cpu.c revision 1.80.2.5 1 /* $NetBSD: cpu.c,v 1.80.2.5 2012/06/12 19:00:24 riz Exp $ */
2 /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp */
3
4 /*-
5 * Copyright (c) 2000 The NetBSD Foundation, Inc.
6 * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by RedBack Networks Inc.
11 *
12 * Author: Bill Sommerfeld
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /*
37 * Copyright (c) 1999 Stefan Grefen
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by the NetBSD
50 * Foundation, Inc. and its contributors.
51 * 4. Neither the name of The NetBSD Foundation nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
56 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.80.2.5 2012/06/12 19:00:24 riz Exp $");
70
71 #include "opt_ddb.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_mpbios.h" /* for MPDEBUG */
74 #include "opt_mtrr.h"
75 #include "opt_xen.h"
76
77 #include "lapic.h"
78 #include "ioapic.h"
79
80 #include <sys/param.h>
81 #include <sys/proc.h>
82 #include <sys/systm.h>
83 #include <sys/device.h>
84 #include <sys/kmem.h>
85 #include <sys/cpu.h>
86 #include <sys/cpufreq.h>
87 #include <sys/atomic.h>
88 #include <sys/reboot.h>
89 #include <sys/idle.h>
90
91 #include <uvm/uvm.h>
92
93 #include <machine/cpufunc.h>
94 #include <machine/cpuvar.h>
95 #include <machine/pmap.h>
96 #include <machine/vmparam.h>
97 #include <machine/mpbiosvar.h>
98 #include <machine/pcb.h>
99 #include <machine/specialreg.h>
100 #include <machine/segments.h>
101 #include <machine/gdt.h>
102 #include <machine/mtrr.h>
103 #include <machine/pio.h>
104
105 #ifdef i386
106 #include <machine/npx.h>
107 #else
108 #include <machine/fpu.h>
109 #endif
110
111 #include <xen/xen.h>
112 #include <xen/xen-public/vcpu.h>
113 #include <xen/vcpuvar.h>
114
115 #if NLAPIC > 0
116 #include <machine/apicvar.h>
117 #include <machine/i82489reg.h>
118 #include <machine/i82489var.h>
119 #endif
120
121 #include <dev/ic/mc146818reg.h>
122 #include <dev/isa/isareg.h>
123
124 static int cpu_match(device_t, cfdata_t, void *);
125 static void cpu_attach(device_t, device_t, void *);
126 static void cpu_defer(device_t);
127 static int cpu_rescan(device_t, const char *, const int *);
128 static void cpu_childdetached(device_t, device_t);
129 static int vcpu_match(device_t, cfdata_t, void *);
130 static void vcpu_attach(device_t, device_t, void *);
131 static void cpu_attach_common(device_t, device_t, void *);
132 void cpu_offline_md(void);
133
134 struct cpu_softc {
135 device_t sc_dev; /* device tree glue */
136 struct cpu_info *sc_info; /* pointer to CPU info */
137 bool sc_wasonline;
138 };
139
140 int mp_cpu_start(struct cpu_info *, vaddr_t);
141 void mp_cpu_start_cleanup(struct cpu_info *);
142 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
143 mp_cpu_start_cleanup };
144
145 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
146 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
147
148 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
149 vcpu_match, vcpu_attach, NULL, NULL);
150
151 /*
152 * Statically-allocated CPU info for the primary CPU (or the only
153 * CPU, on uniprocessors). The CPU info list is initialized to
154 * point at it.
