Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.141
      1 /*	$NetBSD: cpu.c,v 1.141 2021/08/07 16:19:08 thorpej Exp $	*/
      2 
      3 /*-
      4  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      5  * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
      6  * All rights reserved.
      7  *
      8  * This code is derived from software contributed to The NetBSD Foundation
      9  * by RedBack Networks Inc.
     10  *
     11  * Author: Bill Sommerfeld
     12  *
     13  * Redistribution and use in source and binary forms, with or without
     14  * modification, are permitted provided that the following conditions
     15  * are met:
     16  * 1. Redistributions of source code must retain the above copyright
     17  *    notice, this list of conditions and the following disclaimer.
     18  * 2. Redistributions in binary form must reproduce the above copyright
     19  *    notice, this list of conditions and the following disclaimer in the
     20  *    documentation and/or other materials provided with the distribution.
     21  *
     22  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     23  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     24  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     25  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     26  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     27  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     28  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     29  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     30  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     31  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     32  * POSSIBILITY OF SUCH DAMAGE.
     33  */
     34 
     35 /*
     36  * Copyright (c) 1999 Stefan Grefen
     37  *
     38  * Redistribution and use in source and binary forms, with or without
     39  * modification, are permitted provided that the following conditions
     40  * are met:
     41  * 1. Redistributions of source code must retain the above copyright
     42  *    notice, this list of conditions and the following disclaimer.
     43  * 2. Redistributions in binary form must reproduce the above copyright
     44  *    notice, this list of conditions and the following disclaimer in the
     45  *    documentation and/or other materials provided with the distribution.
     46  * 3. All advertising materials mentioning features or use of this software
     47  *    must display the following acknowledgement:
     48  *      This product includes software developed by the NetBSD
     49  *      Foundation, Inc. and its contributors.
     50  * 4. Neither the name of The NetBSD Foundation nor the names of its
     51  *    contributors may be used to endorse or promote products derived
     52  *    from this software without specific prior written permission.
     53  *
     54  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     55  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     56  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     57  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     58  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     59  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     60  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     61  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     62  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     63  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     64  * SUCH DAMAGE.
     65  */
     66 
     67 #include <sys/cdefs.h>
     68 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.141 2021/08/07 16:19:08 thorpej Exp $");
     69 
     70 #include "opt_ddb.h"
     71 #include "opt_multiprocessor.h"
     72 #include "opt_mpbios.h"		/* for MPDEBUG */
     73 #include "opt_mtrr.h"
     74 #include "opt_xen.h"
     75 
     76 #include "lapic.h"
     77 #include "ioapic.h"
     78 
     79 #include <sys/param.h>
     80 #include <sys/proc.h>
     81 #include <sys/systm.h>
     82 #include <sys/device.h>
     83 #include <sys/kmem.h>
     84 #include <sys/cpu.h>
     85 #include <sys/cpufreq.h>
     86 #include <sys/atomic.h>
     87 #include <sys/reboot.h>
     88 #include <sys/idle.h>
     89 
     90 #include <uvm/uvm.h>
     91 
     92 #include <machine/cpu.h>
     93 #include <machine/cpufunc.h>
     94 #include <machine/cpuvar.h>
     95 #include <machine/pmap.h>
     96 #include <machine/vmparam.h>
     97 #include <machine/mpbiosvar.h>
     98 #include <machine/pcb.h>
     99 #include <machine/specialreg.h>
    100 #include <machine/segments.h>
    101 #include <machine/gdt.h>
    102 #include <machine/mtrr.h>
    103 #include <machine/pio.h>
    104 
    105 #include <x86/fpu.h>
    106 
    107 #include <xen/xen.h>
    108 #include <xen/include/public/vcpu.h>
    109 #include <xen/vcpuvar.h>
    110 
    111 #if NLAPIC > 0
    112 #include <machine/apicvar.h>
    113 #include <machine/i82489reg.h>
    114 #include <machine/i82489var.h>
    115 #endif
    116 
    117 #include <dev/ic/mc146818reg.h>
    118 #include <dev/isa/isareg.h>
    119 
    120 static int	cpu_match(device_t, cfdata_t, void *);
    121 static void	cpu_attach(device_t, device_t, void *);
    122 static void	cpu_defer(device_t);
    123 static int	cpu_rescan(device_t, const char *, const int *);
    124 static void	cpu_childdetached(device_t, device_t);
    125 static int	vcpu_match(device_t, cfdata_t, void *);
    126 static void	vcpu_attach(device_t, device_t, void *);
    127 static void	cpu_attach_common(device_t, device_t, void *);
    128 void		cpu_offline_md(void);
    129 
    130 struct cpu_softc {
    131 	device_t sc_dev;		/* device tree glue */
    132 	struct cpu_info *sc_info;	/* pointer to CPU info */
    133 	bool sc_wasonline;
    134 };
    135 
    136 int mp_cpu_start(struct cpu_info *, vaddr_t);
    137 void mp_cpu_start_cleanup(struct cpu_info *);
    138 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    139 				      mp_cpu_start_cleanup };
    140 
    141 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    142     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    143 
    144 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
    145     vcpu_match, vcpu_attach, NULL, NULL);
    146 
    147 /*
    148  * Statically-allocated CPU info for the primary CPU (or the only
    149  * CPU, on uniprocessors).  The CPU info list is initialized to
    150  * point at it.
