cpu.c revision 1.83 1 /* $NetBSD: cpu.c,v 1.83 2012/02/22 18:29:31 bouyer Exp $ */
2 /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp */
3
4 /*-
5 * Copyright (c) 2000 The NetBSD Foundation, Inc.
6 * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by RedBack Networks Inc.
11 *
12 * Author: Bill Sommerfeld
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /*
37 * Copyright (c) 1999 Stefan Grefen
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by the NetBSD
50 * Foundation, Inc. and its contributors.
51 * 4. Neither the name of The NetBSD Foundation nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
56 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.83 2012/02/22 18:29:31 bouyer Exp $");
70
71 #include "opt_ddb.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_mpbios.h" /* for MPDEBUG */
74 #include "opt_mtrr.h"
75 #include "opt_xen.h"
76
77 #include "lapic.h"
78 #include "ioapic.h"
79
80 #include <sys/param.h>
81 #include <sys/proc.h>
82 #include <sys/systm.h>
83 #include <sys/device.h>
84 #include <sys/kmem.h>
85 #include <sys/cpu.h>
86 #include <sys/cpufreq.h>
87 #include <sys/atomic.h>
88 #include <sys/reboot.h>
89 #include <sys/idle.h>
90
91 #include <uvm/uvm.h>
92
93 #include <machine/cpufunc.h>
94 #include <machine/cpuvar.h>
95 #include <machine/pmap.h>
96 #include <machine/vmparam.h>
97 #include <machine/mpbiosvar.h>
98 #include <machine/pcb.h>
99 #include <machine/specialreg.h>
100 #include <machine/segments.h>
101 #include <machine/gdt.h>
102 #include <machine/mtrr.h>
103 #include <machine/pio.h>
104
105 #ifdef i386
106 #include <machine/npx.h>
107 #else
108 #include <machine/fpu.h>
109 #endif
110
111 #include <xen/xen.h>
112 #include <xen/xen-public/vcpu.h>
113 #include <xen/vcpuvar.h>
114
115 #if NLAPIC > 0
116 #include <machine/apicvar.h>
117 #include <machine/i82489reg.h>
118 #include <machine/i82489var.h>
119 #endif
120
121 #include <dev/ic/mc146818reg.h>
122 #include <dev/isa/isareg.h>
123
124 #if MAXCPUS > 32
125 #error cpu_info contains 32bit bitmasks
126 #endif
127
128 static int cpu_match(device_t, cfdata_t, void *);
129 static void cpu_attach(device_t, device_t, void *);
130 static void cpu_defer(device_t);
131 static int cpu_rescan(device_t, const char *, const int *);
132 static void cpu_childdetached(device_t, device_t);
133 static int vcpu_match(device_t, cfdata_t, void *);
134 static void vcpu_attach(device_t, device_t, void *);
135 static void cpu_attach_common(device_t, device_t, void *);
136 void cpu_offline_md(void);
137
138 struct cpu_softc {
139 device_t sc_dev; /* device tree glue */
140 struct cpu_info *sc_info; /* pointer to CPU info */
141 bool sc_wasonline;
142 };
143
144 int mp_cpu_start(struct cpu_info *, vaddr_t);
145 void mp_cpu_start_cleanup(struct cpu_info *);
146 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
147 mp_cpu_start_cleanup };
148
149 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
150 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
151
152 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
153 vcpu_match, vcpu_attach, NULL, NULL);
154
155 /*
156 * Statically-allocated CPU info for the primary CPU (or the only
157 * CPU, on uniprocessors). The CPU info list is initialized to
158 * point at it.
