cpu.c revision 1.78 1 /* $NetBSD: cpu.c,v 1.78 2012/01/28 07:19:17 cherry Exp $ */
2 /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp */
3
4 /*-
5 * Copyright (c) 2000 The NetBSD Foundation, Inc.
6 * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by RedBack Networks Inc.
11 *
12 * Author: Bill Sommerfeld
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /*
37 * Copyright (c) 1999 Stefan Grefen
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by the NetBSD
50 * Foundation, Inc. and its contributors.
51 * 4. Neither the name of The NetBSD Foundation nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
56 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.78 2012/01/28 07:19:17 cherry Exp $");
70
71 #include "opt_ddb.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_mpbios.h" /* for MPDEBUG */
74 #include "opt_mtrr.h"
75 #include "opt_xen.h"
76
77 #include "lapic.h"
78 #include "ioapic.h"
79
80 #include <sys/param.h>
81 #include <sys/proc.h>
82 #include <sys/systm.h>
83 #include <sys/device.h>
84 #include <sys/kmem.h>
85 #include <sys/cpu.h>
86 #include <sys/cpufreq.h>
87 #include <sys/atomic.h>
88 #include <sys/reboot.h>
89 #include <sys/idle.h>
90
91 #include <uvm/uvm.h>
92
93 #include <machine/cpufunc.h>
94 #include <machine/cpuvar.h>
95 #include <machine/pmap.h>
96 #include <machine/vmparam.h>
97 #include <machine/mpbiosvar.h>
98 #include <machine/pcb.h>
99 #include <machine/specialreg.h>
100 #include <machine/segments.h>
101 #include <machine/gdt.h>
102 #include <machine/mtrr.h>
103 #include <machine/pio.h>
104
105 #ifdef i386
106 #include <machine/npx.h>
107 #else
108 #include <machine/fpu.h>
109 #endif
110
111 #include <xen/xen.h>
112 #include <xen/xen-public/vcpu.h>
113 #include <xen/vcpuvar.h>
114
115 #if NLAPIC > 0
116 #include <machine/apicvar.h>
117 #include <machine/i82489reg.h>
118 #include <machine/i82489var.h>
119 #endif
120
121 #include <dev/ic/mc146818reg.h>
122 #include <dev/isa/isareg.h>
123
124 #if MAXCPUS > 32
125 #error cpu_info contains 32bit bitmasks
126 #endif
127
128 static int cpu_match(device_t, cfdata_t, void *);
129 static void cpu_attach(device_t, device_t, void *);
130 static void cpu_defer(device_t);
131 static int cpu_rescan(device_t, const char *, const int *);
132 static void cpu_childdetached(device_t, device_t);
133 static int vcpu_match(device_t, cfdata_t, void *);
134 static void vcpu_attach(device_t, device_t, void *);
135 static void cpu_attach_common(device_t, device_t, void *);
136 void cpu_offline_md(void);
137
138 struct cpu_softc {
139 device_t sc_dev; /* device tree glue */
140 struct cpu_info *sc_info; /* pointer to CPU info */
141 bool sc_wasonline;
142 };
143
144 int mp_cpu_start(struct cpu_info *, vaddr_t);
145 void mp_cpu_start_cleanup(struct cpu_info *);
146 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
147 mp_cpu_start_cleanup };
148
149 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
150 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
151
152 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
153 vcpu_match, vcpu_attach, NULL, NULL);
154
155 /*
156 * Statically-allocated CPU info for the primary CPU (or the only
157 * CPU, on uniprocessors). The CPU info list is initialized to
158 * point at it.
