Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.56.2.11
      1 /*	$NetBSD: cpu.c,v 1.56.2.11 2011/09/09 11:53:43 cherry Exp $	*/
      2 /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp  */
      3 
      4 /*-
      5  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      6  * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to The NetBSD Foundation
     10  * by RedBack Networks Inc.
     11  *
     12  * Author: Bill Sommerfeld
     13  *
     14  * Redistribution and use in source and binary forms, with or without
     15  * modification, are permitted provided that the following conditions
     16  * are met:
     17  * 1. Redistributions of source code must retain the above copyright
     18  *    notice, this list of conditions and the following disclaimer.
     19  * 2. Redistributions in binary form must reproduce the above copyright
     20  *    notice, this list of conditions and the following disclaimer in the
     21  *    documentation and/or other materials provided with the distribution.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 /*
     37  * Copyright (c) 1999 Stefan Grefen
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. All advertising materials mentioning features or use of this software
     48  *    must display the following acknowledgement:
     49  *      This product includes software developed by the NetBSD
     50  *      Foundation, Inc. and its contributors.
     51  * 4. Neither the name of The NetBSD Foundation nor the names of its
     52  *    contributors may be used to endorse or promote products derived
     53  *    from this software without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     56  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.56.2.11 2011/09/09 11:53:43 cherry Exp $");
     70 
     71 #include "opt_ddb.h"
     72 #include "opt_multiprocessor.h"
     73 #include "opt_mpbios.h"		/* for MPDEBUG */
     74 #include "opt_mtrr.h"
     75 #include "opt_xen.h"
     76 
     77 #include "lapic.h"
     78 #include "ioapic.h"
     79 
     80 #include <sys/param.h>
     81 #include <sys/proc.h>
     82 #include <sys/systm.h>
     83 #include <sys/device.h>
     84 #include <sys/kmem.h>
     85 #include <sys/cpu.h>
     86 #include <sys/atomic.h>
     87 #include <sys/reboot.h>
     88 #include <sys/idle.h>
     89 
     90 #include <uvm/uvm.h>
     91 
     92 #include <machine/cpufunc.h>
     93 #include <machine/cpuvar.h>
     94 #include <machine/pmap.h>
     95 #include <machine/vmparam.h>
     96 #include <machine/mpbiosvar.h>
     97 #include <machine/pcb.h>
     98 #include <machine/specialreg.h>
     99 #include <machine/segments.h>
    100 #include <machine/gdt.h>
    101 #include <machine/mtrr.h>
    102 #include <machine/pio.h>
    103 
    104 #ifdef i386
    105 #include <machine/npx.h>
    106 #else
    107 #include <machine/fpu.h>
    108 #endif
    109 
    110 #include <xen/xen.h>
    111 #include <xen/xen3-public/vcpu.h>
    112 #include <xen/vcpuvar.h>
    113 
    114 #if NLAPIC > 0
    115 #include <machine/apicvar.h>
    116 #include <machine/i82489reg.h>
    117 #include <machine/i82489var.h>
    118 #endif
    119 
    120 #include <dev/ic/mc146818reg.h>
    121 #include <dev/isa/isareg.h>
    122 
    123 #if MAXCPUS > 32
    124 #error cpu_info contains 32bit bitmasks
    125 #endif
    126 
    127 static int	cpu_match(device_t, cfdata_t, void *);
    128 static void	cpu_attach(device_t, device_t, void *);
    129 static void	cpu_defer(device_t);
    130 static int	cpu_rescan(device_t, const char *, const int *);
    131 static void	cpu_childdetached(device_t, device_t);
    132 static int	vcpu_match(device_t, cfdata_t, void *);
    133 static void	vcpu_attach(device_t, device_t, void *);
    134 static void	cpu_attach_common(device_t, device_t, void *);
    135 void		cpu_offline_md(void);
    136 
    137 struct cpu_softc {
    138 	device_t sc_dev;		/* device tree glue */
    139 	struct cpu_info *sc_info;	/* pointer to CPU info */
    140 	bool sc_wasonline;
    141 };
    142 
    143 int mp_cpu_start(struct cpu_info *, vaddr_t);
    144 void mp_cpu_start_cleanup(struct cpu_info *);
    145 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    146 				      mp_cpu_start_cleanup };
    147 
    148 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    149     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    150 
    151 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
    152     vcpu_match, vcpu_attach, NULL, NULL);
    153 
    154 /*
    155  * Statically-allocated CPU info for the primary CPU (or the only
    156  * CPU, on uniprocessors).  The CPU info list is initialized to
    157  * point at it.
