Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.138
      1 /*	$NetBSD: cpu.c,v 1.138 2020/07/08 11:11:00 jdolecek Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5  * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by RedBack Networks Inc.
     10  *
     11  * Author: Bill Sommerfeld
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*
     36  * Copyright (c) 1999 Stefan Grefen
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. All advertising materials mentioning features or use of this software
     47  *    must display the following acknowledgement:
     48  *      This product includes software developed by the NetBSD
     49  *      Foundation, Inc. and its contributors.
     50  * 4. Neither the name of The NetBSD Foundation nor the names of its
     51  *    contributors may be used to endorse or promote products derived
     52  *    from this software without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     55  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  */
     66 
     67 #include <sys/cdefs.h>
     68 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.138 2020/07/08 11:11:00 jdolecek Exp $");
     69 
     70 #include "opt_ddb.h"
     71 #include "opt_multiprocessor.h"
     72 #include "opt_mpbios.h"		/* for MPDEBUG */
     73 #include "opt_mtrr.h"
     74 #include "opt_xen.h"
     75 
     76 #include "lapic.h"
     77 #include "ioapic.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/proc.h>
     81 #include <sys/systm.h>
     82 #include <sys/device.h>
     83 #include <sys/kmem.h>
     84 #include <sys/cpu.h>
     85 #include <sys/cpufreq.h>
     86 #include <sys/atomic.h>
     87 #include <sys/reboot.h>
     88 #include <sys/idle.h>
     89 
     90 #include <uvm/uvm.h>
     91 
     92 #include <machine/cpu.h>
     93 #include <machine/cpufunc.h>
     94 #include <machine/cpuvar.h>
     95 #include <machine/pmap.h>
     96 #include <machine/vmparam.h>
     97 #include <machine/mpbiosvar.h>
     98 #include <machine/pcb.h>
     99 #include <machine/specialreg.h>
    100 #include <machine/segments.h>
    101 #include <machine/gdt.h>
    102 #include <machine/mtrr.h>
    103 #include <machine/pio.h>
    104 
    105 #include <x86/fpu.h>
    106 
    107 #include <xen/xen.h>
    108 #include <xen/include/public/vcpu.h>
    109 #include <xen/vcpuvar.h>
    110 
    111 #if NLAPIC > 0
    112 #include <machine/apicvar.h>
    113 #include <machine/i82489reg.h>
    114 #include <machine/i82489var.h>
    115 #endif
    116 
    117 #include <dev/ic/mc146818reg.h>
    118 #include <dev/isa/isareg.h>
    119 
    120 static int	cpu_match(device_t, cfdata_t, void *);
    121 static void	cpu_attach(device_t, device_t, void *);
    122 static void	cpu_defer(device_t);
    123 static int	cpu_rescan(device_t, const char *, const int *);
    124 static void	cpu_childdetached(device_t, device_t);
    125 static int	vcpu_match(device_t, cfdata_t, void *);
    126 static void	vcpu_attach(device_t, device_t, void *);
    127 static void	cpu_attach_common(device_t, device_t, void *);
    128 void		cpu_offline_md(void);
    129 
    130 struct cpu_softc {
    131 	device_t sc_dev;		/* device tree glue */
    132 	struct cpu_info *sc_info;	/* pointer to CPU info */
    133 	bool sc_wasonline;
    134 };
    135 
    136 int mp_cpu_start(struct cpu_info *, vaddr_t);
    137 void mp_cpu_start_cleanup(struct cpu_info *);
    138 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    139 				      mp_cpu_start_cleanup };
    140 
    141 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    142     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    143 
    144 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
    145     vcpu_match, vcpu_attach, NULL, NULL);
    146 
    147 /*
    148  * Statically-allocated CPU info for the primary CPU (or the only
    149  * CPU, on uniprocessors).  The CPU info list is initialized to
    150  * point at it.