159 */
160 #ifdef TRAPLOG
161 #include <machine/tlog.h>
162 struct tlog tlog_primary;
163 #endif
164 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
165 .ci_dev = 0,
166 .ci_self = &cpu_info_primary,
167 .ci_idepth = -1,
168 .ci_curlwp = &lwp0,
169 .ci_curldt = -1,
170 .ci_cpumask = 1,
171 #ifdef TRAPLOG
172 .ci_tlog = &tlog_primary,
173 #endif
174
175 };
176 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
177 .ci_dev = 0,
178 .ci_self = &phycpu_info_primary,
179 };
180
181 struct cpu_info *cpu_info_list = &cpu_info_primary;
182 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
183
184 uint32_t cpus_attached = 1;
185 uint32_t cpus_running = 1;
186
187 uint32_t phycpus_attached = 0;
188 uint32_t phycpus_running = 0;
189
190 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
191 * [0] basic features %edx
192 * [1] basic features %ecx
193 * [2] extended features %edx
194 * [3] extended features %ecx
195 * [4] VIA padlock features
196 */
197
198 bool x86_mp_online;
199 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
200
201 #if defined(MULTIPROCESSOR)
202 void cpu_hatch(void *);
203 static void cpu_boot_secondary(struct cpu_info *ci);
204 static void cpu_start_secondary(struct cpu_info *ci);
205 #endif /* MULTIPROCESSOR */
206
207 static int
208 cpu_match(device_t parent, cfdata_t match, void *aux)
209 {
210
211 return 1;
212 }
213
214 static void
215 cpu_attach(device_t parent, device_t self, void *aux)
216 {
217 struct cpu_softc *sc = device_private(self);
218 struct cpu_attach_args *caa = aux;
219 struct cpu_info *ci;
220 uintptr_t ptr;
221 static int nphycpu = 0;
222
223 sc->sc_dev = self;
224
225 if (phycpus_attached == ~0) {
226 aprint_error(": increase MAXCPUS\n");
227 return;
228 }
229
230 /*
231 * If we're an Application Processor, allocate a cpu_info
232 * If we're the first attached CPU use the primary cpu_info,
233 * otherwise allocate a new one
234 */
235 aprint_naive("\n");
236 aprint_normal("\n");
237 if (nphycpu > 0) {
238 struct cpu_info *tmp;
239 ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
240 KM_SLEEP);
241 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
242 ci->ci_curldt = -1;
243
244 tmp = phycpu_info_list;
245 while (tmp->ci_next)
246 tmp = tmp->ci_next;
247
248 tmp->ci_next = ci;
249 } else {
250 ci = &phycpu_info_primary;
251 }
252
253 ci->ci_self = ci;
254 sc->sc_info = ci;
255
256 ci->ci_dev = self;
257 ci->ci_acpiid = caa->cpu_id;
258 ci->ci_cpuid = caa->cpu_number;
259 ci->ci_vcpu = NULL;
260 ci->ci_index = nphycpu++;
261 ci->ci_cpumask = (1 << cpu_index(ci));
262
263 atomic_or_32(&phycpus_attached, ci->ci_cpumask);
264
265 if (!pmf_device_register(self, NULL, NULL))
266 aprint_error_dev(self, "couldn't establish power handler\n");
267
268 (void)config_defer(self, cpu_defer);
269 }
270
271 static void
272 cpu_defer(device_t self)
273 {
274 cpu_rescan(self, NULL, NULL);
275 }
276
277 static int
278 cpu_rescan(device_t self, const char *ifattr, const int *locators)
279 {
280 struct cpu_softc *sc = device_private(self);
281 struct cpufeature_attach_args cfaa;
282 struct cpu_info *ci = sc->sc_info;
283
284 memset(&cfaa, 0, sizeof(cfaa));
285 cfaa.ci = ci;
286
287 if (ifattr_match(ifattr, "cpufeaturebus")) {
288
289 if (ci->ci_frequency == NULL) {
290 cfaa.name = "frequency";
291 ci->ci_frequency = config_found_ia(self,
292 "cpufeaturebus", &cfaa, NULL);
293 }
294 }
295
296 return 0;
297 }
298
299 static void
300 cpu_childdetached(device_t self, device_t child)
301 {
302 struct cpu_softc *sc = device_private(self);
303 struct cpu_info *ci = sc->sc_info;
304
305 if (ci->ci_frequency == child)
306 ci->ci_frequency = NULL;
307 }
308
309 static int
310 vcpu_match(device_t parent, cfdata_t match, void *aux)
311 {
312 struct vcpu_attach_args *vcaa = aux;
313 struct vcpu_runstate_info vcr;
314 int error;
315
316 if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
317 error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
318 vcaa->vcaa_caa.cpu_number,
319 &vcr);
320 switch (error) {
321 case 0:
322 return 1;
323 case -ENOENT:
324 return 0;
325 default:
326 panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
327 }
328 }
329
330 return 0;
331 }
332
333 static void
334 vcpu_attach(device_t parent, device_t self, void *aux)
335 {
336 struct vcpu_attach_args *vcaa = aux;
337
338 KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
339 vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
340 cpu_attach_common(parent, self, &vcaa->vcaa_caa);
341
342 if (!pmf_device_register(self, NULL, NULL))
343 aprint_error_dev(self, "couldn't establish power handler\n");
344 }
345
346 static int
347 vcpu_is_up(struct cpu_info *ci)
348 {
349 KASSERT(ci != NULL);
350 return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
351 }
352
353 static void
354 cpu_vm_init(struct cpu_info *ci)
355 {
356 int ncolors = 2, i;
357
358 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
359 struct x86_cache_info *cai;
360 int tcolors;
361
362 cai = &ci->ci_cinfo[i];
363
364 tcolors = atop(cai->cai_totalsize);
365 switch(cai->cai_associativity) {
366 case 0xff:
367 tcolors = 1; /* fully associative */
368 break;
369 case 0:
370 case 1:
371 break;
372 default:
373 tcolors /= cai->cai_associativity;
374 }
375 ncolors = max(ncolors, tcolors);
376 }
377
378 /*
379 * Knowing the size of the largest cache on this CPU, potentially
380 * re-color our pages.