159 */
160 #ifdef TRAPLOG
161 #include <machine/tlog.h>
162 struct tlog tlog_primary;
163 #endif
164 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
165 .ci_dev = 0,
166 .ci_self = &cpu_info_primary,
167 .ci_idepth = -1,
168 .ci_curlwp = &lwp0,
169 .ci_curldt = -1,
170 .ci_cpumask = 1,
171 #ifdef TRAPLOG
172 .ci_tlog = &tlog_primary,
173 #endif
174
175 };
176 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
177 .ci_dev = 0,
178 .ci_self = &phycpu_info_primary,
179 };
180
181 struct cpu_info *cpu_info_list = &cpu_info_primary;
182 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
183
184 uint32_t cpus_attached = 1;
185 uint32_t cpus_running = 1;
186
187 uint32_t phycpus_attached = 0;
188 uint32_t phycpus_running = 0;
189
190 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
191 * [0] basic features %edx
192 * [1] basic features %ecx
193 * [2] extended features %edx
194 * [3] extended features %ecx
195 * [4] VIA padlock features
196 */
197
198 bool x86_mp_online;
199 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
200
201 #if defined(MULTIPROCESSOR)
202 void cpu_hatch(void *);
203 static void cpu_boot_secondary(struct cpu_info *ci);
204 static void cpu_start_secondary(struct cpu_info *ci);
205 #endif /* MULTIPROCESSOR */
206
207 static int
208 cpu_match(device_t parent, cfdata_t match, void *aux)
209 {
210
211 return 1;
212 }
213
214 static void
215 cpu_attach(device_t parent, device_t self, void *aux)
216 {
217 struct cpu_softc *sc = device_private(self);
218 struct cpu_attach_args *caa = aux;
219 struct cpu_info *ci;
220 uintptr_t ptr;
221 static int nphycpu = 0;
222
223 sc->sc_dev = self;
224
225 if (phycpus_attached == ~0) {
226 aprint_error(": increase MAXCPUS\n");
227 return;
228 }
229
230 /*
231 * If we're an Application Processor, allocate a cpu_info
232 * If we're the first attached CPU use the primary cpu_info,
233 * otherwise allocate a new one
234 */
235 aprint_naive("\n");
236 aprint_normal("\n");
237 if (nphycpu > 0) {
238 struct cpu_info *tmp;
239 ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
240 KM_SLEEP);
241 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
242 ci->ci_curldt = -1;
243
244 tmp = phycpu_info_list;
245 while (tmp->ci_next)
246 tmp = tmp->ci_next;
247
248 tmp->ci_next = ci;
249 } else {
250 ci = &phycpu_info_primary;
251 }
252
253 ci->ci_self = ci;
254 sc->sc_info = ci;
255
256 ci->ci_dev = self;
257 ci->ci_acpiid = caa->cpu_id;
258 ci->ci_cpuid = caa->cpu_number;
259 ci->ci_vcpu = NULL;
260 ci->ci_index = nphycpu++;
261 ci->ci_cpumask = (1 << cpu_index(ci));
262
263 atomic_or_32(&phycpus_attached, ci->ci_cpumask);
264
265 if (!pmf_device_register(self, NULL, NULL))
266 aprint_error_dev(self, "couldn't establish power handler\n");
267
268 (void)config_defer(self, cpu_defer);
269 }
270
271 static void
272 cpu_defer(device_t self)
273 {
274 cpu_rescan(self, NULL, NULL);
275 }
276
277 static int
278 cpu_rescan(device_t self, const char *ifattr, const int *locators)
279 {
280 struct cpu_softc *sc = device_private(self);
281 struct cpufeature_attach_args cfaa;
282 struct cpu_info *ci = sc->sc_info;
283
284 memset(&cfaa, 0, sizeof(cfaa));
285 cfaa.ci = ci;
286
287 if (ifattr_match(ifattr, "cpufeaturebus")) {
288
289 if (ci->ci_frequency == NULL) {
290 cfaa.name = "frequency";
291 ci->ci_frequency = config_found_ia(self,
292 "cpufeaturebus", &cfaa, NULL);
293 }
294 }
295
296 return 0;
297 }
298
299 static void
300 cpu_childdetached(device_t self, device_t child)
301 {
302 struct cpu_softc *sc = device_private(self);
303 struct cpu_info *ci = sc->sc_info;
304
305 if (ci->ci_frequency == child)
306 ci->ci_frequency = NULL;
307 }
308
309 static int
310 vcpu_match(device_t parent, cfdata_t match, void *aux)