    151  */
    152 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    153 	.ci_dev = 0,
    154 	.ci_self = &cpu_info_primary,
    155 	.ci_idepth = -1,
    156 	.ci_curlwp = &lwp0,
    157 	.ci_curldt = -1,
    158 };
    159 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    160 	.ci_dev = 0,
    161 	.ci_self = &phycpu_info_primary,
    162 };
    163 
    164 struct cpu_info *cpu_info_list = &cpu_info_primary;
    165 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
    166 
    167 uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits
    168 			  *	[0] basic features %edx
    169 			  *	[1] basic features %ecx
    170 			  *	[2] extended features %edx
    171 			  *	[3] extended features %ecx
    172 			  *	[4] VIA padlock features
    173 			  *	[5] structured extended features cpuid.7:%ebx
    174 			  *	[6] structured extended features cpuid.7:%ecx
    175 			  */
    176 
    177 bool x86_mp_online;
    178 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    179 
    180 #if defined(MULTIPROCESSOR)
    181 void    	cpu_hatch(void *);
    182 static void    	cpu_boot_secondary(struct cpu_info *ci);
    183 static void    	cpu_start_secondary(struct cpu_info *ci);
    184 #endif	/* MULTIPROCESSOR */
    185 
    186 static int
    187 cpu_match(device_t parent, cfdata_t match, void *aux)
    188 {
    189 
    190 	return 1;
    191 }
    192 
    193 static void
    194 cpu_attach(device_t parent, device_t self, void *aux)
    195 {
    196 	struct cpu_softc *sc = device_private(self);
    197 	struct cpu_attach_args *caa = aux;
    198 	struct cpu_info *ci;
    199 	uintptr_t ptr;
    200 	static int nphycpu = 0;
    201 
    202 	sc->sc_dev = self;
    203 
    204 	/*
    205 	 * If we're an Application Processor, allocate a cpu_info
    206 	 * If we're the first attached CPU use the primary cpu_info,
    207 	 * otherwise allocate a new one
    208 	 */
    209 	aprint_naive("\n");
    210 	aprint_normal("\n");
    211 	if (nphycpu > 0) {
    212 		struct cpu_info *tmp;
    213 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    214 		    KM_SLEEP);
    215 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    216 		ci->ci_curldt = -1;
    217 
    218 		tmp = phycpu_info_list;
    219 		while (tmp->ci_next)
    220 			tmp = tmp->ci_next;
    221 
    222 		tmp->ci_next = ci;
    223 	} else {
    224 		ci = &phycpu_info_primary;
    225 	}
    226 
    227 	ci->ci_self = ci;
    228 	sc->sc_info = ci;
    229 
    230 	ci->ci_dev = self;
    231 	ci->ci_acpiid = caa->cpu_id;
    232 	ci->ci_cpuid = caa->cpu_number;
    233 	ci->ci_vcpu = NULL;
    234 	ci->ci_index = nphycpu++;
    235 	ci->ci_kfpu_spl = -1;
    236 
    237 	if (!pmf_device_register(self, NULL, NULL))
    238 		aprint_error_dev(self, "couldn't establish power handler\n");
    239 
    240 	(void)config_defer(self, cpu_defer);
    241 }
    242 
    243 static void
    244 cpu_defer(device_t self)
    245 {
    246 	cpu_rescan(self, NULL, NULL);
    247 }
    248 
    249 static int
    250 cpu_rescan(device_t self, const char *ifattr, const int *locators)
    251 {
    252 	struct cpu_softc *sc = device_private(self);
    253 	struct cpufeature_attach_args cfaa;
    254 	struct cpu_info *ci = sc->sc_info;
    255 
    256 	memset(&cfaa, 0, sizeof(cfaa));
    257 	cfaa.ci = ci;
    258 
    259 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    260 
    261 		if (ci->ci_frequency == NULL) {
    262 			cfaa.name = "frequency";
    263 			ci->ci_frequency =
    264 			    config_found(self, &cfaa, NULL,
    265 					 CFARGS(.iattr = "cpufeaturebus"));
    266 		}
    267 	}
    268 
    269 	return 0;
    270 }
    271 
    272 static void
    273 cpu_childdetached(device_t self, device_t child)
    274 {
    275 	struct cpu_softc *sc = device_private(self);
    276 	struct cpu_info *ci = sc->sc_info;
    277 
    278 	if (ci->ci_frequency == child)
    279 		ci->ci_frequency = NULL;
    280 }
    281 
    282 static int
    283 vcpu_match(device_t parent, cfdata_t match, void *aux)
    284 {
    285 	struct vcpu_attach_args *vcaa = aux;
    286 	struct vcpu_runstate_info vcr;
    287 	int error;
    288 
    289 	if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
    290 		error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
    291 		    vcaa->vcaa_caa.cpu_number, &vcr);
    292 		switch (error) {
    293 		case 0:
    294 			return 1;
    295 		case -ENOENT:
    296 			return 0;
    297 		default:
    298 			panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
    299 		}
    300 	}
    301 
    302 	return 0;
    303 }
    304 
    305 static void
    306 vcpu_attach(device_t parent, device_t self, void *aux)
    307 {
    308 	struct vcpu_attach_args *vcaa = aux;
    309 
    310 	KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
    311 	vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
    312 	cpu_attach_common(parent, self, &vcaa->vcaa_caa);
    313 
    314 	if (!pmf_device_register(self, NULL, NULL))
    315 		aprint_error_dev(self, "couldn't establish power handler\n");
    316 }
    317 
    318 static int
    319 vcpu_is_up(struct cpu_info *ci)
    320 {
    321 	KASSERT(ci != NULL);
    322 	return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_vcpuid, NULL);
    323 }
    324 
    325 static void
    326 cpu_vm_init(struct cpu_info *ci)
    327 {
    328 	int ncolors = 2, i;
    329 
    330 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    331 		struct x86_cache_info *cai;
    332 		int tcolors;
    333 
    334 		cai = &ci->ci_cinfo[i];
    335 
    336 		tcolors = atop(cai->cai_totalsize);
    337 		switch (cai->cai_associativity) {
    338 		case 0xff:
    339 			tcolors = 1; /* fully associative */
    340 			break;
    341 		case 0:
    342 		case 1:
    343 			break;
    344 		default:
    345 			tcolors /= cai->cai_associativity;
    346 		}
    347 		ncolors = uimax(ncolors, tcolors);
    348 	}
    349 
    350 	/*
    351 	 * Knowing the size of the largest cache on this CPU, potentially
    352 	 * re-color our pages.
