cpu.c revision 1.131 1 /* $NetBSD: cpu.c,v 1.131 2019/11/23 19:40:38 ad Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by RedBack Networks Inc.
10 *
11 * Author: Bill Sommerfeld
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Copyright (c) 1999 Stefan Grefen
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the NetBSD
49 * Foundation, Inc. and its contributors.
50 * 4. Neither the name of The NetBSD Foundation nor the names of its
51 * contributors may be used to endorse or promote products derived
52 * from this software without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
55 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 */
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.131 2019/11/23 19:40:38 ad Exp $");
69
70 #include "opt_ddb.h"
71 #include "opt_multiprocessor.h"
72 #include "opt_mpbios.h" /* for MPDEBUG */
73 #include "opt_mtrr.h"
74 #include "opt_xen.h"
75
76 #include "lapic.h"
77 #include "ioapic.h"
78
79 #include <sys/param.h>
80 #include <sys/proc.h>
81 #include <sys/systm.h>
82 #include <sys/device.h>
83 #include <sys/kmem.h>
84 #include <sys/cpu.h>
85 #include <sys/cpufreq.h>
86 #include <sys/atomic.h>
87 #include <sys/reboot.h>
88 #include <sys/idle.h>
89
90 #include <uvm/uvm.h>
91
92 #include <machine/cpu.h>
93 #include <machine/cpufunc.h>
94 #include <machine/cpuvar.h>
95 #include <machine/pmap.h>
96 #include <machine/vmparam.h>
97 #include <machine/mpbiosvar.h>
98 #include <machine/pcb.h>
99 #include <machine/specialreg.h>
100 #include <machine/segments.h>
101 #include <machine/gdt.h>
102 #include <machine/mtrr.h>
103 #include <machine/pio.h>
104
105 #include <x86/fpu.h>
106
107 #include <xen/xen.h>
108 #include <xen/include/public/vcpu.h>
109 #include <xen/vcpuvar.h>
110
111 #if NLAPIC > 0
112 #include <machine/apicvar.h>
113 #include <machine/i82489reg.h>
114 #include <machine/i82489var.h>
115 #endif
116
117 #include <dev/ic/mc146818reg.h>
118 #include <dev/isa/isareg.h>
119
120 static int cpu_match(device_t, cfdata_t, void *);
121 static void cpu_attach(device_t, device_t, void *);
122 static void cpu_defer(device_t);
123 static int cpu_rescan(device_t, const char *, const int *);
124 static void cpu_childdetached(device_t, device_t);
125 static int vcpu_match(device_t, cfdata_t, void *);
126 static void vcpu_attach(device_t, device_t, void *);
127 static void cpu_attach_common(device_t, device_t, void *);
128 void cpu_offline_md(void);
129
130 struct cpu_softc {
131 device_t sc_dev; /* device tree glue */
132 struct cpu_info *sc_info; /* pointer to CPU info */
133 bool sc_wasonline;
134 };
135
136 int mp_cpu_start(struct cpu_info *, vaddr_t);
137 void mp_cpu_start_cleanup(struct cpu_info *);
138 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
139 mp_cpu_start_cleanup };
140
141 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
142 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
143
144 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
145 vcpu_match, vcpu_attach, NULL, NULL);
146
147 /*
148 * Statically-allocated CPU info for the primary CPU (or the only
149 * CPU, on uniprocessors). The CPU info list is initialized to
150 * point at it.