    151  */
    152 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    153 	.ci_dev = 0,
    154 	.ci_self = &cpu_info_primary,
    155 	.ci_idepth = -1,
    156 	.ci_curlwp = &lwp0,
    157 	.ci_curldt = -1,
    158 };
    159 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    160 	.ci_dev = 0,
    161 	.ci_self = &phycpu_info_primary,
    162 };
    163 
    164 struct cpu_info *cpu_info_list = &cpu_info_primary;
    165 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
    166 
    167 uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits
    168 			  *	[0] basic features %edx
    169 			  *	[1] basic features %ecx
    170 			  *	[2] extended features %edx
    171 			  *	[3] extended features %ecx
    172 			  *	[4] VIA padlock features
    173 			  *	[5] structured extended features cpuid.7:%ebx
    174 			  *	[6] structured extended features cpuid.7:%ecx
    175 			  */
    176 
    177 bool x86_mp_online;
    178 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    179 
    180 #if defined(MULTIPROCESSOR)
    181 void    	cpu_hatch(void *);
    182 static void    	cpu_boot_secondary(struct cpu_info *ci);
    183 static void    	cpu_start_secondary(struct cpu_info *ci);
    184 #endif	/* MULTIPROCESSOR */
    185 
    186 static int
    187 cpu_match(device_t parent, cfdata_t match, void *aux)
    188 {
    189 
    190 	return 1;
    191 }
    192 
    193 static void
    194 cpu_attach(device_t parent, device_t self, void *aux)
    195 {
    196 	struct cpu_softc *sc = device_private(self);
    197 	struct cpu_attach_args *caa = aux;
    198 	struct cpu_info *ci;
    199 	uintptr_t ptr;
    200 	static int nphycpu = 0;
    201 
    202 	sc->sc_dev = self;
    203 
    204 	/*
    205 	 * If we're an Application Processor, allocate a cpu_info
    206 	 * If we're the first attached CPU use the primary cpu_info,
    207 	 * otherwise allocate a new one
    208 	 */
    209 	aprint_naive("\n");
    210 	aprint_normal("\n");
    211 	if (nphycpu > 0) {
    212 		struct cpu_info *tmp;
    213 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    214 		    KM_SLEEP);
    215 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    216 		ci->ci_curldt = -1;
    217 
    218 		tmp = phycpu_info_list;
    219 		while (tmp->ci_next)
    220 			tmp = tmp->ci_next;
    221 
    222 		tmp->ci_next = ci;
    223 	} else {
    224 		ci = &phycpu_info_primary;
    225 	}
    226 
    227 	ci->ci_self = ci;
    228 	sc->sc_info = ci;
    229 
    230 	ci->ci_dev = self;
    231 	ci->ci_acpiid = caa->cpu_id;
    232 	ci->ci_cpuid = caa->cpu_number;
    233 	ci->ci_vcpu = NULL;
    234 	ci->ci_index = nphycpu++;
    235 	ci->ci_kfpu_spl = -1;
    236 
    237 	if (!pmf_device_register(self, NULL, NULL))
    238 		aprint_error_dev(self, "couldn't establish power handler\n");
    239 
    240 	(void)config_defer(self, cpu_defer);
    241 }
    242 
    243 static void
    244 cpu_defer(device_t self)
    245 {
    246 	cpu_rescan(self, NULL, NULL);
    247 }
    248 
    249 static int
    250 cpu_rescan(device_t self, const char *ifattr, const int *locators)
    251 {
    252 	struct cpu_softc *sc = device_private(self);
    253 	struct cpufeature_attach_args cfaa;
    254 	struct cpu_info *ci = sc->sc_info;
    255 
    256 	memset(&cfaa, 0, sizeof(cfaa));
    257 	cfaa.ci = ci;
    258 
    259 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    260 
    261 		if (ci->ci_frequency == NULL) {
    262 			cfaa.name = "frequency";
    263 			ci->ci_frequency = config_found_ia(self,
    264 			    "cpufeaturebus", &cfaa, NULL);
    265 		}
    266 	}
    267 
    268 	return 0;
    269 }
    270 
    271 static void
    272 cpu_childdetached(device_t self, device_t child)
    273 {
    274 	struct cpu_softc *sc = device_private(self);
    275 	struct cpu_info *ci = sc->sc_info;
    276 
    277 	if (ci->ci_frequency == child)
    278 		ci->ci_frequency = NULL;
    279 }
    280 
    281 static int
    282 vcpu_match(device_t parent, cfdata_t match, void *aux)
    283 {
    284 	struct vcpu_attach_args *vcaa = aux;
    285 	struct vcpu_runstate_info vcr;
    286 	int error;
    287 
    288 	if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
    289 		error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
    290 		    vcaa->vcaa_caa.cpu_number, &vcr);
    291 		switch (error) {
    292 		case 0:
    293 			return 1;
    294 		case -ENOENT:
    295 			return 0;
    296 		default:
    297 			panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
    298 		}
    299 	}
    300 
    301 	return 0;
    302 }
    303 
    304 static void
    305 vcpu_attach(device_t parent, device_t self, void *aux)
    306 {
    307 	struct vcpu_attach_args *vcaa = aux;
    308 
    309 	KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
    310 	vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
    311 	cpu_attach_common(parent, self, &vcaa->vcaa_caa);
    312 
    313 	if (!pmf_device_register(self, NULL, NULL))
    314 		aprint_error_dev(self, "couldn't establish power handler\n");
    315 }
    316 
    317 static int
    318 vcpu_is_up(struct cpu_info *ci)
    319 {
    320 	KASSERT(ci != NULL);
    321 	return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_vcpuid, NULL);
    322 }
    323 
    324 static void
    325 cpu_vm_init(struct cpu_info *ci)
    326 {
    327 	int ncolors = 2, i;
    328 
    329 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    330 		struct x86_cache_info *cai;
    331 		int tcolors;
    332 
    333 		cai = &ci->ci_cinfo[i];
    334 
    335 		tcolors = atop(cai->cai_totalsize);
    336 		switch (cai->cai_associativity) {
    337 		case 0xff:
    338 			tcolors = 1; /* fully associative */
    339 			break;
    340 		case 0:
    341 		case 1:
    342 			break;
    343 		default:
    344 			tcolors /= cai->cai_associativity;
    345 		}
    346 		ncolors = uimax(ncolors, tcolors);
    347 	}
    348 
    349 	/*
    350 	 * Knowing the size of the largest cache on this CPU, potentially
    351 	 * re-color our pages.
