cpu.c revision 1.65 1 /* $NetBSD: cpu.c,v 1.65 2011/09/20 00:12:24 jym Exp $ */
2 /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp */
3
4 /*-
5 * Copyright (c) 2000 The NetBSD Foundation, Inc.
6 * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by RedBack Networks Inc.
11 *
12 * Author: Bill Sommerfeld
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /*
37 * Copyright (c) 1999 Stefan Grefen
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by the NetBSD
50 * Foundation, Inc. and its contributors.
51 * 4. Neither the name of The NetBSD Foundation nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
56 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.65 2011/09/20 00:12:24 jym Exp $");
70
71 #include "opt_ddb.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_mpbios.h" /* for MPDEBUG */
74 #include "opt_mtrr.h"
75 #include "opt_xen.h"
76
77 #include "lapic.h"
78 #include "ioapic.h"
79
80 #include <sys/param.h>
81 #include <sys/proc.h>
82 #include <sys/systm.h>
83 #include <sys/device.h>
84 #include <sys/kmem.h>
85 #include <sys/cpu.h>
86 #include <sys/atomic.h>
87 #include <sys/reboot.h>
88 #include <sys/idle.h>
89
90 #include <uvm/uvm.h>
91
92 #include <machine/cpufunc.h>
93 #include <machine/cpuvar.h>
94 #include <machine/pmap.h>
95 #include <machine/vmparam.h>
96 #include <machine/mpbiosvar.h>
97 #include <machine/pcb.h>
98 #include <machine/specialreg.h>
99 #include <machine/segments.h>
100 #include <machine/gdt.h>
101 #include <machine/mtrr.h>
102 #include <machine/pio.h>
103
104 #ifdef i386
105 #include <machine/npx.h>
106 #else
107 #include <machine/fpu.h>
108 #endif
109
110 #include <xen/xen.h>
111 #include <xen/xen3-public/vcpu.h>
112 #include <xen/vcpuvar.h>
113
114 #if NLAPIC > 0
115 #include <machine/apicvar.h>
116 #include <machine/i82489reg.h>
117 #include <machine/i82489var.h>
118 #endif
119
120 #include <dev/ic/mc146818reg.h>
121 #include <dev/isa/isareg.h>
122
123 #if MAXCPUS > 32
124 #error cpu_info contains 32bit bitmasks
125 #endif
126
127 static int cpu_match(device_t, cfdata_t, void *);
128 static void cpu_attach(device_t, device_t, void *);
129 static void cpu_defer(device_t);
130 static int cpu_rescan(device_t, const char *, const int *);
131 static void cpu_childdetached(device_t, device_t);
132 static int vcpu_match(device_t, cfdata_t, void *);
133 static void vcpu_attach(device_t, device_t, void *);
134 static void cpu_attach_common(device_t, device_t, void *);
135 void cpu_offline_md(void);
136
137 struct cpu_softc {
138 device_t sc_dev; /* device tree glue */
139 struct cpu_info *sc_info; /* pointer to CPU info */
140 bool sc_wasonline;
141 };
142
143 int mp_cpu_start(struct cpu_info *, vaddr_t);
144 void mp_cpu_start_cleanup(struct cpu_info *);
145 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
146 mp_cpu_start_cleanup };
147
148 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
149 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
150
151 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
152 vcpu_match, vcpu_attach, NULL, NULL);
153
154 /*
155 * Statically-allocated CPU info for the primary CPU (or the only
156 * CPU, on uniprocessors). The CPU info list is initialized to
157 * point at it.