151 */
152 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
153 .ci_dev = 0,
154 .ci_self = &cpu_info_primary,
155 .ci_idepth = -1,
156 .ci_curlwp = &lwp0,
157 .ci_curldt = -1,
158 };
159 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
160 .ci_dev = 0,
161 .ci_self = &phycpu_info_primary,
162 };
163
164 struct cpu_info *cpu_info_list = &cpu_info_primary;
165 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
166
167 uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits
168 * [0] basic features %edx
169 * [1] basic features %ecx
170 * [2] extended features %edx
171 * [3] extended features %ecx
172 * [4] VIA padlock features
173 * [5] structured extended features cpuid.7:%ebx
174 * [6] structured extended features cpuid.7:%ecx
175 */
176
177 bool x86_mp_online;
178 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
179
180 #if defined(MULTIPROCESSOR)
181 void cpu_hatch(void *);
182 static void cpu_boot_secondary(struct cpu_info *ci);
183 static void cpu_start_secondary(struct cpu_info *ci);
184 #endif /* MULTIPROCESSOR */
185
186 static int
187 cpu_match(device_t parent, cfdata_t match, void *aux)
188 {
189
190 return 1;
191 }
192
193 static void
194 cpu_attach(device_t parent, device_t self, void *aux)
195 {
196 struct cpu_softc *sc = device_private(self);
197 struct cpu_attach_args *caa = aux;
198 struct cpu_info *ci;
199 uintptr_t ptr;
200 static int nphycpu = 0;
201
202 sc->sc_dev = self;
203
204 /*
205 * If we're an Application Processor, allocate a cpu_info
206 * If we're the first attached CPU use the primary cpu_info,
207 * otherwise allocate a new one
208 */
209 aprint_naive("\n");
210 aprint_normal("\n");
211 if (nphycpu > 0) {
212 struct cpu_info *tmp;
213 ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
214 KM_SLEEP);
215 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
216 ci->ci_curldt = -1;
217
218 tmp = phycpu_info_list;
219 while (tmp->ci_next)
220 tmp = tmp->ci_next;
221
222 tmp->ci_next = ci;
223 } else {
224 ci = &phycpu_info_primary;
225 }
226
227 ci->ci_self = ci;
228 sc->sc_info = ci;
229
230 ci->ci_dev = self;
231 ci->ci_acpiid = caa->cpu_id;
232 ci->ci_cpuid = caa->cpu_number;
233 ci->ci_vcpu = NULL;
234 ci->ci_index = nphycpu++;
235
236 if (!pmf_device_register(self, NULL, NULL))
237 aprint_error_dev(self, "couldn't establish power handler\n");
238
239 (void)config_defer(self, cpu_defer);
240 }
241
242 static void
243 cpu_defer(device_t self)
244 {
245 cpu_rescan(self, NULL, NULL);
246 }
247
248 static int
249 cpu_rescan(device_t self, const char *ifattr, const int *locators)
250 {
251 struct cpu_softc *sc = device_private(self);
252 struct cpufeature_attach_args cfaa;
253 struct cpu_info *ci = sc->sc_info;
254
255 memset(&cfaa, 0, sizeof(cfaa));
256 cfaa.ci = ci;
257
258 if (ifattr_match(ifattr, "cpufeaturebus")) {
259
260 if (ci->ci_frequency == NULL) {
261 cfaa.name = "frequency";
262 ci->ci_frequency = config_found_ia(self,
263 "cpufeaturebus", &cfaa, NULL);
264 }
265 }
266
267 return 0;
268 }
269
270 static void
271 cpu_childdetached(device_t self, device_t child)
272 {
273 struct cpu_softc *sc = device_private(self);
274 struct cpu_info *ci = sc->sc_info;
275
276 if (ci->ci_frequency == child)
277 ci->ci_frequency = NULL;
278 }
279
280 static int
281 vcpu_match(device_t parent, cfdata_t match, void *aux)
282 {
283 struct vcpu_attach_args *vcaa = aux;
284 struct vcpu_runstate_info vcr;
285 int error;
286
287 if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
288 error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
289 vcaa->vcaa_caa.cpu_number, &vcr);
290 switch (error) {
291 case 0:
292 return 1;
293 case -ENOENT:
294 return 0;
295 default:
296 panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
297 }
298 }
299
300 return 0;
301 }
302
303 static void
304 vcpu_attach(device_t parent, device_t self, void *aux)
305 {
306 struct vcpu_attach_args *vcaa = aux;
307
308 KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
309 vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
310 cpu_attach_common(parent, self, &vcaa->vcaa_caa);
311
312 if (!pmf_device_register(self, NULL, NULL))
313 aprint_error_dev(self, "couldn't establish power handler\n");
314 }
315
316 static int
317 vcpu_is_up(struct cpu_info *ci)
318 {
319 KASSERT(ci != NULL);
320 return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
321 }
322
323 static void
324 cpu_vm_init(struct cpu_info *ci)
325 {
326 int ncolors = 2, i;
327
328 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
329 struct x86_cache_info *cai;
330 int tcolors;
331
332 cai = &ci->ci_cinfo[i];
333
334 tcolors = atop(cai->cai_totalsize);
335 switch (cai->cai_associativity) {
336 case 0xff:
337 tcolors = 1; /* fully associative */
338 break;
339 case 0:
340 case 1:
341 break;
342 default:
343 tcolors /= cai->cai_associativity;
344 }
345 ncolors = uimax(ncolors, tcolors);
346 }
347
348 /*
349 * Knowing the size of the largest cache on this CPU, potentially
350 * re-color our pages.