    158  */
    159 #ifdef TRAPLOG
    160 #include <machine/tlog.h>
    161 struct tlog tlog_primary;
    162 #endif
    163 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    164 	.ci_dev = 0,
    165 	.ci_self = &cpu_info_primary,
    166 	.ci_idepth = -1,
    167 	.ci_curlwp = &lwp0,
    168 	.ci_curldt = -1,
    169 	.ci_cpumask = 1,
    170 #ifdef TRAPLOG
    171 	.ci_tlog = &tlog_primary,
    172 #endif
    173 
    174 };
    175 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    176 	.ci_dev = 0,
    177 	.ci_self = &phycpu_info_primary,
    178 };
    179 
    180 struct cpu_info *cpu_info_list = &cpu_info_primary;
    181 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
    182 
    183 uint32_t cpus_attached = 1;
    184 uint32_t cpus_running = 0;
    185 
    186 uint32_t phycpus_attached = 0;
    187 uint32_t phycpus_running = 0;
    188 
    189 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
    190 			  *	[0] basic features %edx
    191 			  *	[1] basic features %ecx
    192 			  *	[2] extended features %edx
    193 			  *	[3] extended features %ecx
    194 			  *	[4] VIA padlock features
    195 			  */
    196 
    197 bool x86_mp_online;
    198 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    199 
    200 #if defined(MULTIPROCESSOR)
    201 void    	cpu_hatch(void *);
    202 static void    	cpu_boot_secondary(struct cpu_info *ci);
    203 static void    	cpu_start_secondary(struct cpu_info *ci);
    204 #endif	/* MULTIPROCESSOR */
    205 
    206 static int
    207 cpu_match(device_t parent, cfdata_t match, void *aux)
    208 {
    209 
    210 	return 1;
    211 }
    212 
    213 static void
    214 cpu_attach(device_t parent, device_t self, void *aux)
    215 {
    216 	struct cpu_softc *sc = device_private(self);
    217 	struct cpu_attach_args *caa = aux;
    218 	struct cpu_info *ci;
    219 	uintptr_t ptr;
    220 	static int nphycpu = 0;
    221 
    222 	sc->sc_dev = self;
    223 
    224 	if (phycpus_attached == ~0) {
    225 		aprint_error(": increase MAXCPUS\n");
    226 		return;
    227 	}
    228 
    229 	/*
    230 	 * If we're an Application Processor, allocate a cpu_info
    231 	 * If we're the first attached CPU use the primary cpu_info,
    232 	 * otherwise allocate a new one
    233 	 */
    234 	aprint_naive("\n");
    235 	aprint_normal("\n");
    236 	if (nphycpu > 0) {
    237 		struct cpu_info *tmp;
    238 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    239 		    KM_SLEEP);
    240 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    241 		ci->ci_curldt = -1;
    242 
    243 		tmp = phycpu_info_list;
    244 		while (tmp->ci_next)
    245 			tmp = tmp->ci_next;
    246 
    247 		tmp->ci_next = ci;
    248 	} else {
    249 		ci = &phycpu_info_primary;
    250 	}
    251 
    252 	ci->ci_self = ci;
    253 	sc->sc_info = ci;
    254 
    255 	ci->ci_dev = self;
    256 	ci->ci_acpiid = caa->cpu_id;
    257 	ci->ci_cpuid = caa->cpu_number;
    258 	ci->ci_vcpu = NULL;
    259 	ci->ci_index = nphycpu++;
    260 	ci->ci_cpumask = (1 << cpu_index(ci));
    261 
    262 	atomic_or_32(&phycpus_attached, ci->ci_cpumask);
    263 
    264 	if (!pmf_device_register(self, NULL, NULL))
    265 		aprint_error_dev(self, "couldn't establish power handler\n");
    266 
    267 	(void)config_defer(self, cpu_defer);
    268 }
    269 
    270 static void
    271 cpu_defer(device_t self)
    272 {
    273 	cpu_rescan(self, NULL, NULL);
    274 }
    275 
    276 static int
    277 cpu_rescan(device_t self, const char *ifattr, const int *locators)
    278 {
    279 	struct cpu_softc *sc = device_private(self);
    280 	struct cpufeature_attach_args cfaa;
    281 	struct cpu_info *ci = sc->sc_info;
    282 
    283 	memset(&cfaa, 0, sizeof(cfaa));
    284 	cfaa.ci = ci;
    285 
    286 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    287 
    288 		if (ci->ci_frequency == NULL) {
    289 			cfaa.name = "frequency";
    290 			ci->ci_frequency = config_found_ia(self,
    291 			    "cpufeaturebus", &cfaa, NULL);
    292 		}
    293 	}
    294 
    295 	return 0;
    296 }
    297 
    298 static void
    299 cpu_childdetached(device_t self, device_t child)
    300 {
    301 	struct cpu_softc *sc = device_private(self);
    302 	struct cpu_info *ci = sc->sc_info;
    303 
    304 	if (ci->ci_frequency == child)
    305 		ci->ci_frequency = NULL;
    306 }
    307 
    308 static int
    309 vcpu_match(device_t parent, cfdata_t match, void *aux)
    310 {
    311 	struct vcpu_attach_args *vcaa = aux;
    312 	struct vcpu_runstate_info vcr;
    313 	int error;
    314 
    315 	if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
    316 		error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
    317 					   vcaa->vcaa_caa.cpu_number,
    318 					   &vcr);
    319 		switch (error) {
    320 		case 0:
    321 			return 1;
    322 		case -ENOENT:
    323 			return 0;
    324 		default:
    325 			panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
    326 		}
    327 	}
    328 
    329 	return 0;
    330 }
    331 
    332 static void
    333 vcpu_attach(device_t parent, device_t self, void *aux)
    334 {
    335 	struct vcpu_attach_args *vcaa = aux;
    336 
    337 	KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
    338 	vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
    339 	cpu_attach_common(parent, self, &vcaa->vcaa_caa);
    340 }
    341 
    342 static int
    343 vcpu_is_up(struct cpu_info *ci)
    344 {
    345 	KASSERT(ci != NULL);
    346 	return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
    347 }
    348 
    349 static void
    350 cpu_vm_init(struct cpu_info *ci)
    351 {
    352 	int ncolors = 2, i;
    353 
    354 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    355 		struct x86_cache_info *cai;
    356 		int tcolors;
    357 
    358 		cai = &ci->ci_cinfo[i];
    359 
    360 		tcolors = atop(cai->cai_totalsize);
    361 		switch(cai->cai_associativity) {
    362 		case 0xff:
    363 			tcolors = 1; /* fully associative */
    364 			break;
    365 		case 0:
    366 		case 1:
    367 			break;
    368 		default:
    369 			tcolors /= cai->cai_associativity;
    370 		}
    371 		ncolors = max(ncolors, tcolors);
    372 	}
    373 
    374 	/*
    375 	 * Knowing the size of the largest cache on this CPU, re-color
    376 	 * our pages.
    377 	 */
    378 	if (ncolors <= uvmexp.ncolors)
    379 		return;
    380 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    381 	uvm_page_recolor(ncolors);
    382 }
    383 
    384 static void
    385 cpu_attach_common(device_t parent, device_t self, void *aux)
    386 {
    387 	struct cpu_softc *sc = device_private(self);
    388 	struct cpu_attach_args *caa = aux;
    389 	struct cpu_info *ci;
    390 	uintptr_t ptr;
    391 	int cpunum = caa->cpu_number;
    392 	static bool again = false;
    393 
    394 	sc->sc_dev = self;
    395 
    396 	/*
    397 	 * If we're an Application Processor, allocate a cpu_info
    398 	 * structure, otherwise use the primary's.