    353 	 */
    354 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    355 	uvm_page_recolor(ncolors);
    356 	pmap_tlb_cpu_init(ci);
    357 #ifndef __HAVE_DIRECT_MAP
    358 	pmap_vpage_cpu_init(ci);
    359 #endif
    360 }
    361 
    362 static void
    363 cpu_attach_common(device_t parent, device_t self, void *aux)
    364 {
    365 	struct cpu_softc *sc = device_private(self);
    366 	struct cpu_attach_args *caa = aux;
    367 	struct cpu_info *ci;
    368 	uintptr_t ptr;
    369 	int cpunum = caa->cpu_number;
    370 	static bool again = false;
    371 
    372 	sc->sc_dev = self;
    373 
    374 	/*
    375 	 * If we're an Application Processor, allocate a cpu_info
    376 	 * structure, otherwise use the primary's.
    377 	 */
    378 	if (caa->cpu_role == CPU_ROLE_AP) {
    379 		aprint_naive(": Application Processor\n");
    380 		ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    381 		    KM_SLEEP);
    382 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    383 		memset(ci, 0, sizeof(*ci));
    384 		cpu_init_tss(ci);
    385 	} else {
    386 		aprint_naive(": %s Processor\n",
    387 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    388 		ci = &cpu_info_primary;
    389 	}
    390 
    391 	ci->ci_self = ci;
    392 	sc->sc_info = ci;
    393 	ci->ci_dev = self;
    394 	ci->ci_cpuid = cpunum;
    395 	ci->ci_vcpuid = cpunum;
    396 	ci->ci_kfpu_spl = -1;
    397 
    398 	KASSERT(HYPERVISOR_shared_info != NULL);
    399 	KASSERT(cpunum < XEN_LEGACY_MAX_VCPUS);
    400 	ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
    401 
    402 	KASSERT(ci->ci_func == 0);
    403 	ci->ci_func = caa->cpu_func;
    404 	aprint_normal("\n");
    405 
    406 	/* Must be called before mi_cpu_attach(). */
    407 	cpu_vm_init(ci);
    408 
    409 	if (caa->cpu_role == CPU_ROLE_AP) {
    410 		int error;
    411 
    412 		error = mi_cpu_attach(ci);
    413 
    414 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    415 		if (error != 0) {
    416 			aprint_error_dev(self,
    417 			    "mi_cpu_attach failed with %d\n", error);
    418 			return;
    419 		}
    420 
    421 	} else {
    422 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    423 	}
    424 
    425 	KASSERT(ci->ci_cpuid == ci->ci_index);
    426 #ifdef __x86_64__
    427 	/* No user PGD mapped for this CPU yet */
    428 	ci->ci_xen_current_user_pgd = 0;
    429 #endif
    430 	mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
    431 	pmap_reference(pmap_kernel());
    432 	ci->ci_pmap = pmap_kernel();
    433 	ci->ci_tlbstate = TLBSTATE_STALE;
    434 
    435 	/*
    436 	 * Boot processor may not be attached first, but the below
    437 	 * must be done to allow booting other processors.
    438 	 */
    439 	if (!again) {
    440 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    441 		/* Basic init. */
    442 		cpu_intr_init(ci);
    443 		cpu_get_tsc_freq(ci);
    444 		cpu_init(ci);
    445 		pmap_cpu_init_late(ci);
    446 
    447 		/* Every processor needs to init its own ipi h/w (similar to lapic) */
    448 		xen_ipi_init();
    449 
    450 		/* Make sure DELAY() is initialized. */
    451 		DELAY(1);
    452 		again = true;
    453 	}
    454 
    455 	/* further PCB init done later. */
    456 
    457 	switch (caa->cpu_role) {
    458 	case CPU_ROLE_SP:
    459 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    460 		cpu_identify(ci);
    461 		x86_cpu_idle_init();
    462 		break;
    463 
    464 	case CPU_ROLE_BP:
    465 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    466 		cpu_identify(ci);
    467 		x86_cpu_idle_init();
    468 		break;
    469 
    470 	case CPU_ROLE_AP:
    471 		atomic_or_32(&ci->ci_flags, CPUF_AP);
    472 
    473 		/*
    474 		 * report on an AP
    475 		 */
    476 
    477 #if defined(MULTIPROCESSOR)
    478 		/* interrupt handler stack */
    479 		cpu_intr_init(ci);
    480 
    481 		/* Setup per-cpu memory for idt */
    482 		idt_vec_init_cpu_md(&ci->ci_idtvec, cpu_index(ci));
    483 
    484 		/* Setup per-cpu memory for gdt */
    485 		gdt_alloc_cpu(ci);
    486 
    487 		pmap_cpu_init_late(ci);
    488 		cpu_start_secondary(ci);
    489 
    490 		if (ci->ci_flags & CPUF_PRESENT) {
    491 			struct cpu_info *tmp;
    492 
    493 			cpu_identify(ci);
    494 			tmp = cpu_info_list;
    495 			while (tmp->ci_next)
    496 				tmp = tmp->ci_next;
    497 
    498 			tmp->ci_next = ci;
    499 		}
    500 #else
    501 		aprint_error_dev(ci->ci_dev, "not started\n");
    502 #endif
    503 		break;
    504 
    505 	default:
    506 		panic("unknown processor type??\n");
    507 	}
    508 
    509 #ifdef MPVERBOSE
    510 	if (mp_verbose) {
    511 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    512 		struct pcb *pcb = lwp_getpcb(l);
    513 
    514 		aprint_verbose_dev(self,
    515 		    "idle lwp at %p, idle sp at %p\n",
    516 		    l,
    517 #ifdef i386
    518 		    (void *)pcb->pcb_esp
    519 #else
    520 		    (void *)pcb->pcb_rsp
    521 #endif
    522 		);
    523 
    524 	}
    525 #endif /* MPVERBOSE */
    526 }
    527 
    528 /*
    529  * Initialize the processor appropriately.