381 */
382 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
383 uvm_page_recolor(ncolors);
384 }
385
386 static void
387 cpu_attach_common(device_t parent, device_t self, void *aux)
388 {
389 struct cpu_softc *sc = device_private(self);
390 struct cpu_attach_args *caa = aux;
391 struct cpu_info *ci;
392 uintptr_t ptr;
393 int cpunum = caa->cpu_number;
394 static bool again = false;
395
396 sc->sc_dev = self;
397
398 /*
399 * If we're an Application Processor, allocate a cpu_info
400 * structure, otherwise use the primary's.
401 */
402 if (caa->cpu_role == CPU_ROLE_AP) {
403 aprint_naive(": Application Processor\n");
404 ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
405 KM_SLEEP);
406 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
407 memset(ci, 0, sizeof(*ci));
408 #ifdef TRAPLOG
409 ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
410 #endif
411 } else {
412 aprint_naive(": %s Processor\n",
413 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
414 ci = &cpu_info_primary;
415 }
416
417 ci->ci_self = ci;
418 sc->sc_info = ci;
419 ci->ci_dev = self;
420 ci->ci_cpuid = cpunum;
421
422 KASSERT(HYPERVISOR_shared_info != NULL);
423 ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
424
425 KASSERT(ci->ci_func == 0);
426 ci->ci_func = caa->cpu_func;
427
428 /* Must be called before mi_cpu_attach(). */
429 cpu_vm_init(ci);
430
431 if (caa->cpu_role == CPU_ROLE_AP) {
432 int error;
433
434 error = mi_cpu_attach(ci);
435
436 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
437 if (error != 0) {
438 aprint_normal("\n");
439 aprint_error_dev(self,
440 "mi_cpu_attach failed with %d\n", error);
441 return;
442 }
443
444 } else {
445 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
446 }
447
448 ci->ci_cpumask = (1 << cpu_index(ci));
449 pmap_reference(pmap_kernel());
450 ci->ci_pmap = pmap_kernel();
451 ci->ci_tlbstate = TLBSTATE_STALE;
452
453 /*
454 * Boot processor may not be attached first, but the below
455 * must be done to allow booting other processors.
456 */
457 if (!again) {
458 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
459 /* Basic init. */
460 cpu_intr_init(ci);
461 cpu_get_tsc_freq(ci);
462 cpu_init(ci);
463 pmap_cpu_init_late(ci);
464
465 /* Every processor needs to init it's own ipi h/w (similar to lapic) */
466 xen_ipi_init();
467 /* XXX: clock_init() */
468
469 /* Make sure DELAY() is initialized. */
470 DELAY(1);
471 again = true;
472 }
473
474 /* further PCB init done later. */
475
476 switch (caa->cpu_role) {
477 case CPU_ROLE_SP:
478 atomic_or_32(&ci->ci_flags, CPUF_SP);
479 cpu_identify(ci);
480 #if 0
481 x86_errata();
482 #endif
483 x86_cpu_idle_init();
484
485 break;
486
487 case CPU_ROLE_BP:
488 atomic_or_32(&ci->ci_flags, CPUF_BSP);
489 cpu_identify(ci);
490 cpu_init(ci);
491 #if 0
492 x86_errata();
493 #endif
494 x86_cpu_idle_init();
495
496 break;
497
498 case CPU_ROLE_AP:
499 atomic_or_32(&ci->ci_flags, CPUF_AP);
500
501 /*
502 * report on an AP
503 */
504
505 #if defined(MULTIPROCESSOR)
506 /* interrupt handler stack */
507 cpu_intr_init(ci);
508
509 /* Setup per-cpu memory for gdt */
510 gdt_alloc_cpu(ci);
511
512 pmap_cpu_init_late(ci);
513 cpu_start_secondary(ci);
514
515 if (ci->ci_flags & CPUF_PRESENT) {
516 struct cpu_info *tmp;
517
518 cpu_identify(ci);
519 tmp = cpu_info_list;
520 while (tmp->ci_next)
521 tmp = tmp->ci_next;
522
523 tmp->ci_next = ci;
524 }
525 #else
526 aprint_error(": not started\n");
527 #endif
528 break;
529
530 default:
531 aprint_normal("\n");
532 panic("unknown processor type??\n");
533 }
534
535 pat_init(ci);
536 atomic_or_32(&cpus_attached, ci->ci_cpumask);
537
538 #ifdef MPVERBOSE
539 if (mp_verbose) {
540 struct lwp *l = ci->ci_data.cpu_idlelwp;
541 struct pcb *pcb = lwp_getpcb(l);
542
543 aprint_verbose_dev(self,
544 "idle lwp at %p, idle sp at 0x%p\n",
545 l,
546 #ifdef i386
547 (void *)pcb->pcb_esp
548 #else /* i386 */
549 (void *)pcb->pcb_rsp
550 #endif /* i386 */
551 );
552
553 }
554 #endif /* MPVERBOSE */
555 }
556
557 /*
558 * Initialize the processor appropriately.