158 */
159 #ifdef TRAPLOG
160 #include <machine/tlog.h>
161 struct tlog tlog_primary;
162 #endif
163 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
164 .ci_dev = 0,
165 .ci_self = &cpu_info_primary,
166 .ci_idepth = -1,
167 .ci_curlwp = &lwp0,
168 .ci_curldt = -1,
169 .ci_cpumask = 1,
170 #ifdef TRAPLOG
171 .ci_tlog = &tlog_primary,
172 #endif
173
174 };
175 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
176 .ci_dev = 0,
177 .ci_self = &phycpu_info_primary,
178 };
179
180 struct cpu_info *cpu_info_list = &cpu_info_primary;
181 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
182
183 uint32_t cpus_attached = 1;
184 uint32_t cpus_running = 1;
185
186 uint32_t phycpus_attached = 0;
187 uint32_t phycpus_running = 0;
188
189 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
190 * [0] basic features %edx
191 * [1] basic features %ecx
192 * [2] extended features %edx
193 * [3] extended features %ecx
194 * [4] VIA padlock features
195 */
196
197 bool x86_mp_online;
198 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
199
200 #if defined(MULTIPROCESSOR)
201 void cpu_hatch(void *);
202 static void cpu_boot_secondary(struct cpu_info *ci);
203 static void cpu_start_secondary(struct cpu_info *ci);
204 #endif /* MULTIPROCESSOR */
205
206 static int
207 cpu_match(device_t parent, cfdata_t match, void *aux)
208 {
209
210 return 1;
211 }
212
213 static void
214 cpu_attach(device_t parent, device_t self, void *aux)
215 {
216 struct cpu_softc *sc = device_private(self);
217 struct cpu_attach_args *caa = aux;
218 struct cpu_info *ci;
219 uintptr_t ptr;
220 static int nphycpu = 0;
221
222 sc->sc_dev = self;
223
224 if (phycpus_attached == ~0) {
225 aprint_error(": increase MAXCPUS\n");
226 return;
227 }
228
229 /*
230 * If we're an Application Processor, allocate a cpu_info
231 * If we're the first attached CPU use the primary cpu_info,
232 * otherwise allocate a new one
233 */
234 aprint_naive("\n");
235 aprint_normal("\n");
236 if (nphycpu > 0) {
237 struct cpu_info *tmp;
238 ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
239 KM_SLEEP);
240 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
241 ci->ci_curldt = -1;
242
243 tmp = phycpu_info_list;
244 while (tmp->ci_next)
245 tmp = tmp->ci_next;
246
247 tmp->ci_next = ci;
248 } else {
249 ci = &phycpu_info_primary;
250 }
251
252 ci->ci_self = ci;
253 sc->sc_info = ci;
254
255 ci->ci_dev = self;
256 ci->ci_acpiid = caa->cpu_id;
257 ci->ci_cpuid = caa->cpu_number;
258 ci->ci_vcpu = NULL;
259 ci->ci_index = nphycpu++;
260 ci->ci_cpumask = (1 << cpu_index(ci));
261
262 atomic_or_32(&phycpus_attached, ci->ci_cpumask);
263
264 if (!pmf_device_register(self, NULL, NULL))
265 aprint_error_dev(self, "couldn't establish power handler\n");
266
267 (void)config_defer(self, cpu_defer);
268 }
269
270 static void
271 cpu_defer(device_t self)
272 {
273 cpu_rescan(self, NULL, NULL);
274 }
275
276 static int
277 cpu_rescan(device_t self, const char *ifattr, const int *locators)
278 {
279 struct cpu_softc *sc = device_private(self);
280 struct cpufeature_attach_args cfaa;
281 struct cpu_info *ci = sc->sc_info;
282
283 memset(&cfaa, 0, sizeof(cfaa));
284 cfaa.ci = ci;
285
286 if (ifattr_match(ifattr, "cpufeaturebus")) {
287
288 if (ci->ci_frequency == NULL) {
289 cfaa.name = "frequency";
290 ci->ci_frequency = config_found_ia(self,
291 "cpufeaturebus", &cfaa, NULL);
292 }
293 }
294
295 return 0;
296 }
297
298 static void
299 cpu_childdetached(device_t self, device_t child)
300 {
301 struct cpu_softc *sc = device_private(self);
302 struct cpu_info *ci = sc->sc_info;
303
304 if (ci->ci_frequency == child)
305 ci->ci_frequency = NULL;
306 }
307
308 static int
309 vcpu_match(device_t parent, cfdata_t match, void *aux)
310 {
311 struct vcpu_attach_args *vcaa = aux;
312 struct vcpu_runstate_info vcr;
313 int error;
314
315 if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
316 error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
317 vcaa->vcaa_caa.cpu_number,
318 &vcr);
319 switch (error) {
320 case 0:
321 return 1;
322 case -ENOENT:
323 return 0;
324 default:
325 panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
326 }
327 }
328
329 return 0;
330 }
331
332 static void
333 vcpu_attach(device_t parent, device_t self, void *aux)
334 {
335 struct vcpu_attach_args *vcaa = aux;
336
337 KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
338 vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
339 cpu_attach_common(parent, self, &vcaa->vcaa_caa);
340
341 if (!pmf_device_register(self, NULL, NULL))
342 aprint_error_dev(self, "couldn't establish power handler\n");
343 }
344
345 static int
346 vcpu_is_up(struct cpu_info *ci)
347 {
348 KASSERT(ci != NULL);
349 return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
350 }
351
352 static void
353 cpu_vm_init(struct cpu_info *ci)
354 {
355 int ncolors = 2, i;
356
357 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
358 struct x86_cache_info *cai;
359 int tcolors;
360
361 cai = &ci->ci_cinfo[i];
362
363 tcolors = atop(cai->cai_totalsize);
364 switch(cai->cai_associativity) {
365 case 0xff:
366 tcolors = 1; /* fully associative */
367 break;
368 case 0:
369 case 1:
370 break;
371 default:
372 tcolors /= cai->cai_associativity;
373 }
374 ncolors = max(ncolors, tcolors);
375 }
376
377 /*
378 * Knowing the size of the largest cache on this CPU, re-color
379 * our pages.
