cpu.c revision 1.141 1 /* $NetBSD: cpu.c,v 1.141 2021/08/07 16:19:08 thorpej Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by RedBack Networks Inc.
10 *
11 * Author: Bill Sommerfeld
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Copyright (c) 1999 Stefan Grefen
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the NetBSD
49 * Foundation, Inc. and its contributors.
50 * 4. Neither the name of The NetBSD Foundation nor the names of its
51 * contributors may be used to endorse or promote products derived
52 * from this software without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
55 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 */
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.141 2021/08/07 16:19:08 thorpej Exp $");
69
70 #include "opt_ddb.h"
71 #include "opt_multiprocessor.h"
72 #include "opt_mpbios.h" /* for MPDEBUG */
73 #include "opt_mtrr.h"
74 #include "opt_xen.h"
75
76 #include "lapic.h"
77 #include "ioapic.h"
78
79 #include <sys/param.h>
80 #include <sys/proc.h>
81 #include <sys/systm.h>
82 #include <sys/device.h>
83 #include <sys/kmem.h>
84 #include <sys/cpu.h>
85 #include <sys/cpufreq.h>
86 #include <sys/atomic.h>
87 #include <sys/reboot.h>
88 #include <sys/idle.h>
89
90 #include <uvm/uvm.h>
91
92 #include <machine/cpu.h>
93 #include <machine/cpufunc.h>
94 #include <machine/cpuvar.h>
95 #include <machine/pmap.h>
96 #include <machine/vmparam.h>
97 #include <machine/mpbiosvar.h>
98 #include <machine/pcb.h>
99 #include <machine/specialreg.h>
100 #include <machine/segments.h>
101 #include <machine/gdt.h>
102 #include <machine/mtrr.h>
103 #include <machine/pio.h>
104
105 #include <x86/fpu.h>
106
107 #include <xen/xen.h>
108 #include <xen/include/public/vcpu.h>
109 #include <xen/vcpuvar.h>
110
111 #if NLAPIC > 0
112 #include <machine/apicvar.h>
113 #include <machine/i82489reg.h>
114 #include <machine/i82489var.h>
115 #endif
116
117 #include <dev/ic/mc146818reg.h>
118 #include <dev/isa/isareg.h>
119
120 static int cpu_match(device_t, cfdata_t, void *);
121 static void cpu_attach(device_t, device_t, void *);
122 static void cpu_defer(device_t);
123 static int cpu_rescan(device_t, const char *, const int *);
124 static void cpu_childdetached(device_t, device_t);
125 static int vcpu_match(device_t, cfdata_t, void *);
126 static void vcpu_attach(device_t, device_t, void *);
127 static void cpu_attach_common(device_t, device_t, void *);
128 void cpu_offline_md(void);
129
130 struct cpu_softc {
131 device_t sc_dev; /* device tree glue */
132 struct cpu_info *sc_info; /* pointer to CPU info */
133 bool sc_wasonline;
134 };
135
136 int mp_cpu_start(struct cpu_info *, vaddr_t);
137 void mp_cpu_start_cleanup(struct cpu_info *);
138 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
139 mp_cpu_start_cleanup };
140
141 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
142 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
143
144 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
145 vcpu_match, vcpu_attach, NULL, NULL);
146
147 /*
148 * Statically-allocated CPU info for the primary CPU (or the only
149 * CPU, on uniprocessors). The CPU info list is initialized to
150 * point at it.
