cpu.c revision 1.66 1 /* $NetBSD: cpu.c,v 1.66 2011/09/28 15:38:22 jruoho Exp $ */
2 /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp */
3
4 /*-
5 * Copyright (c) 2000 The NetBSD Foundation, Inc.
6 * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by RedBack Networks Inc.
11 *
12 * Author: Bill Sommerfeld
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /*
37 * Copyright (c) 1999 Stefan Grefen
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by the NetBSD
50 * Foundation, Inc. and its contributors.
51 * 4. Neither the name of The NetBSD Foundation nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
56 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.66 2011/09/28 15:38:22 jruoho Exp $");
70
71 #include "opt_ddb.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_mpbios.h" /* for MPDEBUG */
74 #include "opt_mtrr.h"
75 #include "opt_xen.h"
76
77 #include "lapic.h"
78 #include "ioapic.h"
79
80 #include <sys/param.h>
81 #include <sys/proc.h>
82 #include <sys/systm.h>
83 #include <sys/device.h>
84 #include <sys/kmem.h>
85 #include <sys/cpu.h>
86 #include <sys/cpufreq.h>
87 #include <sys/atomic.h>
88 #include <sys/reboot.h>
89 #include <sys/idle.h>
90
91 #include <uvm/uvm.h>
92
93 #include <machine/cpufunc.h>
94 #include <machine/cpuvar.h>
95 #include <machine/pmap.h>
96 #include <machine/vmparam.h>
97 #include <machine/mpbiosvar.h>
98 #include <machine/pcb.h>
99 #include <machine/specialreg.h>
100 #include <machine/segments.h>
101 #include <machine/gdt.h>
102 #include <machine/mtrr.h>
103 #include <machine/pio.h>
104
105 #ifdef i386
106 #include <machine/npx.h>
107 #else
108 #include <machine/fpu.h>
109 #endif
110
111 #include <xen/xen.h>
112 #include <xen/xen3-public/vcpu.h>
113 #include <xen/vcpuvar.h>
114
115 #if NLAPIC > 0
116 #include <machine/apicvar.h>
117 #include <machine/i82489reg.h>
118 #include <machine/i82489var.h>
119 #endif
120
121 #include <dev/ic/mc146818reg.h>
122 #include <dev/isa/isareg.h>
123
124 #if MAXCPUS > 32
125 #error cpu_info contains 32bit bitmasks
126 #endif
127
128 static int cpu_match(device_t, cfdata_t, void *);
129 static void cpu_attach(device_t, device_t, void *);
130 static void cpu_defer(device_t);
131 static int cpu_rescan(device_t, const char *, const int *);
132 static void cpu_childdetached(device_t, device_t);
133 static int vcpu_match(device_t, cfdata_t, void *);
134 static void vcpu_attach(device_t, device_t, void *);
135 static void cpu_attach_common(device_t, device_t, void *);
136 void cpu_offline_md(void);
137
138 struct cpu_softc {
139 device_t sc_dev; /* device tree glue */
140 struct cpu_info *sc_info; /* pointer to CPU info */
141 bool sc_wasonline;
142 };
143
144 int mp_cpu_start(struct cpu_info *, vaddr_t);
145 void mp_cpu_start_cleanup(struct cpu_info *);
146 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
147 mp_cpu_start_cleanup };
148
149 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
150 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
151
152 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
153 vcpu_match, vcpu_attach, NULL, NULL);
154
155 /*
156 * Statically-allocated CPU info for the primary CPU (or the only
157 * CPU, on uniprocessors). The CPU info list is initialized to
158 * point at it.