    352 	 */
    353 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    354 	uvm_page_recolor(ncolors);
    355 	pmap_tlb_cpu_init(ci);
    356 #ifndef __HAVE_DIRECT_MAP
    357 	pmap_vpage_cpu_init(ci);
    358 #endif
    359 }
    360 
    361 static void
    362 cpu_attach_common(device_t parent, device_t self, void *aux)
    363 {
    364 	struct cpu_softc *sc = device_private(self);
    365 	struct cpu_attach_args *caa = aux;
    366 	struct cpu_info *ci;
    367 	uintptr_t ptr;
    368 	int cpunum = caa->cpu_number;
    369 	static bool again = false;
    370 
    371 	sc->sc_dev = self;
    372 
    373 	/*
    374 	 * If we're an Application Processor, allocate a cpu_info
    375 	 * structure, otherwise use the primary's.
    376 	 */
    377 	if (caa->cpu_role == CPU_ROLE_AP) {
    378 		aprint_naive(": Application Processor\n");
    379 		ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    380 		    KM_SLEEP);
    381 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    382 		memset(ci, 0, sizeof(*ci));
    383 		cpu_init_tss(ci);
    384 	} else {
    385 		aprint_naive(": %s Processor\n",
    386 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    387 		ci = &cpu_info_primary;
    388 	}
    389 
    390 	ci->ci_self = ci;
    391 	sc->sc_info = ci;
    392 	ci->ci_dev = self;
    393 	ci->ci_cpuid = cpunum;
    394 	ci->ci_vcpuid = cpunum;
    395 	ci->ci_kfpu_spl = -1;
    396 
    397 	KASSERT(HYPERVISOR_shared_info != NULL);
    398 	KASSERT(cpunum < XEN_LEGACY_MAX_VCPUS);
    399 	ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
    400 
    401 	KASSERT(ci->ci_func == 0);
    402 	ci->ci_func = caa->cpu_func;
    403 	aprint_normal("\n");
    404 
    405 	/* Must be called before mi_cpu_attach(). */
    406 	cpu_vm_init(ci);
    407 
    408 	if (caa->cpu_role == CPU_ROLE_AP) {
    409 		int error;
    410 
    411 		error = mi_cpu_attach(ci);
    412 
    413 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    414 		if (error != 0) {
    415 			aprint_error_dev(self,
    416 			    "mi_cpu_attach failed with %d\n", error);
    417 			return;
    418 		}
    419 
    420 	} else {
    421 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    422 	}
    423 
    424 	KASSERT(ci->ci_cpuid == ci->ci_index);
    425 #ifdef __x86_64__
    426 	/* No user PGD mapped for this CPU yet */
    427 	ci->ci_xen_current_user_pgd = 0;
    428 #endif
    429 	mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
    430 	pmap_reference(pmap_kernel());
    431 	ci->ci_pmap = pmap_kernel();
    432 	ci->ci_tlbstate = TLBSTATE_STALE;
    433 
    434 	/*
    435 	 * Boot processor may not be attached first, but the below
    436 	 * must be done to allow booting other processors.
    437 	 */
    438 	if (!again) {
    439 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    440 		/* Basic init. */
    441 		cpu_intr_init(ci);
    442 		cpu_get_tsc_freq(ci);
    443 		cpu_init(ci);
    444 		pmap_cpu_init_late(ci);
    445 
    446 		/* Every processor needs to init its own ipi h/w (similar to lapic) */
    447 		xen_ipi_init();
    448 
    449 		/* Make sure DELAY() is initialized. */
    450 		DELAY(1);
    451 		again = true;
    452 	}
    453 
    454 	/* further PCB init done later. */
    455 
    456 	switch (caa->cpu_role) {
    457 	case CPU_ROLE_SP:
    458 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    459 		cpu_identify(ci);
    460 		x86_cpu_idle_init();
    461 		break;
    462 
    463 	case CPU_ROLE_BP:
    464 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    465 		cpu_identify(ci);
    466 		x86_cpu_idle_init();
    467 		break;
    468 
    469 	case CPU_ROLE_AP:
    470 		atomic_or_32(&ci->ci_flags, CPUF_AP);
    471 
    472 		/*
    473 		 * report on an AP
    474 		 */
    475 
    476 #if defined(MULTIPROCESSOR)
    477 		/* interrupt handler stack */
    478 		cpu_intr_init(ci);
    479 
    480 		/* Setup per-cpu memory for gdt */
    481 		gdt_alloc_cpu(ci);
    482 
    483 		pmap_cpu_init_late(ci);
    484 		cpu_start_secondary(ci);
    485 
    486 		if (ci->ci_flags & CPUF_PRESENT) {
    487 			struct cpu_info *tmp;
    488 
    489 			cpu_identify(ci);
    490 			tmp = cpu_info_list;
    491 			while (tmp->ci_next)
    492 				tmp = tmp->ci_next;
    493 
    494 			tmp->ci_next = ci;
    495 		}
    496 #else
    497 		aprint_error_dev(ci->ci_dev, "not started\n");
    498 #endif
    499 		break;
    500 
    501 	default:
    502 		panic("unknown processor type??\n");
    503 	}
    504 
    505 #ifdef MPVERBOSE
    506 	if (mp_verbose) {
    507 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    508 		struct pcb *pcb = lwp_getpcb(l);
    509 
    510 		aprint_verbose_dev(self,
    511 		    "idle lwp at %p, idle sp at %p\n",
    512 		    l,
    513 #ifdef i386
    514 		    (void *)pcb->pcb_esp
    515 #else
    516 		    (void *)pcb->pcb_rsp
    517 #endif
    518 		);
    519 
    520 	}
    521 #endif /* MPVERBOSE */
    522 }
    523 
    524 /*
    525  * Initialize the processor appropriately.