    399 	 */
    400 	if (caa->cpu_role == CPU_ROLE_AP) {
    401 		aprint_naive(": Application Processor\n");
    402 		ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    403 		    KM_SLEEP);
    404 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    405 		memset(ci, 0, sizeof(*ci));
    406 #ifdef TRAPLOG
    407 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
    408 #endif
    409 	} else {
    410 		aprint_naive(": %s Processor\n",
    411 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    412 		ci = &cpu_info_primary;
    413 	}
    414 
    415 	ci->ci_self = ci;
    416 	sc->sc_info = ci;
    417 	ci->ci_dev = self;
    418 	ci->ci_cpuid = cpunum;
    419 
    420 	KASSERT(HYPERVISOR_shared_info != NULL);
    421 	ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
    422 
    423 	KASSERT(ci->ci_func == 0);
    424 	ci->ci_func = caa->cpu_func;
    425 
    426 	/* Must be called before mi_cpu_attach(). */
    427 	cpu_vm_init(ci);
    428 
    429 	if (caa->cpu_role == CPU_ROLE_AP) {
    430 		int error;
    431 
    432 		error = mi_cpu_attach(ci);
    433 
    434 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    435 		if (error != 0) {
    436 			aprint_normal("\n");
    437 			aprint_error_dev(self,
    438 			    "mi_cpu_attach failed with %d\n", error);
    439 			return;
    440 		}
    441 
    442 	} else {
    443 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    444 	}
    445 
    446 	ci->ci_cpumask = (1 << cpu_index(ci));
    447 	pmap_reference(pmap_kernel());
    448 	ci->ci_pmap = pmap_kernel();
    449 	ci->ci_tlbstate = TLBSTATE_STALE;
    450 
    451 	/*
    452 	 * Boot processor may not be attached first, but the below
    453 	 * must be done to allow booting other processors.
    454 	 */
    455 	if (!again) {
    456 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    457 		/* Basic init. */
    458 		cpu_intr_init(ci);
    459 		cpu_get_tsc_freq(ci);
    460 		cpu_init(ci);
    461 		pmap_cpu_init_late(ci); /* XXX: cosmetic */
    462 
    463 		/* Every processor needs to init it's own ipi h/w (similar to lapic) */
    464 		xen_ipi_init();
    465 		/* XXX: clock_init() */
    466 
    467 		/* Make sure DELAY() is initialized. */
    468 		DELAY(1);
    469 		again = true;
    470 	}
    471 
    472 	/* further PCB init done later. */
    473 
    474 	switch (caa->cpu_role) {
    475 	case CPU_ROLE_SP:
    476 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    477 		cpu_identify(ci);
    478 #if 0
    479 		x86_errata();
    480 #endif
    481 		x86_cpu_idle_init();
    482 
    483 		break;
    484 
    485 	case CPU_ROLE_BP:
    486 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    487 		cpu_identify(ci);
    488 		cpu_init(ci);
    489 #if 0
    490 		x86_errata();
    491 #endif
    492 		x86_cpu_idle_init();
    493 
    494 		break;
    495 
    496 	case CPU_ROLE_AP:
    497 		atomic_or_32(&ci->ci_flags, CPUF_AP);
    498 
    499 		/*
    500 		 * report on an AP
    501 		 */
    502 
    503 #if defined(MULTIPROCESSOR)
    504 		/* interrupt handler stack */
    505 		cpu_intr_init(ci);
    506 
    507 		/* Setup per-cpu memory for gdt */
    508 		gdt_alloc_cpu(ci);
    509 
    510 		pmap_cpu_init_late(ci);
    511 		cpu_start_secondary(ci);
    512 
    513 		if (ci->ci_flags & CPUF_PRESENT) {
    514 			struct cpu_info *tmp;
    515 
    516 			cpu_identify(ci);
    517 			tmp = cpu_info_list;
    518 			while (tmp->ci_next)
    519 				tmp = tmp->ci_next;
    520 
    521 			tmp->ci_next = ci;
    522 		}
    523 #else
    524 		aprint_error(": not started\n");
    525 #endif
    526 		break;
    527 
    528 	default:
    529 		aprint_normal("\n");
    530 		panic("unknown processor type??\n");
    531 	}
    532 
    533 	pat_init(ci);
    534 	atomic_or_32(&cpus_attached, ci->ci_cpumask);
    535 
    536 #if 0
    537 	if (!pmf_device_register(self, cpu_suspend, cpu_resume))
    538 		aprint_error_dev(self, "couldn't establish power handler\n");
    539 #endif
    540 
    541 #ifdef MPVERBOSE
    542 	if (mp_verbose) {
    543 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    544 		struct pcb *pcb = lwp_getpcb(l);
    545 
    546 		aprint_verbose_dev(self,
    547 		    "idle lwp at %p, idle sp at 0x%p\n",
    548 		    l,
    549 #ifdef i386
    550 		    (void *)pcb->pcb_esp
    551 #else /* i386 */
    552 		    (void *)pcb->pcb_rsp
    553 #endif /* i386 */
    554 		);
    555 
    556 	}
    557 #endif /* MPVERBOSE */
    558 }
    559 
    560 /*
    561  * Initialize the processor appropriately.
    562  */
    563 
    564 void
    565 cpu_init(struct cpu_info *ci)
    566 {
    567 
    568 	/*
    569 	 * On a P6 or above, enable global TLB caching if the
    570 	 * hardware supports it.
    571 	 */
    572 	if (cpu_feature[0] & CPUID_PGE)
    573 		lcr4(rcr4() | CR4_PGE);	/* enable global TLB caching */
    574 
    575 #ifdef XXXMTRR
    576 	/*
    577 	 * On a P6 or above, initialize MTRR's if the hardware supports them.