159 */
160 #ifdef TRAPLOG
161 #include <machine/tlog.h>
162 struct tlog tlog_primary;
163 #endif
164 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
165 .ci_dev = 0,
166 .ci_self = &cpu_info_primary,
167 .ci_idepth = -1,
168 .ci_curlwp = &lwp0,
169 .ci_curldt = -1,
170 .ci_cpumask = 1,
171 #ifdef TRAPLOG
172 .ci_tlog = &tlog_primary,
173 #endif
174
175 };
176 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
177 .ci_dev = 0,
178 .ci_self = &phycpu_info_primary,
179 };
180
181 struct cpu_info *cpu_info_list = &cpu_info_primary;
182 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
183
184 uint32_t cpus_attached = 1;
185 uint32_t cpus_running = 1;
186
187 uint32_t phycpus_attached = 0;
188 uint32_t phycpus_running = 0;
189
190 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
191 * [0] basic features %edx
192 * [1] basic features %ecx
193 * [2] extended features %edx
194 * [3] extended features %ecx
195 * [4] VIA padlock features
196 */
197
198 bool x86_mp_online;
199 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
200
201 #if defined(MULTIPROCESSOR)
202 void cpu_hatch(void *);
203 static void cpu_boot_secondary(struct cpu_info *ci);
204 static void cpu_start_secondary(struct cpu_info *ci);
205 #endif /* MULTIPROCESSOR */
206
207 static int
208 cpu_match(device_t parent, cfdata_t match, void *aux)
209 {
210
211 return 1;
212 }
213
214 static void
215 cpu_attach(device_t parent, device_t self, void *aux)
216 {
217 struct cpu_softc *sc = device_private(self);
218 struct cpu_attach_args *caa = aux;
219 struct cpu_info *ci;
220 uintptr_t ptr;
221 static int nphycpu = 0;
222
223 sc->sc_dev = self;
224
225 if (phycpus_attached == ~0) {
226 aprint_error(": increase MAXCPUS\n");
227 return;
228 }
229
230 /*
231 * If we're an Application Processor, allocate a cpu_info
232 * If we're the first attached CPU use the primary cpu_info,
233 * otherwise allocate a new one
234 */
235 aprint_naive("\n");
236 aprint_normal("\n");
237 if (nphycpu > 0) {
238 struct cpu_info *tmp;
239 ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
240 KM_SLEEP);
241 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
242 ci->ci_curldt = -1;
243
244 tmp = phycpu_info_list;
245 while (tmp->ci_next)
246 tmp = tmp->ci_next;
247
248 tmp->ci_next = ci;
249 } else {
250 ci = &phycpu_info_primary;
251 }
252
253 ci->ci_self = ci;
254 sc->sc_info = ci;
255
256 ci->ci_dev = self;
257 ci->ci_acpiid = caa->cpu_id;
258 ci->ci_cpuid = caa->cpu_number;
259 ci->ci_vcpu = NULL;
260 ci->ci_index = nphycpu++;
261 ci->ci_cpumask = (1 << cpu_index(ci));
262
263 atomic_or_32(&phycpus_attached, ci->ci_cpumask);
264
265 if (!pmf_device_register(self, NULL, NULL))
266 aprint_error_dev(self, "couldn't establish power handler\n");
267
268 (void)config_defer(self, cpu_defer);
269 }
270
271 static void
272 cpu_defer(device_t self)
273 {
274 cpu_rescan(self, NULL, NULL);
275 }
276
277 static int
278 cpu_rescan(device_t self, const char *ifattr, const int *locators)
279 {
280 struct cpu_softc *sc = device_private(self);
281 struct cpufeature_attach_args cfaa;
282 struct cpu_info *ci = sc->sc_info;
283
284 memset(&cfaa, 0, sizeof(cfaa));
285 cfaa.ci = ci;
286
287 if (ifattr_match(ifattr, "cpufeaturebus")) {
288
289 if (ci->ci_frequency == NULL) {
290 cfaa.name = "frequency";
291 ci->ci_frequency = config_found_ia(self,
292 "cpufeaturebus", &cfaa, NULL);
293 }
294 }
295
296 return 0;
297 }
298
299 static void
300 cpu_childdetached(device_t self, device_t child)
301 {
302 struct cpu_softc *sc = device_private(self);
303 struct cpu_info *ci = sc->sc_info;
304
305 if (ci->ci_frequency == child)
306 ci->ci_frequency = NULL;
307 }
308
309 static int
310 vcpu_match(device_t parent, cfdata_t match, void *aux)
311 {
312 struct vcpu_attach_args *vcaa = aux;
313 struct vcpu_runstate_info vcr;
314 int error;
315
316 if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
317 error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
318 vcaa->vcaa_caa.cpu_number,
319 &vcr);
320 switch (error) {
321 case 0:
322 return 1;
323 case -ENOENT:
324 return 0;
325 default:
326 panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
327 }
328 }
329
330 return 0;
331 }
332
333 static void
334 vcpu_attach(device_t parent, device_t self, void *aux)
335 {
336 struct vcpu_attach_args *vcaa = aux;
337
338 KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
339 vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
340 cpu_attach_common(parent, self, &vcaa->vcaa_caa);
341
342 if (!pmf_device_register(self, NULL, NULL))
343 aprint_error_dev(self, "couldn't establish power handler\n");
344 }
345
346 static int
347 vcpu_is_up(struct cpu_info *ci)
348 {
349 KASSERT(ci != NULL);
350 return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
351 }
352
353 static void
354 cpu_vm_init(struct cpu_info *ci)
355 {
356 int ncolors = 2, i;
357
358 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
359 struct x86_cache_info *cai;
360 int tcolors;
361
362 cai = &ci->ci_cinfo[i];
363
364 tcolors = atop(cai->cai_totalsize);
365 switch(cai->cai_associativity) {
366 case 0xff:
367 tcolors = 1; /* fully associative */
368 break;
369 case 0:
370 case 1:
371 break;
372 default:
373 tcolors /= cai->cai_associativity;
374 }
375 ncolors = max(ncolors, tcolors);
376 }
377
378 /*
379 * Knowing the size of the largest cache on this CPU, re-color
380 * our pages.