    526  */
    527 
    528 void
    529 cpu_init(struct cpu_info *ci)
    530 {
    531 	uint32_t cr4 = 0;
    532 
    533 	/*
    534 	 * If we have FXSAVE/FXRESTOR, use them.
    535 	 */
    536 	if (cpu_feature[0] & CPUID_FXSR) {
    537 		cr4 |= CR4_OSFXSR;
    538 
    539 		/*
    540 		 * If we have SSE/SSE2, enable XMM exceptions.
    541 		 */
    542 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    543 			cr4 |= CR4_OSXMMEXCPT;
    544 	}
    545 
    546 	/* If xsave is supported, enable it */
    547 	if (cpu_feature[1] & CPUID2_XSAVE && x86_fpu_save >= FPU_SAVE_XSAVE)
    548 		cr4 |= CR4_OSXSAVE;
    549 
    550 	if (cr4) {
    551 		cr4 |= rcr4();
    552 		lcr4(cr4);
    553 	}
    554 
    555 	if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
    556 		fpuinit_mxcsr_mask();
    557 	}
    558 
    559 	/*
    560 	 * Changing CR4 register may change cpuid values. For example, setting
    561 	 * CR4_OSXSAVE sets CPUID2_OSXSAVE. The CPUID2_OSXSAVE is in
    562 	 * ci_feat_val[1], so update it.
    563 	 * XXX Other than ci_feat_val[1] might be changed.
    564 	 */
    565 	if (cpuid_level >= 1) {
    566 		u_int descs[4];
    567 
    568 		x86_cpuid(1, descs);
    569 		ci->ci_feat_val[1] = descs[2];
    570 	}
    571 
    572 	/* If xsave is enabled, enable all fpu features */
    573 	if (cr4 & CR4_OSXSAVE) {
    574 		wrxcr(0, x86_xsave_features & XCR0_FPU);
    575 	}
    576 
    577 	atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    578 }
    579 
    580 
    581 #ifdef MULTIPROCESSOR
    582 
    583 void
    584 cpu_boot_secondary_processors(void)
    585 {
    586 	struct cpu_info *ci;
    587 	kcpuset_t *cpus;
    588 	u_long i;
    589 
    590 	kcpuset_create(&cpus, true);
    591 	kcpuset_set(cpus, cpu_index(curcpu()));
    592 	for (i = 0; i < maxcpus; i++) {
    593 		ci = cpu_lookup(i);
    594 		if (ci == NULL)
    595 			continue;
    596 		if (ci->ci_data.cpu_idlelwp == NULL)
    597 			continue;
    598 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    599 			continue;
    600 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    601 			continue;
    602 		cpu_boot_secondary(ci);
    603 		kcpuset_set(cpus, cpu_index(ci));
    604 	}
    605 	while (!kcpuset_match(cpus, kcpuset_running))
    606 		;
    607 	kcpuset_destroy(cpus);
    608 
    609 	x86_mp_online = true;
    610 }
    611 
    612 static void
    613 cpu_init_idle_lwp(struct cpu_info *ci)
    614 {
    615 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    616 	struct pcb *pcb = lwp_getpcb(l);
    617 
    618 	pcb->pcb_cr0 = rcr0();
    619 }
    620 
    621 void
    622 cpu_init_idle_lwps(void)
    623 {
    624 	struct cpu_info *ci;
    625 	u_long i;
    626 
    627 	for (i = 0; i < maxcpus; i++) {
    628 		ci = cpu_lookup(i);
    629 		if (ci == NULL)
    630 			continue;
    631 		if (ci->ci_data.cpu_idlelwp == NULL)
    632 			continue;
    633 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    634 			continue;
    635 		cpu_init_idle_lwp(ci);
    636 	}
    637 }
    638 
    639 static void
    640 cpu_start_secondary(struct cpu_info *ci)
    641 {
    642 	int i;
    643 
    644 	aprint_debug_dev(ci->ci_dev, "starting\n");
    645 
    646 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    647 
    648 	if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
    649 		return;
    650 	}
    651 
    652 	/*
    653 	 * wait for it to become ready
    654 	 */
    655 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    656 		delay(10);
    657 	}
    658 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    659 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    660 #if defined(MPDEBUG) && defined(DDB)
    661 		printf("dropping into debugger; continue from here to resume boot\n");
    662 		Debugger();
    663 #endif
    664 	}
    665 
    666 	CPU_START_CLEANUP(ci);
    667 }
    668 
    669 void
    670 cpu_boot_secondary(struct cpu_info *ci)
    671 {
    672 	int i;
    673 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    674 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    675 		delay(10);
    676 	}
    677 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    678 		aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
    679 #if defined(MPDEBUG) && defined(DDB)
    680 		printf("dropping into debugger; continue from here to resume boot\n");
    681 		Debugger();
    682 #endif
    683 	}
    684 }
    685 
    686 /*
    687  * APs end up here immediately after initialisation and VCPUOP_up in
    688  * mp_cpu_start().