    578 	 */
    579 	if (cpu_feature[0] & CPUID_MTRR) {
    580 		if ((ci->ci_flags & CPUF_AP) == 0)
    581 			i686_mtrr_init_first();
    582 		mtrr_init_cpu(ci);
    583 	}
    584 #endif
    585 	/*
    586 	 * If we have FXSAVE/FXRESTOR, use them.
    587 	 */
    588 	if (cpu_feature[0] & CPUID_FXSR) {
    589 		lcr4(rcr4() | CR4_OSFXSR);
    590 
    591 		/*
    592 		 * If we have SSE/SSE2, enable XMM exceptions.
    593 		 */
    594 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    595 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    596 	}
    597 
    598 #ifdef __x86_64__
    599 	/* No user PGD mapped for this CPU yet */
    600 	ci->ci_xen_current_user_pgd = 0;
    601 #endif
    602 
    603 	atomic_or_32(&cpus_running, ci->ci_cpumask);
    604 	atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    605 
    606 	/* XXX: register vcpu_register_runstate_memory_area, and figure out how to make sure this VCPU is running ? */
    607 }
    608 
    609 
    610 #ifdef MULTIPROCESSOR
    611 
    612 void
    613 cpu_boot_secondary_processors(void)
    614 {
    615 	struct cpu_info *ci;
    616 	u_long i;
    617 	for (i = 0; i < maxcpus; i++) {
    618 		ci = cpu_lookup(i);
    619 		if (ci == NULL)
    620 			continue;
    621 		if (ci->ci_data.cpu_idlelwp == NULL)
    622 			continue;
    623 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    624 			continue;
    625 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    626 			continue;
    627 		cpu_boot_secondary(ci);
    628 	}
    629 
    630 	x86_mp_online = true;
    631 }
    632 
    633 static void
    634 cpu_init_idle_lwp(struct cpu_info *ci)
    635 {
    636 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    637 	struct pcb *pcb = lwp_getpcb(l);
    638 
    639 	pcb->pcb_cr0 = rcr0();
    640 }
    641 
    642 void
    643 cpu_init_idle_lwps(void)
    644 {
    645 	struct cpu_info *ci;
    646 	u_long i;
    647 
    648 	for (i = 0; i < maxcpus; i++) {
    649 		ci = cpu_lookup(i);
    650 		if (ci == NULL)
    651 			continue;
    652 		if (ci->ci_data.cpu_idlelwp == NULL)
    653 			continue;
    654 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    655 			continue;
    656 		cpu_init_idle_lwp(ci);
    657 	}
    658 }
    659 
    660 static void
    661 cpu_start_secondary(struct cpu_info *ci)
    662 {
    663 	int i;
    664 
    665 	aprint_debug_dev(ci->ci_dev, "starting\n");
    666 
    667 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    668 
    669 	if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
    670 		return;
    671 	}
    672 
    673 	/*
    674 	 * wait for it to become ready
    675 	 */
    676 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    677 		delay(10);
    678 	}
    679 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    680 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    681 #if defined(MPDEBUG) && defined(DDB)
    682 		printf("dropping into debugger; continue from here to resume boot\n");
    683 		Debugger();
    684 #endif
    685 	}
    686 
    687 	CPU_START_CLEANUP(ci);
    688 }
    689 
    690 void
    691 cpu_boot_secondary(struct cpu_info *ci)
    692 {
    693 	int i;
    694 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    695 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    696 		delay(10);
    697 	}
    698 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    699 		aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
    700 #if defined(MPDEBUG) && defined(DDB)
    701 		printf("dropping into debugger; continue from here to resume boot\n");
    702 		Debugger();
    703 #endif
    704 	}
    705 }
    706 
    707 /*
    708  * APs end up here immediately after initialisation and VCPUOP_up in
    709  * mp_cpu_start().
    710  * At this point, we are running in the idle pcb/idle stack of the new
    711  * CPU.  This function jumps to the idle loop and starts looking for
    712  * work.
    713  */
    714 extern void x86_64_tls_switch(struct lwp *);
    715 
    716 void
    717 cpu_hatch(void *v)
    718 {
    719 	struct cpu_info *ci = (struct cpu_info *)v;
    720 	struct pcb *pcb;
    721 	int s, i;
    722 
    723 	/* Setup TLS and kernel GS/FS */
    724 	cpu_init_msrs(ci, true);
    725 	cpu_init_idt();
    726 	gdt_init_cpu(ci);
    727 
    728 	cpu_probe(ci);
    729 
    730 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    731 
    732 	while ((ci->ci_flags & CPUF_GO) == 0) {
    733 		/* Don't use delay, boot CPU may be patching the text. */
    734 		for (i = 10000; i != 0; i--)
    735 			x86_pause();
    736 	}
    737 
    738 	/* Because the text may have been patched in x86_patch(). */
    739 	x86_flush();
    740 	tlbflushg();
    741 
    742 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    743 
    744 	pcb = lwp_getpcb(curlwp);
    745 	pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0); /* XXX: consider using pmap_load() ? */
    746 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    747 
    748 	xen_ipi_init();
    749 
    750 	xen_initclocks();
    751 
    752 	/* XXX: lapic_initclocks(); */
    753 
    754 #ifdef __x86_64__
    755 	fpuinit(ci);
    756 #endif
    757 
    758 	lldt(GSEL(GLDT_SEL, SEL_KPL));
    759 
    760 	cpu_init(ci);
    761 	cpu_get_tsc_freq(ci);
    762 
    763 	s = splhigh();
    764 	x86_enable_intr();
    765 	splx(s);
    766 #if 0
    767 	x86_errata();
    768 #endif
    769 
    770 	aprint_debug_dev(ci->ci_dev, "running\n");
    771 
    772 	cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
    773 
    774 	panic("switch to idle_loop context returned!\n");
    775 	/* NOTREACHED */
    776 }
    777 
    778 #if defined(DDB)
    779 
    780 #include <ddb/db_output.h>
    781 #include <machine/db_machdep.h>
    782 
    783 /*
    784  * Dump CPU information from ddb.