    530  */
    531 
    532 void
    533 cpu_init(struct cpu_info *ci)
    534 {
    535 	uint32_t cr4 = 0;
    536 
    537 	/*
    538 	 * If we have FXSAVE/FXRESTOR, use them.
    539 	 */
    540 	if (cpu_feature[0] & CPUID_FXSR) {
    541 		cr4 |= CR4_OSFXSR;
    542 
    543 		/*
    544 		 * If we have SSE/SSE2, enable XMM exceptions.
    545 		 */
    546 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    547 			cr4 |= CR4_OSXMMEXCPT;
    548 	}
    549 
    550 	/* If xsave is supported, enable it */
    551 	if (cpu_feature[1] & CPUID2_XSAVE && x86_fpu_save >= FPU_SAVE_XSAVE)
    552 		cr4 |= CR4_OSXSAVE;
    553 
    554 	if (cr4) {
    555 		cr4 |= rcr4();
    556 		lcr4(cr4);
    557 	}
    558 
    559 	if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
    560 		fpuinit_mxcsr_mask();
    561 	}
    562 
    563 	/*
    564 	 * Changing CR4 register may change cpuid values. For example, setting
    565 	 * CR4_OSXSAVE sets CPUID2_OSXSAVE. The CPUID2_OSXSAVE is in
    566 	 * ci_feat_val[1], so update it.
    567 	 * XXX Other than ci_feat_val[1] might be changed.
    568 	 */
    569 	if (cpuid_level >= 1) {
    570 		u_int descs[4];
    571 
    572 		x86_cpuid(1, descs);
    573 		ci->ci_feat_val[1] = descs[2];
    574 	}
    575 
    576 	/* If xsave is enabled, enable all fpu features */
    577 	if (cr4 & CR4_OSXSAVE) {
    578 		wrxcr(0, x86_xsave_features & XCR0_FPU);
    579 	}
    580 
    581 	atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    582 }
    583 
    584 
    585 #ifdef MULTIPROCESSOR
    586 
    587 void
    588 cpu_boot_secondary_processors(void)
    589 {
    590 	struct cpu_info *ci;
    591 	kcpuset_t *cpus;
    592 	u_long i;
    593 
    594 	kcpuset_create(&cpus, true);
    595 	kcpuset_set(cpus, cpu_index(curcpu()));
    596 	for (i = 0; i < maxcpus; i++) {
    597 		ci = cpu_lookup(i);
    598 		if (ci == NULL)
    599 			continue;
    600 		if (ci->ci_data.cpu_idlelwp == NULL)
    601 			continue;
    602 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    603 			continue;
    604 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    605 			continue;
    606 		cpu_boot_secondary(ci);
    607 		kcpuset_set(cpus, cpu_index(ci));
    608 	}
    609 	while (!kcpuset_match(cpus, kcpuset_running))
    610 		;
    611 	kcpuset_destroy(cpus);
    612 
    613 	x86_mp_online = true;
    614 }
    615 
    616 static void
    617 cpu_init_idle_lwp(struct cpu_info *ci)
    618 {
    619 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    620 	struct pcb *pcb = lwp_getpcb(l);
    621 
    622 	pcb->pcb_cr0 = rcr0();
    623 }
    624 
    625 void
    626 cpu_init_idle_lwps(void)
    627 {
    628 	struct cpu_info *ci;
    629 	u_long i;
    630 
    631 	for (i = 0; i < maxcpus; i++) {
    632 		ci = cpu_lookup(i);
    633 		if (ci == NULL)
    634 			continue;
    635 		if (ci->ci_data.cpu_idlelwp == NULL)
    636 			continue;
    637 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    638 			continue;
    639 		cpu_init_idle_lwp(ci);
    640 	}
    641 }
    642 
    643 static void
    644 cpu_start_secondary(struct cpu_info *ci)
    645 {
    646 	int i;
    647 
    648 	aprint_debug_dev(ci->ci_dev, "starting\n");
    649 
    650 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    651 
    652 	if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
    653 		return;
    654 	}
    655 
    656 	/*
    657 	 * wait for it to become ready
    658 	 */
    659 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    660 		delay(10);
    661 	}
    662 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    663 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    664 #if defined(MPDEBUG) && defined(DDB)
    665 		printf("dropping into debugger; continue from here to resume boot\n");
    666 		Debugger();
    667 #endif
    668 	}
    669 
    670 	CPU_START_CLEANUP(ci);
    671 }
    672 
    673 void
    674 cpu_boot_secondary(struct cpu_info *ci)
    675 {
    676 	int i;
    677 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    678 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    679 		delay(10);
    680 	}
    681 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    682 		aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
    683 #if defined(MPDEBUG) && defined(DDB)
    684 		printf("dropping into debugger; continue from here to resume boot\n");
    685 		Debugger();
    686 #endif
    687 	}
    688 }
    689 
    690 /*
    691  * APs end up here immediately after initialisation and VCPUOP_up in
    692  * mp_cpu_start().