    689  * At this point, we are running in the idle pcb/idle stack of the new
    690  * CPU.  This function jumps to the idle loop and starts looking for
    691  * work.
    692  */
    693 extern void x86_64_tls_switch(struct lwp *);
    694 void
    695 cpu_hatch(void *v)
    696 {
    697 	struct cpu_info *ci = (struct cpu_info *)v;
    698 	struct pcb *pcb;
    699 	int s, i;
    700 
    701 	/* Setup TLS and kernel GS/FS */
    702 	cpu_init_msrs(ci, true);
    703 	cpu_init_idt();
    704 	gdt_init_cpu(ci);
    705 
    706 	cpu_probe(ci);
    707 
    708 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    709 
    710 	while ((ci->ci_flags & CPUF_GO) == 0) {
    711 		/* Don't use delay, boot CPU may be patching the text. */
    712 		for (i = 10000; i != 0; i--)
    713 			x86_pause();
    714 	}
    715 
    716 	/* Because the text may have been patched in x86_patch(). */
    717 	x86_flush();
    718 	tlbflushg();
    719 
    720 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    721 
    722 	KASSERT(ci->ci_curlwp == ci->ci_data.cpu_idlelwp);
    723 	KASSERT(curlwp == ci->ci_data.cpu_idlelwp);
    724 	pcb = lwp_getpcb(curlwp);
    725 	pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0);
    726 
    727 	xen_ipi_init();
    728 
    729 	xen_initclocks();
    730 
    731 #ifdef __x86_64__
    732 	fpuinit(ci);
    733 #endif
    734 
    735 	lldt(GSEL(GLDT_SEL, SEL_KPL));
    736 
    737 	cpu_init(ci);
    738 	cpu_get_tsc_freq(ci);
    739 
    740 	s = splhigh();
    741 	x86_enable_intr();
    742 	splx(s);
    743 
    744 	aprint_debug_dev(ci->ci_dev, "running\n");
    745 
    746 	KASSERT(ci->ci_curlwp == ci->ci_data.cpu_idlelwp);
    747 	idle_loop(NULL);
    748 	KASSERT(false);
    749 }
    750 
    751 #if defined(DDB)
    752 
    753 #include <ddb/db_output.h>
    754 #include <machine/db_machdep.h>
    755 
    756 /*
    757  * Dump CPU information from ddb.
    758  */
    759 void
    760 cpu_debug_dump(void)
    761 {
    762 	struct cpu_info *ci;
    763 	CPU_INFO_ITERATOR cii;
    764 
    765 	db_printf("addr		dev	id	flags	ipis	curlwp\n");
    766 	for (CPU_INFO_FOREACH(cii, ci)) {
    767 		db_printf("%p	%s	%ld	%x	%x	%10p\n",
    768 		    ci,
    769 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    770 		    (long)ci->ci_vcpuid,
    771 		    ci->ci_flags, ci->ci_ipis,
    772 		    ci->ci_curlwp);
    773 	}
    774 }
    775 #endif /* DDB */
    776 
    777 #endif /* MULTIPROCESSOR */
    778 
    779 extern void hypervisor_callback(void);
    780 extern void failsafe_callback(void);
    781 #ifdef __x86_64__
    782 typedef void (vector)(void);
    783 extern vector Xsyscall, Xsyscall32;
    784 #endif
    785 
    786 /*
    787  * Setup the "trampoline". On Xen, we setup nearly all cpu context
    788  * outside a trampoline, so we prototype and call targetip like so:
    789  * void targetip(struct cpu_info *);
    790  */
    791 
    792 static void
    793 gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
    794 {
    795 	int i;
    796 	for (i = 0; i < entries; i++) {
    797 		frames[i] = ((paddr_t)xpmap_ptetomach(
    798 		    (pt_entry_t *)(base + (i << PAGE_SHIFT)))) >> PAGE_SHIFT;
    799 
    800 		/* Mark Read-only */
    801 		pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
    802 		    PTE_W);
    803 	}
    804 }
    805 
    806 #ifdef __x86_64__
    807 extern char *ldtstore;
    808 
    809 static void
    810 xen_init_amd64_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
    811     void targetrip(struct cpu_info *))
    812 {
    813 	/* page frames to point at GDT */
    814 	extern int gdt_size;
    815 	paddr_t frames[16];
    816 	psize_t gdt_ents;
    817 
    818 	struct lwp *l;
    819 	struct pcb *pcb;
    820 
    821 	volatile struct vcpu_info *vci;
    822 
    823 	KASSERT(ci != NULL);
    824 	KASSERT(ci != &cpu_info_primary);
    825 	KASSERT(initctx != NULL);
    826 	KASSERT(targetrip != NULL);
    827 
    828 	memset(initctx, 0, sizeof(*initctx));
    829 
    830 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
    831 	KASSERT(gdt_ents <= 16);
    832 
    833 	gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
    834 
    835 	/* Initialise the vcpu context: We use idle_loop()'s pcb context. */
    836 
    837 	l = ci->ci_data.cpu_idlelwp;
    838 
    839 	KASSERT(l != NULL);
    840 	pcb = lwp_getpcb(l);
    841 	KASSERT(pcb != NULL);
    842 
    843 	/* resume with interrupts off */
    844 	vci = ci->ci_vcpu;
    845 	vci->evtchn_upcall_mask = 1;
    846 	xen_mb();
    847 
    848 	/* resume in kernel-mode */
    849 	initctx->flags = VGCF_in_kernel | VGCF_online;
    850 
    851 	/* Stack and entry points:
    852 	 * We arrange for the stack frame for cpu_hatch() to
    853 	 * appear as a callee frame of lwp_trampoline(). Being a
    854 	 * leaf frame prevents trampling on any of the MD stack setup
    855 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
    856 	 */
    857 