311 {
312 struct vcpu_attach_args *vcaa = aux;
313 struct vcpu_runstate_info vcr;
314 int error;
315
316 if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
317 error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
318 vcaa->vcaa_caa.cpu_number,
319 &vcr);
320 switch (error) {
321 case 0:
322 return 1;
323 case -ENOENT:
324 return 0;
325 default:
326 panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
327 }
328 }
329
330 return 0;
331 }
332
333 static void
334 vcpu_attach(device_t parent, device_t self, void *aux)
335 {
336 struct vcpu_attach_args *vcaa = aux;
337
338 KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
339 vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
340 cpu_attach_common(parent, self, &vcaa->vcaa_caa);
341
342 if (!pmf_device_register(self, NULL, NULL))
343 aprint_error_dev(self, "couldn't establish power handler\n");
344 }
345
346 static int
347 vcpu_is_up(struct cpu_info *ci)
348 {
349 KASSERT(ci != NULL);
350 return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
351 }
352
353 static void
354 cpu_vm_init(struct cpu_info *ci)
355 {
356 int ncolors = 2, i;
357
358 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
359 struct x86_cache_info *cai;
360 int tcolors;
361
362 cai = &ci->ci_cinfo[i];
363
364 tcolors = atop(cai->cai_totalsize);
365 switch(cai->cai_associativity) {
366 case 0xff:
367 tcolors = 1; /* fully associative */
368 break;
369 case 0:
370 case 1:
371 break;
372 default:
373 tcolors /= cai->cai_associativity;
374 }
375 ncolors = max(ncolors, tcolors);
376 }
377
378 /*
379 * Knowing the size of the largest cache on this CPU, potentially
380 * re-color our pages.
381 */
382 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
383 uvm_page_recolor(ncolors);
384 }
385
386 static void
387 cpu_attach_common(device_t parent, device_t self, void *aux)
388 {
389 struct cpu_softc *sc = device_private(self);
390 struct cpu_attach_args *caa = aux;
391 struct cpu_info *ci;
392 uintptr_t ptr;
393 int cpunum = caa->cpu_number;
394 static bool again = false;
395
396 sc->sc_dev = self;
397
398 /*
399 * If we're an Application Processor, allocate a cpu_info
400 * structure, otherwise use the primary's.
401 */
402 if (caa->cpu_role == CPU_ROLE_AP) {
403 aprint_naive(": Application Processor\n");
404 ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
405 KM_SLEEP);
406 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
407 memset(ci, 0, sizeof(*ci));
408 #ifdef TRAPLOG
409 ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
410 #endif
411 } else {
412 aprint_naive(": %s Processor\n",
413 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
414 ci = &cpu_info_primary;
415 }
416
417 ci->ci_self = ci;
418 sc->sc_info = ci;
419 ci->ci_dev = self;
420 ci->ci_cpuid = cpunum;
421
422 KASSERT(HYPERVISOR_shared_info != NULL);
423 ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
424
425 KASSERT(ci->ci_func == 0);
426 ci->ci_func = caa->cpu_func;
427
428 /* Must be called before mi_cpu_attach(). */
429 cpu_vm_init(ci);
430
431 if (caa->cpu_role == CPU_ROLE_AP) {
432 int error;
433
434 error = mi_cpu_attach(ci);
435
436 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
437 if (error != 0) {
438 aprint_normal("\n");
439 aprint_error_dev(self,
440 "mi_cpu_attach failed with %d\n", error);
441 return;
442 }
443
444 } else {
445 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
446 }
447
448 ci->ci_cpumask = (1 << cpu_index(ci));
449 pmap_reference(pmap_kernel());
450 ci->ci_pmap = pmap_kernel();
451 ci->ci_tlbstate = TLBSTATE_STALE;
452
453 /*
454 * Boot processor may not be attached first, but the below
455 * must be done to allow booting other processors.