380 */
381 if (ncolors <= uvmexp.ncolors)
382 return;
383 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
384 uvm_page_recolor(ncolors);
385 }
386
387 static void
388 cpu_attach_common(device_t parent, device_t self, void *aux)
389 {
390 struct cpu_softc *sc = device_private(self);
391 struct cpu_attach_args *caa = aux;
392 struct cpu_info *ci;
393 uintptr_t ptr;
394 int cpunum = caa->cpu_number;
395 static bool again = false;
396
397 sc->sc_dev = self;
398
399 /*
400 * If we're an Application Processor, allocate a cpu_info
401 * structure, otherwise use the primary's.
402 */
403 if (caa->cpu_role == CPU_ROLE_AP) {
404 aprint_naive(": Application Processor\n");
405 ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
406 KM_SLEEP);
407 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
408 memset(ci, 0, sizeof(*ci));
409 #ifdef TRAPLOG
410 ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
411 #endif
412 } else {
413 aprint_naive(": %s Processor\n",
414 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
415 ci = &cpu_info_primary;
416 }
417
418 ci->ci_self = ci;
419 sc->sc_info = ci;
420 ci->ci_dev = self;
421 ci->ci_cpuid = cpunum;
422
423 KASSERT(HYPERVISOR_shared_info != NULL);
424 ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
425
426 KASSERT(ci->ci_func == 0);
427 ci->ci_func = caa->cpu_func;
428
429 /* Must be called before mi_cpu_attach(). */
430 cpu_vm_init(ci);
431
432 if (caa->cpu_role == CPU_ROLE_AP) {
433 int error;
434
435 error = mi_cpu_attach(ci);
436
437 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
438 if (error != 0) {
439 aprint_normal("\n");
440 aprint_error_dev(self,
441 "mi_cpu_attach failed with %d\n", error);
442 return;
443 }
444
445 } else {
446 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
447 }
448
449 ci->ci_cpumask = (1 << cpu_index(ci));
450 pmap_reference(pmap_kernel());
451 ci->ci_pmap = pmap_kernel();
452 ci->ci_tlbstate = TLBSTATE_STALE;
453
454 /*
455 * Boot processor may not be attached first, but the below
456 * must be done to allow booting other processors.
457 */
458 if (!again) {
459 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
460 /* Basic init. */
461 cpu_intr_init(ci);
462 cpu_get_tsc_freq(ci);
463 cpu_init(ci);
464 pmap_cpu_init_late(ci); /* XXX: cosmetic */
465
466 /* Every processor needs to init it's own ipi h/w (similar to lapic) */
467 xen_ipi_init();
468 /* XXX: clock_init() */
469
470 /* Make sure DELAY() is initialized. */
471 DELAY(1);
472 again = true;
473 }
474
475 /* further PCB init done later. */
476
477 switch (caa->cpu_role) {
478 case CPU_ROLE_SP:
479 atomic_or_32(&ci->ci_flags, CPUF_SP);
480 cpu_identify(ci);
481 #if 0
482 x86_errata();
483 #endif
484 x86_cpu_idle_init();
485
486 break;
487
488 case CPU_ROLE_BP:
489 atomic_or_32(&ci->ci_flags, CPUF_BSP);
490 cpu_identify(ci);
491 cpu_init(ci);
492 #if 0
493 x86_errata();
494 #endif
495 x86_cpu_idle_init();
496
497 break;
498
499 case CPU_ROLE_AP:
500 atomic_or_32(&ci->ci_flags, CPUF_AP);
501
502 /*
503 * report on an AP
504 */
505
506 #if defined(MULTIPROCESSOR)
507 /* interrupt handler stack */
508 cpu_intr_init(ci);
509
510 /* Setup per-cpu memory for gdt */
511 gdt_alloc_cpu(ci);
512
513 pmap_cpu_init_late(ci);
514 cpu_start_secondary(ci);
515
516 if (ci->ci_flags & CPUF_PRESENT) {
517 struct cpu_info *tmp;
518
519 cpu_identify(ci);
520 tmp = cpu_info_list;
521 while (tmp->ci_next)
522 tmp = tmp->ci_next;
523
524 tmp->ci_next = ci;
525 }
526 #else
527 aprint_error(": not started\n");
528 #endif
529 break;
530
531 default:
532 aprint_normal("\n");
533 panic("unknown processor type??\n");
534 }
535
536 pat_init(ci);
537 atomic_or_32(&cpus_attached, ci->ci_cpumask);
538
539 #if 0
540 if (!pmf_device_register(self, cpu_suspend, cpu_resume))
541 aprint_error_dev(self, "couldn't establish power handler\n");
542 #endif
543
544 #ifdef MPVERBOSE
545 if (mp_verbose) {
546 struct lwp *l = ci->ci_data.cpu_idlelwp;
547 struct pcb *pcb = lwp_getpcb(l);
548
549 aprint_verbose_dev(self,
550 "idle lwp at %p, idle sp at 0x%p\n",
551 l,
552 #ifdef i386
553 (void *)pcb->pcb_esp
554 #else /* i386 */
555 (void *)pcb->pcb_rsp
556 #endif /* i386 */
557 );
558
559 }
560 #endif /* MPVERBOSE */
561 }
562
563 /*
564 * Initialize the processor appropriately.