151 */
152 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
153 .ci_dev = 0,
154 .ci_self = &cpu_info_primary,
155 .ci_idepth = -1,
156 .ci_curlwp = &lwp0,
157 .ci_curldt = -1,
158 };
159 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
160 .ci_dev = 0,
161 .ci_self = &phycpu_info_primary,
162 };
163
164 struct cpu_info *cpu_info_list = &cpu_info_primary;
165 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
166
167 uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits
168 * [0] basic features %edx
169 * [1] basic features %ecx
170 * [2] extended features %edx
171 * [3] extended features %ecx
172 * [4] VIA padlock features
173 * [5] structured extended features cpuid.7:%ebx
174 * [6] structured extended features cpuid.7:%ecx
175 */
176
177 bool x86_mp_online;
178 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
179
180 #if defined(MULTIPROCESSOR)
181 void cpu_hatch(void *);
182 static void cpu_boot_secondary(struct cpu_info *ci);
183 static void cpu_start_secondary(struct cpu_info *ci);
184 #endif /* MULTIPROCESSOR */
185
186 static int
187 cpu_match(device_t parent, cfdata_t match, void *aux)
188 {
189
190 return 1;
191 }
192
193 static void
194 cpu_attach(device_t parent, device_t self, void *aux)
195 {
196 struct cpu_softc *sc = device_private(self);
197 struct cpu_attach_args *caa = aux;
198 struct cpu_info *ci;
199 uintptr_t ptr;
200 static int nphycpu = 0;
201
202 sc->sc_dev = self;
203
204 /*
205 * If we're an Application Processor, allocate a cpu_info
206 * If we're the first attached CPU use the primary cpu_info,
207 * otherwise allocate a new one
208 */
209 aprint_naive("\n");
210 aprint_normal("\n");
211 if (nphycpu > 0) {
212 struct cpu_info *tmp;
213 ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
214 KM_SLEEP);
215 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
216 ci->ci_curldt = -1;
217
218 tmp = phycpu_info_list;
219 while (tmp->ci_next)
220 tmp = tmp->ci_next;
221
222 tmp->ci_next = ci;
223 } else {
224 ci = &phycpu_info_primary;
225 }
226
227 ci->ci_self = ci;
228 sc->sc_info = ci;
229
230 ci->ci_dev = self;
231 ci->ci_acpiid = caa->cpu_id;
232 ci->ci_cpuid = caa->cpu_number;
233 ci->ci_vcpu = NULL;
234 ci->ci_index = nphycpu++;
235 ci->ci_kfpu_spl = -1;
236
237 if (!pmf_device_register(self, NULL, NULL))
238 aprint_error_dev(self, "couldn't establish power handler\n");
239
240 (void)config_defer(self, cpu_defer);
241 }
242
243 static void
244 cpu_defer(device_t self)
245 {
246 cpu_rescan(self, NULL, NULL);
247 }
248
249 static int
250 cpu_rescan(device_t self, const char *ifattr, const int *locators)
251 {
252 struct cpu_softc *sc = device_private(self);
253 struct cpufeature_attach_args cfaa;
254 struct cpu_info *ci = sc->sc_info;
255
256 memset(&cfaa, 0, sizeof(cfaa));
257 cfaa.ci = ci;
258
259 if (ifattr_match(ifattr, "cpufeaturebus")) {
260
261 if (ci->ci_frequency == NULL) {
262 cfaa.name = "frequency";
263 ci->ci_frequency =
264 config_found(self, &cfaa, NULL,
265 CFARGS(.iattr = "cpufeaturebus"));
266 }
267 }
268
269 return 0;
270 }
271
272 static void
273 cpu_childdetached(device_t self, device_t child)
274 {
275 struct cpu_softc *sc = device_private(self);
276 struct cpu_info *ci = sc->sc_info;
277
278 if (ci->ci_frequency == child)
279 ci->ci_frequency = NULL;
280 }
281
282 static int
283 vcpu_match(device_t parent, cfdata_t match, void *aux)
284 {
285 struct vcpu_attach_args *vcaa = aux;
286 struct vcpu_runstate_info vcr;
287 int error;
288
289 if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
290 error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
291 vcaa->vcaa_caa.cpu_number, &vcr);
292 switch (error) {
293 case 0:
294 return 1;
295 case -ENOENT:
296 return 0;
297 default:
298 panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
299 }
300 }
301
302 return 0;
303 }
304
305 static void
306 vcpu_attach(device_t parent, device_t self, void *aux)
307 {
308 struct vcpu_attach_args *vcaa = aux;
309
310 KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
311 vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
312 cpu_attach_common(parent, self, &vcaa->vcaa_caa);
313
314 if (!pmf_device_register(self, NULL, NULL))
315 aprint_error_dev(self, "couldn't establish power handler\n");
316 }
317
318 static int
319 vcpu_is_up(struct cpu_info *ci)
320 {
321 KASSERT(ci != NULL);
322 return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_vcpuid, NULL);
323 }
324
325 static void
326 cpu_vm_init(struct cpu_info *ci)
327 {
328 int ncolors = 2, i;
329
330 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
331 struct x86_cache_info *cai;
332 int tcolors;
333
334 cai = &ci->ci_cinfo[i];
335
336 tcolors = atop(cai->cai_totalsize);
337 switch (cai->cai_associativity) {
338 case 0xff:
339 tcolors = 1; /* fully associative */
340 break;
341 case 0:
342 case 1:
343 break;
344 default:
345 tcolors /= cai->cai_associativity;
346 }
347 ncolors = uimax(ncolors, tcolors);
348 }
349
350 /*
351 * Knowing the size of the largest cache on this CPU, potentially
352 * re-color our pages.