456 */
457 if (!again) {
458 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
459 /* Basic init. */
460 cpu_intr_init(ci);
461 cpu_get_tsc_freq(ci);
462 cpu_init(ci);
463 pmap_cpu_init_late(ci);
464
465 /* Every processor needs to init it's own ipi h/w (similar to lapic) */
466 xen_ipi_init();
467 /* XXX: clock_init() */
468
469 /* Make sure DELAY() is initialized. */
470 DELAY(1);
471 again = true;
472 }
473
474 /* further PCB init done later. */
475
476 switch (caa->cpu_role) {
477 case CPU_ROLE_SP:
478 atomic_or_32(&ci->ci_flags, CPUF_SP);
479 cpu_identify(ci);
480 #if 0
481 x86_errata();
482 #endif
483 x86_cpu_idle_init();
484
485 break;
486
487 case CPU_ROLE_BP:
488 atomic_or_32(&ci->ci_flags, CPUF_BSP);
489 cpu_identify(ci);
490 #if 0
491 x86_errata();
492 #endif
493 x86_cpu_idle_init();
494
495 break;
496
497 case CPU_ROLE_AP:
498 atomic_or_32(&ci->ci_flags, CPUF_AP);
499
500 /*
501 * report on an AP
502 */
503
504 #if defined(MULTIPROCESSOR)
505 /* interrupt handler stack */
506 cpu_intr_init(ci);
507
508 /* Setup per-cpu memory for gdt */
509 gdt_alloc_cpu(ci);
510
511 pmap_cpu_init_late(ci);
512 cpu_start_secondary(ci);
513
514 if (ci->ci_flags & CPUF_PRESENT) {
515 struct cpu_info *tmp;
516
517 cpu_identify(ci);
518 tmp = cpu_info_list;
519 while (tmp->ci_next)
520 tmp = tmp->ci_next;
521
522 tmp->ci_next = ci;
523 }
524 #else
525 aprint_error(": not started\n");
526 #endif
527 break;
528
529 default:
530 aprint_normal("\n");
531 panic("unknown processor type??\n");
532 }
533
534 atomic_or_32(&cpus_attached, ci->ci_cpumask);
535
536 #ifdef MPVERBOSE
537 if (mp_verbose) {
538 struct lwp *l = ci->ci_data.cpu_idlelwp;
539 struct pcb *pcb = lwp_getpcb(l);
540
541 aprint_verbose_dev(self,
542 "idle lwp at %p, idle sp at 0x%p\n",
543 l,
544 #ifdef i386
545 (void *)pcb->pcb_esp
546 #else /* i386 */
547 (void *)pcb->pcb_rsp
548 #endif /* i386 */
549 );
550
551 }
552 #endif /* MPVERBOSE */
553 }
554
555 /*
556 * Initialize the processor appropriately.
557 */
558
559 void
560 cpu_init(struct cpu_info *ci)
561 {
562
563 /*
564 * On a P6 or above, enable global TLB caching if the
565 * hardware supports it.
566 */
567 if (cpu_feature[0] & CPUID_PGE)
568 lcr4(rcr4() | CR4_PGE); /* enable global TLB caching */
569
570 #ifdef XXXMTRR
571 /*
572 * On a P6 or above, initialize MTRR's if the hardware supports them.
573 */
574 if (cpu_feature[0] & CPUID_MTRR) {
575 if ((ci->ci_flags & CPUF_AP) == 0)
576 i686_mtrr_init_first();
577 mtrr_init_cpu(ci);
578 }
579 #endif
580 /*
581 * If we have FXSAVE/FXRESTOR, use them.
582 */
583 if (cpu_feature[0] & CPUID_FXSR) {
584 lcr4(rcr4() | CR4_OSFXSR);
585
586 /*
587 * If we have SSE/SSE2, enable XMM exceptions.
588 */
589 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
590 lcr4(rcr4() | CR4_OSXMMEXCPT);
591 }
592
593 #ifdef __x86_64__
594 /* No user PGD mapped for this CPU yet */
595 ci->ci_xen_current_user_pgd = 0;
596 #endif
597 #if defined(__x86_64__) || defined(PAE)
598 mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
599 #endif
600
601 atomic_or_32(&cpus_running, ci->ci_cpumask);
602 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
603
604 /* XXX: register vcpu_register_runstate_memory_area, and figure out how to make sure this VCPU is running ? */
605 }
606
607
608 #ifdef MULTIPROCESSOR
609
610 void
611 cpu_boot_secondary_processors(void)
612 {
613 struct cpu_info *ci;
614 u_long i;
615 for (i = 0; i < maxcpus; i++) {
616 ci = cpu_lookup(i);
617 if (ci == NULL)
618 continue;
619 if (ci->ci_data.cpu_idlelwp == NULL)
620 continue;
621 if ((ci->ci_flags & CPUF_PRESENT) == 0)
622 continue;
623 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