    858 	initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
    859 	initctx->user_regs.rip = (vaddr_t) targetrip;
    860 
    861 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
    862 
    863 	initctx->user_regs.rflags = pcb->pcb_flags;
    864 	initctx->user_regs.rsp = pcb->pcb_rsp;
    865 
    866 	/* Data segments */
    867 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
    868 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
    869 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
    870 
    871 	/* GDT */
    872 	memcpy(initctx->gdt_frames, frames, sizeof(frames));
    873 	initctx->gdt_ents = gdt_ents;
    874 
    875 	/* LDT */
    876 	initctx->ldt_base = (unsigned long)ldtstore;
    877 	initctx->ldt_ents = LDT_SIZE >> 3;
    878 
    879 	/* Kernel context state */
    880 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
    881 	initctx->kernel_sp = pcb->pcb_rsp0;
    882 	initctx->ctrlreg[0] = pcb->pcb_cr0;
    883 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
    884 	initctx->ctrlreg[2] = (vaddr_t)targetrip;
    885 	/*
    886 	 * Use pmap_kernel() L4 PD directly, until we setup the
    887 	 * per-cpu L4 PD in pmap_cpu_init_late()
    888 	 */
    889 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
    890 	initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
    891 
    892 	/* Xen callbacks */
    893 	initctx->event_callback_eip = (unsigned long)hypervisor_callback;
    894 	initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
    895 	initctx->syscall_callback_eip = (unsigned long)Xsyscall;
    896 
    897 	return;
    898 }
    899 #else /* i386 */
    900 extern union descriptor *ldtstore;
    901 extern void Xsyscall(void);
    902 
    903 static void
    904 xen_init_i386_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
    905     void targeteip(struct cpu_info *))
    906 {
    907 	/* page frames to point at GDT */
    908 	extern int gdt_size;
    909 	paddr_t frames[16];
    910 	psize_t gdt_ents;
    911 
    912 	struct lwp *l;
    913 	struct pcb *pcb;
    914 
    915 	volatile struct vcpu_info *vci;
    916 
    917 	KASSERT(ci != NULL);
    918 	KASSERT(ci != &cpu_info_primary);
    919 	KASSERT(initctx != NULL);
    920 	KASSERT(targeteip != NULL);
    921 
    922 	memset(initctx, 0, sizeof(*initctx));
    923 
    924 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
    925 	KASSERT(gdt_ents <= 16);
    926 
    927 	gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
    928 
    929 	/*
    930 	 * Initialise the vcpu context:
    931 	 * We use this cpu's idle_loop() pcb context.
    932 	 */
    933 
    934 	l = ci->ci_data.cpu_idlelwp;
    935 
    936 	KASSERT(l != NULL);
    937 	pcb = lwp_getpcb(l);
    938 	KASSERT(pcb != NULL);
    939 
    940 	/* resume with interrupts off */
    941 	vci = ci->ci_vcpu;
    942 	vci->evtchn_upcall_mask = 1;
    943 	xen_mb();
    944 
    945 	/* resume in kernel-mode */
    946 	initctx->flags = VGCF_in_kernel | VGCF_online;
    947 
    948 	/* Stack frame setup for cpu_hatch():
    949 	 * We arrange for the stack frame for cpu_hatch() to
    950 	 * appear as a callee frame of lwp_trampoline(). Being a
    951 	 * leaf frame prevents trampling on any of the MD stack setup
    952 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
    953 	 */
    954 
    955 	initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
    956 						      arg1 */
    957 	{
    958 		/* targeteip(ci); */
    959 		uint32_t *arg = (uint32_t *)initctx->user_regs.esp;
    960 		arg[1] = (uint32_t)ci; /* arg1 */
    961 	}
    962 
    963 	initctx->user_regs.eip = (vaddr_t)targeteip;
    964 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
    965 	initctx->user_regs.eflags |= pcb->pcb_iopl;
    966 
    967 	/* Data segments */
    968 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
    969 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
    970 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
    971 	initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
    972 
    973 	/* GDT */
    974 	memcpy(initctx->gdt_frames, frames, sizeof(frames));
    975 	initctx->gdt_ents = gdt_ents;
    976 
    977 	/* LDT */
    978 	initctx->ldt_base = (unsigned long)ldtstore;
    979 	initctx->ldt_ents = NLDT;
    980 
    981 	/* Kernel context state */
    982 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
    983 	initctx->kernel_sp = pcb->pcb_esp0;
    984 	initctx->ctrlreg[0] = pcb->pcb_cr0;
    985 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
    986 	initctx->ctrlreg[2] = (vaddr_t)targeteip;
    987 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
    988 	initctx->ctrlreg[4] = /* CR4_PAE | */CR4_OSFXSR | CR4_OSXMMEXCPT;
    989 
    990 	/* Xen callbacks */
    991 	initctx->event_callback_eip = (unsigned long)hypervisor_callback;
    992 	initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
    993 	initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