    693  * At this point, we are running in the idle pcb/idle stack of the new
    694  * CPU.  This function jumps to the idle loop and starts looking for
    695  * work.
    696  */
    697 extern void x86_64_tls_switch(struct lwp *);
    698 void
    699 cpu_hatch(void *v)
    700 {
    701 	struct cpu_info *ci = (struct cpu_info *)v;
    702 	struct pcb *pcb;
    703 	int s, i;
    704 
    705 	/* Setup TLS and kernel GS/FS */
    706 	cpu_init_msrs(ci, true);
    707 	cpu_init_idt(ci);
    708 	gdt_init_cpu(ci);
    709 
    710 	cpu_probe(ci);
    711 
    712 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    713 
    714 	while ((ci->ci_flags & CPUF_GO) == 0) {
    715 		/* Don't use delay, boot CPU may be patching the text. */
    716 		for (i = 10000; i != 0; i--)
    717 			x86_pause();
    718 	}
    719 
    720 	/* Because the text may have been patched in x86_patch(). */
    721 	x86_flush();
    722 	tlbflushg();
    723 
    724 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    725 
    726 	KASSERT(ci->ci_curlwp == ci->ci_data.cpu_idlelwp);
    727 	KASSERT(curlwp == ci->ci_data.cpu_idlelwp);
    728 	pcb = lwp_getpcb(curlwp);
    729 	pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0);
    730 
    731 	xen_ipi_init();
    732 
    733 	xen_initclocks();
    734 
    735 #ifdef __x86_64__
    736 	fpuinit(ci);
    737 #endif
    738 
    739 	lldt(GSEL(GLDT_SEL, SEL_KPL));
    740 
    741 	cpu_init(ci);
    742 	cpu_get_tsc_freq(ci);
    743 
    744 	s = splhigh();
    745 	x86_enable_intr();
    746 	splx(s);
    747 
    748 	aprint_debug_dev(ci->ci_dev, "running\n");
    749 
    750 	KASSERT(ci->ci_curlwp == ci->ci_data.cpu_idlelwp);
    751 	idle_loop(NULL);
    752 	KASSERT(false);
    753 }
    754 
    755 #if defined(DDB)
    756 
    757 #include <ddb/db_output.h>
    758 #include <machine/db_machdep.h>
    759 
    760 /*
    761  * Dump CPU information from ddb.
    762  */
    763 void
    764 cpu_debug_dump(void)
    765 {
    766 	struct cpu_info *ci;
    767 	CPU_INFO_ITERATOR cii;
    768 
    769 	db_printf("addr		dev	id	flags	ipis	curlwp\n");
    770 	for (CPU_INFO_FOREACH(cii, ci)) {
    771 		db_printf("%p	%s	%ld	%x	%x	%10p\n",
    772 		    ci,
    773 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    774 		    (long)ci->ci_vcpuid,
    775 		    ci->ci_flags, ci->ci_ipis,
    776 		    ci->ci_curlwp);
    777 	}
    778 }
    779 #endif /* DDB */
    780 
    781 #endif /* MULTIPROCESSOR */
    782 
    783 extern void hypervisor_callback(void);
    784 extern void failsafe_callback(void);
    785 #ifdef __x86_64__
    786 typedef void (vector)(void);
    787 extern vector Xsyscall, Xsyscall32;
    788 #endif
    789 
    790 /*
    791  * Setup the "trampoline". On Xen, we setup nearly all cpu context
    792  * outside a trampoline, so we prototype and call targetip like so:
    793  * void targetip(struct cpu_info *);
    794  */
    795 
    796 static void
    797 gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
    798 {
    799 	int i;
    800 	for (i = 0; i < entries; i++) {
    801 		frames[i] = ((paddr_t)xpmap_ptetomach(
    802 		    (pt_entry_t *)(base + (i << PAGE_SHIFT)))) >> PAGE_SHIFT;
    803 
    804 		/* Mark Read-only */
    805 		pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
    806 		    PTE_W);
    807 	}
    808 }
    809 
    810 #ifdef __x86_64__
    811 extern char *ldtstore;
    812 
    813 static void
    814 xen_init_amd64_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
    815     void targetrip(struct cpu_info *))
    816 {
    817 	/* page frames to point at GDT */
    818 	extern int gdt_size;
    819 	paddr_t frames[16];
    820 	psize_t gdt_ents;
    821 
    822 	struct lwp *l;
    823 	struct pcb *pcb;
    824 
    825 	volatile struct vcpu_info *vci;
    826 
    827 	KASSERT(ci != NULL);
    828 	KASSERT(ci != &cpu_info_primary);
    829 	KASSERT(initctx != NULL);
    830 	KASSERT(targetrip != NULL);
    831 
    832 	memset(initctx, 0, sizeof(*initctx));
    833 
    834 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
    835 	KASSERT(gdt_ents <= 16);
    836 
    837 	gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
    838 
    839 	/* Initialise the vcpu context: We use idle_loop()'s pcb context. */
    840 
    841 	l = ci->ci_data.cpu_idlelwp;
    842 
    843 	KASSERT(l != NULL);
    844 	pcb = lwp_getpcb(l);
    845 	KASSERT(pcb != NULL);
    846 
    847 	/* resume with interrupts off */
    848 	vci = ci->ci_vcpu;
    849 	vci->evtchn_upcall_mask = 1;
    850 	xen_mb();
    851 
    852 	/* resume in kernel-mode */
    853 	initctx->flags = VGCF_in_kernel | VGCF_online;
    854 
    855 	/* Stack and entry points:
    856 	 * We arrange for the stack frame for cpu_hatch() to
    857 	 * appear as a callee frame of lwp_trampoline(). Being a
    858 	 * leaf frame prevents trampling on any of the MD stack setup
    859 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
    860 	 */
    861 