624 continue;
625 cpu_boot_secondary(ci);
626 }
627
628 x86_mp_online = true;
629 }
630
631 static void
632 cpu_init_idle_lwp(struct cpu_info *ci)
633 {
634 struct lwp *l = ci->ci_data.cpu_idlelwp;
635 struct pcb *pcb = lwp_getpcb(l);
636
637 pcb->pcb_cr0 = rcr0();
638 }
639
640 void
641 cpu_init_idle_lwps(void)
642 {
643 struct cpu_info *ci;
644 u_long i;
645
646 for (i = 0; i < maxcpus; i++) {
647 ci = cpu_lookup(i);
648 if (ci == NULL)
649 continue;
650 if (ci->ci_data.cpu_idlelwp == NULL)
651 continue;
652 if ((ci->ci_flags & CPUF_PRESENT) == 0)
653 continue;
654 cpu_init_idle_lwp(ci);
655 }
656 }
657
658 static void
659 cpu_start_secondary(struct cpu_info *ci)
660 {
661 int i;
662
663 aprint_debug_dev(ci->ci_dev, "starting\n");
664
665 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
666
667 if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
668 return;
669 }
670
671 /*
672 * wait for it to become ready
673 */
674 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
675 delay(10);
676 }
677 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
678 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
679 #if defined(MPDEBUG) && defined(DDB)
680 printf("dropping into debugger; continue from here to resume boot\n");
681 Debugger();
682 #endif
683 }
684
685 CPU_START_CLEANUP(ci);
686 }
687
688 void
689 cpu_boot_secondary(struct cpu_info *ci)
690 {
691 int i;
692 atomic_or_32(&ci->ci_flags, CPUF_GO);
693 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
694 delay(10);
695 }
696 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
697 aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
698 #if defined(MPDEBUG) && defined(DDB)
699 printf("dropping into debugger; continue from here to resume boot\n");
700 Debugger();
701 #endif
702 }
703 }
704
705 /*
706 * APs end up here immediately after initialisation and VCPUOP_up in
707 * mp_cpu_start().
708 * At this point, we are running in the idle pcb/idle stack of the new
709 * CPU. This function jumps to the idle loop and starts looking for
710 * work.
711 */
712 extern void x86_64_tls_switch(struct lwp *);
713 void
714 cpu_hatch(void *v)
715 {
716 struct cpu_info *ci = (struct cpu_info *)v;
717 struct pcb *pcb;
718 int s, i;
719
720 /* Setup TLS and kernel GS/FS */
721 cpu_init_msrs(ci, true);
722 cpu_init_idt();
723 gdt_init_cpu(ci);
724
725 cpu_probe(ci);
726
727 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
728
729 while ((ci->ci_flags & CPUF_GO) == 0) {
730 /* Don't use delay, boot CPU may be patching the text. */
731 for (i = 10000; i != 0; i--)
732 x86_pause();
733 }
734
735 /* Because the text may have been patched in x86_patch(). */
736 x86_flush();
737 tlbflushg();
738
739 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
740
741 pcb = lwp_getpcb(curlwp);
742 pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0); /* XXX: consider using pmap_load() ? */
743 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
744
745 xen_ipi_init();
746
747 xen_initclocks();
748
749 /* XXX: lapic_initclocks(); */
750
751 #ifdef __x86_64__
752 fpuinit(ci);
753 #endif
754
755 lldt(GSEL(GLDT_SEL, SEL_KPL));
756
757 cpu_init(ci);
758 cpu_get_tsc_freq(ci);
759
760 s = splhigh();
761 x86_enable_intr();
762 splx(s);
763 #if 0
764 x86_errata();
765 #endif
766
767 aprint_debug_dev(ci->ci_dev, "running\n");
768
769 cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
770
771 panic("switch to idle_loop context returned!\n");
772 /* NOTREACHED */
773 }
774
775 #if defined(DDB)
776
777 #include <ddb/db_output.h>
778 #include <machine/db_machdep.h>
779
780 /*
781 * Dump CPU information from ddb.