    994 	initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
    995 
    996 	return;
    997 }
    998 #endif /* __x86_64__ */
    999 
   1000 int
   1001 mp_cpu_start(struct cpu_info *ci, vaddr_t target)
   1002 {
   1003 	int hyperror;
   1004 	struct vcpu_guest_context *vcpuctx;
   1005 
   1006 	KASSERT(ci != NULL);
   1007 	KASSERT(ci != &cpu_info_primary);
   1008 	KASSERT(ci->ci_flags & CPUF_AP);
   1009 
   1010 	vcpuctx = kmem_alloc(sizeof(*vcpuctx), KM_SLEEP);
   1011 
   1012 #ifdef __x86_64__
   1013 	xen_init_amd64_vcpuctxt(ci, vcpuctx, (void (*)(struct cpu_info *))target);
   1014 #else
   1015 	xen_init_i386_vcpuctxt(ci, vcpuctx, (void (*)(struct cpu_info *))target);
   1016 #endif
   1017 
   1018 	/* Initialise the given vcpu to execute cpu_hatch(ci); */
   1019 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_vcpuid, vcpuctx))) {
   1020 		aprint_error(": context initialisation failed. errno = %d\n", hyperror);
   1021 		goto out;
   1022 	}
   1023 
   1024 	/* Start it up */
   1025 
   1026 	/* First bring it down */
   1027 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_vcpuid, NULL))) {
   1028 		aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
   1029 		goto out;
   1030 	}
   1031 
   1032 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_vcpuid, NULL))) {
   1033 		aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
   1034 		goto out;
   1035 	}
   1036 
   1037 	if (!vcpu_is_up(ci)) {
   1038 		aprint_error(": did not come up\n");
   1039 		hyperror = -1;
   1040 		goto out;
   1041 	}
   1042 
   1043 out:
   1044 	kmem_free(vcpuctx, sizeof(*vcpuctx));
   1045 	return hyperror;
   1046 }
   1047 
   1048 void
   1049 mp_cpu_start_cleanup(struct cpu_info *ci)
   1050 {
   1051 	if (vcpu_is_up(ci)) {
   1052 		aprint_debug_dev(ci->ci_dev, "is started.\n");
   1053 	} else {
   1054 		aprint_error_dev(ci->ci_dev, "did not start up.\n");
   1055 	}
   1056 }
   1057 
   1058 void
   1059 cpu_init_msrs(struct cpu_info *ci, bool full)
   1060 {
   1061 #ifdef __x86_64__
   1062 	if (full) {
   1063 		HYPERVISOR_set_segment_base(SEGBASE_FS, 0);
   1064 		HYPERVISOR_set_segment_base(SEGBASE_GS_KERNEL, (uint64_t)ci);
   1065 		HYPERVISOR_set_segment_base(SEGBASE_GS_USER, 0);
   1066 	}
   1067 #endif
   1068 
   1069 	if (cpu_feature[2] & CPUID_NOX)
   1070 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1071 }
   1072 
   1073 void
   1074 cpu_offline_md(void)
   1075 {
   1076 	return;
   1077 }
   1078 
   1079 void
   1080 cpu_get_tsc_freq(struct cpu_info *ci)
   1081 {
   1082 	uint32_t vcpu_tversion;
   1083 	const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
   1084 
   1085 	vcpu_tversion = tinfo->version;
   1086 	while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
   1087 
   1088 	uint64_t freq = 1000000000ULL << 32;
   1089 	freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
   1090 	if (tinfo->tsc_shift < 0)
   1091 		freq = freq << -tinfo->tsc_shift;
   1092 	else
   1093 		freq = freq >> tinfo->tsc_shift;
   1094 	ci->ci_data.cpu_cc_freq = freq;
   1095 }
   1096 
   1097 /*
   1098  * Loads pmap for the current CPU.
   1099  */
   1100 void
   1101 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
   1102 {
   1103 	struct cpu_info *ci = curcpu();
   1104 	cpuid_t cid = cpu_index(ci);
   1105 	int i;
   1106 
   1107 	KASSERT(pmap != pmap_kernel());
   1108 
   1109 	mutex_enter(&ci->ci_kpm_mtx);
   1110 	/* make new pmap visible to xen_kpm_sync() */
   1111 	kcpuset_atomic_set(pmap->pm_xen_ptp_cpus, cid);
   1112 
   1113 #ifdef __x86_64__
   1114 	pd_entry_t *new_pgd;
   1115 	paddr_t l4_pd_ma;
   1116 
   1117 	l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
   1118 
   1119 	/*
   1120 	 * Map user space address in kernel space and load
   1121 	 * user cr3
   1122 	 */
   1123 	new_pgd = pmap->pm_pdir;
   1124 	KASSERT(pmap == ci->ci_pmap);
   1125 
   1126 	/* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
   1127 	for (i = 0; i < PDIR_SLOT_USERLIM; i++) {
   1128 		KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
   1129 		if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
   1130 			xpq_queue_pte_update(l4_pd_ma + i * sizeof(pd_entry_t),
   1131 			    new_pgd[i]);
   1132 		}
   1133 	}
   1134 
   1135 	xen_set_user_pgd(pmap_pdirpa(pmap, 0));
   1136 	ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
   1137 #else
   1138 	paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
   1139 	/* don't update the kernel L3 slot */
   1140 	for (i = 0; i < PDP_SIZE - 1; i++) {
   1141 		xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
   1142 		    xpmap_ptom(pmap->pm_pdirpa[i]) | PTE_P);
   1143 	}
   1144 #endif
   1145 
   1146 	tlbflush();
   1147 
   1148 	/* old pmap no longer visible to xen_kpm_sync() */
   1149 	if (oldpmap != pmap_kernel()) {
   1150 		kcpuset_atomic_clear(oldpmap->pm_xen_ptp_cpus, cid);
   1151 	}
   1152 	mutex_exit(&ci->ci_kpm_mtx);
   1153 }
   1154 
   1155 /*
   1156  * pmap_cpu_init_late: perform late per-CPU initialization.