381 */
382 if (ncolors <= uvmexp.ncolors)
383 return;
384 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
385 uvm_page_recolor(ncolors);
386 }
387
388 static void
389 cpu_attach_common(device_t parent, device_t self, void *aux)
390 {
391 struct cpu_softc *sc = device_private(self);
392 struct cpu_attach_args *caa = aux;
393 struct cpu_info *ci;
394 uintptr_t ptr;
395 int cpunum = caa->cpu_number;
396 static bool again = false;
397
398 sc->sc_dev = self;
399
400 /*
401 * If we're an Application Processor, allocate a cpu_info
402 * structure, otherwise use the primary's.
403 */
404 if (caa->cpu_role == CPU_ROLE_AP) {
405 aprint_naive(": Application Processor\n");
406 ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
407 KM_SLEEP);
408 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
409 memset(ci, 0, sizeof(*ci));
410 #ifdef TRAPLOG
411 ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
412 #endif
413 } else {
414 aprint_naive(": %s Processor\n",
415 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
416 ci = &cpu_info_primary;
417 }
418
419 ci->ci_self = ci;
420 sc->sc_info = ci;
421 ci->ci_dev = self;
422 ci->ci_cpuid = cpunum;
423
424 KASSERT(HYPERVISOR_shared_info != NULL);
425 ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
426
427 KASSERT(ci->ci_func == 0);
428 ci->ci_func = caa->cpu_func;
429
430 /* Must be called before mi_cpu_attach(). */
431 cpu_vm_init(ci);
432
433 if (caa->cpu_role == CPU_ROLE_AP) {
434 int error;
435
436 error = mi_cpu_attach(ci);
437
438 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
439 if (error != 0) {
440 aprint_normal("\n");
441 aprint_error_dev(self,
442 "mi_cpu_attach failed with %d\n", error);
443 return;
444 }
445
446 } else {
447 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
448 }
449
450 ci->ci_cpumask = (1 << cpu_index(ci));
451 pmap_reference(pmap_kernel());
452 ci->ci_pmap = pmap_kernel();
453 ci->ci_tlbstate = TLBSTATE_STALE;
454
455 /*
456 * Boot processor may not be attached first, but the below
457 * must be done to allow booting other processors.
458 */
459 if (!again) {
460 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
461 /* Basic init. */
462 cpu_intr_init(ci);
463 cpu_get_tsc_freq(ci);
464 cpu_init(ci);
465 pmap_cpu_init_late(ci); /* XXX: cosmetic */
466
467 /* Every processor needs to init it's own ipi h/w (similar to lapic) */
468 xen_ipi_init();
469 /* XXX: clock_init() */
470
471 /* Make sure DELAY() is initialized. */
472 DELAY(1);
473 again = true;
474 }
475
476 /* further PCB init done later. */
477
478 switch (caa->cpu_role) {
479 case CPU_ROLE_SP:
480 atomic_or_32(&ci->ci_flags, CPUF_SP);
481 cpu_identify(ci);
482 #if 0
483 x86_errata();
484 #endif
485 x86_cpu_idle_init();
486
487 break;
488
489 case CPU_ROLE_BP:
490 atomic_or_32(&ci->ci_flags, CPUF_BSP);
491 cpu_identify(ci);
492 cpu_init(ci);
493 #if 0
494 x86_errata();
495 #endif
496 x86_cpu_idle_init();
497
498 break;
499
500 case CPU_ROLE_AP:
501 atomic_or_32(&ci->ci_flags, CPUF_AP);
502
503 /*
504 * report on an AP
505 */
506
507 #if defined(MULTIPROCESSOR)
508 /* interrupt handler stack */
509 cpu_intr_init(ci);
510
511 /* Setup per-cpu memory for gdt */
512 gdt_alloc_cpu(ci);
513
514 pmap_cpu_init_late(ci);
515 cpu_start_secondary(ci);
516
517 if (ci->ci_flags & CPUF_PRESENT) {
518 struct cpu_info *tmp;
519
520 cpu_identify(ci);
521 tmp = cpu_info_list;
522 while (tmp->ci_next)
523 tmp = tmp->ci_next;
524
525 tmp->ci_next = ci;
526 }
527 #else
528 aprint_error(": not started\n");
529 #endif
530 break;
531
532 default:
533 aprint_normal("\n");
534 panic("unknown processor type??\n");
535 }
536
537 pat_init(ci);
538 atomic_or_32(&cpus_attached, ci->ci_cpumask);
539
540 #if 0
541 if (!pmf_device_register(self, cpu_suspend, cpu_resume))
542 aprint_error_dev(self, "couldn't establish power handler\n");
543 #endif
544
545 #ifdef MPVERBOSE
546 if (mp_verbose) {
547 struct lwp *l = ci->ci_data.cpu_idlelwp;
548 struct pcb *pcb = lwp_getpcb(l);
549
550 aprint_verbose_dev(self,
551 "idle lwp at %p, idle sp at 0x%p\n",
552 l,
553 #ifdef i386
554 (void *)pcb->pcb_esp
555 #else /* i386 */
556 (void *)pcb->pcb_rsp
557 #endif /* i386 */
558 );
559
560 }
561 #endif /* MPVERBOSE */
562 }
563
564 /*
565 * Initialize the processor appropriately.
