cpu.c revision 1.81 1 /* $NetBSD: cpu.c,v 1.81 2012/02/17 18:40:20 bouyer Exp $ */
2 /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp */
3
4 /*-
5 * Copyright (c) 2000 The NetBSD Foundation, Inc.
6 * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by RedBack Networks Inc.
11 *
12 * Author: Bill Sommerfeld
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /*
37 * Copyright (c) 1999 Stefan Grefen
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by the NetBSD
50 * Foundation, Inc. and its contributors.
51 * 4. Neither the name of The NetBSD Foundation nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
56 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.81 2012/02/17 18:40:20 bouyer Exp $");
70
71 #include "opt_ddb.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_mpbios.h" /* for MPDEBUG */
74 #include "opt_mtrr.h"
75 #include "opt_xen.h"
76
77 #include "lapic.h"
78 #include "ioapic.h"
79
80 #include <sys/param.h>
81 #include <sys/proc.h>
82 #include <sys/systm.h>
83 #include <sys/device.h>
84 #include <sys/kmem.h>
85 #include <sys/cpu.h>
86 #include <sys/cpufreq.h>
87 #include <sys/atomic.h>
88 #include <sys/reboot.h>
89 #include <sys/idle.h>
90
91 #include <uvm/uvm.h>
92
93 #include <machine/cpufunc.h>
94 #include <machine/cpuvar.h>
95 #include <machine/pmap.h>
96 #include <machine/vmparam.h>
97 #include <machine/mpbiosvar.h>
98 #include <machine/pcb.h>
99 #include <machine/specialreg.h>
100 #include <machine/segments.h>
101 #include <machine/gdt.h>
102 #include <machine/mtrr.h>
103 #include <machine/pio.h>
104
105 #ifdef i386
106 #include <machine/npx.h>
107 #else
108 #include <machine/fpu.h>
109 #endif
110
111 #include <xen/xen.h>
112 #include <xen/xen-public/vcpu.h>
113 #include <xen/vcpuvar.h>
114
115 #if NLAPIC > 0
116 #include <machine/apicvar.h>
117 #include <machine/i82489reg.h>
118 #include <machine/i82489var.h>
119 #endif
120
121 #include <dev/ic/mc146818reg.h>
122 #include <dev/isa/isareg.h>
123
124 #if MAXCPUS > 32
125 #error cpu_info contains 32bit bitmasks
126 #endif
127
128 static int cpu_match(device_t, cfdata_t, void *);
129 static void cpu_attach(device_t, device_t, void *);
130 static void cpu_defer(device_t);
131 static int cpu_rescan(device_t, const char *, const int *);
132 static void cpu_childdetached(device_t, device_t);
133 static int vcpu_match(device_t, cfdata_t, void *);
134 static void vcpu_attach(device_t, device_t, void *);
135 static void cpu_attach_common(device_t, device_t, void *);
136 void cpu_offline_md(void);
137
138 struct cpu_softc {
139 device_t sc_dev; /* device tree glue */
140 struct cpu_info *sc_info; /* pointer to CPU info */
141 bool sc_wasonline;
142 };
143
144 int mp_cpu_start(struct cpu_info *, vaddr_t);
145 void mp_cpu_start_cleanup(struct cpu_info *);
146 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
147 mp_cpu_start_cleanup };
148
149 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
150 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
151
152 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
153 vcpu_match, vcpu_attach, NULL, NULL);
154
155 /*
156 * Statically-allocated CPU info for the primary CPU (or the only
157 * CPU, on uniprocessors). The CPU info list is initialized to
158 * point at it.