    862 	initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
    863 	initctx->user_regs.rip = (vaddr_t) targetrip;
    864 
    865 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
    866 
    867 	initctx->user_regs.rflags = pcb->pcb_flags;
    868 	initctx->user_regs.rsp = pcb->pcb_rsp;
    869 
    870 	/* Data segments */
    871 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
    872 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
    873 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
    874 
    875 	/* GDT */
    876 	memcpy(initctx->gdt_frames, frames, sizeof(frames));
    877 	initctx->gdt_ents = gdt_ents;
    878 
    879 	/* LDT */
    880 	initctx->ldt_base = (unsigned long)ldtstore;
    881 	initctx->ldt_ents = LDT_SIZE >> 3;
    882 
    883 	/* Kernel context state */
    884 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
    885 	initctx->kernel_sp = pcb->pcb_rsp0;
    886 	initctx->ctrlreg[0] = pcb->pcb_cr0;
    887 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
    888 	initctx->ctrlreg[2] = (vaddr_t)targetrip;
    889 	/*
    890 	 * Use pmap_kernel() L4 PD directly, until we setup the
    891 	 * per-cpu L4 PD in pmap_cpu_init_late()
    892 	 */
    893 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
    894 	initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
    895 
    896 	/* Xen callbacks */
    897 	initctx->event_callback_eip = (unsigned long)hypervisor_callback;
    898 	initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
    899 	initctx->syscall_callback_eip = (unsigned long)Xsyscall;
    900 
    901 	return;
    902 }
    903 #else /* i386 */
    904 extern union descriptor *ldtstore;
    905 extern void Xsyscall(void);
    906 
    907 static void
    908 xen_init_i386_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
    909     void targeteip(struct cpu_info *))
    910 {
    911 	/* page frames to point at GDT */
    912 	extern int gdt_size;
    913 	paddr_t frames[16];
    914 	psize_t gdt_ents;
    915 
    916 	struct lwp *l;
    917 	struct pcb *pcb;
    918 
    919 	volatile struct vcpu_info *vci;
    920 
    921 	KASSERT(ci != NULL);
    922 	KASSERT(ci != &cpu_info_primary);
    923 	KASSERT(initctx != NULL);
    924 	KASSERT(targeteip != NULL);
    925 
    926 	memset(initctx, 0, sizeof(*initctx));
    927 
    928 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
    929 	KASSERT(gdt_ents <= 16);
    930 
    931 	gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
    932 
    933 	/*
    934 	 * Initialise the vcpu context:
    935 	 * We use this cpu's idle_loop() pcb context.
    936 	 */
    937 
    938 	l = ci->ci_data.cpu_idlelwp;
    939 
    940 	KASSERT(l != NULL);
    941 	pcb = lwp_getpcb(l);
    942 	KASSERT(pcb != NULL);
    943 
    944 	/* resume with interrupts off */
    945 	vci = ci->ci_vcpu;
    946 	vci->evtchn_upcall_mask = 1;
    947 	xen_mb();
    948 
    949 	/* resume in kernel-mode */
    950 	initctx->flags = VGCF_in_kernel | VGCF_online;
    951 
    952 	/* Stack frame setup for cpu_hatch():
    953 	 * We arrange for the stack frame for cpu_hatch() to
    954 	 * appear as a callee frame of lwp_trampoline(). Being a
    955 	 * leaf frame prevents trampling on any of the MD stack setup
    956 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
    957 	 */
    958 
    959 	initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
    960 						      arg1 */
    961 	{
    962 		/* targeteip(ci); */
    963 		uint32_t *arg = (uint32_t *)initctx->user_regs.esp;
    964 		arg[1] = (uint32_t)ci; /* arg1 */
    965 	}
    966 
    967 	initctx->user_regs.eip = (vaddr_t)targeteip;
    968 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
    969 	initctx->user_regs.eflags |= pcb->pcb_iopl;
    970 
    971 	/* Data segments */
    972 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
    973 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
    974 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
    975 	initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
    976 
    977 	/* GDT */
    978 	memcpy(initctx->gdt_frames, frames, sizeof(frames));
    979 	initctx->gdt_ents = gdt_ents;
    980 
    981 	/* LDT */
    982 	initctx->ldt_base = (unsigned long)ldtstore;
    983 	initctx->ldt_ents = NLDT;
    984 
    985 	/* Kernel context state */
    986 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
    987 	initctx->kernel_sp = pcb->pcb_esp0;
    988 	initctx->ctrlreg[0] = pcb->pcb_cr0;
    989 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
    990 	initctx->ctrlreg[2] = (vaddr_t)targeteip;
    991 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
    992 	initctx->ctrlreg[4] = /* CR4_PAE | */CR4_OSFXSR | CR4_OSXMMEXCPT;
    993 
    994 	/* Xen callbacks */
    995 	initctx->event_callback_eip = (unsigned long)hypervisor_callback;
    996 	initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
    997 	initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