566 */
567
568 void
569 cpu_init(struct cpu_info *ci)
570 {
571
572 /*
573 * On a P6 or above, enable global TLB caching if the
574 * hardware supports it.
575 */
576 if (cpu_feature[0] & CPUID_PGE)
577 lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
578
579 #ifdef XXXMTRR
580 /*
581 * On a P6 or above, initialize MTRR's if the hardware supports them.
582 */
583 if (cpu_feature[0] & CPUID_MTRR) {
584 if ((ci->ci_flags & CPUF_AP) == 0)
585 i686_mtrr_init_first();
586 mtrr_init_cpu(ci);
587 }
588 #endif
589 /*
590 * If we have FXSAVE/FXRESTOR, use them.
591 */
592 if (cpu_feature[0] & CPUID_FXSR) {
593 lcr4(rcr4() | CR4_OSFXSR);
594
595 /*
596 * If we have SSE/SSE2, enable XMM exceptions.
597 */
598 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
599 lcr4(rcr4() | CR4_OSXMMEXCPT);
600 }
601
602 #ifdef __x86_64__
603 /* No user PGD mapped for this CPU yet */
604 ci->ci_xen_current_user_pgd = 0;
605 #endif
606
607 atomic_or_32(&cpus_running, ci->ci_cpumask);
608 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
609
610 /* XXX: register vcpu_register_runstate_memory_area, and figure out how to make sure this VCPU is running ? */
611 }
612
613
614 #ifdef MULTIPROCESSOR
615
616 void
617 cpu_boot_secondary_processors(void)
618 {
619 struct cpu_info *ci;
620 u_long i;
621 for (i = 0; i < maxcpus; i++) {
622 ci = cpu_lookup(i);
623 if (ci == NULL)
624 continue;
625 if (ci->ci_data.cpu_idlelwp == NULL)
626 continue;
627 if ((ci->ci_flags & CPUF_PRESENT) == 0)
628 continue;
629 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
630 continue;
631 cpu_boot_secondary(ci);
632 }
633
634 x86_mp_online = true;
635 }
636
637 static void
638 cpu_init_idle_lwp(struct cpu_info *ci)
639 {
640 struct lwp *l = ci->ci_data.cpu_idlelwp;
641 struct pcb *pcb = lwp_getpcb(l);
642
643 pcb->pcb_cr0 = rcr0();
644 }
645
646 void
647 cpu_init_idle_lwps(void)
648 {
649 struct cpu_info *ci;
650 u_long i;
651
652 for (i = 0; i < maxcpus; i++) {
653 ci = cpu_lookup(i);
654 if (ci == NULL)
655 continue;
656 if (ci->ci_data.cpu_idlelwp == NULL)
657 continue;
658 if ((ci->ci_flags & CPUF_PRESENT) == 0)
659 continue;
660 cpu_init_idle_lwp(ci);
661 }
662 }
663
664 static void
665 cpu_start_secondary(struct cpu_info *ci)
666 {
667 int i;
668
669 aprint_debug_dev(ci->ci_dev, "starting\n");
670
671 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
672
673 if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
674 return;
675 }
676
677 /*
678 * wait for it to become ready
679 */
680 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
681 delay(10);
682 }
683 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
684 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
685 #if defined(MPDEBUG) && defined(DDB)
686 printf("dropping into debugger; continue from here to resume boot\n");
687 Debugger();
688 #endif
689 }
690
691 CPU_START_CLEANUP(ci);
692 }
693
694 void
695 cpu_boot_secondary(struct cpu_info *ci)
696 {
697 int i;
698 atomic_or_32(&ci->ci_flags, CPUF_GO);
699 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
700 delay(10);
701 }
702 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
703 aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
704 #if defined(MPDEBUG) && defined(DDB)
705 printf("dropping into debugger; continue from here to resume boot\n");
706 Debugger();
707 #endif
708 }
709 }
710
711 /*
712 * APs end up here immediately after initialisation and VCPUOP_up in
713 * mp_cpu_start().