   1157  *
   1158  * Short note about percpu PDIR pages. Both the PAE and __x86_64__ architectures
   1159  * have per-cpu PDIR tables, for two different reasons:
   1160  *  - on PAE, this is to get around Xen's pagetable setup constraints (multiple
   1161  *    L3[3]s cannot point to the same L2 - Xen will refuse to pin a table set up
   1162  *    this way).
   1163  *  - on __x86_64__, this is for multiple CPUs to map in different user pmaps
   1164  *    (see cpu_load_pmap()).
   1165  *
   1166  * What this means for us is that the PDIR of the pmap_kernel() is considered
   1167  * to be a canonical "SHADOW" PDIR with the following properties:
   1168  *  - its recursive mapping points to itself
   1169  *  - per-cpu recursive mappings point to themselves on __x86_64__
   1170  *  - per-cpu L4 pages' kernel entries are expected to be in sync with
   1171  *    the shadow
   1172  */
   1173 
   1174 void
   1175 pmap_cpu_init_late(struct cpu_info *ci)
   1176 {
   1177 	int i;
   1178 
   1179 	/*
   1180 	 * The BP has already its own PD page allocated during early
   1181 	 * MD startup.
   1182 	 */
   1183 
   1184 #ifdef __x86_64__
   1185 	/* Setup per-cpu normal_pdes */
   1186 	extern pd_entry_t * const normal_pdes[];
   1187 	for (i = 0;i < PTP_LEVELS - 1;i++) {
   1188 		ci->ci_normal_pdes[i] = normal_pdes[i];
   1189 	}
   1190 #endif
   1191 
   1192 	if (ci == &cpu_info_primary)
   1193 		return;
   1194 
   1195 	KASSERT(ci != NULL);
   1196 
   1197 #if defined(i386)
   1198 	cpu_alloc_l3_page(ci);
   1199 	KASSERT(ci->ci_pae_l3_pdirpa != 0);
   1200 
   1201 	/* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
   1202 	for (i = 0; i < PDP_SIZE - 1; i++) {
   1203 		ci->ci_pae_l3_pdir[i] =
   1204 		    xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PTE_P;
   1205 	}
   1206 #endif
   1207 
   1208 	ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1209 	    UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
   1210 
   1211 	if (ci->ci_kpm_pdir == NULL) {
   1212 		panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
   1213 		    __func__, cpu_index(ci));
   1214 	}
   1215 	ci->ci_kpm_pdirpa = vtophys((vaddr_t)ci->ci_kpm_pdir);
   1216 	KASSERT(ci->ci_kpm_pdirpa != 0);
   1217 
   1218 #ifdef __x86_64__
   1219 	extern pt_entry_t xpmap_pg_nx;
   1220 
   1221 	/* Copy over the pmap_kernel() shadow L4 entries */
   1222 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
   1223 
   1224 	/* Recursive kernel mapping */
   1225 	ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa)
   1226 	    | PTE_P | xpmap_pg_nx;
   1227 #else
   1228 	/* Copy over the pmap_kernel() shadow L2 entries */
   1229 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN,
   1230 	    nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
   1231 #endif
   1232 
   1233 	/* Xen wants a RO pdir. */
   1234 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
   1235 	    (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
   1236 	pmap_update(pmap_kernel());
   1237 
   1238 #ifdef __x86_64__
   1239 	xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
   1240 #else
   1241 	/*
   1242 	 * Initialize L3 entry 3. This mapping is shared across all pmaps and is
   1243 	 * static, ie: loading a new pmap will not update this entry.
   1244 	 */
   1245 	ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PTE_P;
   1246 
   1247 	/* Xen wants a RO L3. */
   1248 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
   1249 	    (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
   1250 	pmap_update(pmap_kernel());
   1251 
   1252 	xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
   1253 #endif
   1254 }
   1255 
   1256 /*
   1257  * Notify all other cpus to halt.
   1258  */
   1259 
   1260 void
   1261 cpu_broadcast_halt(void)
   1262 {
   1263 	xen_broadcast_ipi(XEN_IPI_HALT);
   1264 }
   1265 
   1266 /*
   1267  * Send a dummy ipi to a cpu, and raise an AST on the running LWP.
   1268  */
   1269 
   1270 void
   1271 cpu_kick(struct cpu_info *ci)
   1272 {
   1273 	(void)xen_send_ipi(ci, XEN_IPI_AST);
   1274 }
   1275