159 */
160 #ifdef TRAPLOG
161 #include <machine/tlog.h>
162 struct tlog tlog_primary;
163 #endif
164 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
165 .ci_dev = 0,
166 .ci_self = &cpu_info_primary,
167 .ci_idepth = -1,
168 .ci_curlwp = &lwp0,
169 .ci_curldt = -1,
170 .ci_cpumask = 1,
171 #ifdef TRAPLOG
172 .ci_tlog = &tlog_primary,
173 #endif
174
175 };
176 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
177 .ci_dev = 0,
178 .ci_self = &phycpu_info_primary,
179 };
180
181 struct cpu_info *cpu_info_list = &cpu_info_primary;
182 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
183
184 uint32_t cpus_attached = 1;
185 uint32_t cpus_running = 1;
186
187 uint32_t phycpus_attached = 0;
188 uint32_t phycpus_running = 0;
189
190 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
191 * [0] basic features %edx
192 * [1] basic features %ecx
193 * [2] extended features %edx
194 * [3] extended features %ecx
195 * [4] VIA padlock features
196 */
197
198 bool x86_mp_online;
199 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
200
201 #if defined(MULTIPROCESSOR)
202 void cpu_hatch(void *);
203 static void cpu_boot_secondary(struct cpu_info *ci);
204 static void cpu_start_secondary(struct cpu_info *ci);
205 #endif /* MULTIPROCESSOR */
206
207 static int
208 cpu_match(device_t parent, cfdata_t match, void *aux)
209 {
210
211 return 1;
212 }
213
214 static void
215 cpu_attach(device_t parent, device_t self, void *aux)
216 {
217 struct cpu_softc *sc = device_private(self);
218 struct cpu_attach_args *caa = aux;
219 struct cpu_info *ci;
220 uintptr_t ptr;
221 static int nphycpu = 0;
222
223 sc->sc_dev = self;
224
225 if (phycpus_attached == ~0) {
226 aprint_error(": increase MAXCPUS\n");
227 return;
228 }
229
230 /*
231 * If we're an Application Processor, allocate a cpu_info
232 * If we're the first attached CPU use the primary cpu_info,
233 * otherwise allocate a new one
234 */
235 aprint_naive("\n");
236 aprint_normal("\n");
237 if (nphycpu > 0) {
238 struct cpu_info *tmp;
239 ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
240 KM_SLEEP);
241 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
242 ci->ci_curldt = -1;
243
244 tmp = phycpu_info_list;
245 while (tmp->ci_next)
246 tmp = tmp->ci_next;
247
248 tmp->ci_next = ci;
249 } else {
250 ci = &phycpu_info_primary;
251 }
252
253 ci->ci_self = ci;
254 sc->sc_info = ci;
255
256 ci->ci_dev = self;
257 ci->ci_acpiid = caa->cpu_id;
258 ci->ci_cpuid = caa->cpu_number;
259 ci->ci_vcpu = NULL;
260 ci->ci_index = nphycpu++;
261 ci->ci_cpumask = (1 << cpu_index(ci));
262
263 atomic_or_32(&phycpus_attached, ci->ci_cpumask);
264
265 if (!pmf_device_register(self, NULL, NULL))
266 aprint_error_dev(self, "couldn't establish power handler\n");
267
268 (void)config_defer(self, cpu_defer);
269 }
270
271 static void
272 cpu_defer(device_t self)
273 {
274 cpu_rescan(self, NULL, NULL);
275 }
276
277 static int
278 cpu_rescan(device_t self, const char *ifattr, const int *locators)
279 {
280 struct cpu_softc *sc = device_private(self);
281 struct cpufeature_attach_args cfaa;
282 struct cpu_info *ci = sc->sc_info;
283
284 memset(&cfaa, 0, sizeof(cfaa));
285 cfaa.ci = ci;
286
287 if (ifattr_match(ifattr, "cpufeaturebus")) {
288
289 if (ci->ci_frequency == NULL) {
290 cfaa.name = "frequency";
291 ci->ci_frequency = config_found_ia(self,
292 "cpufeaturebus", &cfaa, NULL);
293 }
294 }
295
296 return 0;
297 }
298
299 static void
300 cpu_childdetached(device_t self, device_t child)
301 {
302 struct cpu_softc *sc = device_private(self);
303 struct cpu_info *ci = sc->sc_info;
304
305 if (ci->ci_frequency == child)
306 ci->ci_frequency = NULL;
307 }
308
309 static int
310 vcpu_match(device_t parent, cfdata_t match, void *aux)
311 {
312 struct vcpu_attach_args *vcaa = aux;
313 struct vcpu_runstate_info vcr;
314 int error;
315
316 if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
317 error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
318 vcaa->vcaa_caa.cpu_number,
319 &vcr);
320 switch (error) {
321 case 0:
322 return 1;
323 case -ENOENT:
324 return 0;
325 default:
326 panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
327 }
328 }
329
330 return 0;
331 }
332
333 static void
334 vcpu_attach(device_t parent, device_t self, void *aux)
335 {
336 struct vcpu_attach_args *vcaa = aux;
337
338 KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
339 vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
340 cpu_attach_common(parent, self, &vcaa->vcaa_caa);
341
342 if (!pmf_device_register(self, NULL, NULL))
343 aprint_error_dev(self, "couldn't establish power handler\n");
344 }
345
346 static int
347 vcpu_is_up(struct cpu_info *ci)
348 {
349 KASSERT(ci != NULL);
350 return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
351 }
352
353 static void
354 cpu_vm_init(struct cpu_info *ci)
355 {
356 int ncolors = 2, i;
357
358 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
359 struct x86_cache_info *cai;
360 int tcolors;
361
362 cai = &ci->ci_cinfo[i];
363
364 tcolors = atop(cai->cai_totalsize);
365 switch(cai->cai_associativity) {
366 case 0xff:
367 tcolors = 1; /* fully associative */
368 break;
369 case 0:
370 case 1:
371 break;
372 default:
373 tcolors /= cai->cai_associativity;
374 }
375 ncolors = max(ncolors, tcolors);
376 }
377
378 /*
379 * Knowing the size of the largest cache on this CPU, potentially
380 * re-color our pages.