565 */
566
567 void
568 cpu_init(struct cpu_info *ci)
569 {
570
571 /*
572 * On a P6 or above, enable global TLB caching if the
573 * hardware supports it.
574 */
575 if (cpu_feature[0] & CPUID_PGE)
576 lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
577
578 #ifdef XXXMTRR
579 /*
580 * On a P6 or above, initialize MTRR's if the hardware supports them.
581 */
582 if (cpu_feature[0] & CPUID_MTRR) {
583 if ((ci->ci_flags & CPUF_AP) == 0)
584 i686_mtrr_init_first();
585 mtrr_init_cpu(ci);
586 }
587 #endif
588 /*
589 * If we have FXSAVE/FXRESTOR, use them.
590 */
591 if (cpu_feature[0] & CPUID_FXSR) {
592 lcr4(rcr4() | CR4_OSFXSR);
593
594 /*
595 * If we have SSE/SSE2, enable XMM exceptions.
596 */
597 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
598 lcr4(rcr4() | CR4_OSXMMEXCPT);
599 }
600
601 #ifdef __x86_64__
602 /* No user PGD mapped for this CPU yet */
603 ci->ci_xen_current_user_pgd = 0;
604 #endif
605
606 atomic_or_32(&cpus_running, ci->ci_cpumask);
607 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
608
609 /* XXX: register vcpu_register_runstate_memory_area, and figure out how to make sure this VCPU is running ? */
610 }
611
612
613 #ifdef MULTIPROCESSOR
614
615 void
616 cpu_boot_secondary_processors(void)
617 {
618 struct cpu_info *ci;
619 u_long i;
620 for (i = 0; i < maxcpus; i++) {
621 ci = cpu_lookup(i);
622 if (ci == NULL)
623 continue;
624 if (ci->ci_data.cpu_idlelwp == NULL)
625 continue;
626 if ((ci->ci_flags & CPUF_PRESENT) == 0)
627 continue;
628 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
629 continue;
630 cpu_boot_secondary(ci);
631 }
632
633 x86_mp_online = true;
634 }
635
636 static void
637 cpu_init_idle_lwp(struct cpu_info *ci)
638 {
639 struct lwp *l = ci->ci_data.cpu_idlelwp;
640 struct pcb *pcb = lwp_getpcb(l);
641
642 pcb->pcb_cr0 = rcr0();
643 }
644
645 void
646 cpu_init_idle_lwps(void)
647 {
648 struct cpu_info *ci;
649 u_long i;
650
651 for (i = 0; i < maxcpus; i++) {
652 ci = cpu_lookup(i);
653 if (ci == NULL)
654 continue;
655 if (ci->ci_data.cpu_idlelwp == NULL)
656 continue;
657 if ((ci->ci_flags & CPUF_PRESENT) == 0)
658 continue;
659 cpu_init_idle_lwp(ci);
660 }
661 }
662
663 static void
664 cpu_start_secondary(struct cpu_info *ci)
665 {
666 int i;
667
668 aprint_debug_dev(ci->ci_dev, "starting\n");
669
670 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
671
672 if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
673 return;
674 }
675
676 /*
677 * wait for it to become ready
678 */
679 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
680 delay(10);
681 }
682 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
683 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
684 #if defined(MPDEBUG) && defined(DDB)
685 printf("dropping into debugger; continue from here to resume boot\n");
686 Debugger();
687 #endif
688 }
689
690 CPU_START_CLEANUP(ci);
691 }
692
693 void
694 cpu_boot_secondary(struct cpu_info *ci)
695 {
696 int i;
697 atomic_or_32(&ci->ci_flags, CPUF_GO);
698 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
699 delay(10);
700 }
701 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
702 aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
703 #if defined(MPDEBUG) && defined(DDB)
704 printf("dropping into debugger; continue from here to resume boot\n");
705 Debugger();
706 #endif
707 }
708 }
709
710 /*
711 * APs end up here immediately after initialisation and VCPUOP_up in
712 * mp_cpu_start().