353 */
354 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
355 uvm_page_recolor(ncolors);
356 pmap_tlb_cpu_init(ci);
357 #ifndef __HAVE_DIRECT_MAP
358 pmap_vpage_cpu_init(ci);
359 #endif
360 }
361
362 static void
363 cpu_attach_common(device_t parent, device_t self, void *aux)
364 {
365 struct cpu_softc *sc = device_private(self);
366 struct cpu_attach_args *caa = aux;
367 struct cpu_info *ci;
368 uintptr_t ptr;
369 int cpunum = caa->cpu_number;
370 static bool again = false;
371
372 sc->sc_dev = self;
373
374 /*
375 * If we're an Application Processor, allocate a cpu_info
376 * structure, otherwise use the primary's.
377 */
378 if (caa->cpu_role == CPU_ROLE_AP) {
379 aprint_naive(": Application Processor\n");
380 ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
381 KM_SLEEP);
382 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
383 memset(ci, 0, sizeof(*ci));
384 cpu_init_tss(ci);
385 } else {
386 aprint_naive(": %s Processor\n",
387 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
388 ci = &cpu_info_primary;
389 }
390
391 ci->ci_self = ci;
392 sc->sc_info = ci;
393 ci->ci_dev = self;
394 ci->ci_cpuid = cpunum;
395 ci->ci_vcpuid = cpunum;
396 ci->ci_kfpu_spl = -1;
397
398 KASSERT(HYPERVISOR_shared_info != NULL);
399 KASSERT(cpunum < XEN_LEGACY_MAX_VCPUS);
400 ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
401
402 KASSERT(ci->ci_func == 0);
403 ci->ci_func = caa->cpu_func;
404 aprint_normal("\n");
405
406 /* Must be called before mi_cpu_attach(). */
407 cpu_vm_init(ci);
408
409 if (caa->cpu_role == CPU_ROLE_AP) {
410 int error;
411
412 error = mi_cpu_attach(ci);
413
414 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
415 if (error != 0) {
416 aprint_error_dev(self,
417 "mi_cpu_attach failed with %d\n", error);
418 return;
419 }
420
421 } else {
422 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
423 }
424
425 KASSERT(ci->ci_cpuid == ci->ci_index);
426 #ifdef __x86_64__
427 /* No user PGD mapped for this CPU yet */
428 ci->ci_xen_current_user_pgd = 0;
429 #endif
430 mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
431 pmap_reference(pmap_kernel());
432 ci->ci_pmap = pmap_kernel();
433 ci->ci_tlbstate = TLBSTATE_STALE;
434
435 /*
436 * Boot processor may not be attached first, but the below
437 * must be done to allow booting other processors.
438 */
439 if (!again) {
440 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
441 /* Basic init. */
442 cpu_intr_init(ci);
443 cpu_get_tsc_freq(ci);
444 cpu_init(ci);
445 pmap_cpu_init_late(ci);
446
447 /* Every processor needs to init its own ipi h/w (similar to lapic) */
448 xen_ipi_init();
449
450 /* Make sure DELAY() is initialized. */
451 DELAY(1);
452 again = true;
453 }
454
455 /* further PCB init done later. */
456
457 switch (caa->cpu_role) {
458 case CPU_ROLE_SP:
459 atomic_or_32(&ci->ci_flags, CPUF_SP);
460 cpu_identify(ci);
461 x86_cpu_idle_init();
462 break;
463
464 case CPU_ROLE_BP:
465 atomic_or_32(&ci->ci_flags, CPUF_BSP);
466 cpu_identify(ci);
467 x86_cpu_idle_init();
468 break;
469
470 case CPU_ROLE_AP:
471 atomic_or_32(&ci->ci_flags, CPUF_AP);
472
473 /*
474 * report on an AP
475 */
476
477 #if defined(MULTIPROCESSOR)
478 /* interrupt handler stack */
479 cpu_intr_init(ci);
480
481 /* Setup per-cpu memory for idt */
482 idt_vec_init_cpu_md(&ci->ci_idtvec, cpu_index(ci));
483
484 /* Setup per-cpu memory for gdt */
485 gdt_alloc_cpu(ci);
486
487 pmap_cpu_init_late(ci);
488 cpu_start_secondary(ci);
489
490 if (ci->ci_flags & CPUF_PRESENT) {
491 struct cpu_info *tmp;
492
493 cpu_identify(ci);
494 tmp = cpu_info_list;
495 while (tmp->ci_next)
496 tmp = tmp->ci_next;
497
498 tmp->ci_next = ci;
499 }
500 #else
501 aprint_error_dev(ci->ci_dev, "not started\n");
502 #endif
503 break;
504
505 default:
506 panic("unknown processor type??\n");
507 }
508
509 #ifdef MPVERBOSE
510 if (mp_verbose) {
511 struct lwp *l = ci->ci_data.cpu_idlelwp;
512 struct pcb *pcb = lwp_getpcb(l);
513
514 aprint_verbose_dev(self,
515 "idle lwp at %p, idle sp at %p\n",
516 l,
517 #ifdef i386
518 (void *)pcb->pcb_esp
519 #else
520 (void *)pcb->pcb_rsp
521 #endif
522 );
523
524 }
525 #endif /* MPVERBOSE */
526 }
527
528 /*
529 * Initialize the processor appropriately.