351 */
352 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
353 uvm_page_recolor(ncolors);
354 pmap_tlb_cpu_init(ci);
355 #ifndef __HAVE_DIRECT_MAP
356 pmap_vpage_cpu_init(ci);
357 #endif
358 }
359
360 static void
361 cpu_attach_common(device_t parent, device_t self, void *aux)
362 {
363 struct cpu_softc *sc = device_private(self);
364 struct cpu_attach_args *caa = aux;
365 struct cpu_info *ci;
366 uintptr_t ptr;
367 int cpunum = caa->cpu_number;
368 static bool again = false;
369
370 sc->sc_dev = self;
371
372 /*
373 * If we're an Application Processor, allocate a cpu_info
374 * structure, otherwise use the primary's.
375 */
376 if (caa->cpu_role == CPU_ROLE_AP) {
377 aprint_naive(": Application Processor\n");
378 ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
379 KM_SLEEP);
380 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
381 memset(ci, 0, sizeof(*ci));
382 cpu_init_tss(ci);
383 } else {
384 aprint_naive(": %s Processor\n",
385 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
386 ci = &cpu_info_primary;
387 }
388
389 ci->ci_self = ci;
390 sc->sc_info = ci;
391 ci->ci_dev = self;
392 ci->ci_cpuid = cpunum;
393
394 KASSERT(HYPERVISOR_shared_info != NULL);
395 KASSERT(cpunum < XEN_LEGACY_MAX_VCPUS);
396 ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
397
398 KASSERT(ci->ci_func == 0);
399 ci->ci_func = caa->cpu_func;
400 aprint_normal("\n");
401
402 /* Must be called before mi_cpu_attach(). */
403 cpu_vm_init(ci);
404
405 if (caa->cpu_role == CPU_ROLE_AP) {
406 int error;
407
408 error = mi_cpu_attach(ci);
409
410 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
411 if (error != 0) {
412 aprint_error_dev(self,
413 "mi_cpu_attach failed with %d\n", error);
414 return;
415 }
416
417 } else {
418 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
419 }
420
421 KASSERT(ci->ci_cpuid == ci->ci_index);
422 #ifdef __x86_64__
423 /* No user PGD mapped for this CPU yet */
424 ci->ci_xen_current_user_pgd = 0;
425 #endif
426 mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
427 pmap_reference(pmap_kernel());
428 ci->ci_pmap = pmap_kernel();
429 ci->ci_tlbstate = TLBSTATE_STALE;
430
431 /*
432 * Boot processor may not be attached first, but the below
433 * must be done to allow booting other processors.
434 */
435 if (!again) {
436 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
437 /* Basic init. */
438 cpu_intr_init(ci);
439 cpu_get_tsc_freq(ci);
440 cpu_init(ci);
441 pmap_cpu_init_late(ci);
442
443 /* Every processor needs to init its own ipi h/w (similar to lapic) */
444 xen_ipi_init();
445
446 /* Make sure DELAY() is initialized. */
447 DELAY(1);
448 again = true;
449 }
450
451 /* further PCB init done later. */
452
453 switch (caa->cpu_role) {
454 case CPU_ROLE_SP:
455 atomic_or_32(&ci->ci_flags, CPUF_SP);
456 cpu_identify(ci);
457 x86_cpu_idle_init();
458 break;
459
460 case CPU_ROLE_BP:
461 atomic_or_32(&ci->ci_flags, CPUF_BSP);
462 cpu_identify(ci);
463 x86_cpu_idle_init();
464 break;
465
466 case CPU_ROLE_AP:
467 atomic_or_32(&ci->ci_flags, CPUF_AP);
468
469 /*
470 * report on an AP
471 */
472
473 #if defined(MULTIPROCESSOR)
474 /* interrupt handler stack */
475 cpu_intr_init(ci);
476
477 /* Setup per-cpu memory for gdt */
478 gdt_alloc_cpu(ci);
479
480 pmap_cpu_init_late(ci);
481 cpu_start_secondary(ci);
482
483 if (ci->ci_flags & CPUF_PRESENT) {
484 struct cpu_info *tmp;
485
486 cpu_identify(ci);
487 tmp = cpu_info_list;
488 while (tmp->ci_next)
489 tmp = tmp->ci_next;
490
491 tmp->ci_next = ci;
492 }
493 #else
494 aprint_error_dev(ci->ci_dev, "not started\n");
495 #endif
496 break;
497
498 default:
499 panic("unknown processor type??\n");
500 }
501
502 #ifdef MPVERBOSE
503 if (mp_verbose) {
504 struct lwp *l = ci->ci_data.cpu_idlelwp;
505 struct pcb *pcb = lwp_getpcb(l);
506
507 aprint_verbose_dev(self,
508 "idle lwp at %p, idle sp at 0x%p\n",
509 l,
510 #ifdef i386
511 (void *)pcb->pcb_esp
512 #else
513 (void *)pcb->pcb_rsp
514 #endif
515 );
516
517 }
518 #endif /* MPVERBOSE */
519 }
520
521 /*
522 * Initialize the processor appropriately.