381 */
382 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
383 uvm_page_recolor(ncolors);
384 }
385
386 static void
387 cpu_attach_common(device_t parent, device_t self, void *aux)
388 {
389 struct cpu_softc *sc = device_private(self);
390 struct cpu_attach_args *caa = aux;
391 struct cpu_info *ci;
392 uintptr_t ptr;
393 int cpunum = caa->cpu_number;
394 static bool again = false;
395
396 sc->sc_dev = self;
397
398 /*
399 * If we're an Application Processor, allocate a cpu_info
400 * structure, otherwise use the primary's.
401 */
402 if (caa->cpu_role == CPU_ROLE_AP) {
403 aprint_naive(": Application Processor\n");
404 ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
405 KM_SLEEP);
406 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
407 memset(ci, 0, sizeof(*ci));
408 #ifdef TRAPLOG
409 ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
410 #endif
411 } else {
412 aprint_naive(": %s Processor\n",
413 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
414 ci = &cpu_info_primary;
415 }
416
417 ci->ci_self = ci;
418 sc->sc_info = ci;
419 ci->ci_dev = self;
420 ci->ci_cpuid = cpunum;
421
422 KASSERT(HYPERVISOR_shared_info != NULL);
423 ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
424
425 KASSERT(ci->ci_func == 0);
426 ci->ci_func = caa->cpu_func;
427
428 /* Must be called before mi_cpu_attach(). */
429 cpu_vm_init(ci);
430
431 if (caa->cpu_role == CPU_ROLE_AP) {
432 int error;
433
434 error = mi_cpu_attach(ci);
435
436 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
437 if (error != 0) {
438 aprint_normal("\n");
439 aprint_error_dev(self,
440 "mi_cpu_attach failed with %d\n", error);
441 return;
442 }
443
444 } else {
445 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
446 }
447
448 ci->ci_cpumask = (1 << cpu_index(ci));
449 pmap_reference(pmap_kernel());
450 ci->ci_pmap = pmap_kernel();
451 ci->ci_tlbstate = TLBSTATE_STALE;
452
453 /*
454 * Boot processor may not be attached first, but the below
455 * must be done to allow booting other processors.
456 */
457 if (!again) {
458 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
459 /* Basic init. */
460 cpu_intr_init(ci);
461 cpu_get_tsc_freq(ci);
462 cpu_init(ci);
463 pmap_cpu_init_late(ci);
464
465 /* Every processor needs to init it's own ipi h/w (similar to lapic) */
466 xen_ipi_init();
467 /* XXX: clock_init() */
468
469 /* Make sure DELAY() is initialized. */
470 DELAY(1);
471 again = true;
472 }
473
474 /* further PCB init done later. */
475
476 switch (caa->cpu_role) {
477 case CPU_ROLE_SP:
478 atomic_or_32(&ci->ci_flags, CPUF_SP);
479 cpu_identify(ci);
480 #if 0
481 x86_errata();
482 #endif
483 x86_cpu_idle_init();
484
485 break;
486
487 case CPU_ROLE_BP:
488 atomic_or_32(&ci->ci_flags, CPUF_BSP);
489 cpu_identify(ci);
490 cpu_init(ci);
491 #if 0
492 x86_errata();
493 #endif
494 x86_cpu_idle_init();
495
496 break;
497
498 case CPU_ROLE_AP:
499 atomic_or_32(&ci->ci_flags, CPUF_AP);
500
501 /*
502 * report on an AP
503 */
504
505 #if defined(MULTIPROCESSOR)
506 /* interrupt handler stack */
507 cpu_intr_init(ci);
508
509 /* Setup per-cpu memory for gdt */
510 gdt_alloc_cpu(ci);
511
512 pmap_cpu_init_late(ci);
513 cpu_start_secondary(ci);
514
515 if (ci->ci_flags & CPUF_PRESENT) {
516 struct cpu_info *tmp;
517
518 cpu_identify(ci);
519 tmp = cpu_info_list;
520 while (tmp->ci_next)
521 tmp = tmp->ci_next;
522
523 tmp->ci_next = ci;
524 }
525 #else
526 aprint_error(": not started\n");
527 #endif
528 break;
529
530 default:
531 aprint_normal("\n");
532 panic("unknown processor type??\n");
533 }
534
535 atomic_or_32(&cpus_attached, ci->ci_cpumask);
536
537 #ifdef MPVERBOSE
538 if (mp_verbose) {
539 struct lwp *l = ci->ci_data.cpu_idlelwp;
540 struct pcb *pcb = lwp_getpcb(l);
541
542 aprint_verbose_dev(self,
543 "idle lwp at %p, idle sp at 0x%p\n",
544 l,
545 #ifdef i386
546 (void *)pcb->pcb_esp
547 #else /* i386 */
548 (void *)pcb->pcb_rsp
549 #endif /* i386 */
550 );
551
552 }
553 #endif /* MPVERBOSE */
554 }
555
556 /*
557 * Initialize the processor appropriately.
558 */
559
560 void
561 cpu_init(struct cpu_info *ci)
562 {
563
564 /*
565 * On a P6 or above, enable global TLB caching if the
566 * hardware supports it.