559 */
560
561 void
562 cpu_init(struct cpu_info *ci)
563 {
564
565 /*
566 * On a P6 or above, enable global TLB caching if the
567 * hardware supports it.
568 */
569 if (cpu_feature[0] & CPUID_PGE)
570 lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
571
572 #ifdef XXXMTRR
573 /*
574 * On a P6 or above, initialize MTRR's if the hardware supports them.
575 */
576 if (cpu_feature[0] & CPUID_MTRR) {
577 if ((ci->ci_flags & CPUF_AP) == 0)
578 i686_mtrr_init_first();
579 mtrr_init_cpu(ci);
580 }
581 #endif
582 /*
583 * If we have FXSAVE/FXRESTOR, use them.
584 */
585 if (cpu_feature[0] & CPUID_FXSR) {
586 lcr4(rcr4() | CR4_OSFXSR);
587
588 /*
589 * If we have SSE/SSE2, enable XMM exceptions.
590 */
591 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
592 lcr4(rcr4() | CR4_OSXMMEXCPT);
593 }
594
595 #ifdef __x86_64__
596 /* No user PGD mapped for this CPU yet */
597 ci->ci_xen_current_user_pgd = 0;
598 #endif
599
600 atomic_or_32(&cpus_running, ci->ci_cpumask);
601 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
602
603 /* XXX: register vcpu_register_runstate_memory_area, and figure out how to make sure this VCPU is running ? */
604 }
605
606
607 #ifdef MULTIPROCESSOR
608
609 void
610 cpu_boot_secondary_processors(void)
611 {
612 struct cpu_info *ci;
613 u_long i;
614 for (i = 0; i < maxcpus; i++) {
615 ci = cpu_lookup(i);
616 if (ci == NULL)
617 continue;
618 if (ci->ci_data.cpu_idlelwp == NULL)
619 continue;
620 if ((ci->ci_flags & CPUF_PRESENT) == 0)
621 continue;
622 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
623 continue;
624 cpu_boot_secondary(ci);
625 }
626
627 x86_mp_online = true;
628 }
629
630 static void
631 cpu_init_idle_lwp(struct cpu_info *ci)
632 {
633 struct lwp *l = ci->ci_data.cpu_idlelwp;
634 struct pcb *pcb = lwp_getpcb(l);
635
636 pcb->pcb_cr0 = rcr0();
637 }
638
639 void
640 cpu_init_idle_lwps(void)
641 {
642 struct cpu_info *ci;
643 u_long i;
644
645 for (i = 0; i < maxcpus; i++) {
646 ci = cpu_lookup(i);
647 if (ci == NULL)
648 continue;
649 if (ci->ci_data.cpu_idlelwp == NULL)
650 continue;
651 if ((ci->ci_flags & CPUF_PRESENT) == 0)
652 continue;
653 cpu_init_idle_lwp(ci);
654 }
655 }
656
657 static void
658 cpu_start_secondary(struct cpu_info *ci)
659 {
660 int i;
661
662 aprint_debug_dev(ci->ci_dev, "starting\n");
663
664 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
665
666 if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
667 return;
668 }
669
670 /*
671 * wait for it to become ready
672 */
673 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
674 delay(10);
675 }
676 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
677 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
678 #if defined(MPDEBUG) && defined(DDB)
679 printf("dropping into debugger; continue from here to resume boot\n");
680 Debugger();
681 #endif
682 }
683
684 CPU_START_CLEANUP(ci);
685 }
686
687 void
688 cpu_boot_secondary(struct cpu_info *ci)
689 {
690 int i;
691 atomic_or_32(&ci->ci_flags, CPUF_GO);
692 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
693 delay(10);
694 }
695 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
696 aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
697 #if defined(MPDEBUG) && defined(DDB)
698 printf("dropping into debugger; continue from here to resume boot\n");
699 Debugger();
700 #endif
701 }
702 }
703
704 /*
705 * APs end up here immediately after initialisation and VCPUOP_up in
706 * mp_cpu_start().
707 * At this point, we are running in the idle pcb/idle stack of the new
708 * CPU. This function jumps to the idle loop and starts looking for
709 * work.