    998 	initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
    999 
   1000 	return;
   1001 }
   1002 #endif /* __x86_64__ */
   1003 
   1004 int
   1005 mp_cpu_start(struct cpu_info *ci, vaddr_t target)
   1006 {
   1007 	int hyperror;
   1008 	struct vcpu_guest_context *vcpuctx;
   1009 
   1010 	KASSERT(ci != NULL);
   1011 	KASSERT(ci != &cpu_info_primary);
   1012 	KASSERT(ci->ci_flags & CPUF_AP);
   1013 
   1014 	vcpuctx = kmem_alloc(sizeof(*vcpuctx), KM_SLEEP);
   1015 
   1016 #ifdef __x86_64__
   1017 	xen_init_amd64_vcpuctxt(ci, vcpuctx, (void (*)(struct cpu_info *))target);
   1018 #else
   1019 	xen_init_i386_vcpuctxt(ci, vcpuctx, (void (*)(struct cpu_info *))target);
   1020 #endif
   1021 
   1022 	/* Initialise the given vcpu to execute cpu_hatch(ci); */
   1023 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_vcpuid, vcpuctx))) {
   1024 		aprint_error(": context initialisation failed. errno = %d\n", hyperror);
   1025 		goto out;
   1026 	}
   1027 
   1028 	/* Start it up */
   1029 
   1030 	/* First bring it down */
   1031 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_vcpuid, NULL))) {
   1032 		aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
   1033 		goto out;
   1034 	}
   1035 
   1036 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_vcpuid, NULL))) {
   1037 		aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
   1038 		goto out;
   1039 	}
   1040 
   1041 	if (!vcpu_is_up(ci)) {
   1042 		aprint_error(": did not come up\n");
   1043 		hyperror = -1;
   1044 		goto out;
   1045 	}
   1046 
   1047 out:
   1048 	kmem_free(vcpuctx, sizeof(*vcpuctx));
   1049 	return hyperror;
   1050 }
   1051 
   1052 void
   1053 mp_cpu_start_cleanup(struct cpu_info *ci)
   1054 {
   1055 	if (vcpu_is_up(ci)) {
   1056 		aprint_debug_dev(ci->ci_dev, "is started.\n");
   1057 	} else {
   1058 		aprint_error_dev(ci->ci_dev, "did not start up.\n");
   1059 	}
   1060 }
   1061 
   1062 void
   1063 cpu_init_msrs(struct cpu_info *ci, bool full)
   1064 {
   1065 #ifdef __x86_64__
   1066 	if (full) {
   1067 		HYPERVISOR_set_segment_base(SEGBASE_FS, 0);
   1068 		HYPERVISOR_set_segment_base(SEGBASE_GS_KERNEL, (uint64_t)ci);
   1069 		HYPERVISOR_set_segment_base(SEGBASE_GS_USER, 0);
   1070 	}
   1071 #endif
   1072 
   1073 	if (cpu_feature[2] & CPUID_NOX)
   1074 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1075 }
   1076 
   1077 void
   1078 cpu_offline_md(void)
   1079 {
   1080 	return;
   1081 }
   1082 
   1083 void
   1084 cpu_get_tsc_freq(struct cpu_info *ci)
   1085 {
   1086 	uint32_t vcpu_tversion;
   1087 	const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
   1088 
   1089 	vcpu_tversion = tinfo->version;
   1090 	while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
   1091 
   1092 	uint64_t freq = 1000000000ULL << 32;
   1093 	freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
   1094 	if (tinfo->tsc_shift < 0)
   1095 		freq = freq << -tinfo->tsc_shift;
   1096 	else
   1097 		freq = freq >> tinfo->tsc_shift;
   1098 	ci->ci_data.cpu_cc_freq = freq;
   1099 }
   1100 
   1101 /*
   1102  * Loads pmap for the current CPU.
   1103  */
   1104 void
   1105 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
   1106 {
   1107 	struct cpu_info *ci = curcpu();
   1108 	cpuid_t cid = cpu_index(ci);
   1109 	int i;
   1110 
   1111 	KASSERT(pmap != pmap_kernel());
   1112 
   1113 	mutex_enter(&ci->ci_kpm_mtx);
   1114 	/* make new pmap visible to xen_kpm_sync() */
   1115 	kcpuset_atomic_set(pmap->pm_xen_ptp_cpus, cid);
   1116 
   1117 #ifdef __x86_64__
   1118 	pd_entry_t *new_pgd;
   1119 	paddr_t l4_pd_ma;
   1120 
   1121 	l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
   1122 
   1123 	/*
   1124 	 * Map user space address in kernel space and load
   1125 	 * user cr3
   1126 	 */
   1127 	new_pgd = pmap->pm_pdir;
   1128 	KASSERT(pmap == ci->ci_pmap);
   1129 
   1130 	/* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
   1131 	for (i = 0; i < PDIR_SLOT_USERLIM; i++) {
   1132 		KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
   1133 		if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
   1134 			xpq_queue_pte_update(l4_pd_ma + i * sizeof(pd_entry_t),
   1135 			    new_pgd[i]);
   1136 		}
   1137 	}
   1138 
   1139 	xen_set_user_pgd(pmap_pdirpa(pmap, 0));
   1140 	ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
   1141 #else
   1142 	paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
   1143 	/* don't update the kernel L3 slot */
   1144 	for (i = 0; i < PDP_SIZE - 1; i++) {
   1145 		xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
   1146 		    xpmap_ptom(pmap->pm_pdirpa[i]) | PTE_P);
   1147 	}
   1148 #endif
   1149 
   1150 	tlbflush();
   1151 
   1152 	/* old pmap no longer visible to xen_kpm_sync() */
   1153 	if (oldpmap != pmap_kernel()) {
   1154 		kcpuset_atomic_clear(oldpmap->pm_xen_ptp_cpus, cid);
   1155 	}
   1156 	mutex_exit(&ci->ci_kpm_mtx);
   1157 }
   1158 
   1159 /*
   1160  * pmap_cpu_init_late: perform late per-CPU initialization.