530 */
531
532 void
533 cpu_init(struct cpu_info *ci)
534 {
535 uint32_t cr4 = 0;
536
537 /*
538 * If we have FXSAVE/FXRESTOR, use them.
539 */
540 if (cpu_feature[0] & CPUID_FXSR) {
541 cr4 |= CR4_OSFXSR;
542
543 /*
544 * If we have SSE/SSE2, enable XMM exceptions.
545 */
546 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
547 cr4 |= CR4_OSXMMEXCPT;
548 }
549
550 /* If xsave is supported, enable it */
551 if (cpu_feature[1] & CPUID2_XSAVE && x86_fpu_save >= FPU_SAVE_XSAVE)
552 cr4 |= CR4_OSXSAVE;
553
554 if (cr4) {
555 cr4 |= rcr4();
556 lcr4(cr4);
557 }
558
559 if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
560 fpuinit_mxcsr_mask();
561 }
562
563 /*
564 * Changing CR4 register may change cpuid values. For example, setting
565 * CR4_OSXSAVE sets CPUID2_OSXSAVE. The CPUID2_OSXSAVE is in
566 * ci_feat_val[1], so update it.
567 * XXX Other than ci_feat_val[1] might be changed.
568 */
569 if (cpuid_level >= 1) {
570 u_int descs[4];
571
572 x86_cpuid(1, descs);
573 ci->ci_feat_val[1] = descs[2];
574 }
575
576 /* If xsave is enabled, enable all fpu features */
577 if (cr4 & CR4_OSXSAVE) {
578 wrxcr(0, x86_xsave_features & XCR0_FPU);
579 }
580
581 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
582 }
583
584
585 #ifdef MULTIPROCESSOR
586
587 void
588 cpu_boot_secondary_processors(void)
589 {
590 struct cpu_info *ci;
591 kcpuset_t *cpus;
592 u_long i;
593
594 kcpuset_create(&cpus, true);
595 kcpuset_set(cpus, cpu_index(curcpu()));
596 for (i = 0; i < maxcpus; i++) {
597 ci = cpu_lookup(i);
598 if (ci == NULL)
599 continue;
600 if (ci->ci_data.cpu_idlelwp == NULL)
601 continue;
602 if ((ci->ci_flags & CPUF_PRESENT) == 0)
603 continue;
604 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
605 continue;
606 cpu_boot_secondary(ci);
607 kcpuset_set(cpus, cpu_index(ci));
608 }
609 while (!kcpuset_match(cpus, kcpuset_running))
610 ;
611 kcpuset_destroy(cpus);
612
613 x86_mp_online = true;
614 }
615
616 static void
617 cpu_init_idle_lwp(struct cpu_info *ci)
618 {
619 struct lwp *l = ci->ci_data.cpu_idlelwp;
620 struct pcb *pcb = lwp_getpcb(l);
621
622 pcb->pcb_cr0 = rcr0();
623 }
624
625 void
626 cpu_init_idle_lwps(void)
627 {
628 struct cpu_info *ci;
629 u_long i;
630
631 for (i = 0; i < maxcpus; i++) {
632 ci = cpu_lookup(i);
633 if (ci == NULL)
634 continue;
635 if (ci->ci_data.cpu_idlelwp == NULL)
636 continue;
637 if ((ci->ci_flags & CPUF_PRESENT) == 0)
638 continue;
639 cpu_init_idle_lwp(ci);
640 }
641 }
642
643 static void
644 cpu_start_secondary(struct cpu_info *ci)
645 {
646 int i;
647
648 aprint_debug_dev(ci->ci_dev, "starting\n");
649
650 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
651
652 if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
653 return;
654 }
655
656 /*
657 * wait for it to become ready
658 */
659 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
660 delay(10);
661 }
662 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
663 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
664 #if defined(MPDEBUG) && defined(DDB)
665 printf("dropping into debugger; continue from here to resume boot\n");
666 Debugger();
667 #endif
668 }
669
670 CPU_START_CLEANUP(ci);
671 }
672
673 void
674 cpu_boot_secondary(struct cpu_info *ci)
675 {
676 int i;
677 atomic_or_32(&ci->ci_flags, CPUF_GO);
678 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
679 delay(10);
680 }
681 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
682 aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
683 #if defined(MPDEBUG) && defined(DDB)
684 printf("dropping into debugger; continue from here to resume boot\n");
685 Debugger();
686 #endif
687 }
688 }
689
690 /*
691 * APs end up here immediately after initialisation and VCPUOP_up in
692 * mp_cpu_start().