710 */
711 extern void x86_64_tls_switch(struct lwp *);
712 void
713 cpu_hatch(void *v)
714 {
715 struct cpu_info *ci = (struct cpu_info *)v;
716 struct pcb *pcb;
717 int s, i;
718
719 /* Setup TLS and kernel GS/FS */
720 cpu_init_msrs(ci, true);
721 cpu_init_idt();
722 gdt_init_cpu(ci);
723
724 cpu_probe(ci);
725
726 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
727
728 while ((ci->ci_flags & CPUF_GO) == 0) {
729 /* Don't use delay, boot CPU may be patching the text. */
730 for (i = 10000; i != 0; i--)
731 x86_pause();
732 }
733
734 /* Because the text may have been patched in x86_patch(). */
735 x86_flush();
736 tlbflushg();
737
738 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
739
740 pcb = lwp_getpcb(curlwp);
741 pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0); /* XXX: consider using pmap_load() ? */
742 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
743
744 xen_ipi_init();
745
746 xen_initclocks();
747
748 /* XXX: lapic_initclocks(); */
749
750 #ifdef __x86_64__
751 fpuinit(ci);
752 #endif
753
754 lldt(GSEL(GLDT_SEL, SEL_KPL));
755
756 cpu_init(ci);
757 cpu_get_tsc_freq(ci);
758
759 s = splhigh();
760 x86_enable_intr();
761 splx(s);
762 #if 0
763 x86_errata();
764 #endif
765
766 aprint_debug_dev(ci->ci_dev, "running\n");
767
768 cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
769
770 panic("switch to idle_loop context returned!\n");
771 /* NOTREACHED */
772 }
773
774 #if defined(DDB)
775
776 #include <ddb/db_output.h>
777 #include <machine/db_machdep.h>
778
779 /*
780 * Dump CPU information from ddb.
781 */
782 void
783 cpu_debug_dump(void)
784 {
785 struct cpu_info *ci;
786 CPU_INFO_ITERATOR cii;
787
788 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
789 for (CPU_INFO_FOREACH(cii, ci)) {
790 db_printf("%p %s %ld %x %x %10p %10p\n",
791 ci,
792 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
793 (long)ci->ci_cpuid,
794 ci->ci_flags, ci->ci_ipis,
795 ci->ci_curlwp,
796 ci->ci_fpcurlwp);
797 }
798 }
799 #endif /* DDB */
800
801 #endif /* MULTIPROCESSOR */
802
803 extern void hypervisor_callback(void);
804 extern void failsafe_callback(void);
805 #ifdef __x86_64__
806 typedef void (vector)(void);
807 extern vector Xsyscall, Xsyscall32;
808 #endif
809
810 /*
811 * Setup the "trampoline". On Xen, we setup nearly all cpu context
812 * outside a trampoline, so we prototype and call targetip like so:
813 * void targetip(struct cpu_info *);
814 */
815
816 static void
817 gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
818 {
819 int i;
820 for (i = 0; i < roundup(entries, PAGE_SIZE) >> PAGE_SHIFT; i++) {
821
822 frames[i] = ((paddr_t) xpmap_ptetomach(
823 (pt_entry_t *) (base + (i << PAGE_SHIFT))))
824 >> PAGE_SHIFT;
825
826 /* Mark Read-only */
827 pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
828 PG_RW);
829 }
830 }
831
832 #ifdef __x86_64__
833 extern char *ldtstore; /* XXX: Xen MP todo */
834
835 static void
836 xen_init_amd64_vcpuctxt(struct cpu_info *ci,
837 struct vcpu_guest_context *initctx,
838 void targetrip(struct cpu_info *))
839 {
840 /* page frames to point at GDT */
841 extern int gdt_size;
842 paddr_t frames[16];
843 psize_t gdt_ents;
844
845 struct lwp *l;
846 struct pcb *pcb;
847
848 volatile struct vcpu_info *vci;
849
850 KASSERT(ci != NULL);
851 KASSERT(ci != &cpu_info_primary);
852 KASSERT(initctx != NULL);
853 KASSERT(targetrip != NULL);
854
855 memset(initctx, 0, sizeof *initctx);
856
857 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT; /* XXX: re-investigate roundup(gdt_size... ) for gdt_ents. */
858 KASSERT(gdt_ents <= 16);
859
860 gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
861
862 /* XXX: The stuff in here is amd64 specific. move to mptramp.[Sc] ? */
863
864 /* Initialise the vcpu context: We use idle_loop()'s pcb context. */
865
866 l = ci->ci_data.cpu_idlelwp;
867
868 KASSERT(l != NULL);
869 pcb = lwp_getpcb(l);
870 KASSERT(pcb != NULL);
871
872 /* resume with interrupts off */
873 vci = ci->ci_vcpu;
874 vci->evtchn_upcall_mask = 1;
875 xen_mb();
876
877 /* resume in kernel-mode */
878 initctx->flags = VGCF_in_kernel | VGCF_online;
879
880 /* Stack and entry points:
881 * We arrange for the stack frame for cpu_hatch() to
882 * appear as a callee frame of lwp_trampoline(). Being a
883 * leaf frame prevents trampling on any of the MD stack setup
884 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
885 */
886
887 initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
888 initctx->user_regs.rip = (vaddr_t) targetrip;
889
890 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
891
892 initctx->user_regs.rflags = pcb->pcb_flags;
893 initctx->user_regs.rsp = pcb->pcb_rsp;
894
895 /* Data segments */
896 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
897 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
898 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
899
900 /* GDT */
901 memcpy(initctx->gdt_frames, frames, sizeof frames);
902 initctx->gdt_ents = gdt_ents;
903
904 /* LDT */
905 initctx->ldt_base = (unsigned long) ldtstore;
906 initctx->ldt_ents = LDT_SIZE >> 3;
907
908 /* Kernel context state */
909 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
910 initctx->kernel_sp = pcb->pcb_rsp0;