    785  */
    786 void
    787 cpu_debug_dump(void)
    788 {
    789 	struct cpu_info *ci;
    790 	CPU_INFO_ITERATOR cii;
    791 
    792 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    793 	for (CPU_INFO_FOREACH(cii, ci)) {
    794 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    795 		    ci,
    796 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    797 		    (long)ci->ci_cpuid,
    798 		    ci->ci_flags, ci->ci_ipis,
    799 		    ci->ci_curlwp,
    800 		    ci->ci_fpcurlwp);
    801 	}
    802 }
    803 #endif /* DDB */
    804 
    805 #endif /* MULTIPROCESSOR */
    806 
    807 extern void hypervisor_callback(void);
    808 extern void failsafe_callback(void);
    809 #ifdef __x86_64__
    810 typedef void (vector)(void);
    811 extern vector Xsyscall, Xsyscall32;
    812 #endif
    813 
    814 /*
    815  * Setup the "trampoline". On Xen, we setup nearly all cpu context
    816  * outside a trampoline, so we prototype and call targetip like so:
    817  * void targetip(struct cpu_info *);
    818  */
    819 
    820 static void
    821 gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
    822 {
    823 	int i;
    824 	for (i = 0; i < roundup(entries, PAGE_SIZE) >> PAGE_SHIFT; i++) {
    825 
    826 		frames[i] = ((paddr_t) xpmap_ptetomach(
    827 				(pt_entry_t *) (base + (i << PAGE_SHIFT))))
    828 			>> PAGE_SHIFT;
    829 
    830 		/* Mark Read-only */
    831 		pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
    832 		    PG_RW);
    833 	}
    834 }
    835 
    836 #ifdef __x86_64__
    837 extern char *ldtstore; /* XXX: Xen MP todo */
    838 
    839 static void
    840 xen_init_amd64_vcpuctxt(struct cpu_info *ci,
    841 			struct vcpu_guest_context *initctx,
    842 			void targetrip(struct cpu_info *))
    843 {
    844 	/* page frames to point at GDT */
    845 	extern int gdt_size;
    846 	paddr_t frames[16];
    847 	psize_t gdt_ents;
    848 
    849 	struct lwp *l;
    850 	struct pcb *pcb;
    851 
    852 	volatile struct vcpu_info *vci;
    853 
    854 	KASSERT(ci != NULL);
    855 	KASSERT(ci != &cpu_info_primary);
    856 	KASSERT(initctx != NULL);
    857 	KASSERT(targetrip != NULL);
    858 
    859 	memset(initctx, 0, sizeof *initctx);
    860 
    861 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT; /* XXX: re-investigate roundup(gdt_size... ) for gdt_ents. */
    862 	KASSERT(gdt_ents <= 16);
    863 
    864 	gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
    865 
    866 	/* XXX: The stuff in here is amd64 specific. move to mptramp.[Sc] ? */
    867 
    868 	/* Initialise the vcpu context: We use idle_loop()'s pcb context. */
    869 
    870 	l = ci->ci_data.cpu_idlelwp;
    871 
    872 	KASSERT(l != NULL);
    873 	pcb = lwp_getpcb(l);
    874 	KASSERT(pcb != NULL);
    875 
    876 	/* resume with interrupts off */
    877 	vci = ci->ci_vcpu;
    878 	vci->evtchn_upcall_mask = 1;
    879 	xen_mb();
    880 
    881 	/* resume in kernel-mode */
    882 	initctx->flags = VGCF_in_kernel | VGCF_online;
    883 
    884 	/* Stack and entry points:
    885 	 * We arrange for the stack frame for cpu_hatch() to
    886 	 * appear as a callee frame of lwp_trampoline(). Being a
    887 	 * leaf frame prevents trampling on any of the MD stack setup
    888 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
    889 	 */
    890 
    891 	initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
    892 	initctx->user_regs.rip = (vaddr_t) targetrip;
    893 
    894 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
    895 
    896 	initctx->user_regs.rflags = pcb->pcb_flags;
    897 	initctx->user_regs.rsp = pcb->pcb_rsp;
    898 
    899 	/* Data segments */
    900 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
    901 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
    902 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
    903 
    904 	/* GDT */
    905 	memcpy(initctx->gdt_frames, frames, sizeof frames);
    906 	initctx->gdt_ents = gdt_ents;
    907 
    908 	/* LDT */
    909 	initctx->ldt_base = (unsigned long) ldtstore;
    910 	initctx->ldt_ents = LDT_SIZE >> 3;
    911 
    912 	/* Kernel context state */
    913 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
    914 	initctx->kernel_sp = pcb->pcb_rsp0;
    915 	initctx->ctrlreg[0] = pcb->pcb_cr0;
    916 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
    917 	initctx->ctrlreg[2] = pcb->pcb_cr2; /* XXX: */
    918 	/*
    919 	 * Use pmap_kernel() L4 PD directly, until we setup the
    920 	 * per-cpu L4 PD in pmap_cpu_init_late()
    921 	 */
    922 
    923 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
    924 	initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
    925 
    926 
    927 	/* Xen callbacks */
    928 	initctx->event_callback_eip = (unsigned long) hypervisor_callback;
    929 	initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
    930 	initctx->syscall_callback_eip = (unsigned long) Xsyscall;
    931 
    932 	return;
    933 }
    934 #else /* i386 */
    935 extern union descriptor *ldt;
    936 extern void Xsyscall(void);
    937 
    938 static void
    939 xen_init_i386_vcpuctxt(struct cpu_info *ci,
    940 			struct vcpu_guest_context *initctx,
    941 			void targeteip(struct cpu_info *))
    942 {
    943 	/* page frames to point at GDT */
    944 	extern int gdt_size;
    945 	paddr_t frames[16];
    946 	psize_t gdt_ents;
    947 
    948 	struct lwp *l;
    949 	struct pcb *pcb;
    950 
    951 	volatile struct vcpu_info *vci;
    952 
    953 	KASSERT(ci != NULL);
    954 	KASSERT(ci != &cpu_info_primary);
    955 	KASSERT(initctx != NULL);
    956 	KASSERT(targeteip != NULL);
    957 
    958 	memset(initctx, 0, sizeof *initctx);
    959 
    960 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT; /* XXX: re-investigate roundup(gdt_size... ) for gdt_ents. */
    961 	KASSERT(gdt_ents <= 16);
    962 
    963 	gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
    964 
    965 	/*
    966 	 * Initialise the vcpu context:
    967 	 * We use this cpu's idle_loop() pcb context.