693 * At this point, we are running in the idle pcb/idle stack of the new
694 * CPU. This function jumps to the idle loop and starts looking for
695 * work.
696 */
697 extern void x86_64_tls_switch(struct lwp *);
698 void
699 cpu_hatch(void *v)
700 {
701 struct cpu_info *ci = (struct cpu_info *)v;
702 struct pcb *pcb;
703 int s, i;
704
705 /* Setup TLS and kernel GS/FS */
706 cpu_init_msrs(ci, true);
707 cpu_init_idt(ci);
708 gdt_init_cpu(ci);
709
710 cpu_probe(ci);
711
712 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
713
714 while ((ci->ci_flags & CPUF_GO) == 0) {
715 /* Don't use delay, boot CPU may be patching the text. */
716 for (i = 10000; i != 0; i--)
717 x86_pause();
718 }
719
720 /* Because the text may have been patched in x86_patch(). */
721 x86_flush();
722 tlbflushg();
723
724 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
725
726 KASSERT(ci->ci_curlwp == ci->ci_data.cpu_idlelwp);
727 KASSERT(curlwp == ci->ci_data.cpu_idlelwp);
728 pcb = lwp_getpcb(curlwp);
729 pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0);
730
731 xen_ipi_init();
732
733 xen_initclocks();
734
735 #ifdef __x86_64__
736 fpuinit(ci);
737 #endif
738
739 lldt(GSEL(GLDT_SEL, SEL_KPL));
740
741 cpu_init(ci);
742 cpu_get_tsc_freq(ci);
743
744 s = splhigh();
745 x86_enable_intr();
746 splx(s);
747
748 aprint_debug_dev(ci->ci_dev, "running\n");
749
750 KASSERT(ci->ci_curlwp == ci->ci_data.cpu_idlelwp);
751 idle_loop(NULL);
752 KASSERT(false);
753 }
754
755 #if defined(DDB)
756
757 #include <ddb/db_output.h>
758 #include <machine/db_machdep.h>
759
760 /*
761 * Dump CPU information from ddb.
762 */
763 void
764 cpu_debug_dump(void)
765 {
766 struct cpu_info *ci;
767 CPU_INFO_ITERATOR cii;
768
769 db_printf("addr dev id flags ipis curlwp\n");
770 for (CPU_INFO_FOREACH(cii, ci)) {
771 db_printf("%p %s %ld %x %x %10p\n",
772 ci,
773 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
774 (long)ci->ci_vcpuid,
775 ci->ci_flags, ci->ci_ipis,
776 ci->ci_curlwp);
777 }
778 }
779 #endif /* DDB */
780
781 #endif /* MULTIPROCESSOR */
782
783 extern void hypervisor_callback(void);
784 extern void failsafe_callback(void);
785 #ifdef __x86_64__
786 typedef void (vector)(void);
787 extern vector Xsyscall, Xsyscall32;
788 #endif
789
790 /*
791 * Setup the "trampoline". On Xen, we setup nearly all cpu context
792 * outside a trampoline, so we prototype and call targetip like so:
793 * void targetip(struct cpu_info *);
794 */
795
796 static void
797 gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
798 {
799 int i;
800 for (i = 0; i < entries; i++) {
801 frames[i] = ((paddr_t)xpmap_ptetomach(
802 (pt_entry_t *)(base + (i << PAGE_SHIFT)))) >> PAGE_SHIFT;
803
804 /* Mark Read-only */
805 pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
806 PTE_W);
807 }
808 }
809
810 #ifdef __x86_64__
811 extern char *ldtstore;
812
813 static void
814 xen_init_amd64_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
815 void targetrip(struct cpu_info *))
816 {
817 /* page frames to point at GDT */
818 extern int gdt_size;
819 paddr_t frames[16];
820 psize_t gdt_ents;
821
822 struct lwp *l;
823 struct pcb *pcb;
824
825 volatile struct vcpu_info *vci;
826
827 KASSERT(ci != NULL);
828 KASSERT(ci != &cpu_info_primary);
829 KASSERT(initctx != NULL);
830 KASSERT(targetrip != NULL);
831
832 memset(initctx, 0, sizeof(*initctx));
833
834 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
835 KASSERT(gdt_ents <= 16);
836
837 gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
838
839 /* Initialise the vcpu context: We use idle_loop()'s pcb context. */
840
841 l = ci->ci_data.cpu_idlelwp;
842
843 KASSERT(l != NULL);
844 pcb = lwp_getpcb(l);
845 KASSERT(pcb != NULL);
846
847 /* resume with interrupts off */
848 vci = ci->ci_vcpu;
849 vci->evtchn_upcall_mask = 1;
850 xen_mb();
851
852 /* resume in kernel-mode */
853 initctx->flags = VGCF_in_kernel | VGCF_online;
854
855 /* Stack and entry points:
856 * We arrange for the stack frame for cpu_hatch() to
857 * appear as a callee frame of lwp_trampoline(). Being a
858 * leaf frame prevents trampling on any of the MD stack setup
859 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
860 */
861
862 initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
863 initctx->user_regs.rip = (vaddr_t) targetrip;
864