713 * At this point, we are running in the idle pcb/idle stack of the new
714 * CPU. This function jumps to the idle loop and starts looking for
715 * work.
716 */
717 extern void x86_64_tls_switch(struct lwp *);
718 void
719 cpu_hatch(void *v)
720 {
721 struct cpu_info *ci = (struct cpu_info *)v;
722 struct pcb *pcb;
723 int s, i;
724
725 /* Setup TLS and kernel GS/FS */
726 cpu_init_msrs(ci, true);
727 cpu_init_idt();
728 gdt_init_cpu(ci);
729
730 cpu_probe(ci);
731
732 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
733
734 while ((ci->ci_flags & CPUF_GO) == 0) {
735 /* Don't use delay, boot CPU may be patching the text. */
736 for (i = 10000; i != 0; i--)
737 x86_pause();
738 }
739
740 /* Because the text may have been patched in x86_patch(). */
741 x86_flush();
742 tlbflushg();
743
744 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
745
746 pcb = lwp_getpcb(curlwp);
747 pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0); /* XXX: consider using pmap_load() ? */
748 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
749
750 xen_ipi_init();
751
752 xen_initclocks();
753
754 /* XXX: lapic_initclocks(); */
755
756 #ifdef __x86_64__
757 fpuinit(ci);
758 #endif
759
760 lldt(GSEL(GLDT_SEL, SEL_KPL));
761
762 cpu_init(ci);
763 cpu_get_tsc_freq(ci);
764
765 s = splhigh();
766 x86_enable_intr();
767 splx(s);
768 #if 0
769 x86_errata();
770 #endif
771
772 aprint_debug_dev(ci->ci_dev, "running\n");
773
774 cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
775
776 panic("switch to idle_loop context returned!\n");
777 /* NOTREACHED */
778 }
779
780 #if defined(DDB)
781
782 #include <ddb/db_output.h>
783 #include <machine/db_machdep.h>
784
785 /*
786 * Dump CPU information from ddb.
787 */
788 void
789 cpu_debug_dump(void)
790 {
791 struct cpu_info *ci;
792 CPU_INFO_ITERATOR cii;
793
794 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
795 for (CPU_INFO_FOREACH(cii, ci)) {
796 db_printf("%p %s %ld %x %x %10p %10p\n",
797 ci,
798 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
799 (long)ci->ci_cpuid,
800 ci->ci_flags, ci->ci_ipis,
801 ci->ci_curlwp,
802 ci->ci_fpcurlwp);
803 }
804 }
805 #endif /* DDB */
806
807 #endif /* MULTIPROCESSOR */
808
809 extern void hypervisor_callback(void);
810 extern void failsafe_callback(void);
811 #ifdef __x86_64__
812 typedef void (vector)(void);
813 extern vector Xsyscall, Xsyscall32;
814 #endif
815
816 /*
817 * Setup the "trampoline". On Xen, we setup nearly all cpu context
818 * outside a trampoline, so we prototype and call targetip like so:
819 * void targetip(struct cpu_info *);
820 */
821
822 static void
823 gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
824 {
825 int i;
826 for (i = 0; i < roundup(entries, PAGE_SIZE) >> PAGE_SHIFT; i++) {
827
828 frames[i] = ((paddr_t) xpmap_ptetomach(
829 (pt_entry_t *) (base + (i << PAGE_SHIFT))))
830 >> PAGE_SHIFT;
831
832 /* Mark Read-only */
833 pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
834 PG_RW);
835 }
836 }
837
838 #ifdef __x86_64__
839 extern char *ldtstore; /* XXX: Xen MP todo */
840
841 static void
842 xen_init_amd64_vcpuctxt(struct cpu_info *ci,
843 struct vcpu_guest_context *initctx,
844 void targetrip(struct cpu_info *))
845 {
846 /* page frames to point at GDT */
847 extern int gdt_size;
848 paddr_t frames[16];
849 psize_t gdt_ents;
850
851 struct lwp *l;
852 struct pcb *pcb;
853
854 volatile struct vcpu_info *vci;
855
856 KASSERT(ci != NULL);
857 KASSERT(ci != &cpu_info_primary);