155 */
156 #ifdef TRAPLOG
157 #include <machine/tlog.h>
158 struct tlog tlog_primary;
159 #endif
160 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
161 .ci_dev = 0,
162 .ci_self = &cpu_info_primary,
163 .ci_idepth = -1,
164 .ci_curlwp = &lwp0,
165 .ci_curldt = -1,
166 #ifdef TRAPLOG
167 .ci_tlog = &tlog_primary,
168 #endif
169
170 };
171 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
172 .ci_dev = 0,
173 .ci_self = &phycpu_info_primary,
174 };
175
176 struct cpu_info *cpu_info_list = &cpu_info_primary;
177 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
178
179 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
180 * [0] basic features %edx
181 * [1] basic features %ecx
182 * [2] extended features %edx
183 * [3] extended features %ecx
184 * [4] VIA padlock features
185 */
186
187 bool x86_mp_online;
188 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
189
190 #if defined(MULTIPROCESSOR)
191 void cpu_hatch(void *);
192 static void cpu_boot_secondary(struct cpu_info *ci);
193 static void cpu_start_secondary(struct cpu_info *ci);
194 #endif /* MULTIPROCESSOR */
195
196 static int
197 cpu_match(device_t parent, cfdata_t match, void *aux)
198 {
199
200 return 1;
201 }
202
203 static void
204 cpu_attach(device_t parent, device_t self, void *aux)
205 {
206 struct cpu_softc *sc = device_private(self);
207 struct cpu_attach_args *caa = aux;
208 struct cpu_info *ci;
209 uintptr_t ptr;
210 static int nphycpu = 0;
211
212 sc->sc_dev = self;
213
214 /*
215 * If we're an Application Processor, allocate a cpu_info
216 * If we're the first attached CPU use the primary cpu_info,
217 * otherwise allocate a new one
218 */
219 aprint_naive("\n");
220 aprint_normal("\n");
221 if (nphycpu > 0) {
222 struct cpu_info *tmp;
223 ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
224 KM_SLEEP);
225 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
226 ci->ci_curldt = -1;
227
228 tmp = phycpu_info_list;
229 while (tmp->ci_next)
230 tmp = tmp->ci_next;
231
232 tmp->ci_next = ci;
233 } else {
234 ci = &phycpu_info_primary;
235 }
236
237 ci->ci_self = ci;
238 sc->sc_info = ci;
239
240 ci->ci_dev = self;
241 ci->ci_acpiid = caa->cpu_id;
242 ci->ci_cpuid = caa->cpu_number;
243 ci->ci_vcpu = NULL;
244 ci->ci_index = nphycpu++;
245
246 if (!pmf_device_register(self, NULL, NULL))
247 aprint_error_dev(self, "couldn't establish power handler\n");
248
249 (void)config_defer(self, cpu_defer);
250 }
251
252 static void
253 cpu_defer(device_t self)
254 {
255 cpu_rescan(self, NULL, NULL);
256 }
257
258 static int
259 cpu_rescan(device_t self, const char *ifattr, const int *locators)
260 {
261 struct cpu_softc *sc = device_private(self);
262 struct cpufeature_attach_args cfaa;
263 struct cpu_info *ci = sc->sc_info;
264
265 memset(&cfaa, 0, sizeof(cfaa));
266 cfaa.ci = ci;
267
268 if (ifattr_match(ifattr, "cpufeaturebus")) {
269
270 if (ci->ci_frequency == NULL) {
271 cfaa.name = "frequency";
272 ci->ci_frequency = config_found_ia(self,
273 "cpufeaturebus", &cfaa, NULL);
274 }
275 }
276
277 return 0;
278 }
279
280 static void
281 cpu_childdetached(device_t self, device_t child)
282 {
283 struct cpu_softc *sc = device_private(self);
284 struct cpu_info *ci = sc->sc_info;
285
286 if (ci->ci_frequency == child)
287 ci->ci_frequency = NULL;
288 }
289
290 static int
291 vcpu_match(device_t parent, cfdata_t match, void *aux)
292 {
293 struct vcpu_attach_args *vcaa = aux;
294 struct vcpu_runstate_info vcr;
295 int error;
296
297 if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
298 error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
299 vcaa->vcaa_caa.cpu_number,
300 &vcr);
301 switch (error) {
302 case 0:
303 return 1;
304 case -ENOENT:
305 return 0;
306 default:
307 panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
308 }
309 }
310
311 return 0;
312 }
313
314 static void
315 vcpu_attach(device_t parent, device_t self, void *aux)
316 {
317 struct vcpu_attach_args *vcaa = aux;
318
319 KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
320 vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
321 cpu_attach_common(parent, self, &vcaa->vcaa_caa);
322
323 if (!pmf_device_register(self, NULL, NULL))
324 aprint_error_dev(self, "couldn't establish power handler\n");
325 }
326
327 static int
328 vcpu_is_up(struct cpu_info *ci)
329 {
330 KASSERT(ci != NULL);
331 return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
332 }
333
334 static void
335 cpu_vm_init(struct cpu_info *ci)
336 {
337 int ncolors = 2, i;
338
339 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
340 struct x86_cache_info *cai;
341 int tcolors;
342
343 cai = &ci->ci_cinfo[i];
344
345 tcolors = atop(cai->cai_totalsize);
346 switch(cai->cai_associativity) {
347 case 0xff:
348 tcolors = 1; /* fully associative */
349 break;
350 case 0:
351 case 1:
352 break;
353 default:
354 tcolors /= cai->cai_associativity;
355 }
356 ncolors = max(ncolors, tcolors);
357 }
358
359 /*
360 * Knowing the size of the largest cache on this CPU, potentially
361 * re-color our pages.
362 */
363 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
364 uvm_page_recolor(ncolors);
365 pmap_tlb_cpu_init(ci);
366 }
367
368 static void
369 cpu_attach_common(device_t parent, device_t self, void *aux)
370 {
371 struct cpu_softc *sc = device_private(self);
372 struct cpu_attach_args *caa = aux;
373 struct cpu_info *ci;
374 uintptr_t ptr;
375 int cpunum = caa->cpu_number;
376 static bool again = false;
377
378 sc->sc_dev = self;
379
380 /*
381 * If we're an Application Processor, allocate a cpu_info
382 * structure, otherwise use the primary's.