865 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
866
867 initctx->user_regs.rflags = pcb->pcb_flags;
868 initctx->user_regs.rsp = pcb->pcb_rsp;
869
870 /* Data segments */
871 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
872 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
873 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
874
875 /* GDT */
876 memcpy(initctx->gdt_frames, frames, sizeof(frames));
877 initctx->gdt_ents = gdt_ents;
878
879 /* LDT */
880 initctx->ldt_base = (unsigned long)ldtstore;
881 initctx->ldt_ents = LDT_SIZE >> 3;
882
883 /* Kernel context state */
884 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
885 initctx->kernel_sp = pcb->pcb_rsp0;
886 initctx->ctrlreg[0] = pcb->pcb_cr0;
887 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
888 initctx->ctrlreg[2] = (vaddr_t)targetrip;
889 /*
890 * Use pmap_kernel() L4 PD directly, until we setup the
891 * per-cpu L4 PD in pmap_cpu_init_late()
892 */
893 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
894 initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
895
896 /* Xen callbacks */
897 initctx->event_callback_eip = (unsigned long)hypervisor_callback;
898 initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
899 initctx->syscall_callback_eip = (unsigned long)Xsyscall;
900
901 return;
902 }
903 #else /* i386 */
904 extern union descriptor *ldtstore;
905 extern void Xsyscall(void);
906
907 static void
908 xen_init_i386_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
909 void targeteip(struct cpu_info *))
910 {
911 /* page frames to point at GDT */
912 extern int gdt_size;
913 paddr_t frames[16];
914 psize_t gdt_ents;
915
916 struct lwp *l;
917 struct pcb *pcb;
918
919 volatile struct vcpu_info *vci;
920
921 KASSERT(ci != NULL);
922 KASSERT(ci != &cpu_info_primary);
923 KASSERT(initctx != NULL);
924 KASSERT(targeteip != NULL);
925
926 memset(initctx, 0, sizeof(*initctx));
927
928 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
929 KASSERT(gdt_ents <= 16);
930
931 gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
932
933 /*
934 * Initialise the vcpu context:
935 * We use this cpu's idle_loop() pcb context.
936 */
937
938 l = ci->ci_data.cpu_idlelwp;
939
940 KASSERT(l != NULL);
941 pcb = lwp_getpcb(l);
942 KASSERT(pcb != NULL);
943
944 /* resume with interrupts off */
945 vci = ci->ci_vcpu;
946 vci->evtchn_upcall_mask = 1;
947 xen_mb();
948
949 /* resume in kernel-mode */
950 initctx->flags = VGCF_in_kernel | VGCF_online;
951
952 /* Stack frame setup for cpu_hatch():
953 * We arrange for the stack frame for cpu_hatch() to
954 * appear as a callee frame of lwp_trampoline(). Being a
955 * leaf frame prevents trampling on any of the MD stack setup
956 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
957 */
958
959 initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
960 arg1 */
961 {
962 /* targeteip(ci); */
963 uint32_t *arg = (uint32_t *)initctx->user_regs.esp;
964 arg[1] = (uint32_t)ci; /* arg1 */
965 }
966
967 initctx->user_regs.eip = (vaddr_t)targeteip;
968 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
969 initctx->user_regs.eflags |= pcb->pcb_iopl;
970
971 /* Data segments */
972 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
973 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
974 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
975 initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
976
977 /* GDT */
978 memcpy(initctx->gdt_frames, frames, sizeof(frames));
979 initctx->gdt_ents = gdt_ents;
980
981 /* LDT */
982 initctx->ldt_base = (unsigned long)ldtstore;
983 initctx->ldt_ents = NLDT;
984
985 /* Kernel context state */
986 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
987 initctx->kernel_sp = pcb->pcb_esp0;
988 initctx->ctrlreg[0] = pcb->pcb_cr0;
989 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
990 initctx->ctrlreg[2] = (vaddr_t)targeteip;
991 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
992 initctx->ctrlreg[4] = /* CR4_PAE | */CR4_OSFXSR | CR4_OSXMMEXCPT;
993
994 /* Xen callbacks */
995 initctx->event_callback_eip = (unsigned long)hypervisor_callback;
996 initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
997 initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
998 initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
999
1000 return;
1001 }
1002 #endif /* __x86_64__ */