858 KASSERT(initctx != NULL);
859 KASSERT(targetrip != NULL);
860
861 memset(initctx, 0, sizeof *initctx);
862
863 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT; /* XXX: re-investigate roundup(gdt_size... ) for gdt_ents. */
864 KASSERT(gdt_ents <= 16);
865
866 gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
867
868 /* XXX: The stuff in here is amd64 specific. move to mptramp.[Sc] ? */
869
870 /* Initialise the vcpu context: We use idle_loop()'s pcb context. */
871
872 l = ci->ci_data.cpu_idlelwp;
873
874 KASSERT(l != NULL);
875 pcb = lwp_getpcb(l);
876 KASSERT(pcb != NULL);
877
878 /* resume with interrupts off */
879 vci = ci->ci_vcpu;
880 vci->evtchn_upcall_mask = 1;
881 xen_mb();
882
883 /* resume in kernel-mode */
884 initctx->flags = VGCF_in_kernel | VGCF_online;
885
886 /* Stack and entry points:
887 * We arrange for the stack frame for cpu_hatch() to
888 * appear as a callee frame of lwp_trampoline(). Being a
889 * leaf frame prevents trampling on any of the MD stack setup
890 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
891 */
892
893 initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
894 initctx->user_regs.rip = (vaddr_t) targetrip;
895
896 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
897
898 initctx->user_regs.rflags = pcb->pcb_flags;
899 initctx->user_regs.rsp = pcb->pcb_rsp;
900
901 /* Data segments */
902 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
903 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
904 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
905
906 /* GDT */
907 memcpy(initctx->gdt_frames, frames, sizeof frames);
908 initctx->gdt_ents = gdt_ents;
909
910 /* LDT */
911 initctx->ldt_base = (unsigned long) ldtstore;
912 initctx->ldt_ents = LDT_SIZE >> 3;
913
914 /* Kernel context state */
915 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
916 initctx->kernel_sp = pcb->pcb_rsp0;
917 initctx->ctrlreg[0] = pcb->pcb_cr0;
918 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
919 initctx->ctrlreg[2] = pcb->pcb_cr2; /* XXX: */
920 /*
921 * Use pmap_kernel() L4 PD directly, until we setup the
922 * per-cpu L4 PD in pmap_cpu_init_late()
923 */
924 initctx->ctrlreg[3] = xpmap_ptom(pcb->pcb_cr3);
925 initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
926
927
928 /* Xen callbacks */
929 initctx->event_callback_eip = (unsigned long) hypervisor_callback;
930 initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
931 initctx->syscall_callback_eip = (unsigned long) Xsyscall;
932
933 return;
934 }
935 #else /* i386 */
936 extern union descriptor *ldt;
937 extern void Xsyscall(void);
938
939 static void
940 xen_init_i386_vcpuctxt(struct cpu_info *ci,
941 struct vcpu_guest_context *initctx,
942 void targeteip(struct cpu_info *))
943 {
944 /* page frames to point at GDT */
945 extern int gdt_size;
946 paddr_t frames[16];
947 psize_t gdt_ents;
948
949 struct lwp *l;
950 struct pcb *pcb;
951
952 volatile struct vcpu_info *vci;
953
954 KASSERT(ci != NULL);
955 KASSERT(ci != &cpu_info_primary);
956 KASSERT(initctx != NULL);
957 KASSERT(targeteip != NULL);
958
959 memset(initctx, 0, sizeof *initctx);
960
961 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT; /* XXX: re-investigate roundup(gdt_size... ) for gdt_ents. */
962 KASSERT(gdt_ents <= 16);
963
964 gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
965
966 /*
967 * Initialise the vcpu context:
968 * We use this cpu's idle_loop() pcb context.