567 */
568 if (cpu_feature[0] & CPUID_PGE)
569 lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
570
571 #ifdef XXXMTRR
572 /*
573 * On a P6 or above, initialize MTRR's if the hardware supports them.
574 */
575 if (cpu_feature[0] & CPUID_MTRR) {
576 if ((ci->ci_flags & CPUF_AP) == 0)
577 i686_mtrr_init_first();
578 mtrr_init_cpu(ci);
579 }
580 #endif
581 /*
582 * If we have FXSAVE/FXRESTOR, use them.
583 */
584 if (cpu_feature[0] & CPUID_FXSR) {
585 lcr4(rcr4() | CR4_OSFXSR);
586
587 /*
588 * If we have SSE/SSE2, enable XMM exceptions.
589 */
590 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
591 lcr4(rcr4() | CR4_OSXMMEXCPT);
592 }
593
594 #ifdef __x86_64__
595 /* No user PGD mapped for this CPU yet */
596 ci->ci_xen_current_user_pgd = 0;
597 #endif
598 #if defined(__x86_64__) || defined(PAE)
599 mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
600 #endif
601
602 atomic_or_32(&cpus_running, ci->ci_cpumask);
603 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
604
605 /* XXX: register vcpu_register_runstate_memory_area, and figure out how to make sure this VCPU is running ? */
606 }
607
608
609 #ifdef MULTIPROCESSOR
610
611 void
612 cpu_boot_secondary_processors(void)
613 {
614 struct cpu_info *ci;
615 u_long i;
616 for (i = 0; i < maxcpus; i++) {
617 ci = cpu_lookup(i);
618 if (ci == NULL)
619 continue;
620 if (ci->ci_data.cpu_idlelwp == NULL)
621 continue;
622 if ((ci->ci_flags & CPUF_PRESENT) == 0)
623 continue;
624 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
625 continue;
626 cpu_boot_secondary(ci);
627 }
628
629 x86_mp_online = true;
630 }
631
632 static void
633 cpu_init_idle_lwp(struct cpu_info *ci)
634 {
635 struct lwp *l = ci->ci_data.cpu_idlelwp;
636 struct pcb *pcb = lwp_getpcb(l);
637
638 pcb->pcb_cr0 = rcr0();
639 }
640
641 void
642 cpu_init_idle_lwps(void)
643 {
644 struct cpu_info *ci;
645 u_long i;
646
647 for (i = 0; i < maxcpus; i++) {
648 ci = cpu_lookup(i);
649 if (ci == NULL)
650 continue;
651 if (ci->ci_data.cpu_idlelwp == NULL)
652 continue;
653 if ((ci->ci_flags & CPUF_PRESENT) == 0)
654 continue;
655 cpu_init_idle_lwp(ci);
656 }
657 }
658
659 static void
660 cpu_start_secondary(struct cpu_info *ci)
661 {
662 int i;
663
664 aprint_debug_dev(ci->ci_dev, "starting\n");
665
666 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
667
668 if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
669 return;
670 }
671
672 /*
673 * wait for it to become ready
674 */
675 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
676 delay(10);
677 }
678 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
679 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
680 #if defined(MPDEBUG) && defined(DDB)
681 printf("dropping into debugger; continue from here to resume boot\n");
682 Debugger();
683 #endif
684 }
685
686 CPU_START_CLEANUP(ci);
687 }
688
689 void
690 cpu_boot_secondary(struct cpu_info *ci)
691 {
692 int i;
693 atomic_or_32(&ci->ci_flags, CPUF_GO);
694 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
695 delay(10);
696 }
697 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
698 aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
699 #if defined(MPDEBUG) && defined(DDB)
700 printf("dropping into debugger; continue from here to resume boot\n");
701 Debugger();
702 #endif
703 }
704 }
705
706 /*
707 * APs end up here immediately after initialisation and VCPUOP_up in
708 * mp_cpu_start().
709 * At this point, we are running in the idle pcb/idle stack of the new
710 * CPU. This function jumps to the idle loop and starts looking for
711 * work.