1003
1004 int
1005 mp_cpu_start(struct cpu_info *ci, vaddr_t target)
1006 {
1007 int hyperror;
1008 struct vcpu_guest_context *vcpuctx;
1009
1010 KASSERT(ci != NULL);
1011 KASSERT(ci != &cpu_info_primary);
1012 KASSERT(ci->ci_flags & CPUF_AP);
1013
1014 vcpuctx = kmem_alloc(sizeof(*vcpuctx), KM_SLEEP);
1015
1016 #ifdef __x86_64__
1017 xen_init_amd64_vcpuctxt(ci, vcpuctx, (void (*)(struct cpu_info *))target);
1018 #else
1019 xen_init_i386_vcpuctxt(ci, vcpuctx, (void (*)(struct cpu_info *))target);
1020 #endif
1021
1022 /* Initialise the given vcpu to execute cpu_hatch(ci); */
1023 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_vcpuid, vcpuctx))) {
1024 aprint_error(": context initialisation failed. errno = %d\n", hyperror);
1025 goto out;
1026 }
1027
1028 /* Start it up */
1029
1030 /* First bring it down */
1031 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_vcpuid, NULL))) {
1032 aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
1033 goto out;
1034 }
1035
1036 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_vcpuid, NULL))) {
1037 aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
1038 goto out;
1039 }
1040
1041 if (!vcpu_is_up(ci)) {
1042 aprint_error(": did not come up\n");
1043 hyperror = -1;
1044 goto out;
1045 }
1046
1047 out:
1048 kmem_free(vcpuctx, sizeof(*vcpuctx));
1049 return hyperror;
1050 }
1051
1052 void
1053 mp_cpu_start_cleanup(struct cpu_info *ci)
1054 {
1055 if (vcpu_is_up(ci)) {
1056 aprint_debug_dev(ci->ci_dev, "is started.\n");
1057 } else {
1058 aprint_error_dev(ci->ci_dev, "did not start up.\n");
1059 }
1060 }
1061
1062 void
1063 cpu_init_msrs(struct cpu_info *ci, bool full)
1064 {
1065 #ifdef __x86_64__
1066 if (full) {
1067 HYPERVISOR_set_segment_base(SEGBASE_FS, 0);
1068 HYPERVISOR_set_segment_base(SEGBASE_GS_KERNEL, (uint64_t)ci);
1069 HYPERVISOR_set_segment_base(SEGBASE_GS_USER, 0);
1070 }
1071 #endif
1072
1073 if (cpu_feature[2] & CPUID_NOX)
1074 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1075 }
1076
1077 void
1078 cpu_offline_md(void)
1079 {
1080 return;
1081 }
1082
1083 void
1084 cpu_get_tsc_freq(struct cpu_info *ci)
1085 {
1086 uint32_t vcpu_tversion;
1087 const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1088
1089 vcpu_tversion = tinfo->version;
1090 while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
1091
1092 uint64_t freq = 1000000000ULL << 32;
1093 freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1094 if (tinfo->tsc_shift < 0)
1095 freq = freq << -tinfo->tsc_shift;
1096 else
1097 freq = freq >> tinfo->tsc_shift;
1098 ci->ci_data.cpu_cc_freq = freq;
1099 }
1100
1101 /*
1102 * Loads pmap for the current CPU.
1103 */
1104 void
1105 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1106 {
1107 struct cpu_info *ci = curcpu();
1108 cpuid_t cid = cpu_index(ci);
1109 int i;
1110
1111 KASSERT(pmap != pmap_kernel());
1112
1113 mutex_enter(&ci->ci_kpm_mtx);
1114 /* make new pmap visible to xen_kpm_sync() */
1115 kcpuset_atomic_set(pmap->pm_xen_ptp_cpus, cid);
1116
1117 #ifdef __x86_64__
1118 pd_entry_t *new_pgd;
1119 paddr_t l4_pd_ma;
1120
1121 l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
1122
1123 /*
1124 * Map user space address in kernel space and load
1125 * user cr3
1126 */
1127 new_pgd = pmap->pm_pdir;
1128 KASSERT(pmap == ci->ci_pmap);
1129
1130 /* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
1131 for (i = 0; i < PDIR_SLOT_USERLIM; i++) {
1132 KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
1133 if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
1134 xpq_queue_pte_update(l4_pd_ma + i * sizeof(pd_entry_t),
1135 new_pgd[i]);
1136 }
1137 }
1138
1139 xen_set_user_pgd(pmap_pdirpa(pmap, 0));
1140 ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
1141 #else
1142 paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
1143 /* don't update the kernel L3 slot */
1144 for (i = 0; i < PDP_SIZE - 1; i++) {
1145 xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
1146 xpmap_ptom(pmap->pm_pdirpa[i]) | PTE_P);
1147 }
1148 #endif
1149
1150 tlbflush();
1151
1152 /* old pmap no longer visible to xen_kpm_sync() */
1153 if (oldpmap != pmap_kernel()) {
1154 kcpuset_atomic_clear(oldpmap->pm_xen_ptp_cpus, cid);
1155 }
1156 mutex_exit(&ci->ci_kpm_mtx);
1157 }
1158
1159 /*
1160 * pmap_cpu_init_late: perform late per-CPU initialization.