969 */
970
971 l = ci->ci_data.cpu_idlelwp;
972
973 KASSERT(l != NULL);
974 pcb = lwp_getpcb(l);
975 KASSERT(pcb != NULL);
976
977 /* resume with interrupts off */
978 vci = ci->ci_vcpu;
979 vci->evtchn_upcall_mask = 1;
980 xen_mb();
981
982 /* resume in kernel-mode */
983 initctx->flags = VGCF_in_kernel | VGCF_online;
984
985 /* Stack frame setup for cpu_hatch():
986 * We arrange for the stack frame for cpu_hatch() to
987 * appear as a callee frame of lwp_trampoline(). Being a
988 * leaf frame prevents trampling on any of the MD stack setup
989 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
990 */
991
992 initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
993 arg1 */
994 { /* targeteip(ci); */
995 uint32_t *arg = (uint32_t *) initctx->user_regs.esp;
996 arg[1] = (uint32_t) ci; /* arg1 */
997
998 }
999
1000 initctx->user_regs.eip = (vaddr_t) targeteip;
1001 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
1002 initctx->user_regs.eflags |= pcb->pcb_iopl;
1003
1004 /* Data segments */
1005 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
1006 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
1007 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
1008 initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
1009
1010 /* GDT */
1011 memcpy(initctx->gdt_frames, frames, sizeof frames);
1012 initctx->gdt_ents = gdt_ents;
1013
1014 /* LDT */
1015 initctx->ldt_base = (unsigned long) ldt;
1016 initctx->ldt_ents = NLDT;
1017
1018 /* Kernel context state */
1019 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
1020 initctx->kernel_sp = pcb->pcb_esp0;
1021 initctx->ctrlreg[0] = pcb->pcb_cr0;
1022 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
1023 initctx->ctrlreg[2] = pcb->pcb_cr2; /* XXX: */
1024 /*
1025 * Use pmap_kernel() L4 PD directly, until we setup the
1026 * per-cpu L4 PD in pmap_cpu_init_late()
1027 */
1028 initctx->ctrlreg[3] = xpmap_ptom(pcb->pcb_cr3);
1029 initctx->ctrlreg[4] = /* CR4_PAE | */CR4_OSFXSR | CR4_OSXMMEXCPT;
1030
1031
1032 /* Xen callbacks */
1033 initctx->event_callback_eip = (unsigned long) hypervisor_callback;
1034 initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
1035 initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
1036 initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
1037
1038 return;
1039 }
1040 #endif /* __x86_64__ */
1041
1042 int
1043 mp_cpu_start(struct cpu_info *ci, vaddr_t target)
1044 {
1045
1046 int hyperror;
1047 struct vcpu_guest_context vcpuctx;
1048
1049 KASSERT(ci != NULL);
1050 KASSERT(ci != &cpu_info_primary);
1051 KASSERT(ci->ci_flags & CPUF_AP);
1052
1053 #ifdef __x86_64__
1054 xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
1055 #else /* i386 */
1056 xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
1057 #endif /* __x86_64__ */
1058
1059 /* Initialise the given vcpu to execute cpu_hatch(ci); */
1060 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
1061 aprint_error(": context initialisation failed. errno = %d\n", hyperror);
1062 return hyperror;
1063 }
1064
1065 /* Start it up */
1066
1067 /* First bring it down - the Xen documentation conveniently omits this slight detail. */
1068 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
1069 aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
1070 return hyperror;
1071 }
1072
1073 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
1074 aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
1075 return hyperror;
1076 }
1077
1078 if (!vcpu_is_up(ci)) {
1079 aprint_error(": did not come up\n");
1080 return -1;
1081 }
1082
1083 return 0;
1084 }
1085
1086 void
1087 mp_cpu_start_cleanup(struct cpu_info *ci)
1088 {
1089 #if 0
1090 /*
1091 * Ensure the NVRAM reset byte contains something vaguely sane.
1092 */
1093
1094 outb(IO_RTC, NVRAM_RESET);
1095 outb(IO_RTC+1, NVRAM_RESET_RST);
1096 #endif
1097 if (vcpu_is_up(ci)) {
1098 aprint_debug_dev(ci->ci_dev, "is started.\n");
1099 }
1100 else {
1101 aprint_error_dev(ci->ci_dev, "did not start up.\n");
1102 }
1103
1104 }
1105
1106 void
1107 cpu_init_msrs(struct cpu_info *ci, bool full)
1108 {
1109 #ifdef __x86_64__
1110 if (full) {
1111 HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
1112 HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
1113 HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
1114 }
1115 #endif /* __x86_64__ */