712 */
713 extern void x86_64_tls_switch(struct lwp *);
714 void
715 cpu_hatch(void *v)
716 {
717 struct cpu_info *ci = (struct cpu_info *)v;
718 struct pcb *pcb;
719 int s, i;
720
721 /* Setup TLS and kernel GS/FS */
722 cpu_init_msrs(ci, true);
723 cpu_init_idt();
724 gdt_init_cpu(ci);
725
726 cpu_probe(ci);
727
728 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
729
730 while ((ci->ci_flags & CPUF_GO) == 0) {
731 /* Don't use delay, boot CPU may be patching the text. */
732 for (i = 10000; i != 0; i--)
733 x86_pause();
734 }
735
736 /* Because the text may have been patched in x86_patch(). */
737 x86_flush();
738 tlbflushg();
739
740 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
741
742 pcb = lwp_getpcb(curlwp);
743 pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0); /* XXX: consider using pmap_load() ? */
744 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
745
746 xen_ipi_init();
747
748 xen_initclocks();
749
750 /* XXX: lapic_initclocks(); */
751
752 #ifdef __x86_64__
753 fpuinit(ci);
754 #endif
755
756 lldt(GSEL(GLDT_SEL, SEL_KPL));
757
758 cpu_init(ci);
759 cpu_get_tsc_freq(ci);
760
761 s = splhigh();
762 x86_enable_intr();
763 splx(s);
764 #if 0
765 x86_errata();
766 #endif
767
768 aprint_debug_dev(ci->ci_dev, "running\n");
769
770 cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
771
772 panic("switch to idle_loop context returned!\n");
773 /* NOTREACHED */
774 }
775
776 #if defined(DDB)
777
778 #include <ddb/db_output.h>
779 #include <machine/db_machdep.h>
780
781 /*
782 * Dump CPU information from ddb.
783 */
784 void
785 cpu_debug_dump(void)
786 {
787 struct cpu_info *ci;
788 CPU_INFO_ITERATOR cii;
789
790 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
791 for (CPU_INFO_FOREACH(cii, ci)) {
792 db_printf("%p %s %ld %x %x %10p %10p\n",
793 ci,
794 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
795 (long)ci->ci_cpuid,
796 ci->ci_flags, ci->ci_ipis,
797 ci->ci_curlwp,
798 ci->ci_fpcurlwp);
799 }
800 }
801 #endif /* DDB */
802
803 #endif /* MULTIPROCESSOR */
804
805 extern void hypervisor_callback(void);
806 extern void failsafe_callback(void);
807 #ifdef __x86_64__
808 typedef void (vector)(void);
809 extern vector Xsyscall, Xsyscall32;
810 #endif
811
812 /*
813 * Setup the "trampoline". On Xen, we setup nearly all cpu context
814 * outside a trampoline, so we prototype and call targetip like so:
815 * void targetip(struct cpu_info *);
816 */
817
818 static void
819 gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
820 {
821 int i;
822 for (i = 0; i < roundup(entries, PAGE_SIZE) >> PAGE_SHIFT; i++) {
823
824 frames[i] = ((paddr_t) xpmap_ptetomach(
825 (pt_entry_t *) (base + (i << PAGE_SHIFT))))
826 >> PAGE_SHIFT;
827
828 /* Mark Read-only */
829 pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
830 PG_RW);
831 }
832 }
833
834 #ifdef __x86_64__
835 extern char *ldtstore; /* XXX: Xen MP todo */
836
837 static void
838 xen_init_amd64_vcpuctxt(struct cpu_info *ci,
839 struct vcpu_guest_context *initctx,
840 void targetrip(struct cpu_info *))
841 {
842 /* page frames to point at GDT */
843 extern int gdt_size;
844 paddr_t frames[16];
845 psize_t gdt_ents;
846
847 struct lwp *l;
848 struct pcb *pcb;
849
850 volatile struct vcpu_info *vci;
851
852 KASSERT(ci != NULL);
853 KASSERT(ci != &cpu_info_primary);
854 KASSERT(initctx != NULL);
855 KASSERT(targetrip != NULL);
856
857 memset(initctx, 0, sizeof *initctx);
858
859 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT; /* XXX: re-investigate roundup(gdt_size... ) for gdt_ents. */
860 KASSERT(gdt_ents <= 16);
861
862 gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
863
864 /* XXX: The stuff in here is amd64 specific. move to mptramp.[Sc] ? */
865
866 /* Initialise the vcpu context: We use idle_loop()'s pcb context. */
867
868 l = ci->ci_data.cpu_idlelwp;
869
870 KASSERT(l != NULL);
871 pcb = lwp_getpcb(l);
872 KASSERT(pcb != NULL);
873
874 /* resume with interrupts off */
875 vci = ci->ci_vcpu;
876 vci->evtchn_upcall_mask = 1;
877 xen_mb();
878
879 /* resume in kernel-mode */
880 initctx->flags = VGCF_in_kernel | VGCF_online;
881
882 /* Stack and entry points:
883 * We arrange for the stack frame for cpu_hatch() to
884 * appear as a callee frame of lwp_trampoline(). Being a
885 * leaf frame prevents trampling on any of the MD stack setup
886 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
887 */
888
889 initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
890 initctx->user_regs.rip = (vaddr_t) targetrip;
891
892 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
893
894 initctx->user_regs.rflags = pcb->pcb_flags;
895 initctx->user_regs.rsp = pcb->pcb_rsp;
896
897 /* Data segments */
898 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
899 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
900 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
901
902 /* GDT */
903 memcpy(initctx->gdt_frames, frames, sizeof frames);
904 initctx->gdt_ents = gdt_ents;
905
906 /* LDT */
907 initctx->ldt_base = (unsigned long) ldtstore;
908 initctx->ldt_ents = LDT_SIZE >> 3;
909
910 /* Kernel context state */
911 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
912 initctx->kernel_sp = pcb->pcb_rsp0;