714 * At this point, we are running in the idle pcb/idle stack of the new
715 * CPU. This function jumps to the idle loop and starts looking for
716 * work.
717 */
718 extern void x86_64_tls_switch(struct lwp *);
719 void
720 cpu_hatch(void *v)
721 {
722 struct cpu_info *ci = (struct cpu_info *)v;
723 struct pcb *pcb;
724 int s, i;
725
726 /* Setup TLS and kernel GS/FS */
727 cpu_init_msrs(ci, true);
728 cpu_init_idt();
729 gdt_init_cpu(ci);
730
731 cpu_probe(ci);
732
733 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
734
735 while ((ci->ci_flags & CPUF_GO) == 0) {
736 /* Don't use delay, boot CPU may be patching the text. */
737 for (i = 10000; i != 0; i--)
738 x86_pause();
739 }
740
741 /* Because the text may have been patched in x86_patch(). */
742 x86_flush();
743 tlbflushg();
744
745 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
746
747 pcb = lwp_getpcb(curlwp);
748 pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0); /* XXX: consider using pmap_load() ? */
749 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
750
751 xen_ipi_init();
752
753 xen_initclocks();
754
755 /* XXX: lapic_initclocks(); */
756
757 #ifdef __x86_64__
758 fpuinit(ci);
759 #endif
760
761 lldt(GSEL(GLDT_SEL, SEL_KPL));
762
763 cpu_init(ci);
764 cpu_get_tsc_freq(ci);
765
766 s = splhigh();
767 x86_enable_intr();
768 splx(s);
769 #if 0
770 x86_errata();
771 #endif
772
773 aprint_debug_dev(ci->ci_dev, "running\n");
774
775 cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
776
777 panic("switch to idle_loop context returned!\n");
778 /* NOTREACHED */
779 }
780
781 #if defined(DDB)
782
783 #include <ddb/db_output.h>
784 #include <machine/db_machdep.h>
785
786 /*
787 * Dump CPU information from ddb.
788 */
789 void
790 cpu_debug_dump(void)
791 {
792 struct cpu_info *ci;
793 CPU_INFO_ITERATOR cii;
794
795 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
796 for (CPU_INFO_FOREACH(cii, ci)) {
797 db_printf("%p %s %ld %x %x %10p %10p\n",
798 ci,
799 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
800 (long)ci->ci_cpuid,
801 ci->ci_flags, ci->ci_ipis,
802 ci->ci_curlwp,
803 ci->ci_fpcurlwp);
804 }
805 }
806 #endif /* DDB */
807
808 #endif /* MULTIPROCESSOR */
809
810 extern void hypervisor_callback(void);
811 extern void failsafe_callback(void);
812 #ifdef __x86_64__
813 typedef void (vector)(void);
814 extern vector Xsyscall, Xsyscall32;
815 #endif
816
817 /*
818 * Setup the "trampoline". On Xen, we setup nearly all cpu context
819 * outside a trampoline, so we prototype and call targetip like so:
820 * void targetip(struct cpu_info *);
821 */
822
823 static void
824 gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
825 {
826 int i;
827 for (i = 0; i < roundup(entries, PAGE_SIZE) >> PAGE_SHIFT; i++) {
828
829 frames[i] = ((paddr_t) xpmap_ptetomach(
830 (pt_entry_t *) (base + (i << PAGE_SHIFT))))
831 >> PAGE_SHIFT;
832
833 /* Mark Read-only */
834 pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
835 PG_RW);
836 }
837 }
838
839 #ifdef __x86_64__
840 extern char *ldtstore; /* XXX: Xen MP todo */
841
842 static void
843 xen_init_amd64_vcpuctxt(struct cpu_info *ci,
844 struct vcpu_guest_context *initctx,
845 void targetrip(struct cpu_info *))
846 {
847 /* page frames to point at GDT */
848 extern int gdt_size;
849 paddr_t frames[16];
850 psize_t gdt_ents;
851
852 struct lwp *l;
853 struct pcb *pcb;
854
855 volatile struct vcpu_info *vci;
856
857 KASSERT(ci != NULL);
858 KASSERT(ci != &cpu_info_primary);