383 */
384 if (caa->cpu_role == CPU_ROLE_AP) {
385 aprint_naive(": Application Processor\n");
386 ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
387 KM_SLEEP);
388 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
389 memset(ci, 0, sizeof(*ci));
390 #ifdef TRAPLOG
391 ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
392 #endif
393 } else {
394 aprint_naive(": %s Processor\n",
395 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
396 ci = &cpu_info_primary;
397 }
398
399 ci->ci_self = ci;
400 sc->sc_info = ci;
401 ci->ci_dev = self;
402 ci->ci_cpuid = cpunum;
403
404 KASSERT(HYPERVISOR_shared_info != NULL);
405 ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
406
407 KASSERT(ci->ci_func == 0);
408 ci->ci_func = caa->cpu_func;
409
410 /* Must be called before mi_cpu_attach(). */
411 cpu_vm_init(ci);
412
413 if (caa->cpu_role == CPU_ROLE_AP) {
414 int error;
415
416 error = mi_cpu_attach(ci);
417
418 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
419 if (error != 0) {
420 aprint_normal("\n");
421 aprint_error_dev(self,
422 "mi_cpu_attach failed with %d\n", error);
423 return;
424 }
425
426 } else {
427 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
428 }
429
430 pmap_reference(pmap_kernel());
431 ci->ci_pmap = pmap_kernel();
432 ci->ci_tlbstate = TLBSTATE_STALE;
433
434 /*
435 * Boot processor may not be attached first, but the below
436 * must be done to allow booting other processors.
437 */
438 if (!again) {
439 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
440 /* Basic init. */
441 cpu_intr_init(ci);
442 cpu_get_tsc_freq(ci);
443 cpu_init(ci);
444 pmap_cpu_init_late(ci);
445
446 /* Every processor needs to init it's own ipi h/w (similar to lapic) */
447 xen_ipi_init();
448 /* XXX: clock_init() */
449
450 /* Make sure DELAY() is initialized. */
451 DELAY(1);
452 again = true;
453 }
454
455 /* further PCB init done later. */
456
457 switch (caa->cpu_role) {
458 case CPU_ROLE_SP:
459 atomic_or_32(&ci->ci_flags, CPUF_SP);
460 cpu_identify(ci);
461 #if 0
462 x86_errata();
463 #endif
464 x86_cpu_idle_init();
465
466 break;
467
468 case CPU_ROLE_BP:
469 atomic_or_32(&ci->ci_flags, CPUF_BSP);
470 cpu_identify(ci);
471 #if 0
472 x86_errata();
473 #endif
474 x86_cpu_idle_init();
475
476 break;
477
478 case CPU_ROLE_AP:
479 atomic_or_32(&ci->ci_flags, CPUF_AP);
480
481 /*
482 * report on an AP
483 */
484
485 #if defined(MULTIPROCESSOR)
486 /* interrupt handler stack */
487 cpu_intr_init(ci);
488
489 /* Setup per-cpu memory for gdt */
490 gdt_alloc_cpu(ci);
491
492 pmap_cpu_init_late(ci);
493 cpu_start_secondary(ci);
494
495 if (ci->ci_flags & CPUF_PRESENT) {
496 struct cpu_info *tmp;
497
498 cpu_identify(ci);
499 tmp = cpu_info_list;
500 while (tmp->ci_next)
501 tmp = tmp->ci_next;
502
503 tmp->ci_next = ci;
504 }
505 #else
506 aprint_error(": not started\n");
507 #endif
508 break;
509
510 default:
511 aprint_normal("\n");
512 panic("unknown processor type??\n");
513 }
514
515 #ifdef MPVERBOSE
516 if (mp_verbose) {
517 struct lwp *l = ci->ci_data.cpu_idlelwp;
518 struct pcb *pcb = lwp_getpcb(l);
519
520 aprint_verbose_dev(self,
521 "idle lwp at %p, idle sp at 0x%p\n",
522 l,
523 #ifdef i386
524 (void *)pcb->pcb_esp
525 #else /* i386 */
526 (void *)pcb->pcb_rsp
527 #endif /* i386 */
528 );
529
530 }
531 #endif /* MPVERBOSE */
532 }
533
534 /*
535 * Initialize the processor appropriately.
536 */
537
538 void
539 cpu_init(struct cpu_info *ci)
540 {
541
542 /*
543 * On a P6 or above, enable global TLB caching if the
544 * hardware supports it.
545 */
546 if (cpu_feature[0] & CPUID_PGE)
547 lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
548
549 #ifdef XXXMTRR
550 /*
551 * On a P6 or above, initialize MTRR's if the hardware supports them.