913 initctx->ctrlreg[0] = pcb->pcb_cr0;
914 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
915 initctx->ctrlreg[2] = pcb->pcb_cr2; /* XXX: */
916 /*
917 * Use pmap_kernel() L4 PD directly, until we setup the
918 * per-cpu L4 PD in pmap_cpu_init_late()
919 */
920 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
921 initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
922
923
924 /* Xen callbacks */
925 initctx->event_callback_eip = (unsigned long) hypervisor_callback;
926 initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
927 initctx->syscall_callback_eip = (unsigned long) Xsyscall;
928
929 return;
930 }
931 #else /* i386 */
932 extern union descriptor *ldt;
933 extern void Xsyscall(void);
934
935 static void
936 xen_init_i386_vcpuctxt(struct cpu_info *ci,
937 struct vcpu_guest_context *initctx,
938 void targeteip(struct cpu_info *))
939 {
940 /* page frames to point at GDT */
941 extern int gdt_size;
942 paddr_t frames[16];
943 psize_t gdt_ents;
944
945 struct lwp *l;
946 struct pcb *pcb;
947
948 volatile struct vcpu_info *vci;
949
950 KASSERT(ci != NULL);
951 KASSERT(ci != &cpu_info_primary);
952 KASSERT(initctx != NULL);
953 KASSERT(targeteip != NULL);
954
955 memset(initctx, 0, sizeof *initctx);
956
957 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT; /* XXX: re-investigate roundup(gdt_size... ) for gdt_ents. */
958 KASSERT(gdt_ents <= 16);
959
960 gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
961
962 /*
963 * Initialise the vcpu context:
964 * We use this cpu's idle_loop() pcb context.
965 */
966
967 l = ci->ci_data.cpu_idlelwp;
968
969 KASSERT(l != NULL);
970 pcb = lwp_getpcb(l);
971 KASSERT(pcb != NULL);
972
973 /* resume with interrupts off */
974 vci = ci->ci_vcpu;
975 vci->evtchn_upcall_mask = 1;
976 xen_mb();
977
978 /* resume in kernel-mode */
979 initctx->flags = VGCF_in_kernel | VGCF_online;
980
981 /* Stack frame setup for cpu_hatch():
982 * We arrange for the stack frame for cpu_hatch() to
983 * appear as a callee frame of lwp_trampoline(). Being a
984 * leaf frame prevents trampling on any of the MD stack setup
985 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
986 */
987
988 initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
989 arg1 */
990 { /* targeteip(ci); */
991 uint32_t *arg = (uint32_t *) initctx->user_regs.esp;
992 arg[1] = (uint32_t) ci; /* arg1 */
993
994 }
995
996 initctx->user_regs.eip = (vaddr_t) targeteip;
997 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
998 initctx->user_regs.eflags |= pcb->pcb_iopl;
999
1000 /* Data segments */
1001 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
1002 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
1003 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
1004 initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
1005
1006 /* GDT */
1007 memcpy(initctx->gdt_frames, frames, sizeof frames);
1008 initctx->gdt_ents = gdt_ents;
1009
1010 /* LDT */
1011 initctx->ldt_base = (unsigned long) ldt;
1012 initctx->ldt_ents = NLDT;
1013
1014 /* Kernel context state */
1015 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
1016 initctx->kernel_sp = pcb->pcb_esp0;
1017 initctx->ctrlreg[0] = pcb->pcb_cr0;
1018 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
1019 initctx->ctrlreg[2] = pcb->pcb_cr2; /* XXX: */
1020 #ifdef PAE
1021 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
1022 #else /* PAE */
1023 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(pcb->pcb_cr3)));
1024 #endif /* PAE */
1025 initctx->ctrlreg[4] = /* CR4_PAE | */CR4_OSFXSR | CR4_OSXMMEXCPT;
1026
1027
1028 /* Xen callbacks */
1029 initctx->event_callback_eip = (unsigned long) hypervisor_callback;
1030 initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
1031 initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
1032 initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
1033
1034 return;
1035 }
1036 #endif /* __x86_64__ */
1037
1038 int
1039 mp_cpu_start(struct cpu_info *ci, vaddr_t target)
1040 {
1041
1042 int hyperror;
1043 struct vcpu_guest_context vcpuctx;
1044
1045 KASSERT(ci != NULL);
1046 KASSERT(ci != &cpu_info_primary);
1047 KASSERT(ci->ci_flags & CPUF_AP);
1048
1049 #ifdef __x86_64__
1050 xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
1051 #else /* i386 */
1052 xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
1053 #endif /* __x86_64__ */
1054
1055 /* Initialise the given vcpu to execute cpu_hatch(ci); */
1056 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
1057 aprint_error(": context initialisation failed. errno = %d\n", hyperror);
1058 return hyperror;
1059 }
1060
1061 /* Start it up */
1062
1063 /* First bring it down */
1064 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
1065 aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
1066 return hyperror;
1067 }
1068
1069 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
1070 aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
1071 return hyperror;
1072 }
1073
1074 if (!vcpu_is_up(ci)) {
1075 aprint_error(": did not come up\n");
1076 return -1;
1077 }
1078
1079 return 0;
1080 }
1081
1082 void
1083 mp_cpu_start_cleanup(struct cpu_info *ci)
1084 {
1085 #if 0
1086 /*
1087 * Ensure the NVRAM reset byte contains something vaguely sane.