911 initctx->ctrlreg[0] = pcb->pcb_cr0;
912 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
913 initctx->ctrlreg[2] = pcb->pcb_cr2; /* XXX: */
914 /*
915 * Use pmap_kernel() L4 PD directly, until we setup the
916 * per-cpu L4 PD in pmap_cpu_init_late()
917 */
918 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
919 initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
920
921
922 /* Xen callbacks */
923 initctx->event_callback_eip = (unsigned long) hypervisor_callback;
924 initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
925 initctx->syscall_callback_eip = (unsigned long) Xsyscall;
926
927 return;
928 }
929 #else /* i386 */
930 extern union descriptor *ldt;
931 extern void Xsyscall(void);
932
933 static void
934 xen_init_i386_vcpuctxt(struct cpu_info *ci,
935 struct vcpu_guest_context *initctx,
936 void targeteip(struct cpu_info *))
937 {
938 /* page frames to point at GDT */
939 extern int gdt_size;
940 paddr_t frames[16];
941 psize_t gdt_ents;
942
943 struct lwp *l;
944 struct pcb *pcb;
945
946 volatile struct vcpu_info *vci;
947
948 KASSERT(ci != NULL);
949 KASSERT(ci != &cpu_info_primary);
950 KASSERT(initctx != NULL);
951 KASSERT(targeteip != NULL);
952
953 memset(initctx, 0, sizeof *initctx);
954
955 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT; /* XXX: re-investigate roundup(gdt_size... ) for gdt_ents. */
956 KASSERT(gdt_ents <= 16);
957
958 gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
959
960 /*
961 * Initialise the vcpu context:
962 * We use this cpu's idle_loop() pcb context.
963 */
964
965 l = ci->ci_data.cpu_idlelwp;
966
967 KASSERT(l != NULL);
968 pcb = lwp_getpcb(l);
969 KASSERT(pcb != NULL);
970
971 /* resume with interrupts off */
972 vci = ci->ci_vcpu;
973 vci->evtchn_upcall_mask = 1;
974 xen_mb();
975
976 /* resume in kernel-mode */
977 initctx->flags = VGCF_in_kernel | VGCF_online;
978
979 /* Stack frame setup for cpu_hatch():
980 * We arrange for the stack frame for cpu_hatch() to
981 * appear as a callee frame of lwp_trampoline(). Being a
982 * leaf frame prevents trampling on any of the MD stack setup
983 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
984 */
985
986 initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
987 arg1 */
988 { /* targeteip(ci); */
989 uint32_t *arg = (uint32_t *) initctx->user_regs.esp;
990 arg[1] = (uint32_t) ci; /* arg1 */
991
992 }
993
994 initctx->user_regs.eip = (vaddr_t) targeteip;
995 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
996 initctx->user_regs.eflags |= pcb->pcb_iopl;
997
998 /* Data segments */
999 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
1000 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
1001 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
1002 initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
1003
1004 /* GDT */
1005 memcpy(initctx->gdt_frames, frames, sizeof frames);
1006 initctx->gdt_ents = gdt_ents;
1007
1008 /* LDT */
1009 initctx->ldt_base = (unsigned long) ldt;
1010 initctx->ldt_ents = NLDT;
1011
1012 /* Kernel context state */
1013 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
1014 initctx->kernel_sp = pcb->pcb_esp0;
1015 initctx->ctrlreg[0] = pcb->pcb_cr0;
1016 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
1017 initctx->ctrlreg[2] = pcb->pcb_cr2; /* XXX: */
1018 #ifdef PAE
1019 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
1020 #else /* PAE */
1021 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(pcb->pcb_cr3)));
1022 #endif /* PAE */
1023 initctx->ctrlreg[4] = /* CR4_PAE | */CR4_OSFXSR | CR4_OSXMMEXCPT;
1024
1025
1026 /* Xen callbacks */
1027 initctx->event_callback_eip = (unsigned long) hypervisor_callback;
1028 initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
1029 initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
1030 initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
1031
1032 return;
1033 }
1034 #endif /* __x86_64__ */
1035
1036 int
1037 mp_cpu_start(struct cpu_info *ci, vaddr_t target)
1038 {
1039
1040 int hyperror;
1041 struct vcpu_guest_context vcpuctx;
1042
1043 KASSERT(ci != NULL);
1044 KASSERT(ci != &cpu_info_primary);
1045 KASSERT(ci->ci_flags & CPUF_AP);
1046
1047 #ifdef __x86_64__
1048 xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
1049 #else /* i386 */
1050 xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
1051 #endif /* __x86_64__ */
1052
1053 /* Initialise the given vcpu to execute cpu_hatch(ci); */
1054 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
1055 aprint_error(": context initialisation failed. errno = %d\n", hyperror);
1056 return hyperror;
1057 }
1058
1059 /* Start it up */
1060
1061 /* First bring it down */
1062 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
1063 aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
1064 return hyperror;
1065 }
1066
1067 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
1068 aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
1069 return hyperror;
1070 }
1071
1072 if (!vcpu_is_up(ci)) {
1073 aprint_error(": did not come up\n");
1074 return -1;
1075 }
1076
1077 return 0;
1078 }
1079
1080 void
1081 mp_cpu_start_cleanup(struct cpu_info *ci)
1082 {
1083 #if 0
1084 /*
1085 * Ensure the NVRAM reset byte contains something vaguely sane.