552 */
553 if (cpu_feature[0] & CPUID_MTRR) {
554 if ((ci->ci_flags & CPUF_AP) == 0)
555 i686_mtrr_init_first();
556 mtrr_init_cpu(ci);
557 }
558 #endif
559 /*
560 * If we have FXSAVE/FXRESTOR, use them.
561 */
562 if (cpu_feature[0] & CPUID_FXSR) {
563 lcr4(rcr4() | CR4_OSFXSR);
564
565 /*
566 * If we have SSE/SSE2, enable XMM exceptions.
567 */
568 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
569 lcr4(rcr4() | CR4_OSXMMEXCPT);
570 }
571
572 #ifdef __x86_64__
573 /* No user PGD mapped for this CPU yet */
574 ci->ci_xen_current_user_pgd = 0;
575 #endif
576 #if defined(__x86_64__) || defined(PAE)
577 mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
578 #endif
579
580 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
581
582 /* XXX: register vcpu_register_runstate_memory_area, and figure out how to make sure this VCPU is running ? */
583 }
584
585
586 #ifdef MULTIPROCESSOR
587
588 void
589 cpu_boot_secondary_processors(void)
590 {
591 struct cpu_info *ci;
592 u_long i;
593 for (i = 0; i < maxcpus; i++) {
594 ci = cpu_lookup(i);
595 if (ci == NULL)
596 continue;
597 if (ci->ci_data.cpu_idlelwp == NULL)
598 continue;
599 if ((ci->ci_flags & CPUF_PRESENT) == 0)
600 continue;
601 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
602 continue;
603 cpu_boot_secondary(ci);
604 }
605
606 x86_mp_online = true;
607 }
608
609 static void
610 cpu_init_idle_lwp(struct cpu_info *ci)
611 {
612 struct lwp *l = ci->ci_data.cpu_idlelwp;
613 struct pcb *pcb = lwp_getpcb(l);
614
615 pcb->pcb_cr0 = rcr0();
616 }
617
618 void
619 cpu_init_idle_lwps(void)
620 {
621 struct cpu_info *ci;
622 u_long i;
623
624 for (i = 0; i < maxcpus; i++) {
625 ci = cpu_lookup(i);
626 if (ci == NULL)
627 continue;
628 if (ci->ci_data.cpu_idlelwp == NULL)
629 continue;
630 if ((ci->ci_flags & CPUF_PRESENT) == 0)
631 continue;
632 cpu_init_idle_lwp(ci);
633 }
634 }
635
636 static void
637 cpu_start_secondary(struct cpu_info *ci)
638 {
639 int i;
640
641 aprint_debug_dev(ci->ci_dev, "starting\n");
642
643 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
644
645 if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
646 return;
647 }
648
649 /*
650 * wait for it to become ready
651 */
652 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
653 delay(10);
654 }
655 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
656 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
657 #if defined(MPDEBUG) && defined(DDB)
658 printf("dropping into debugger; continue from here to resume boot\n");
659 Debugger();
660 #endif
661 }
662
663 CPU_START_CLEANUP(ci);
664 }
665
666 void
667 cpu_boot_secondary(struct cpu_info *ci)
668 {
669 int i;
670 atomic_or_32(&ci->ci_flags, CPUF_GO);
671 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
672 delay(10);
673 }
674 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
675 aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
676 #if defined(MPDEBUG) && defined(DDB)
677 printf("dropping into debugger; continue from here to resume boot\n");
678 Debugger();
679 #endif
680 }
681 }
682
683 /*
684 * APs end up here immediately after initialisation and VCPUOP_up in
685 * mp_cpu_start().
686 * At this point, we are running in the idle pcb/idle stack of the new
687 * CPU. This function jumps to the idle loop and starts looking for
688 * work.
689 */
690 extern void x86_64_tls_switch(struct lwp *);
691 void
692 cpu_hatch(void *v)
693 {
694 struct cpu_info *ci = (struct cpu_info *)v;
695 struct pcb *pcb;
696 int s, i;
697
698 /* Setup TLS and kernel GS/FS */
699 cpu_init_msrs(ci, true);
700 cpu_init_idt();
701 gdt_init_cpu(ci);
702
703 cpu_probe(ci);
704
705 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
706
707 while ((ci->ci_flags & CPUF_GO) == 0) {
708 /* Don't use delay, boot CPU may be patching the text. */
709 for (i = 10000; i != 0; i--)
710 x86_pause();
711 }
712
713 /* Because the text may have been patched in x86_patch(). */
714 x86_flush();
715 tlbflushg();
716
717 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
718
719 pcb = lwp_getpcb(curlwp);
720 pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0); /* XXX: consider using pmap_load() ? */
721 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
722
723 xen_ipi_init();
724
725 xen_initclocks();
726
727 /* XXX: lapic_initclocks(); */
728
729 #ifdef __x86_64__
730 fpuinit(ci);
731 #endif
732
733 lldt(GSEL(GLDT_SEL, SEL_KPL));
734
735 cpu_init(ci);
736 cpu_get_tsc_freq(ci);
737
738 s = splhigh();
739 x86_enable_intr();
740 splx(s);
741 #if 0
742 x86_errata();
743 #endif
744
745 aprint_debug_dev(ci->ci_dev, "running\n");
746
747 cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
748
749 idle_loop(NULL);
750 KASSERT(false);
751 }
752
753 #if defined(DDB)
754
755 #include <ddb/db_output.h>
756 #include <machine/db_machdep.h>
757
758 /*
759 * Dump CPU information from ddb.