1088 */
1089
1090 outb(IO_RTC, NVRAM_RESET);
1091 outb(IO_RTC+1, NVRAM_RESET_RST);
1092 #endif
1093 if (vcpu_is_up(ci)) {
1094 aprint_debug_dev(ci->ci_dev, "is started.\n");
1095 }
1096 else {
1097 aprint_error_dev(ci->ci_dev, "did not start up.\n");
1098 }
1099
1100 }
1101
1102 /* curcpu() uses %fs - shim for until cpu_init_msrs(), below */
1103 static struct cpu_info *cpu_primary(void)
1104 {
1105 return &cpu_info_primary;
1106 }
1107 /* XXX: rename to something more generic. users other than xpq exist */
1108 struct cpu_info * (*xpq_cpu)(void) = cpu_primary;
1109
1110 void
1111 cpu_init_msrs(struct cpu_info *ci, bool full)
1112 {
1113 #ifdef __x86_64__
1114 if (full) {
1115 HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
1116 HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
1117 HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
1118 xpq_cpu = x86_curcpu;
1119 }
1120 #endif /* __x86_64__ */
1121
1122 if (cpu_feature[2] & CPUID_NOX)
1123 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1124
1125 }
1126
1127 void
1128 cpu_offline_md(void)
1129 {
1130 int s;
1131
1132 s = splhigh();
1133 #ifdef __i386__
1134 npxsave_cpu(true);
1135 #else
1136 fpusave_cpu(true);
1137 #endif
1138 splx(s);
1139 }
1140
1141 void
1142 cpu_get_tsc_freq(struct cpu_info *ci)
1143 {
1144 uint32_t vcpu_tversion;
1145 const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1146
1147 vcpu_tversion = tinfo->version;
1148 while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
1149
1150 uint64_t freq = 1000000000ULL << 32;
1151 freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1152 if ( tinfo->tsc_shift < 0 )
1153 freq = freq << -tinfo->tsc_shift;
1154 else
1155 freq = freq >> tinfo->tsc_shift;
1156 ci->ci_data.cpu_cc_freq = freq;
1157 }
1158
1159 void
1160 x86_cpu_idle_xen(void)
1161 {
1162 struct cpu_info *ci = curcpu();
1163
1164 KASSERT(ci->ci_ilevel == IPL_NONE);
1165
1166 x86_disable_intr();
1167 if (!__predict_false(ci->ci_want_resched)) {
1168 idle_block();
1169 } else {
1170 x86_enable_intr();
1171 }
1172 }
1173
1174 /*
1175 * Loads pmap for the current CPU.
1176 */
1177 void
1178 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1179 {
1180 #if defined(__x86_64__) || defined(PAE)
1181 struct cpu_info *ci = curcpu();
1182 uint32_t cpumask = ci->ci_cpumask;
1183
1184 mutex_enter(&ci->ci_kpm_mtx);
1185 /* make new pmap visible to pmap_kpm_sync_xcall() */
1186 atomic_or_32(&pmap->pm_xen_ptp_cpus, cpumask);
1187 #endif
1188 #ifdef i386
1189 #ifdef PAE
1190 {
1191 int i;
1192 paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
1193 /* don't update the kernel L3 slot */
1194 for (i = 0 ; i < PDP_SIZE - 1; i++) {
1195 xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
1196 xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
1197 }
1198 tlbflush();
1199 }
1200 #else /* PAE */
1201 lcr3(pmap_pdirpa(pmap, 0));
1202 #endif /* PAE */
1203 #endif /* i386 */
1204
1205 #ifdef __x86_64__
1206 {
1207 int i;
1208 pd_entry_t *new_pgd;
1209 paddr_t l4_pd_ma;
1210
1211 l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
1212
1213 /*
1214 * Map user space address in kernel space and load
1215 * user cr3
1216 */
1217 new_pgd = pmap->pm_pdir;
1218 KASSERT(pmap == ci->ci_pmap);
1219
1220 /* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
1221 for (i = 0; i < PDIR_SLOT_PTE; i++) {
1222 KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
1223 if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
1224 xpq_queue_pte_update(
1225 l4_pd_ma + i * sizeof(pd_entry_t),
1226 new_pgd[i]);
1227 }
1228 }
1229
1230 if (__predict_true(pmap != pmap_kernel())) {
1231 xen_set_user_pgd(pmap_pdirpa(pmap, 0));
1232 ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
1233 }
1234 else {
1235 xpq_queue_pt_switch(l4_pd_ma);
1236 ci->ci_xen_current_user_pgd = 0;
1237 }
1238
1239 tlbflush();
1240 }
1241
1242 #endif /* __x86_64__ */
1243 #if defined(__x86_64__) || defined(PAE)
1244 /* old pmap no longer visible to pmap_kpm_sync_xcall() */
1245 atomic_and_32(&oldpmap->pm_xen_ptp_cpus, ~cpumask);
1246 mutex_exit(&ci->ci_kpm_mtx);
1247 #endif
1248 }
1249
1250 /*
1251 * pmap_cpu_init_late: perform late per-CPU initialization.