    968 	 */
    969 
    970 	l = ci->ci_data.cpu_idlelwp;
    971 
    972 	KASSERT(l != NULL);
    973 	pcb = lwp_getpcb(l);
    974 	KASSERT(pcb != NULL);
    975 
    976 	/* resume with interrupts off */
    977 	vci = ci->ci_vcpu;
    978 	vci->evtchn_upcall_mask = 1;
    979 	xen_mb();
    980 
    981 	/* resume in kernel-mode */
    982 	initctx->flags = VGCF_in_kernel | VGCF_online;
    983 
    984 	/* Stack frame setup for cpu_hatch():
    985 	 * We arrange for the stack frame for cpu_hatch() to
    986 	 * appear as a callee frame of lwp_trampoline(). Being a
    987 	 * leaf frame prevents trampling on any of the MD stack setup
    988 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
    989 	 */
    990 
    991 	initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
    992 						      arg1 */
    993 	{ /* targeteip(ci); */
    994 		uint32_t *arg = (uint32_t *) initctx->user_regs.esp;
    995 		arg[1] = (uint32_t) ci; /* arg1 */
    996 
    997 	}
    998 
    999 	initctx->user_regs.eip = (vaddr_t) targeteip;
   1000 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
   1001 	initctx->user_regs.eflags |= pcb->pcb_iopl;
   1002 
   1003 	/* Data segments */
   1004 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
   1005 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
   1006 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
   1007 	initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
   1008 
   1009 	/* GDT */
   1010 	memcpy(initctx->gdt_frames, frames, sizeof frames);
   1011 	initctx->gdt_ents = gdt_ents;
   1012 
   1013 	/* LDT */
   1014 	initctx->ldt_base = (unsigned long) ldt;
   1015 	initctx->ldt_ents = NLDT;
   1016 
   1017 	/* Kernel context state */
   1018 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
   1019 	initctx->kernel_sp = pcb->pcb_esp0;
   1020 	initctx->ctrlreg[0] = pcb->pcb_cr0;
   1021 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
   1022 	initctx->ctrlreg[2] = pcb->pcb_cr2; /* XXX: */
   1023 	/*
   1024 	 * Use pmap_kernel() L4 PD directly, until we setup the
   1025 	 * per-cpu L4 PD in pmap_cpu_init_late()
   1026 	 */
   1027 #ifdef PAE
   1028 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
   1029 #else /* PAE */
   1030 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(pcb->pcb_cr3)));
   1031 #endif /* PAE */
   1032 	initctx->ctrlreg[4] = /* CR4_PAE |  */CR4_OSFXSR | CR4_OSXMMEXCPT;
   1033 
   1034 
   1035 	/* Xen callbacks */
   1036 	initctx->event_callback_eip = (unsigned long) hypervisor_callback;
   1037 	initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
   1038 	initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
   1039 	initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
   1040 
   1041 	return;
   1042 }
   1043 #endif /* __x86_64__ */
   1044 
   1045 int
   1046 mp_cpu_start(struct cpu_info *ci, vaddr_t target)
   1047 {
   1048 
   1049 	int hyperror;
   1050 	struct vcpu_guest_context vcpuctx;
   1051 
   1052 	KASSERT(ci != NULL);
   1053 	KASSERT(ci != &cpu_info_primary);
   1054 	KASSERT(ci->ci_flags & CPUF_AP);
   1055 
   1056 #ifdef __x86_64__
   1057 	xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
   1058 #else  /* i386 */
   1059 	xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
   1060 #endif /* __x86_64__ */
   1061 
   1062 	/* Initialise the given vcpu to execute cpu_hatch(ci); */
   1063 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
   1064 		aprint_error(": context initialisation failed. errno = %d\n", hyperror);
   1065 		return hyperror;
   1066 	}
   1067 
   1068 	/* Start it up */
   1069 
   1070 	/* First bring it down - yay, thanks Xen documentation for omitting this slight detail - lost only about 1 week reading through crap */
   1071 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
   1072 		aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
   1073 		return hyperror;
   1074 	}
   1075 
   1076 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
   1077 		aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
   1078 		return hyperror;
   1079 	}
   1080 
   1081 	if (!vcpu_is_up(ci)) {
   1082 		aprint_error(": did not come up\n");
   1083 		return -1;
   1084 	}
   1085 
   1086 	return 0;
   1087 }
   1088 
   1089 void
   1090 mp_cpu_start_cleanup(struct cpu_info *ci)
   1091 {
   1092 #if 0
   1093 	/*
   1094 	 * Ensure the NVRAM reset byte contains something vaguely sane.