760 */
761 void
762 cpu_debug_dump(void)
763 {
764 struct cpu_info *ci;
765 CPU_INFO_ITERATOR cii;
766
767 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
768 for (CPU_INFO_FOREACH(cii, ci)) {
769 db_printf("%p %s %ld %x %x %10p %10p\n",
770 ci,
771 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
772 (long)ci->ci_cpuid,
773 ci->ci_flags, ci->ci_ipis,
774 ci->ci_curlwp,
775 ci->ci_fpcurlwp);
776 }
777 }
778 #endif /* DDB */
779
780 #endif /* MULTIPROCESSOR */
781
782 extern void hypervisor_callback(void);
783 extern void failsafe_callback(void);
784 #ifdef __x86_64__
785 typedef void (vector)(void);
786 extern vector Xsyscall, Xsyscall32;
787 #endif
788
789 /*
790 * Setup the "trampoline". On Xen, we setup nearly all cpu context
791 * outside a trampoline, so we prototype and call targetip like so:
792 * void targetip(struct cpu_info *);
793 */
794
795 static void
796 gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
797 {
798 int i;
799 for (i = 0; i < roundup(entries, PAGE_SIZE) >> PAGE_SHIFT; i++) {
800
801 frames[i] = ((paddr_t) xpmap_ptetomach(
802 (pt_entry_t *) (base + (i << PAGE_SHIFT))))
803 >> PAGE_SHIFT;
804
805 /* Mark Read-only */
806 pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
807 PG_RW);
808 }
809 }
810
811 #ifdef __x86_64__
812 extern char *ldtstore; /* XXX: Xen MP todo */
813
814 static void
815 xen_init_amd64_vcpuctxt(struct cpu_info *ci,
816 struct vcpu_guest_context *initctx,
817 void targetrip(struct cpu_info *))
818 {
819 /* page frames to point at GDT */
820 extern int gdt_size;
821 paddr_t frames[16];
822 psize_t gdt_ents;
823
824 struct lwp *l;
825 struct pcb *pcb;
826
827 volatile struct vcpu_info *vci;
828
829 KASSERT(ci != NULL);
830 KASSERT(ci != &cpu_info_primary);
831 KASSERT(initctx != NULL);
832 KASSERT(targetrip != NULL);
833
834 memset(initctx, 0, sizeof *initctx);
835
836 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT; /* XXX: re-investigate roundup(gdt_size... ) for gdt_ents. */
837 KASSERT(gdt_ents <= 16);
838
839 gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
840
841 /* XXX: The stuff in here is amd64 specific. move to mptramp.[Sc] ? */
842
843 /* Initialise the vcpu context: We use idle_loop()'s pcb context. */
844
845 l = ci->ci_data.cpu_idlelwp;
846
847 KASSERT(l != NULL);
848 pcb = lwp_getpcb(l);
849 KASSERT(pcb != NULL);
850
851 /* resume with interrupts off */
852 vci = ci->ci_vcpu;
853 vci->evtchn_upcall_mask = 1;
854 xen_mb();
855
856 /* resume in kernel-mode */
857 initctx->flags = VGCF_in_kernel | VGCF_online;
858
859 /* Stack and entry points:
860 * We arrange for the stack frame for cpu_hatch() to
861 * appear as a callee frame of lwp_trampoline(). Being a
862 * leaf frame prevents trampling on any of the MD stack setup
863 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
864 */
865
866 initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
867 initctx->user_regs.rip = (vaddr_t) targetrip;
868
869 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
870
871 initctx->user_regs.rflags = pcb->pcb_flags;
872 initctx->user_regs.rsp = pcb->pcb_rsp;
873
874 /* Data segments */
875 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
876 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
877 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
878
879 /* GDT */
880 memcpy(initctx->gdt_frames, frames, sizeof frames);
881 initctx->gdt_ents = gdt_ents;
882
883 /* LDT */
884 initctx->ldt_base = (unsigned long) ldtstore;
885 initctx->ldt_ents = LDT_SIZE >> 3;
886
887 /* Kernel context state */
888 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
889 initctx->kernel_sp = pcb->pcb_rsp0;
890 initctx->ctrlreg[0] = pcb->pcb_cr0;
891 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
892 initctx->ctrlreg[2] = pcb->pcb_cr2; /* XXX: */
893 /*
894 * Use pmap_kernel() L4 PD directly, until we setup the
895 * per-cpu L4 PD in pmap_cpu_init_late()
896 */
897 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
898 initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
899
900
901 /* Xen callbacks */
902 initctx->event_callback_eip = (unsigned long) hypervisor_callback;
903 initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
904 initctx->syscall_callback_eip = (unsigned long) Xsyscall;
905
906 return;
907 }
908 #else /* i386 */
909 extern union descriptor *ldt;
910 extern void Xsyscall(void);
911
912 static void
913 xen_init_i386_vcpuctxt(struct cpu_info *ci,