1252 * Short note about percpu PDIR pages:
1253 * Both the PAE and __x86_64__ architectures have per-cpu PDIR
1254 * tables. This is to get around Xen's pagetable setup constraints for
1255 * PAE (multiple L3[3]s cannot point to the same L2 - Xen
1256 * will refuse to pin a table setup this way.) and for multiple cpus
1257 * to map in different user pmaps on __x86_64__ (see: cpu_load_pmap())
1258 *
1259 * What this means for us is that the PDIR of the pmap_kernel() is
1260 * considered to be a canonical "SHADOW" PDIR with the following
1261 * properties:
1262 * - Its recursive mapping points to itself
1263 * - per-cpu recurseive mappings point to themselves on __x86_64__
1264 * - per-cpu L4 pages' kernel entries are expected to be in sync with
1265 * the shadow
1266 */
1267
1268 void
1269 pmap_cpu_init_late(struct cpu_info *ci)
1270 {
1271 #if defined(PAE) || defined(__x86_64__)
1272 /*
1273 * The BP has already its own PD page allocated during early
1274 * MD startup.
1275 */
1276
1277 #if defined(__x86_64__)
1278 /* Setup per-cpu normal_pdes */
1279 int i;
1280 extern pd_entry_t * const normal_pdes[];
1281 for (i = 0;i < PTP_LEVELS - 1;i++) {
1282 ci->ci_normal_pdes[i] = normal_pdes[i];
1283 }
1284 #endif /* __x86_64__ */
1285
1286 if (ci == &cpu_info_primary)
1287 return;
1288
1289 KASSERT(ci != NULL);
1290
1291 #if defined(PAE)
1292 cpu_alloc_l3_page(ci);
1293 KASSERT(ci->ci_pae_l3_pdirpa != 0);
1294
1295 /* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
1296 int i;
1297 for (i = 0 ; i < PDP_SIZE - 1; i++) {
1298 ci->ci_pae_l3_pdir[i] =
1299 xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PG_V;
1300 }
1301 #endif /* PAE */
1302
1303 ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1304 UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
1305
1306 if (ci->ci_kpm_pdir == NULL) {
1307 panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
1308 __func__, cpu_index(ci));
1309 }
1310 ci->ci_kpm_pdirpa = vtophys((vaddr_t) ci->ci_kpm_pdir);
1311 KASSERT(ci->ci_kpm_pdirpa != 0);
1312
1313 #if defined(__x86_64__)
1314 /*
1315 * Copy over the pmap_kernel() shadow L4 entries
1316 */
1317
1318 memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
1319
1320 /* Recursive kernel mapping */
1321 ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
1322 #elif defined(PAE)
1323 /* Copy over the pmap_kernel() shadow L2 entries that map the kernel */
1324 memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN, nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
1325 #endif /* __x86_64__ else PAE */
1326
1327 /* Xen wants R/O */
1328 pmap_kenter_pa((vaddr_t)ci->ci_kpm_pdir, ci->ci_kpm_pdirpa,
1329 VM_PROT_READ, 0);
1330
1331 #if defined(PAE)
1332 /* Initialise L3 entry 3. This mapping is shared across all
1333 * pmaps and is static, ie; loading a new pmap will not update
1334 * this entry.
1335 */
1336
1337 ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
1338
1339 /* Mark L3 R/O (Xen wants this) */
1340 pmap_kenter_pa((vaddr_t)ci->ci_pae_l3_pdir, ci->ci_pae_l3_pdirpa,
1341 VM_PROT_READ, 0);
1342
1343 xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
1344
1345 #elif defined(__x86_64__)
1346 xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
1347 #endif /* PAE , __x86_64__ */
1348 #endif /* defined(PAE) || defined(__x86_64__) */
1349 }
1350
1351 /*
1352 * Notify all other cpus to halt.
1353 */
1354
1355 void
1356 cpu_broadcast_halt(void)
1357 {
1358 xen_broadcast_ipi(XEN_IPI_HALT);
1359 }
1360
1361 /*
1362 * Send a dummy ipi to a cpu.
1363 */
1364
1365 void
1366 cpu_kick(struct cpu_info *ci)
1367 {
1368 (void)xen_send_ipi(ci, XEN_IPI_KICK);
1369 }
1370