523 */
524
525 void
526 cpu_init(struct cpu_info *ci)
527 {
528 uint32_t cr4 = 0;
529
530 /*
531 * If we have FXSAVE/FXRESTOR, use them.
532 */
533 if (cpu_feature[0] & CPUID_FXSR) {
534 cr4 |= CR4_OSFXSR;
535
536 /*
537 * If we have SSE/SSE2, enable XMM exceptions.
538 */
539 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
540 cr4 |= CR4_OSXMMEXCPT;
541 }
542
543 /* If xsave is supported, enable it */
544 if (cpu_feature[1] & CPUID2_XSAVE && x86_fpu_save >= FPU_SAVE_XSAVE)
545 cr4 |= CR4_OSXSAVE;
546
547 if (cr4) {
548 cr4 |= rcr4();
549 lcr4(cr4);
550 }
551
552 if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
553 fpuinit_mxcsr_mask();
554 }
555
556 /*
557 * Changing CR4 register may change cpuid values. For example, setting
558 * CR4_OSXSAVE sets CPUID2_OSXSAVE. The CPUID2_OSXSAVE is in
559 * ci_feat_val[1], so update it.
560 * XXX Other than ci_feat_val[1] might be changed.
561 */
562 if (cpuid_level >= 1) {
563 u_int descs[4];
564
565 x86_cpuid(1, descs);
566 ci->ci_feat_val[1] = descs[2];
567 }
568
569 /* If xsave is enabled, enable all fpu features */
570 if (cr4 & CR4_OSXSAVE) {
571 wrxcr(0, x86_xsave_features & XCR0_FPU);
572 }
573
574 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
575 }
576
577
578 #ifdef MULTIPROCESSOR
579
580 void
581 cpu_boot_secondary_processors(void)
582 {
583 struct cpu_info *ci;
584 kcpuset_t *cpus;
585 u_long i;
586
587 kcpuset_create(&cpus, true);
588 kcpuset_set(cpus, cpu_index(curcpu()));
589 for (i = 0; i < maxcpus; i++) {
590 ci = cpu_lookup(i);
591 if (ci == NULL)
592 continue;
593 if (ci->ci_data.cpu_idlelwp == NULL)
594 continue;
595 if ((ci->ci_flags & CPUF_PRESENT) == 0)
596 continue;
597 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
598 continue;
599 cpu_boot_secondary(ci);
600 kcpuset_set(cpus, cpu_index(ci));
601 }
602 while (!kcpuset_match(cpus, kcpuset_running))
603 ;
604 kcpuset_destroy(cpus);
605
606 x86_mp_online = true;
607 }
608
609 static void
610 cpu_init_idle_lwp(struct cpu_info *ci)
611 {
612 struct lwp *l = ci->ci_data.cpu_idlelwp;
613 struct pcb *pcb = lwp_getpcb(l);
614
615 pcb->pcb_cr0 = rcr0();
616 }
617
618 void
619 cpu_init_idle_lwps(void)
620 {
621 struct cpu_info *ci;
622 u_long i;
623
624 for (i = 0; i < maxcpus; i++) {
625 ci = cpu_lookup(i);
626 if (ci == NULL)
627 continue;
628 if (ci->ci_data.cpu_idlelwp == NULL)
629 continue;
630 if ((ci->ci_flags & CPUF_PRESENT) == 0)
631 continue;
632 cpu_init_idle_lwp(ci);
633 }
634 }
635
636 static void
637 cpu_start_secondary(struct cpu_info *ci)
638 {
639 int i;
640
641 aprint_debug_dev(ci->ci_dev, "starting\n");
642
643 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
644
645 if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
646 return;
647 }
648
649 /*
650 * wait for it to become ready
651 */
652 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
653 delay(10);
654 }
655 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
656 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
657 #if defined(MPDEBUG) && defined(DDB)
658 printf("dropping into debugger; continue from here to resume boot\n");
659 Debugger();
660 #endif
661 }
662
663 CPU_START_CLEANUP(ci);
664 }
665
666 void
667 cpu_boot_secondary(struct cpu_info *ci)
668 {
669 int i;
670 atomic_or_32(&ci->ci_flags, CPUF_GO);
671 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
672 delay(10);
673 }
674 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
675 aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
676 #if defined(MPDEBUG) && defined(DDB)
677 printf("dropping into debugger; continue from here to resume boot\n");
678 Debugger();
679 #endif
680 }
681 }
682
683 /*
684 * APs end up here immediately after initialisation and VCPUOP_up in
685 * mp_cpu_start().