914 struct vcpu_guest_context *initctx,
915 void targeteip(struct cpu_info *))
916 {
917 /* page frames to point at GDT */
918 extern int gdt_size;
919 paddr_t frames[16];
920 psize_t gdt_ents;
921
922 struct lwp *l;
923 struct pcb *pcb;
924
925 volatile struct vcpu_info *vci;
926
927 KASSERT(ci != NULL);
928 KASSERT(ci != &cpu_info_primary);
929 KASSERT(initctx != NULL);
930 KASSERT(targeteip != NULL);
931
932 memset(initctx, 0, sizeof *initctx);
933
934 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT; /* XXX: re-investigate roundup(gdt_size... ) for gdt_ents. */
935 KASSERT(gdt_ents <= 16);
936
937 gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
938
939 /*
940 * Initialise the vcpu context:
941 * We use this cpu's idle_loop() pcb context.
942 */
943
944 l = ci->ci_data.cpu_idlelwp;
945
946 KASSERT(l != NULL);
947 pcb = lwp_getpcb(l);
948 KASSERT(pcb != NULL);
949
950 /* resume with interrupts off */
951 vci = ci->ci_vcpu;
952 vci->evtchn_upcall_mask = 1;
953 xen_mb();
954
955 /* resume in kernel-mode */
956 initctx->flags = VGCF_in_kernel | VGCF_online;
957
958 /* Stack frame setup for cpu_hatch():
959 * We arrange for the stack frame for cpu_hatch() to
960 * appear as a callee frame of lwp_trampoline(). Being a
961 * leaf frame prevents trampling on any of the MD stack setup
962 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
963 */
964
965 initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
966 arg1 */
967 { /* targeteip(ci); */
968 uint32_t *arg = (uint32_t *) initctx->user_regs.esp;
969 arg[1] = (uint32_t) ci; /* arg1 */
970
971 }
972
973 initctx->user_regs.eip = (vaddr_t) targeteip;
974 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
975 initctx->user_regs.eflags |= pcb->pcb_iopl;
976
977 /* Data segments */
978 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
979 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
980 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
981 initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
982
983 /* GDT */
984 memcpy(initctx->gdt_frames, frames, sizeof frames);
985 initctx->gdt_ents = gdt_ents;
986
987 /* LDT */
988 initctx->ldt_base = (unsigned long) ldt;
989 initctx->ldt_ents = NLDT;
990
991 /* Kernel context state */
992 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
993 initctx->kernel_sp = pcb->pcb_esp0;
994 initctx->ctrlreg[0] = pcb->pcb_cr0;
995 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
996 initctx->ctrlreg[2] = pcb->pcb_cr2; /* XXX: */
997 #ifdef PAE
998 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
999 #else /* PAE */
1000 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(pcb->pcb_cr3)));
1001 #endif /* PAE */
1002 initctx->ctrlreg[4] = /* CR4_PAE | */CR4_OSFXSR | CR4_OSXMMEXCPT;
1003
1004
1005 /* Xen callbacks */
1006 initctx->event_callback_eip = (unsigned long) hypervisor_callback;
1007 initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
1008 initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
1009 initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
1010
1011 return;
1012 }
1013 #endif /* __x86_64__ */
1014
1015 int
1016 mp_cpu_start(struct cpu_info *ci, vaddr_t target)
1017 {
1018
1019 int hyperror;
1020 struct vcpu_guest_context vcpuctx;
1021
1022 KASSERT(ci != NULL);
1023 KASSERT(ci != &cpu_info_primary);
1024 KASSERT(ci->ci_flags & CPUF_AP);
1025
1026 #ifdef __x86_64__
1027 xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
1028 #else /* i386 */
1029 xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
1030 #endif /* __x86_64__ */
1031
1032 /* Initialise the given vcpu to execute cpu_hatch(ci); */
1033 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
1034 aprint_error(": context initialisation failed. errno = %d\n", hyperror);
1035 return hyperror;
1036 }
1037
1038 /* Start it up */
1039
1040 /* First bring it down */
1041 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
1042 aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
1043 return hyperror;
1044 }
1045
1046 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
1047 aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
1048 return hyperror;
1049 }
1050
1051 if (!vcpu_is_up(ci)) {
1052 aprint_error(": did not come up\n");
1053 return -1;
1054 }
1055
1056 return 0;
1057 }
1058
1059 void
1060 mp_cpu_start_cleanup(struct cpu_info *ci)
1061 {
1062 #if 0
1063 /*
1064 * Ensure the NVRAM reset byte contains something vaguely sane.