1161 *
1162 * Short note about percpu PDIR pages. Both the PAE and __x86_64__ architectures
1163 * have per-cpu PDIR tables, for two different reasons:
1164 * - on PAE, this is to get around Xen's pagetable setup constraints (multiple
1165 * L3[3]s cannot point to the same L2 - Xen will refuse to pin a table set up
1166 * this way).
1167 * - on __x86_64__, this is for multiple CPUs to map in different user pmaps
1168 * (see cpu_load_pmap()).
1169 *
1170 * What this means for us is that the PDIR of the pmap_kernel() is considered
1171 * to be a canonical "SHADOW" PDIR with the following properties:
1172 * - its recursive mapping points to itself
1173 * - per-cpu recursive mappings point to themselves on __x86_64__
1174 * - per-cpu L4 pages' kernel entries are expected to be in sync with
1175 * the shadow
1176 */
1177
1178 void
1179 pmap_cpu_init_late(struct cpu_info *ci)
1180 {
1181 int i;
1182
1183 /*
1184 * The BP has already its own PD page allocated during early
1185 * MD startup.
1186 */
1187
1188 #ifdef __x86_64__
1189 /* Setup per-cpu normal_pdes */
1190 extern pd_entry_t * const normal_pdes[];
1191 for (i = 0;i < PTP_LEVELS - 1;i++) {
1192 ci->ci_normal_pdes[i] = normal_pdes[i];
1193 }
1194 #endif
1195
1196 if (ci == &cpu_info_primary)
1197 return;
1198
1199 KASSERT(ci != NULL);
1200
1201 #if defined(i386)
1202 cpu_alloc_l3_page(ci);
1203 KASSERT(ci->ci_pae_l3_pdirpa != 0);
1204
1205 /* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
1206 for (i = 0; i < PDP_SIZE - 1; i++) {
1207 ci->ci_pae_l3_pdir[i] =
1208 xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PTE_P;
1209 }
1210 #endif
1211
1212 ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1213 UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
1214
1215 if (ci->ci_kpm_pdir == NULL) {
1216 panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
1217 __func__, cpu_index(ci));
1218 }
1219 ci->ci_kpm_pdirpa = vtophys((vaddr_t)ci->ci_kpm_pdir);
1220 KASSERT(ci->ci_kpm_pdirpa != 0);
1221
1222 #ifdef __x86_64__
1223 extern pt_entry_t xpmap_pg_nx;
1224
1225 /* Copy over the pmap_kernel() shadow L4 entries */
1226 memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
1227
1228 /* Recursive kernel mapping */
1229 ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa)
1230 | PTE_P | xpmap_pg_nx;
1231 #else
1232 /* Copy over the pmap_kernel() shadow L2 entries */
1233 memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN,
1234 nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
1235 #endif
1236
1237 /* Xen wants a RO pdir. */
1238 pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
1239 (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
1240 pmap_update(pmap_kernel());
1241
1242 #ifdef __x86_64__
1243 xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
1244 #else
1245 /*
1246 * Initialize L3 entry 3. This mapping is shared across all pmaps and is
1247 * static, ie: loading a new pmap will not update this entry.
1248 */
1249 ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PTE_P;
1250
1251 /* Xen wants a RO L3. */
1252 pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
1253 (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
1254 pmap_update(pmap_kernel());
1255
1256 xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
1257 #endif
1258 }
1259
1260 /*
1261 * Notify all other cpus to halt.
1262 */
1263
1264 void
1265 cpu_broadcast_halt(void)
1266 {
1267 xen_broadcast_ipi(XEN_IPI_HALT);
1268 }
1269
1270 /*
1271 * Send a dummy ipi to a cpu, and raise an AST on the running LWP.
1272 */
1273
1274 void
1275 cpu_kick(struct cpu_info *ci)
1276 {
1277 (void)xen_send_ipi(ci, XEN_IPI_AST);
1278 }
1279