686 * At this point, we are running in the idle pcb/idle stack of the new
687 * CPU. This function jumps to the idle loop and starts looking for
688 * work.
689 */
690 extern void x86_64_tls_switch(struct lwp *);
691 void
692 cpu_hatch(void *v)
693 {
694 struct cpu_info *ci = (struct cpu_info *)v;
695 struct pcb *pcb;
696 int s, i;
697
698 /* Setup TLS and kernel GS/FS */
699 cpu_init_msrs(ci, true);
700 cpu_init_idt();
701 gdt_init_cpu(ci);
702
703 cpu_probe(ci);
704
705 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
706
707 while ((ci->ci_flags & CPUF_GO) == 0) {
708 /* Don't use delay, boot CPU may be patching the text. */
709 for (i = 10000; i != 0; i--)
710 x86_pause();
711 }
712
713 /* Because the text may have been patched in x86_patch(). */
714 x86_flush();
715 tlbflushg();
716
717 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
718
719 pcb = lwp_getpcb(curlwp);
720 pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0);
721 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
722
723 xen_ipi_init();
724
725 xen_initclocks();
726
727 #ifdef __x86_64__
728 fpuinit(ci);
729 #endif
730
731 lldt(GSEL(GLDT_SEL, SEL_KPL));
732
733 cpu_init(ci);
734 cpu_get_tsc_freq(ci);
735
736 s = splhigh();
737 x86_enable_intr();
738 splx(s);
739
740 aprint_debug_dev(ci->ci_dev, "running\n");
741
742 cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
743
744 idle_loop(NULL);
745 KASSERT(false);
746 }
747
748 #if defined(DDB)
749
750 #include <ddb/db_output.h>
751 #include <machine/db_machdep.h>
752
753 /*
754 * Dump CPU information from ddb.
755 */
756 void
757 cpu_debug_dump(void)
758 {
759 struct cpu_info *ci;
760 CPU_INFO_ITERATOR cii;
761
762 db_printf("addr dev id flags ipis curlwp\n");
763 for (CPU_INFO_FOREACH(cii, ci)) {
764 db_printf("%p %s %ld %x %x %10p\n",
765 ci,
766 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
767 (long)ci->ci_cpuid,
768 ci->ci_flags, ci->ci_ipis,
769 ci->ci_curlwp);
770 }
771 }
772 #endif /* DDB */
773
774 #endif /* MULTIPROCESSOR */
775
776 extern void hypervisor_callback(void);
777 extern void failsafe_callback(void);
778 #ifdef __x86_64__
779 typedef void (vector)(void);
780 extern vector Xsyscall, Xsyscall32;
781 #endif
782
783 /*
784 * Setup the "trampoline". On Xen, we setup nearly all cpu context
785 * outside a trampoline, so we prototype and call targetip like so:
786 * void targetip(struct cpu_info *);
787 */
788
789 static void
790 gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
791 {
792 int i;
793 for (i = 0; i < entries; i++) {
794 frames[i] = ((paddr_t)xpmap_ptetomach(
795 (pt_entry_t *)(base + (i << PAGE_SHIFT)))) >> PAGE_SHIFT;
796
797 /* Mark Read-only */
798 pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
799 PTE_W);
800 }
801 }
802
803 #ifdef __x86_64__
804 extern char *ldtstore;
805
806 static void
807 xen_init_amd64_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
808 void targetrip(struct cpu_info *))
809 {
810 /* page frames to point at GDT */
811 extern int gdt_size;
812 paddr_t frames[16];
813 psize_t gdt_ents;
814
815 struct lwp *l;
816 struct pcb *pcb;
817
818 volatile struct vcpu_info *vci;
819
820 KASSERT(ci != NULL);
821 KASSERT(ci != &cpu_info_primary);
822 KASSERT(initctx != NULL);
823 KASSERT(targetrip != NULL);
824
825 memset(initctx, 0, sizeof(*initctx));
826
827 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
828 KASSERT(gdt_ents <= 16);
829
830 gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
831
832 /* Initialise the vcpu context: We use idle_loop()'s pcb context. */
833
834 l = ci->ci_data.cpu_idlelwp;
835
836 KASSERT(l != NULL);
837 pcb = lwp_getpcb(l);
838 KASSERT(pcb != NULL);
839
840 /* resume with interrupts off */
841 vci = ci->ci_vcpu;
842 vci->evtchn_upcall_mask = 1;
843 xen_mb();
844
845 /* resume in kernel-mode */
846 initctx->flags = VGCF_in_kernel | VGCF_online;
847
848 /* Stack and entry points:
849 * We arrange for the stack frame for cpu_hatch() to
850 * appear as a callee frame of lwp_trampoline(). Being a
851 * leaf frame prevents trampling on any of the MD stack setup
852 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
853 */
854
855 initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
856 initctx->user_regs.rip = (vaddr_t) targetrip;
857
858 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
859