1065 */
1066
1067 outb(IO_RTC, NVRAM_RESET);
1068 outb(IO_RTC+1, NVRAM_RESET_RST);
1069 #endif
1070 if (vcpu_is_up(ci)) {
1071 aprint_debug_dev(ci->ci_dev, "is started.\n");
1072 }
1073 else {
1074 aprint_error_dev(ci->ci_dev, "did not start up.\n");
1075 }
1076
1077 }
1078
1079 /* curcpu() uses %fs - shim for until cpu_init_msrs(), below */
1080 static struct cpu_info *cpu_primary(void)
1081 {
1082 return &cpu_info_primary;
1083 }
1084 /* XXX: rename to something more generic. users other than xpq exist */
1085 struct cpu_info * (*xpq_cpu)(void) = cpu_primary;
1086
1087 void
1088 cpu_init_msrs(struct cpu_info *ci, bool full)
1089 {
1090 #ifdef __x86_64__
1091 if (full) {
1092 HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
1093 HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
1094 HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
1095 xpq_cpu = x86_curcpu;
1096 }
1097 #endif /* __x86_64__ */
1098
1099 if (cpu_feature[2] & CPUID_NOX)
1100 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1101
1102 }
1103
1104 void
1105 cpu_offline_md(void)
1106 {
1107 int s;
1108
1109 s = splhigh();
1110 #ifdef __i386__
1111 npxsave_cpu(true);
1112 #else
1113 fpusave_cpu(true);
1114 #endif
1115 splx(s);
1116 }
1117
1118 void
1119 cpu_get_tsc_freq(struct cpu_info *ci)
1120 {
1121 uint32_t vcpu_tversion;
1122 const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1123
1124 vcpu_tversion = tinfo->version;
1125 while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
1126
1127 uint64_t freq = 1000000000ULL << 32;
1128 freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1129 if ( tinfo->tsc_shift < 0 )
1130 freq = freq << -tinfo->tsc_shift;
1131 else
1132 freq = freq >> tinfo->tsc_shift;
1133 ci->ci_data.cpu_cc_freq = freq;
1134 }
1135
1136 void
1137 x86_cpu_idle_xen(void)
1138 {
1139 struct cpu_info *ci = curcpu();
1140
1141 KASSERT(ci->ci_ilevel == IPL_NONE);
1142
1143 x86_disable_intr();
1144 if (!__predict_false(ci->ci_want_resched)) {
1145 idle_block();
1146 } else {
1147 x86_enable_intr();
1148 }
1149 }
1150
1151 /*
1152 * Loads pmap for the current CPU.
1153 */
1154 void
1155 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1156 {
1157 #if defined(__x86_64__) || defined(PAE)
1158 struct cpu_info *ci = curcpu();
1159 cpuid_t cid = cpu_index(ci);
1160
1161 mutex_enter(&ci->ci_kpm_mtx);
1162 /* make new pmap visible to pmap_kpm_sync_xcall() */
1163 kcpuset_atomic_set(pmap->pm_xen_ptp_cpus, cid);
1164 #endif
1165 #ifdef i386
1166 #ifdef PAE
1167 {
1168 int i;
1169 paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
1170 /* don't update the kernel L3 slot */
1171 for (i = 0 ; i < PDP_SIZE - 1; i++) {
1172 xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
1173 xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
1174 }
1175 tlbflush();
1176 }
1177 #else /* PAE */
1178 lcr3(pmap_pdirpa(pmap, 0));
1179 #endif /* PAE */
1180 #endif /* i386 */
1181
1182 #ifdef __x86_64__
1183 {
1184 int i;
1185 pd_entry_t *new_pgd;
1186 paddr_t l4_pd_ma;
1187
1188 l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
1189
1190 /*
1191 * Map user space address in kernel space and load
1192 * user cr3
1193 */
1194 new_pgd = pmap->pm_pdir;
1195 KASSERT(pmap == ci->ci_pmap);
1196
1197 /* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
1198 for (i = 0; i < PDIR_SLOT_PTE; i++) {
1199 KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
1200 if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
1201 xpq_queue_pte_update(
1202 l4_pd_ma + i * sizeof(pd_entry_t),
1203 new_pgd[i]);
1204 }
1205 }
1206
1207 if (__predict_true(pmap != pmap_kernel())) {
1208 xen_set_user_pgd(pmap_pdirpa(pmap, 0));
1209 ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
1210 }
1211 else {
1212 xpq_queue_pt_switch(l4_pd_ma);
1213 ci->ci_xen_current_user_pgd = 0;
1214 }
1215
1216 tlbflush();
1217 }
1218
1219 #endif /* __x86_64__ */
1220 #if defined(__x86_64__) || defined(PAE)
1221 /* old pmap no longer visible to pmap_kpm_sync_xcall() */
1222 if (oldpmap != pmap_kernel()) {
1223 kcpuset_atomic_clear(oldpmap->pm_xen_ptp_cpus, cid);
1224 }
1225 mutex_exit(&ci->ci_kpm_mtx);
1226 #endif
1227 }
1228
1229 /*
1230 * pmap_cpu_init_late: perform late per-CPU initialization.