   1095 	 */
   1096 
   1097 	outb(IO_RTC, NVRAM_RESET);
   1098 	outb(IO_RTC+1, NVRAM_RESET_RST);
   1099 #endif
   1100 	if (vcpu_is_up(ci)) {
   1101 		aprint_debug_dev(ci->ci_dev, "is started.\n");
   1102 	}
   1103 	else {
   1104 		aprint_error_dev(ci->ci_dev, "did not start up.\n");
   1105 	}
   1106 
   1107 }
   1108 
   1109 /* curcpu() uses %fs - shim for until cpu_init_msrs(), below */
   1110 static struct cpu_info *cpu_primary(void)
   1111 {
   1112 	return &cpu_info_primary;
   1113 }
   1114 struct cpu_info	* (*xpq_cpu)(void) = cpu_primary;
   1115 
   1116 	void
   1117 cpu_init_msrs(struct cpu_info *ci, bool full)
   1118 {
   1119 #ifdef __x86_64__
   1120 	if (full) {
   1121 		HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
   1122 		HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
   1123 		HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
   1124 		xpq_cpu = x86_curcpu;
   1125 	}
   1126 #endif	/* __x86_64__ */
   1127 
   1128 	if (cpu_feature[2] & CPUID_NOX)
   1129 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1130 
   1131 }
   1132 
   1133 void
   1134 cpu_offline_md(void)
   1135 {
   1136         int s;
   1137 
   1138         s = splhigh();
   1139 #ifdef __i386__
   1140         npxsave_cpu(true);
   1141 #else
   1142         fpusave_cpu(true);
   1143 #endif
   1144         splx(s);
   1145 }
   1146 
   1147 #if 0
   1148 /* XXX joerg restructure and restart CPUs individually */
   1149 static bool
   1150 cpu_suspend(device_t dv, const pmf_qual_t *qual)
   1151 {
   1152 	struct cpu_softc *sc = device_private(dv);
   1153 	struct cpu_info *ci = sc->sc_info;
   1154 	int err;
   1155 
   1156 	if (ci->ci_flags & CPUF_PRIMARY)
   1157 		return true;
   1158 	if (ci->ci_data.cpu_idlelwp == NULL)
   1159 		return true;
   1160 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1161 		return true;
   1162 
   1163 	sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
   1164 
   1165 	if (sc->sc_wasonline) {
   1166 		mutex_enter(&cpu_lock);
   1167 		err = cpu_setstate(ci, false);
   1168 		mutex_exit(&cpu_lock);
   1169 
   1170 		if (err)
   1171 			return false;
   1172 	}
   1173 
   1174 	return true;
   1175 }
   1176 
   1177 static bool
   1178 cpu_resume(device_t dv, const pmf_qual_t *qual)
   1179 {
   1180 	struct cpu_softc *sc = device_private(dv);
   1181 	struct cpu_info *ci = sc->sc_info;
   1182 	int err = 0;
   1183 
   1184 	if (ci->ci_flags & CPUF_PRIMARY)
   1185 		return true;
   1186 	if (ci->ci_data.cpu_idlelwp == NULL)
   1187 		return true;
   1188 	if ((ci->ci_flags & CPUF_PRESENT) == 0)
   1189 		return true;
   1190 
   1191 	if (sc->sc_wasonline) {
   1192 		mutex_enter(&cpu_lock);
   1193 		err = cpu_setstate(ci, true);
   1194 		mutex_exit(&cpu_lock);
   1195 	}
   1196 
   1197 	return err == 0;
   1198 }
   1199 #endif
   1200 
   1201 void
   1202 cpu_get_tsc_freq(struct cpu_info *ci)
   1203 {
   1204 	uint32_t vcpu_tversion;
   1205 	const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
   1206 
   1207 	vcpu_tversion = tinfo->version;
   1208 	while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
   1209 
   1210 	uint64_t freq = 1000000000ULL << 32;
   1211 	freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
   1212 	if ( tinfo->tsc_shift < 0 )
   1213 		freq = freq << -tinfo->tsc_shift;
   1214 	else
   1215 		freq = freq >> tinfo->tsc_shift;
   1216 	ci->ci_data.cpu_cc_freq = freq;
   1217 }
   1218 
   1219 void
   1220 x86_cpu_idle_xen(void)
   1221 {
   1222 	struct cpu_info *ci = curcpu();
   1223 
   1224 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1225 
   1226 	x86_disable_intr();
   1227 	if (!__predict_false(ci->ci_want_resched)) {
   1228 		idle_block();
   1229 	} else {
   1230 		x86_enable_intr();
   1231 	}
   1232 }
   1233 
   1234 /*
   1235  * Loads pmap for the current CPU.
   1236  */
   1237 void
   1238 cpu_load_pmap(struct pmap *pmap)
   1239 {
   1240 #ifdef i386
   1241 #ifdef PAE
   1242 	int i, s;
   1243 	struct cpu_info *ci;
   1244 
   1245 	s = splvm(); /* just to be safe */
   1246 	xpq_queue_lock();
   1247 	ci = curcpu();
   1248 	paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
   1249 	/* don't update the kernel L3 slot */
   1250 	for (i = 0 ; i < PDP_SIZE - 1; i++) {
   1251 		xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
   1252 		    xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
   1253 	}
   1254 	xpq_queue_unlock();
   1255 	splx(s);
   1256 	tlbflush();
   1257 #else /* PAE */
   1258 	lcr3(pmap_pdirpa(pmap, 0));
   1259 #endif /* PAE */
   1260 #endif /* i386 */
   1261 
   1262 #ifdef __x86_64__
   1263 	int i, s;
   1264 	pd_entry_t *new_pgd;
   1265 	struct cpu_info *ci;
   1266 	paddr_t l4_pd_ma;
   1267 
   1268 	ci = curcpu();
   1269 	l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
   1270 
   1271 	/*
   1272 	 * Map user space address in kernel space and load
   1273 	 * user cr3
   1274 	 */
   1275 	s = splvm();
   1276 	new_pgd = pmap->pm_pdir;
   1277 
   1278 	xpq_queue_lock();
   1279 
   1280 	/* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
   1281 	for (i = 0; i < PDIR_SLOT_PTE; i++) {
   1282 		xpq_queue_pte_update(l4_pd_ma + i * sizeof(pd_entry_t), new_pgd[i]);
   1283 	}
   1284 
   1285 	if (__predict_true(pmap != pmap_kernel())) {
   1286 		xen_set_user_pgd(pmap_pdirpa(pmap, 0));
   1287 		ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
   1288 	}
   1289 	else {
   1290 		xpq_queue_pt_switch(l4_pd_ma);
   1291 		ci->ci_xen_current_user_pgd = 0;
   1292 	}
   1293 	xpq_queue_unlock();
   1294 
   1295 	tlbflush();
   1296 
   1297 	splx(s);
   1298 
   1299 #endif /* __x86_64__ */
   1300 }
   1301 
   1302 /*
   1303  * pmap_cpu_init_late: perform late per-CPU initialization.