1116
1117 if (cpu_feature[2] & CPUID_NOX)
1118 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1119
1120 }
1121
1122 void
1123 cpu_offline_md(void)
1124 {
1125 int s;
1126
1127 s = splhigh();
1128 #ifdef __i386__
1129 npxsave_cpu(true);
1130 #else
1131 fpusave_cpu(true);
1132 #endif
1133 splx(s);
1134 }
1135
1136 #if 0
1137 /* XXX joerg restructure and restart CPUs individually */
1138 static bool
1139 cpu_suspend(device_t dv, const pmf_qual_t *qual)
1140 {
1141 struct cpu_softc *sc = device_private(dv);
1142 struct cpu_info *ci = sc->sc_info;
1143 int err;
1144
1145 if (ci->ci_flags & CPUF_PRIMARY)
1146 return true;
1147 if (ci->ci_data.cpu_idlelwp == NULL)
1148 return true;
1149 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1150 return true;
1151
1152 sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1153
1154 if (sc->sc_wasonline) {
1155 mutex_enter(&cpu_lock);
1156 err = cpu_setstate(ci, false);
1157 mutex_exit(&cpu_lock);
1158
1159 if (err)
1160 return false;
1161 }
1162
1163 return true;
1164 }
1165
1166 static bool
1167 cpu_resume(device_t dv, const pmf_qual_t *qual)
1168 {
1169 struct cpu_softc *sc = device_private(dv);
1170 struct cpu_info *ci = sc->sc_info;
1171 int err = 0;
1172
1173 if (ci->ci_flags & CPUF_PRIMARY)
1174 return true;
1175 if (ci->ci_data.cpu_idlelwp == NULL)
1176 return true;
1177 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1178 return true;
1179
1180 if (sc->sc_wasonline) {
1181 mutex_enter(&cpu_lock);
1182 err = cpu_setstate(ci, true);
1183 mutex_exit(&cpu_lock);
1184 }
1185
1186 return err == 0;
1187 }
1188 #endif
1189
1190 void
1191 cpu_get_tsc_freq(struct cpu_info *ci)
1192 {
1193 uint32_t vcpu_tversion;
1194 const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1195
1196 vcpu_tversion = tinfo->version;
1197 while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
1198
1199 uint64_t freq = 1000000000ULL << 32;
1200 freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1201 if ( tinfo->tsc_shift < 0 )
1202 freq = freq << -tinfo->tsc_shift;
1203 else
1204 freq = freq >> tinfo->tsc_shift;
1205 ci->ci_data.cpu_cc_freq = freq;
1206 }
1207
1208 void
1209 x86_cpu_idle_xen(void)
1210 {
1211 struct cpu_info *ci = curcpu();
1212
1213 KASSERT(ci->ci_ilevel == IPL_NONE);
1214
1215 x86_disable_intr();
1216 if (!__predict_false(ci->ci_want_resched)) {
1217 idle_block();
1218 } else {
1219 x86_enable_intr();
1220 }
1221 }
1222
1223 /*
1224 * Loads pmap for the current CPU.
1225 */
1226 void
1227 cpu_load_pmap(struct pmap *pmap)
1228 {
1229 #ifdef i386
1230 #ifdef PAE
1231 int i, s;
1232 struct cpu_info *ci;
1233
1234 s = splvm(); /* just to be safe */
1235 xpq_queue_lock();
1236 ci = curcpu();
1237 paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
1238 /* don't update the kernel L3 slot */
1239 for (i = 0 ; i < PDP_SIZE - 1; i++) {
1240 xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
1241 xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
1242 }
1243 xpq_queue_unlock();
1244 splx(s);
1245 tlbflush();
1246 #else /* PAE */
1247 lcr3(pmap_pdirpa(pmap, 0));
1248 #endif /* PAE */
1249 #endif /* i386 */
1250
1251 #ifdef __x86_64__
1252 int i, s;
1253 pd_entry_t *old_pgd, *new_pgd;
1254 paddr_t addr;
1255 struct cpu_info *ci;
1256
1257 /* kernel pmap always in cr3 and should never go in user cr3 */
1258 if (pmap_pdirpa(pmap, 0) != pmap_pdirpa(pmap_kernel(), 0)) {
1259 ci = curcpu();
1260 /*
1261 * Map user space address in kernel space and load
1262 * user cr3
1263 */
1264 s = splvm();
1265 new_pgd = pmap->pm_pdir;
1266 old_pgd = pmap_kernel()->pm_pdir;
1267 addr = xpmap_ptom(pmap_pdirpa(pmap_kernel(), 0));
1268 for (i = 0; i < PDIR_SLOT_PTE;
1269 i++, addr += sizeof(pd_entry_t)) {
1270 if ((new_pgd[i] & PG_V) || (old_pgd[i] & PG_V))
1271 xpq_queue_pte_update(addr, new_pgd[i]);
1272 }
1273 xen_set_user_pgd(pmap_pdirpa(pmap, 0));
1274 ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
1275 tlbflush();
1276 splx(s);
1277 }
1278 #endif /* __x86_64__ */
1279 }
1280
1281 /*
1282 * Notify all other cpus to halt.
1283 */
1284
1285 void
1286 cpu_broadcast_halt(void)
1287 {
1288 xen_broadcast_ipi(XEN_IPI_HALT);
1289 }
1290
1291 /*
1292 * Send a dummy ipi to a cpu.
1293 */
1294
1295 void
1296 cpu_kick(struct cpu_info *ci)
1297 {
1298 (void)xen_send_ipi(ci, XEN_IPI_KICK);
1299 }
1300