1086 */
1087
1088 outb(IO_RTC, NVRAM_RESET);
1089 outb(IO_RTC+1, NVRAM_RESET_RST);
1090 #endif
1091 if (vcpu_is_up(ci)) {
1092 aprint_debug_dev(ci->ci_dev, "is started.\n");
1093 }
1094 else {
1095 aprint_error_dev(ci->ci_dev, "did not start up.\n");
1096 }
1097
1098 }
1099
1100 /* curcpu() uses %fs - shim for until cpu_init_msrs(), below */
1101 static struct cpu_info *cpu_primary(void)
1102 {
1103 return &cpu_info_primary;
1104 }
1105 /* XXX: rename to something more generic. users other than xpq exist */
1106 struct cpu_info * (*xpq_cpu)(void) = cpu_primary;
1107
1108 void
1109 cpu_init_msrs(struct cpu_info *ci, bool full)
1110 {
1111 #ifdef __x86_64__
1112 if (full) {
1113 HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
1114 HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
1115 HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
1116 xpq_cpu = x86_curcpu;
1117 }
1118 #endif /* __x86_64__ */
1119
1120 if (cpu_feature[2] & CPUID_NOX)
1121 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1122
1123 }
1124
1125 void
1126 cpu_offline_md(void)
1127 {
1128 int s;
1129
1130 s = splhigh();
1131 #ifdef __i386__
1132 npxsave_cpu(true);
1133 #else
1134 fpusave_cpu(true);
1135 #endif
1136 splx(s);
1137 }
1138
1139 void
1140 cpu_get_tsc_freq(struct cpu_info *ci)
1141 {
1142 uint32_t vcpu_tversion;
1143 const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1144
1145 vcpu_tversion = tinfo->version;
1146 while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
1147
1148 uint64_t freq = 1000000000ULL << 32;
1149 freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1150 if ( tinfo->tsc_shift < 0 )
1151 freq = freq << -tinfo->tsc_shift;
1152 else
1153 freq = freq >> tinfo->tsc_shift;
1154 ci->ci_data.cpu_cc_freq = freq;
1155 }
1156
1157 void
1158 x86_cpu_idle_xen(void)
1159 {
1160 struct cpu_info *ci = curcpu();
1161
1162 KASSERT(ci->ci_ilevel == IPL_NONE);
1163
1164 x86_disable_intr();
1165 if (!__predict_false(ci->ci_want_resched)) {
1166 idle_block();
1167 } else {
1168 x86_enable_intr();
1169 }
1170 }
1171
1172 /*
1173 * Loads pmap for the current CPU.
1174 */
1175 void
1176 cpu_load_pmap(struct pmap *pmap)
1177 {
1178 #ifdef i386
1179 #ifdef PAE
1180 int i, s;
1181 struct cpu_info *ci;
1182
1183 s = splvm(); /* just to be safe */
1184 ci = curcpu();
1185 paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
1186 /* don't update the kernel L3 slot */
1187 for (i = 0 ; i < PDP_SIZE - 1; i++) {
1188 xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
1189 xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
1190 }
1191 splx(s);
1192 tlbflush();
1193 #else /* PAE */
1194 lcr3(pmap_pdirpa(pmap, 0));
1195 #endif /* PAE */
1196 #endif /* i386 */
1197
1198 #ifdef __x86_64__
1199 int i, s;
1200 pd_entry_t *new_pgd;
1201 struct cpu_info *ci;
1202 paddr_t l4_pd_ma;
1203
1204 ci = curcpu();
1205 l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
1206
1207 /*
1208 * Map user space address in kernel space and load
1209 * user cr3
1210 */
1211 s = splvm();
1212 new_pgd = pmap->pm_pdir;
1213
1214 /* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
1215 for (i = 0; i < PDIR_SLOT_PTE; i++) {
1216 xpq_queue_pte_update(l4_pd_ma + i * sizeof(pd_entry_t), new_pgd[i]);
1217 }
1218
1219 if (__predict_true(pmap != pmap_kernel())) {
1220 xen_set_user_pgd(pmap_pdirpa(pmap, 0));
1221 ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
1222 }
1223 else {
1224 xpq_queue_pt_switch(l4_pd_ma);
1225 ci->ci_xen_current_user_pgd = 0;
1226 }
1227
1228 tlbflush();
1229 splx(s);
1230
1231 #endif /* __x86_64__ */
1232 }
1233
1234 /*
1235 * pmap_cpu_init_late: perform late per-CPU initialization.