860 initctx->user_regs.rflags = pcb->pcb_flags;
861 initctx->user_regs.rsp = pcb->pcb_rsp;
862
863 /* Data segments */
864 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
865 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
866 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
867
868 /* GDT */
869 memcpy(initctx->gdt_frames, frames, sizeof(frames));
870 initctx->gdt_ents = gdt_ents;
871
872 /* LDT */
873 initctx->ldt_base = (unsigned long)ldtstore;
874 initctx->ldt_ents = LDT_SIZE >> 3;
875
876 /* Kernel context state */
877 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
878 initctx->kernel_sp = pcb->pcb_rsp0;
879 initctx->ctrlreg[0] = pcb->pcb_cr0;
880 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
881 initctx->ctrlreg[2] = (vaddr_t)targetrip;
882 /*
883 * Use pmap_kernel() L4 PD directly, until we setup the
884 * per-cpu L4 PD in pmap_cpu_init_late()
885 */
886 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
887 initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
888
889 /* Xen callbacks */
890 initctx->event_callback_eip = (unsigned long)hypervisor_callback;
891 initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
892 initctx->syscall_callback_eip = (unsigned long)Xsyscall;
893
894 return;
895 }
896 #else /* i386 */
897 extern union descriptor *ldtstore;
898 extern void Xsyscall(void);
899
900 static void
901 xen_init_i386_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
902 void targeteip(struct cpu_info *))
903 {
904 /* page frames to point at GDT */
905 extern int gdt_size;
906 paddr_t frames[16];
907 psize_t gdt_ents;
908
909 struct lwp *l;
910 struct pcb *pcb;
911
912 volatile struct vcpu_info *vci;
913
914 KASSERT(ci != NULL);
915 KASSERT(ci != &cpu_info_primary);
916 KASSERT(initctx != NULL);
917 KASSERT(targeteip != NULL);
918
919 memset(initctx, 0, sizeof(*initctx));
920
921 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
922 KASSERT(gdt_ents <= 16);
923
924 gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
925
926 /*
927 * Initialise the vcpu context:
928 * We use this cpu's idle_loop() pcb context.
929 */
930
931 l = ci->ci_data.cpu_idlelwp;
932
933 KASSERT(l != NULL);
934 pcb = lwp_getpcb(l);
935 KASSERT(pcb != NULL);
936
937 /* resume with interrupts off */
938 vci = ci->ci_vcpu;
939 vci->evtchn_upcall_mask = 1;
940 xen_mb();
941
942 /* resume in kernel-mode */
943 initctx->flags = VGCF_in_kernel | VGCF_online;
944
945 /* Stack frame setup for cpu_hatch():
946 * We arrange for the stack frame for cpu_hatch() to
947 * appear as a callee frame of lwp_trampoline(). Being a
948 * leaf frame prevents trampling on any of the MD stack setup
949 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
950 */
951
952 initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
953 arg1 */
954 {
955 /* targeteip(ci); */
956 uint32_t *arg = (uint32_t *)initctx->user_regs.esp;
957 arg[1] = (uint32_t)ci; /* arg1 */
958 }
959
960 initctx->user_regs.eip = (vaddr_t)targeteip;
961 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
962 initctx->user_regs.eflags |= pcb->pcb_iopl;
963
964 /* Data segments */
965 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
966 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
967 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
968 initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
969
970 /* GDT */
971 memcpy(initctx->gdt_frames, frames, sizeof(frames));
972 initctx->gdt_ents = gdt_ents;
973
974 /* LDT */
975 initctx->ldt_base = (unsigned long)ldtstore;
976 initctx->ldt_ents = NLDT;
977
978 /* Kernel context state */
979 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
980 initctx->kernel_sp = pcb->pcb_esp0;
981 initctx->ctrlreg[0] = pcb->pcb_cr0;
982 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
983 initctx->ctrlreg[2] = (vaddr_t)targeteip;
984 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
985 initctx->ctrlreg[4] = /* CR4_PAE | */CR4_OSFXSR | CR4_OSXMMEXCPT;
986
987 /* Xen callbacks */
988 initctx->event_callback_eip = (unsigned long)hypervisor_callback;
989 initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
990 initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
991 initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
992
993 return;
994 }
995 #endif /* __x86_64__ */
996
997 int
998 mp_cpu_start(struct cpu_info *ci, vaddr_t target)