1231 * Short note about percpu PDIR pages:
1232 * Both the PAE and __x86_64__ architectures have per-cpu PDIR
1233 * tables. This is to get around Xen's pagetable setup constraints for
1234 * PAE (multiple L3[3]s cannot point to the same L2 - Xen
1235 * will refuse to pin a table setup this way.) and for multiple cpus
1236 * to map in different user pmaps on __x86_64__ (see: cpu_load_pmap())
1237 *
1238 * What this means for us is that the PDIR of the pmap_kernel() is
1239 * considered to be a canonical "SHADOW" PDIR with the following
1240 * properties:
1241 * - Its recursive mapping points to itself
1242 * - per-cpu recurseive mappings point to themselves on __x86_64__
1243 * - per-cpu L4 pages' kernel entries are expected to be in sync with
1244 * the shadow
1245 */
1246
1247 void
1248 pmap_cpu_init_late(struct cpu_info *ci)
1249 {
1250 #if defined(PAE) || defined(__x86_64__)
1251 /*
1252 * The BP has already its own PD page allocated during early
1253 * MD startup.
1254 */
1255
1256 #if defined(__x86_64__)
1257 /* Setup per-cpu normal_pdes */
1258 int i;
1259 extern pd_entry_t * const normal_pdes[];
1260 for (i = 0;i < PTP_LEVELS - 1;i++) {
1261 ci->ci_normal_pdes[i] = normal_pdes[i];
1262 }
1263 #endif /* __x86_64__ */
1264
1265 if (ci == &cpu_info_primary)
1266 return;
1267
1268 KASSERT(ci != NULL);
1269
1270 #if defined(PAE)
1271 cpu_alloc_l3_page(ci);
1272 KASSERT(ci->ci_pae_l3_pdirpa != 0);
1273
1274 /* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
1275 int i;
1276 for (i = 0 ; i < PDP_SIZE - 1; i++) {
1277 ci->ci_pae_l3_pdir[i] =
1278 xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PG_V;
1279 }
1280 #endif /* PAE */
1281
1282 ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1283 UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
1284
1285 if (ci->ci_kpm_pdir == NULL) {
1286 panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
1287 __func__, cpu_index(ci));
1288 }
1289 ci->ci_kpm_pdirpa = vtophys((vaddr_t) ci->ci_kpm_pdir);
1290 KASSERT(ci->ci_kpm_pdirpa != 0);
1291
1292 #if defined(__x86_64__)
1293 /*
1294 * Copy over the pmap_kernel() shadow L4 entries
1295 */
1296
1297 memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
1298
1299 /* Recursive kernel mapping */
1300 ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
1301 #elif defined(PAE)
1302 /* Copy over the pmap_kernel() shadow L2 entries that map the kernel */
1303 memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN, nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
1304 #endif /* __x86_64__ else PAE */
1305
1306 /* Xen wants R/O */
1307 pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
1308 (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
1309 pmap_update(pmap_kernel());
1310 #if defined(PAE)
1311 /* Initialise L3 entry 3. This mapping is shared across all
1312 * pmaps and is static, ie; loading a new pmap will not update
1313 * this entry.
1314 */
1315
1316 ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
1317
1318 /* Mark L3 R/O (Xen wants this) */
1319 pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
1320 (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
1321 pmap_update(pmap_kernel());
1322
1323 xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
1324
1325 #elif defined(__x86_64__)
1326 xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
1327 #endif /* PAE , __x86_64__ */
1328 #endif /* defined(PAE) || defined(__x86_64__) */
1329 }
1330
1331 /*
1332 * Notify all other cpus to halt.
1333 */
1334
1335 void
1336 cpu_broadcast_halt(void)
1337 {
1338 xen_broadcast_ipi(XEN_IPI_HALT);
1339 }
1340
1341 /*
1342 * Send a dummy ipi to a cpu.
1343 */
1344
1345 void
1346 cpu_kick(struct cpu_info *ci)
1347 {
1348 (void)xen_send_ipi(ci, XEN_IPI_KICK);
1349 }
1350