 0));
1175 ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
1176
1177 tlbflush();
1178 }
1179 #endif /* __x86_64__ */
1180
1181 #if defined(__x86_64__) || defined(PAE)
1182 /* old pmap no longer visible to xen_kpm_sync() */
1183 if (oldpmap != pmap_kernel()) {
1184 kcpuset_atomic_clear(oldpmap->pm_xen_ptp_cpus, cid);
1185 }
1186 mutex_exit(&ci->ci_kpm_mtx);
1187 #endif
1188 }
1189
1190 /*
1191 * pmap_cpu_init_late: perform late per-CPU initialization.
1192 *
1193 * Short note about percpu PDIR pages. Both the PAE and __x86_64__ architectures
1194 * have per-cpu PDIR tables, for two different reasons:
1195 * - on PAE, this is to get around Xen's pagetable setup constraints (multiple
1196 * L3[3]s cannot point to the same L2 - Xen will refuse to pin a table set up
1197 * this way).
1198 * - on __x86_64__, this is for multiple CPUs to map in different user pmaps
1199 * (see cpu_load_pmap()).
1200 *
1201 * What this means for us is that the PDIR of the pmap_kernel() is considered
1202 * to be a canonical "SHADOW" PDIR with the following properties:
1203 * - its recursive mapping points to itself
1204 * - per-cpu recursive mappings point to themselves on __x86_64__
1205 * - per-cpu L4 pages' kernel entries are expected to be in sync with
1206 * the shadow
1207 */
1208
1209 void
1210 pmap_cpu_init_late(struct cpu_info *ci)
1211 {
1212 #if defined(PAE) || defined(__x86_64__)
1213 /*
1214 * The BP has already its own PD page allocated during early
1215 * MD startup.
1216 */
1217
1218 #if defined(__x86_64__)
1219 /* Setup per-cpu normal_pdes */
1220 int i;
1221 extern pd_entry_t * const normal_pdes[];
1222 for (i = 0;i < PTP_LEVELS - 1;i++) {
1223 ci->ci_normal_pdes[i] = normal_pdes[i];
1224 }
1225 #endif /* __x86_64__ */
1226
1227 if (ci == &cpu_info_primary)
1228 return;
1229
1230 KASSERT(ci != NULL);
1231
1232 #if defined(PAE)
1233 cpu_alloc_l3_page(ci);
1234 KASSERT(ci->ci_pae_l3_pdirpa != 0);
1235
1236 /* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
1237 int i;
1238 for (i = 0 ; i < PDP_SIZE - 1; i++) {
1239 ci->ci_pae_l3_pdir[i] =
1240 xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PG_V;
1241 }
1242 #endif /* PAE */
1243
1244 ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1245 UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
1246
1247 if (ci->ci_kpm_pdir == NULL) {
1248 panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
1249 __func__, cpu_index(ci));
1250 }
1251 ci->ci_kpm_pdirpa = vtophys((vaddr_t)ci->ci_kpm_pdir);
1252 KASSERT(ci->ci_kpm_pdirpa != 0);
1253
1254 #if defined(__x86_64__)
1255 extern pt_entry_t xpmap_pg_nx;
1256
1257 /* Copy over the pmap_kernel() shadow L4 entries */
1258 memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
1259
1260 /* Recursive kernel mapping */
1261 ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa)
1262 | PG_V | xpmap_pg_nx;
1263 #elif defined(PAE)
1264 /* Copy over the pmap_kernel() shadow L2 entries */
1265 memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN,
1266 nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
1267 #endif
1268
1269 /* Xen wants a RO pdir. */
1270 pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
1271 (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
1272 pmap_update(pmap_kernel());
1273 #if defined(PAE)
1274 /*
1275 * Initialize L3 entry 3. This mapping is shared across all pmaps and is
1276 * static, ie: loading a new pmap will not update this entry.
1277 */
1278 ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_V;
1279
1280 /* Xen wants a RO L3. */
1281 pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
1282 (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
1283 pmap_update(pmap_kernel());
1284
1285 xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
1286
1287 #elif defined(__x86_64__)
1288 xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
1289 #endif /* PAE , __x86_64__ */
1290 #endif /* defined(PAE) || defined(__x86_64__) */
1291 }
1292
1293 /*
1294 * Notify all other cpus to halt.
1295 */
1296
1297 void
1298 cpu_broadcast_halt(void)
1299 {
1300 xen_broadcast_ipi(XEN_IPI_HALT);
1301 }
1302
1303 /*
1304 * Send a dummy ipi to a cpu.
1305 */
1306
1307 void
1308 cpu_kick(struct cpu_info *ci)
1309 {
1310 (void)xen_send_ipi(ci, XEN_IPI_KICK);
1311 }
1312