999 {
1000 int hyperror;
1001 struct vcpu_guest_context vcpuctx;
1002
1003 KASSERT(ci != NULL);
1004 KASSERT(ci != &cpu_info_primary);
1005 KASSERT(ci->ci_flags & CPUF_AP);
1006
1007 #ifdef __x86_64__
1008 xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
1009 #else
1010 xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
1011 #endif
1012
1013 /* Initialise the given vcpu to execute cpu_hatch(ci); */
1014 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
1015 aprint_error(": context initialisation failed. errno = %d\n", hyperror);
1016 return hyperror;
1017 }
1018
1019 /* Start it up */
1020
1021 /* First bring it down */
1022 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
1023 aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
1024 return hyperror;
1025 }
1026
1027 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
1028 aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
1029 return hyperror;
1030 }
1031
1032 if (!vcpu_is_up(ci)) {
1033 aprint_error(": did not come up\n");
1034 return -1;
1035 }
1036
1037 return 0;
1038 }
1039
1040 void
1041 mp_cpu_start_cleanup(struct cpu_info *ci)
1042 {
1043 if (vcpu_is_up(ci)) {
1044 aprint_debug_dev(ci->ci_dev, "is started.\n");
1045 } else {
1046 aprint_error_dev(ci->ci_dev, "did not start up.\n");
1047 }
1048 }
1049
1050 void
1051 cpu_init_msrs(struct cpu_info *ci, bool full)
1052 {
1053 #ifdef __x86_64__
1054 if (full) {
1055 HYPERVISOR_set_segment_base(SEGBASE_FS, 0);
1056 HYPERVISOR_set_segment_base(SEGBASE_GS_KERNEL, (uint64_t)ci);
1057 HYPERVISOR_set_segment_base(SEGBASE_GS_USER, 0);
1058 }
1059 #endif
1060
1061 if (cpu_feature[2] & CPUID_NOX)
1062 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1063 }
1064
1065 void
1066 cpu_offline_md(void)
1067 {
1068 return;
1069 }
1070
1071 void
1072 cpu_get_tsc_freq(struct cpu_info *ci)
1073 {
1074 uint32_t vcpu_tversion;
1075 const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1076
1077 vcpu_tversion = tinfo->version;
1078 while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
1079
1080 uint64_t freq = 1000000000ULL << 32;
1081 freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1082 if (tinfo->tsc_shift < 0)
1083 freq = freq << -tinfo->tsc_shift;
1084 else
1085 freq = freq >> tinfo->tsc_shift;
1086 ci->ci_data.cpu_cc_freq = freq;
1087 }
1088
1089 void
1090 x86_cpu_idle_xen(void)
1091 {
1092 struct cpu_info *ci = curcpu();
1093
1094 KASSERT(ci->ci_ilevel == IPL_NONE);
1095
1096 x86_disable_intr();
1097 if (!__predict_false(ci->ci_want_resched)) {
1098 idle_block();
1099 } else {
1100 x86_enable_intr();
1101 }
1102 }
1103
1104 /*
1105 * Loads pmap for the current CPU.
1106 */
1107 void
1108 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1109 {
1110 struct cpu_info *ci = curcpu();
1111 cpuid_t cid = cpu_index(ci);
1112 int i;
1113
1114 KASSERT(pmap != pmap_kernel());
1115
1116 mutex_enter(&ci->ci_kpm_mtx);
1117 /* make new pmap visible to xen_kpm_sync() */
1118 kcpuset_atomic_set(pmap->pm_xen_ptp_cpus, cid);
1119
1120 #ifdef __x86_64__
1121 pd_entry_t *new_pgd;
1122 paddr_t l4_pd_ma;
1123
1124 l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
1125
1126 /*
1127 * Map user space address in kernel space and load
1128 * user cr3
1129 */
1130 new_pgd = pmap->pm_pdir;
1131 KASSERT(pmap == ci->ci_pmap);
1132
1133 /* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
1134 for (i = 0; i < PDIR_SLOT_USERLIM; i++) {
1135 KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
1136 if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
1137 xpq_queue_pte_update(l4_pd_ma + i * sizeof(pd_entry_t),
1138 new_pgd[i]);
1139 }
1140 }
1141
1142 xen_set_user_pgd(pmap_pdirpa(pmap, 0));
1143 ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
1144 #else
1145 paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
1146 /* don't update the kernel L3 slot */
1147 for (i = 0; i < PDP_SIZE - 1; i++) {
1148 xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
1149 xpmap_ptom(pmap->pm_pdirpa[i]) | PTE_P);
1150 }
1151 #endif
1152
1153 tlbflush();
1154
1155 /* old pmap no longer visible to xen_kpm_sync() */
1156 if (oldpmap != pmap_kernel()) {
1157 kcpuset_atomic_clear(oldpmap->pm_xen_ptp_cpus, cid);
1158 }
1159 mutex_exit(&ci->ci_kpm_mtx);
1160 }
1161
1162 /*
1163 * pmap_cpu_init_late: perform late per-CPU initialization.