   1161  *
   1162  * Short note about percpu PDIR pages. Both the PAE and __x86_64__ architectures
   1163  * have per-cpu PDIR tables, for two different reasons:
   1164  *  - on PAE, this is to get around Xen's pagetable setup constraints (multiple
   1165  *    L3[3]s cannot point to the same L2 - Xen will refuse to pin a table set up
   1166  *    this way).
   1167  *  - on __x86_64__, this is for multiple CPUs to map in different user pmaps
   1168  *    (see cpu_load_pmap()).
   1169  *
   1170  * What this means for us is that the PDIR of the pmap_kernel() is considered
   1171  * to be a canonical "SHADOW" PDIR with the following properties:
   1172  *  - its recursive mapping points to itself
   1173  *  - per-cpu recursive mappings point to themselves on __x86_64__
   1174  *  - per-cpu L4 pages' kernel entries are expected to be in sync with
   1175  *    the shadow
   1176  */
   1177 
   1178 void
   1179 pmap_cpu_init_late(struct cpu_info *ci)
   1180 {
   1181 	int i;
   1182 
   1183 	/*
   1184 	 * The BP has already its own PD page allocated during early
   1185 	 * MD startup.
   1186 	 */
   1187 
   1188 #ifdef __x86_64__
   1189 	/* Setup per-cpu normal_pdes */
   1190 	extern pd_entry_t * const normal_pdes[];
   1191 	for (i = 0;i < PTP_LEVELS - 1;i++) {
   1192 		ci->ci_normal_pdes[i] = normal_pdes[i];
   1193 	}
   1194 #endif
   1195 
   1196 	if (ci == &cpu_info_primary)
   1197 		return;
   1198 
   1199 	KASSERT(ci != NULL);
   1200 
   1201 #if defined(i386)
   1202 	cpu_alloc_l3_page(ci);
   1203 	KASSERT(ci->ci_pae_l3_pdirpa != 0);
   1204 
   1205 	/* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
   1206 	for (i = 0; i < PDP_SIZE - 1; i++) {
   1207 		ci->ci_pae_l3_pdir[i] =
   1208 		    xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PTE_P;
   1209 	}
   1210 #endif
   1211 
   1212 	ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1213 	    UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
   1214 
   1215 	if (ci->ci_kpm_pdir == NULL) {
   1216 		panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
   1217 		    __func__, cpu_index(ci));
   1218 	}
   1219 	ci->ci_kpm_pdirpa = vtophys((vaddr_t)ci->ci_kpm_pdir);
   1220 	KASSERT(ci->ci_kpm_pdirpa != 0);
   1221 
   1222 #ifdef __x86_64__
   1223 	extern pt_entry_t xpmap_pg_nx;
   1224 
   1225 	/* Copy over the pmap_kernel() shadow L4 entries */
   1226 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
   1227 
   1228 	/* Recursive kernel mapping */
   1229 	ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa)
   1230 	    | PTE_P | xpmap_pg_nx;
   1231 #else
   1232 	/* Copy over the pmap_kernel() shadow L2 entries */
   1233 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN,
   1234 	    nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
   1235 #endif
   1236 
   1237 	/* Xen wants a RO pdir. */
   1238 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
   1239 	    (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
   1240 	pmap_update(pmap_kernel());
   1241 
   1242 #ifdef __x86_64__
   1243 	xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
   1244 #else
   1245 	/*
   1246 	 * Initialize L3 entry 3. This mapping is shared across all pmaps and is
   1247 	 * static, ie: loading a new pmap will not update this entry.
   1248 	 */
   1249 	ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PTE_P;
   1250 
   1251 	/* Xen wants a RO L3. */
   1252 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
   1253 	    (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
   1254 	pmap_update(pmap_kernel());
   1255 
   1256 	xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
   1257 #endif
   1258 }
   1259 
   1260 /*
   1261  * Notify all other cpus to halt.
   1262  */
   1263 
   1264 void
   1265 cpu_broadcast_halt(void)
   1266 {
   1267 	xen_broadcast_ipi(XEN_IPI_HALT);
   1268 }
   1269 
   1270 /*
   1271  * Send a dummy ipi to a cpu, and raise an AST on the running LWP.
   1272  */
   1273 
   1274 void
   1275 cpu_kick(struct cpu_info *ci)
   1276 {
   1277 	(void)xen_send_ipi(ci, XEN_IPI_AST);
   1278 }
   1279