   1304  * Short note about percpu PDIR pages:
   1305  * Both the PAE and __x86_64__ architectures have per-cpu PDIR
   1306  * tables. This is to get around Xen's pagetable setup constraints for
   1307  * PAE (multiple L3[3]s cannot point to the same L2 - Xen
   1308  * will refuse to pin a table setup this way.) and for multiple cpus
   1309  * to map in different user pmaps on __x86_64__ (see: cpu_load_pmap())
   1310  *
   1311  * What this means for us is that the PDIR of the pmap_kernel() is
   1312  * considered to be a canonical "SHADOW" PDIR with the following
   1313  * properties:
   1314  * - Its recursive mapping points to itself
   1315  * - per-cpu recurseive mappings point to themselves
   1316  * - per-cpu L4 pages' kernel entries are expected to be in sync with
   1317  *   the shadow
   1318  * - APDP_PDE_SHADOW accesses the shadow pdir
   1319  * - APDP_PDE accesses the per-cpu pdir
   1320  * - alternate mappings are considered per-cpu - however, x86 pmap
   1321  *   currently partially consults the shadow - this works because the
   1322  *   shadow PDE is updated together with the per-cpu entry (see:
   1323  *   xen_pmap.c: pmap_map_ptes(), and the pmap is locked while the
   1324  * alternate ptes are mapped in.
   1325  */
   1326 
   1327 void
   1328 pmap_cpu_init_late(struct cpu_info *ci)
   1329 {
   1330 #if defined(PAE) || defined(__x86_64__)
   1331 	/*
   1332 	 * The BP has already its own PD page allocated during early
   1333 	 * MD startup.
   1334 	 */
   1335 
   1336 	if (ci == &cpu_info_primary)
   1337 		return;
   1338 
   1339 	KASSERT(ci != NULL);
   1340 
   1341 #if defined(PAE)
   1342 	ci->ci_pae_l3_pdir = (paddr_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1343 	    UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
   1344 
   1345 	if (ci->ci_pae_l3_pdir == NULL) {
   1346 		panic("%s: failed to allocate L3 per-cpu PD for CPU %d\n",
   1347 		      __func__, cpu_index(ci));
   1348 	}
   1349 	ci->ci_pae_l3_pdirpa = vtophys((vaddr_t) ci->ci_pae_l3_pdir);
   1350 	KASSERT(ci->ci_pae_l3_pdirpa != 0);
   1351 
   1352 	/* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
   1353 	ci->ci_pae_l3_pdir[0] =
   1354 	    xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[0]) | PG_V;
   1355 	ci->ci_pae_l3_pdir[1] =
   1356 	    xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[1]) | PG_V;
   1357 	ci->ci_pae_l3_pdir[2] =
   1358 	    xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[2]) | PG_V;
   1359 #endif /* PAE */
   1360 
   1361 	ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1362 	    UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
   1363 
   1364 	if (ci->ci_kpm_pdir == NULL) {
   1365 		panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
   1366 		      __func__, cpu_index(ci));
   1367 	}
   1368 	ci->ci_kpm_pdirpa = vtophys((vaddr_t) ci->ci_kpm_pdir);
   1369 	KASSERT(ci->ci_kpm_pdirpa != 0);
   1370 
   1371 #if defined(__x86_64__)
   1372 	/*
   1373 	 * Copy over the pmap_kernel() shadow L4 entries
   1374 	 */
   1375 
   1376 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
   1377 
   1378 	/* Recursive kernel mapping */
   1379 	ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
   1380 #elif defined(PAE)
   1381 	/* Copy over the pmap_kernel() shadow L2 entries that map the kernel */
   1382 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN, nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
   1383 #endif /* __x86_64__ else PAE */
   1384 
   1385 	/* Xen wants R/O */
   1386 	pmap_kenter_pa((vaddr_t)ci->ci_kpm_pdir, ci->ci_kpm_pdirpa,
   1387 	    VM_PROT_READ, 0);
   1388 
   1389 #if defined(PAE)
   1390 	/* Initialise L3 entry 3. This mapping is shared across all
   1391 	 * pmaps and is static, ie; loading a new pmap will not update
   1392 	 * this entry.
   1393 	 */
   1394 
   1395 	ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
   1396 
   1397 	/* Mark L3 R/O (Xen wants this) */
   1398 	pmap_kenter_pa((vaddr_t)ci->ci_pae_l3_pdir, ci->ci_pae_l3_pdirpa,
   1399 		VM_PROT_READ, 0);
   1400 
   1401 	xpq_queue_lock();
   1402 	xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
   1403 	xpq_queue_unlock();
   1404 
   1405 #elif defined(__x86_64__)
   1406 	xpq_queue_lock();
   1407 	xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
   1408 	xpq_queue_unlock();
   1409 #endif /* PAE */
   1410 #endif /* defined(PAE) || defined(__x86_64__) */
   1411 }
   1412 
   1413 
   1414 
   1415 /*
   1416  * Notify all other cpus to halt.
   1417  */
   1418 
   1419 void
   1420 cpu_broadcast_halt(void)
   1421 {
   1422 	xen_broadcast_ipi(XEN_IPI_HALT);
   1423 }
   1424 
   1425 /*
   1426  * Send a dummy ipi to a cpu.
   1427  */
   1428 
   1429 void
   1430 cpu_kick(struct cpu_info *ci)
   1431 {
   1432 	(void)xen_send_ipi(ci, XEN_IPI_KICK);
   1433 }
   1434