1164 *
1165 * Short note about percpu PDIR pages. Both the PAE and __x86_64__ architectures
1166 * have per-cpu PDIR tables, for two different reasons:
1167 * - on PAE, this is to get around Xen's pagetable setup constraints (multiple
1168 * L3[3]s cannot point to the same L2 - Xen will refuse to pin a table set up
1169 * this way).
1170 * - on __x86_64__, this is for multiple CPUs to map in different user pmaps
1171 * (see cpu_load_pmap()).
1172 *
1173 * What this means for us is that the PDIR of the pmap_kernel() is considered
1174 * to be a canonical "SHADOW" PDIR with the following properties:
1175 * - its recursive mapping points to itself
1176 * - per-cpu recursive mappings point to themselves on __x86_64__
1177 * - per-cpu L4 pages' kernel entries are expected to be in sync with
1178 * the shadow
1179 */
1180
1181 void
1182 pmap_cpu_init_late(struct cpu_info *ci)
1183 {
1184 int i;
1185
1186 /*
1187 * The BP has already its own PD page allocated during early
1188 * MD startup.
1189 */
1190
1191 #ifdef __x86_64__
1192 /* Setup per-cpu normal_pdes */
1193 extern pd_entry_t * const normal_pdes[];
1194 for (i = 0;i < PTP_LEVELS - 1;i++) {
1195 ci->ci_normal_pdes[i] = normal_pdes[i];
1196 }
1197 #endif
1198
1199 if (ci == &cpu_info_primary)
1200 return;
1201
1202 KASSERT(ci != NULL);
1203
1204 #if defined(i386)
1205 cpu_alloc_l3_page(ci);
1206 KASSERT(ci->ci_pae_l3_pdirpa != 0);
1207
1208 /* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
1209 for (i = 0; i < PDP_SIZE - 1; i++) {
1210 ci->ci_pae_l3_pdir[i] =
1211 xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PTE_P;
1212 }
1213 #endif
1214
1215 ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1216 UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
1217
1218 if (ci->ci_kpm_pdir == NULL) {
1219 panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
1220 __func__, cpu_index(ci));
1221 }
1222 ci->ci_kpm_pdirpa = vtophys((vaddr_t)ci->ci_kpm_pdir);
1223 KASSERT(ci->ci_kpm_pdirpa != 0);
1224
1225 #ifdef __x86_64__
1226 extern pt_entry_t xpmap_pg_nx;
1227
1228 /* Copy over the pmap_kernel() shadow L4 entries */
1229 memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
1230
1231 /* Recursive kernel mapping */
1232 ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa)
1233 | PTE_P | xpmap_pg_nx;
1234 #else
1235 /* Copy over the pmap_kernel() shadow L2 entries */
1236 memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN,
1237 nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
1238 #endif
1239
1240 /* Xen wants a RO pdir. */
1241 pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
1242 (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
1243 pmap_update(pmap_kernel());
1244
1245 #ifdef __x86_64__
1246 xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
1247 #else
1248 /*
1249 * Initialize L3 entry 3. This mapping is shared across all pmaps and is
1250 * static, ie: loading a new pmap will not update this entry.
1251 */
1252 ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PTE_P;
1253
1254 /* Xen wants a RO L3. */
1255 pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
1256 (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
1257 pmap_update(pmap_kernel());
1258
1259 xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
1260 #endif
1261 }
1262
1263 /*
1264 * Notify all other cpus to halt.
1265 */
1266
1267 void
1268 cpu_broadcast_halt(void)
1269 {
1270 xen_broadcast_ipi(XEN_IPI_HALT);
1271 }
1272
1273 /*
1274 * Send a dummy ipi to a cpu, and raise an AST on the running LWP.
1275 */
1276
1277 void
1278 cpu_kick(struct cpu_info *ci)
1279 {
1280 (void)xen_send_ipi(ci, XEN_IPI_AST);
1281 }
1282