859 KASSERT(initctx != NULL);
860 KASSERT(targetrip != NULL);
861
862 memset(initctx, 0, sizeof *initctx);
863
864 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT; /* XXX: re-investigate roundup(gdt_size... ) for gdt_ents. */
865 KASSERT(gdt_ents <= 16);
866
867 gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
868
869 /* XXX: The stuff in here is amd64 specific. move to mptramp.[Sc] ? */
870
871 /* Initialise the vcpu context: We use idle_loop()'s pcb context. */
872
873 l = ci->ci_data.cpu_idlelwp;
874
875 KASSERT(l != NULL);
876 pcb = lwp_getpcb(l);
877 KASSERT(pcb != NULL);
878
879 /* resume with interrupts off */
880 vci = ci->ci_vcpu;
881 vci->evtchn_upcall_mask = 1;
882 xen_mb();
883
884 /* resume in kernel-mode */
885 initctx->flags = VGCF_in_kernel | VGCF_online;
886
887 /* Stack and entry points:
888 * We arrange for the stack frame for cpu_hatch() to
889 * appear as a callee frame of lwp_trampoline(). Being a
890 * leaf frame prevents trampling on any of the MD stack setup
891 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
892 */
893
894 initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
895 initctx->user_regs.rip = (vaddr_t) targetrip;
896
897 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
898
899 initctx->user_regs.rflags = pcb->pcb_flags;
900 initctx->user_regs.rsp = pcb->pcb_rsp;
901
902 /* Data segments */
903 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
904 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
905 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
906
907 /* GDT */
908 memcpy(initctx->gdt_frames, frames, sizeof frames);
909 initctx->gdt_ents = gdt_ents;
910
911 /* LDT */
912 initctx->ldt_base = (unsigned long) ldtstore;
913 initctx->ldt_ents = LDT_SIZE >> 3;
914
915 /* Kernel context state */
916 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
917 initctx->kernel_sp = pcb->pcb_rsp0;
918 initctx->ctrlreg[0] = pcb->pcb_cr0;
919 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
920 initctx->ctrlreg[2] = pcb->pcb_cr2; /* XXX: */
921 /*
922 * Use pmap_kernel() L4 PD directly, until we setup the
923 * per-cpu L4 PD in pmap_cpu_init_late()
924 */
925 initctx->ctrlreg[3] = xpmap_ptom(pcb->pcb_cr3);
926 initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
927
928
929 /* Xen callbacks */
930 initctx->event_callback_eip = (unsigned long) hypervisor_callback;
931 initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
932 initctx->syscall_callback_eip = (unsigned long) Xsyscall;
933
934 return;
935 }
936 #else /* i386 */
937 extern union descriptor *ldt;
938 extern void Xsyscall(void);
939
940 static void
941 xen_init_i386_vcpuctxt(struct cpu_info *ci,
942 struct vcpu_guest_context *initctx,
943 void targeteip(struct cpu_info *))
944 {
945 /* page frames to point at GDT */
946 extern int gdt_size;
947 paddr_t frames[16];
948 psize_t gdt_ents;
949
950 struct lwp *l;
951 struct pcb *pcb;
952
953 volatile struct vcpu_info *vci;
954
955 KASSERT(ci != NULL);
956 KASSERT(ci != &cpu_info_primary);
957 KASSERT(initctx != NULL);
958 KASSERT(targeteip != NULL);
959
960 memset(initctx, 0, sizeof *initctx);
961
962 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT; /* XXX: re-investigate roundup(gdt_size... ) for gdt_ents. */
963 KASSERT(gdt_ents <= 16);
964
965 gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
966
967 /*
968 * Initialise the vcpu context:
969 * We use this cpu's idle_loop() pcb context.