1236 * Short note about percpu PDIR pages:
1237 * Both the PAE and __x86_64__ architectures have per-cpu PDIR
1238 * tables. This is to get around Xen's pagetable setup constraints for
1239 * PAE (multiple L3[3]s cannot point to the same L2 - Xen
1240 * will refuse to pin a table setup this way.) and for multiple cpus
1241 * to map in different user pmaps on __x86_64__ (see: cpu_load_pmap())
1242 *
1243 * What this means for us is that the PDIR of the pmap_kernel() is
1244 * considered to be a canonical "SHADOW" PDIR with the following
1245 * properties:
1246 * - Its recursive mapping points to itself
1247 * - per-cpu recurseive mappings point to themselves
1248 * - per-cpu L4 pages' kernel entries are expected to be in sync with
1249 * the shadow
1250 * - APDP_PDE_SHADOW accesses the shadow pdir
1251 * - APDP_PDE accesses the per-cpu pdir
1252 * - alternate mappings are considered per-cpu - however, x86 pmap
1253 * currently partially consults the shadow - this works because the
1254 * shadow PDE is updated together with the per-cpu entry (see:
1255 * xen_pmap.c: pmap_map_ptes(), and the pmap is locked while the
1256 * alternate ptes are mapped in.
1257 */
1258
1259 void
1260 pmap_cpu_init_late(struct cpu_info *ci)
1261 {
1262 #if defined(PAE) || defined(__x86_64__)
1263 /*
1264 * The BP has already its own PD page allocated during early
1265 * MD startup.
1266 */
1267
1268 #if defined(__x86_64__)
1269 /* Setup per-cpu normal_pdes */
1270 int i;
1271 extern pd_entry_t * const normal_pdes[];
1272 for (i = 0;i < PTP_LEVELS - 1;i++) {
1273 ci->ci_normal_pdes[i] = normal_pdes[i];
1274 }
1275 #endif /* __x86_64__ */
1276
1277 if (ci == &cpu_info_primary)
1278 return;
1279
1280 KASSERT(ci != NULL);
1281
1282 #if defined(PAE)
1283 cpu_alloc_l3_page(ci);
1284 KASSERT(ci->ci_pae_l3_pdirpa != 0);
1285
1286 /* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
1287 int i;
1288 for (i = 0 ; i < PDP_SIZE - 1; i++) {
1289 ci->ci_pae_l3_pdir[i] =
1290 xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PG_V;
1291 }
1292 #endif /* PAE */
1293
1294 ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1295 UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
1296
1297 if (ci->ci_kpm_pdir == NULL) {
1298 panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
1299 __func__, cpu_index(ci));
1300 }
1301 ci->ci_kpm_pdirpa = vtophys((vaddr_t) ci->ci_kpm_pdir);
1302 KASSERT(ci->ci_kpm_pdirpa != 0);
1303
1304 #if defined(__x86_64__)
1305 /*
1306 * Copy over the pmap_kernel() shadow L4 entries
1307 */
1308
1309 memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
1310
1311 /* Recursive kernel mapping */
1312 ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
1313 #elif defined(PAE)
1314 /* Copy over the pmap_kernel() shadow L2 entries that map the kernel */
1315 memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN, nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
1316 #endif /* __x86_64__ else PAE */
1317
1318 /* Xen wants R/O */
1319 pmap_kenter_pa((vaddr_t)ci->ci_kpm_pdir, ci->ci_kpm_pdirpa,
1320 VM_PROT_READ, 0);
1321
1322 #if defined(PAE)
1323 /* Initialise L3 entry 3. This mapping is shared across all
1324 * pmaps and is static, ie; loading a new pmap will not update
1325 * this entry.
1326 */
1327
1328 ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
1329
1330 /* Mark L3 R/O (Xen wants this) */
1331 pmap_kenter_pa((vaddr_t)ci->ci_pae_l3_pdir, ci->ci_pae_l3_pdirpa,
1332 VM_PROT_READ, 0);
1333
1334 xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
1335
1336 #elif defined(__x86_64__)
1337 xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
1338 #endif /* PAE , __x86_64__ */
1339 #endif /* defined(PAE) || defined(__x86_64__) */
1340 }
1341
1342 /*
1343 * Notify all other cpus to halt.
1344 */
1345
1346 void
1347 cpu_broadcast_halt(void)
1348 {
1349 xen_broadcast_ipi(XEN_IPI_HALT);
1350 }
1351
1352 /*
1353 * Send a dummy ipi to a cpu.
1354 */
1355
1356 void
1357 cpu_kick(struct cpu_info *ci)
1358 {
1359 (void)xen_send_ipi(ci, XEN_IPI_KICK);
1360 }
1361