970 */
971
972 l = ci->ci_data.cpu_idlelwp;
973
974 KASSERT(l != NULL);
975 pcb = lwp_getpcb(l);
976 KASSERT(pcb != NULL);
977
978 /* resume with interrupts off */
979 vci = ci->ci_vcpu;
980 vci->evtchn_upcall_mask = 1;
981 xen_mb();
982
983 /* resume in kernel-mode */
984 initctx->flags = VGCF_in_kernel | VGCF_online;
985
986 /* Stack frame setup for cpu_hatch():
987 * We arrange for the stack frame for cpu_hatch() to
988 * appear as a callee frame of lwp_trampoline(). Being a
989 * leaf frame prevents trampling on any of the MD stack setup
990 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
991 */
992
993 initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
994 arg1 */
995 { /* targeteip(ci); */
996 uint32_t *arg = (uint32_t *) initctx->user_regs.esp;
997 arg[1] = (uint32_t) ci; /* arg1 */
998
999 }
1000
1001 initctx->user_regs.eip = (vaddr_t) targeteip;
1002 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
1003 initctx->user_regs.eflags |= pcb->pcb_iopl;
1004
1005 /* Data segments */
1006 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
1007 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
1008 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
1009 initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
1010
1011 /* GDT */
1012 memcpy(initctx->gdt_frames, frames, sizeof frames);
1013 initctx->gdt_ents = gdt_ents;
1014
1015 /* LDT */
1016 initctx->ldt_base = (unsigned long) ldt;
1017 initctx->ldt_ents = NLDT;
1018
1019 /* Kernel context state */
1020 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
1021 initctx->kernel_sp = pcb->pcb_esp0;
1022 initctx->ctrlreg[0] = pcb->pcb_cr0;
1023 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
1024 initctx->ctrlreg[2] = pcb->pcb_cr2; /* XXX: */
1025 /*
1026 * Use pmap_kernel() L4 PD directly, until we setup the
1027 * per-cpu L4 PD in pmap_cpu_init_late()
1028 */
1029 initctx->ctrlreg[3] = xpmap_ptom(pcb->pcb_cr3);
1030 initctx->ctrlreg[4] = /* CR4_PAE | */CR4_OSFXSR | CR4_OSXMMEXCPT;
1031
1032
1033 /* Xen callbacks */
1034 initctx->event_callback_eip = (unsigned long) hypervisor_callback;
1035 initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
1036 initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
1037 initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
1038
1039 return;
1040 }
1041 #endif /* __x86_64__ */
1042
1043 int
1044 mp_cpu_start(struct cpu_info *ci, vaddr_t target)
1045 {
1046
1047 int hyperror;
1048 struct vcpu_guest_context vcpuctx;
1049
1050 KASSERT(ci != NULL);
1051 KASSERT(ci != &cpu_info_primary);
1052 KASSERT(ci->ci_flags & CPUF_AP);
1053
1054 #ifdef __x86_64__
1055 xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
1056 #else /* i386 */
1057 xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
1058 #endif /* __x86_64__ */
1059
1060 /* Initialise the given vcpu to execute cpu_hatch(ci); */
1061 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
1062 aprint_error(": context initialisation failed. errno = %d\n", hyperror);
1063 return hyperror;
1064 }
1065
1066 /* Start it up */
1067
1068 /* First bring it down - the Xen documentation conveniently omits this slight detail. */
1069 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
1070 aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
1071 return hyperror;
1072 }
1073
1074 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
1075 aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
1076 return hyperror;
1077 }
1078
1079 if (!vcpu_is_up(ci)) {
1080 aprint_error(": did not come up\n");
1081 return -1;
1082 }
1083
1084 return 0;
1085 }
1086
1087 void
1088 mp_cpu_start_cleanup(struct cpu_info *ci)
1089 {
1090 #if 0
1091 /*
1092 * Ensure the NVRAM reset byte contains something vaguely sane.
1093 */
1094
1095 outb(IO_RTC, NVRAM_RESET);
1096 outb(IO_RTC+1, NVRAM_RESET_RST);
1097 #endif
1098 if (vcpu_is_up(ci)) {
1099 aprint_debug_dev(ci->ci_dev, "is started.\n");
1100 }
1101 else {
1102 aprint_error_dev(ci->ci_dev, "did not start up.\n");
1103 }
1104
1105 }
1106
1107 void
1108 cpu_init_msrs(struct cpu_info *ci, bool full)
1109 {
1110 #ifdef __x86_64__
1111 if (full) {
1112 HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
1113 HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
1114 HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
1115 }
1116 #endif /* __x86_64__ */
1117
1118 if (cpu_feature[2] & CPUID_NOX)
1119 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1120
1121 }
1122
1123 void
1124 cpu_offline_md(void)
1125 {
1126 int s;
1127
1128 s = splhigh();
1129 #ifdef __i386__
1130 npxsave_cpu(true);
1131 #else
1132 fpusave_cpu(true);
1133 #endif
1134 splx(s);
1135 }
1136
1137 #if 0
1138 /* XXX joerg restructure and restart CPUs individually */
1139 static bool
1140 cpu_suspend(device_t dv, const pmf_qual_t *qual)
1141 {
1142 struct cpu_softc *sc = device_private(dv);
1143 struct cpu_info *ci = sc->sc_info;
1144 int err;
1145
1146 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1147 return true;
1148
1149 cpufreq_suspend(ci);
1150
1151 if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1152 return true;
1153
1154 if (ci->ci_data.cpu_idlelwp == NULL)
1155 return true;
1156
1157 sc->sc_wasonline = !(ci->ci_schedstate.spc_flags & SPCF_OFFLINE);
1158
1159 if (sc->sc_wasonline) {
1160 mutex_enter(&cpu_lock);
1161 err = cpu_setstate(ci, false);
1162 mutex_exit(&cpu_lock);
1163
1164 if (err != 0)
1165 return false;
1166 }
1167
1168 return true;
1169 }
1170
1171 static bool
1172 cpu_resume(device_t dv, const pmf_qual_t *qual)
1173 {
1174 struct cpu_softc *sc = device_private(dv);
1175 struct cpu_info *ci = sc->sc_info;
1176 int err = 0;
1177
1178 if ((ci->ci_flags & CPUF_PRESENT) == 0)
1179 return true;
1180
1181 if ((ci->ci_flags & CPUF_PRIMARY) != 0)
1182 goto out;
1183
1184 if (ci->ci_data.cpu_idlelwp == NULL)
1185 goto out;
1186
1187 if (sc->sc_wasonline) {
1188 mutex_enter(&cpu_lock);
1189 err = cpu_setstate(ci, true);
1190 mutex_exit(&cpu_lock);
1191 }
1192
1193 out:
1194 if (err != 0)
1195 return false;
1196
1197 cpufreq_resume(ci);
1198
1199 return true;
1200 }
1201 #endif
1202
1203 void
1204 cpu_get_tsc_freq(struct cpu_info *ci)
1205 {
1206 uint32_t vcpu_tversion;
1207 const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1208
1209 vcpu_tversion = tinfo->version;
1210 while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
1211
1212 uint64_t freq = 1000000000ULL << 32;
1213 freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1214 if ( tinfo->tsc_shift < 0 )
1215 freq = freq << -tinfo->tsc_shift;
1216 else
1217 freq = freq >> tinfo->tsc_shift;
1218 ci->ci_data.cpu_cc_freq = freq;
1219 }
1220
1221 void
1222 x86_cpu_idle_xen(void)
1223 {
1224 struct cpu_info *ci = curcpu();
1225
1226 KASSERT(ci->ci_ilevel == IPL_NONE);
1227
1228 x86_disable_intr();
1229 if (!__predict_false(ci->ci_want_resched)) {
1230 idle_block();
1231 } else {
1232 x86_enable_intr();
1233 }
1234 }
1235
1236 /*
1237 * Loads pmap for the current CPU.
1238 */
1239 void
1240 cpu_load_pmap(struct pmap *pmap)
1241 {
1242 #ifdef i386
1243 #ifdef PAE
1244 int i, s;
1245 struct cpu_info *ci;
1246
1247 s = splvm(); /* just to be safe */
1248 xpq_queue_lock();
1249 ci = curcpu();
1250 paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
1251 /* don't update the kernel L3 slot */
1252 for (i = 0 ; i < PDP_SIZE - 1; i++) {
1253 xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
1254 xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
1255 }
1256 xpq_queue_unlock();
1257 splx(s);
1258 tlbflush();
1259 #else /* PAE */
1260 lcr3(pmap_pdirpa(pmap, 0));
1261 #endif /* PAE */
1262 #endif /* i386 */
1263
1264 #ifdef __x86_64__
1265 int i, s;
1266 pd_entry_t *old_pgd, *new_pgd;
1267 paddr_t addr;
1268 struct cpu_info *ci;
1269
1270 /* kernel pmap always in cr3 and should never go in user cr3 */
1271 if (pmap_pdirpa(pmap, 0) != pmap_pdirpa(pmap_kernel(), 0)) {
1272 ci = curcpu();
1273 /*
1274 * Map user space address in kernel space and load
1275 * user cr3
1276 */
1277 s = splvm();
1278 new_pgd = pmap->pm_pdir;
1279 old_pgd = pmap_kernel()->pm_pdir;
1280 addr = xpmap_ptom(pmap_pdirpa(pmap_kernel(), 0));
1281 for (i = 0; i < PDIR_SLOT_PTE;
1282 i++, addr += sizeof(pd_entry_t)) {
1283 if ((new_pgd[i] & PG_V) || (old_pgd[i] & PG_V))
1284 xpq_queue_pte_update(addr, new_pgd[i]);
1285 }
1286 xen_set_user_pgd(pmap_pdirpa(pmap, 0));
1287 ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
1288 tlbflush();
1289 splx(s);
1290 }
1291 #endif /* __x86_64__ */
1292 }
1293
1294 /*
1295 * Notify all other cpus to halt.
1296 */
1297
1298 void
1299 cpu_broadcast_halt(void)
1300 {
1301 xen_broadcast_ipi(XEN_IPI_HALT);
1302 }
1303
1304 /*
1305 * Send a dummy ipi to a cpu.
1306 */
1307
1308 void
1309 cpu_kick(struct cpu_info *ci)
1310 {
1311 (void)xen_send_ipi(ci, XEN_IPI_KICK);
1312 }
1313