782 */
783 void
784 cpu_debug_dump(void)
785 {
786 struct cpu_info *ci;
787 CPU_INFO_ITERATOR cii;
788
789 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
790 for (CPU_INFO_FOREACH(cii, ci)) {
791 db_printf("%p %s %ld %x %x %10p %10p\n",
792 ci,
793 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
794 (long)ci->ci_cpuid,
795 ci->ci_flags, ci->ci_ipis,
796 ci->ci_curlwp,
797 ci->ci_fpcurlwp);
798 }
799 }
800 #endif /* DDB */
801
802 #endif /* MULTIPROCESSOR */
803
804 extern void hypervisor_callback(void);
805 extern void failsafe_callback(void);
806 #ifdef __x86_64__
807 typedef void (vector)(void);
808 extern vector Xsyscall, Xsyscall32;
809 #endif
810
811 /*
812 * Setup the "trampoline". On Xen, we setup nearly all cpu context
813 * outside a trampoline, so we prototype and call targetip like so:
814 * void targetip(struct cpu_info *);
815 */
816
817 static void
818 gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
819 {
820 int i;
821 for (i = 0; i < roundup(entries, PAGE_SIZE) >> PAGE_SHIFT; i++) {
822
823 frames[i] = ((paddr_t) xpmap_ptetomach(
824 (pt_entry_t *) (base + (i << PAGE_SHIFT))))
825 >> PAGE_SHIFT;
826
827 /* Mark Read-only */
828 pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
829 PG_RW);
830 }
831 }
832
833 #ifdef __x86_64__
834 extern char *ldtstore; /* XXX: Xen MP todo */
835
836 static void
837 xen_init_amd64_vcpuctxt(struct cpu_info *ci,
838 struct vcpu_guest_context *initctx,
839 void targetrip(struct cpu_info *))
840 {
841 /* page frames to point at GDT */
842 extern int gdt_size;
843 paddr_t frames[16];
844 psize_t gdt_ents;
845
846 struct lwp *l;
847 struct pcb *pcb;
848
849 volatile struct vcpu_info *vci;
850
851 KASSERT(ci != NULL);
852 KASSERT(ci != &cpu_info_primary);
853 KASSERT(initctx != NULL);
854 KASSERT(targetrip != NULL);
855
856 memset(initctx, 0, sizeof *initctx);
857
858 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT; /* XXX: re-investigate roundup(gdt_size... ) for gdt_ents. */
859 KASSERT(gdt_ents <= 16);
860
861 gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
862
863 /* XXX: The stuff in here is amd64 specific. move to mptramp.[Sc] ? */
864
865 /* Initialise the vcpu context: We use idle_loop()'s pcb context. */
866
867 l = ci->ci_data.cpu_idlelwp;
868
869 KASSERT(l != NULL);
870 pcb = lwp_getpcb(l);
871 KASSERT(pcb != NULL);
872
873 /* resume with interrupts off */
874 vci = ci->ci_vcpu;
875 vci->evtchn_upcall_mask = 1;
876 xen_mb();
877
878 /* resume in kernel-mode */
879 initctx->flags = VGCF_in_kernel | VGCF_online;
880
881 /* Stack and entry points:
882 * We arrange for the stack frame for cpu_hatch() to
883 * appear as a callee frame of lwp_trampoline(). Being a
884 * leaf frame prevents trampling on any of the MD stack setup
885 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
886 */
887
888 initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
889 initctx->user_regs.rip = (vaddr_t) targetrip;
890
891 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
892
893 initctx->user_regs.rflags = pcb->pcb_flags;
894 initctx->user_regs.rsp = pcb->pcb_rsp;
895
896 /* Data segments */
897 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
898 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
899 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
900
901 /* GDT */
902 memcpy(initctx->gdt_frames, frames, sizeof frames);
903 initctx->gdt_ents = gdt_ents;
904
905 /* LDT */
906 initctx->ldt_base = (unsigned long) ldtstore;
907 initctx->ldt_ents = LDT_SIZE >> 3;
908
909 /* Kernel context state */
910 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
911 initctx->kernel_sp = pcb->pcb_rsp0;
912 initctx->ctrlreg[0] = pcb->pcb_cr0;
913 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
914 initctx->ctrlreg[2] = pcb->pcb_cr2; /* XXX: */
915 /*
916 * Use pmap_kernel() L4 PD directly, until we setup the
917 * per-cpu L4 PD in pmap_cpu_init_late()
918 */
919 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
920 initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
921
922
923 /* Xen callbacks */
924 initctx->event_callback_eip = (unsigned long) hypervisor_callback;
925 initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
926 initctx->syscall_callback_eip = (unsigned long) Xsyscall;
927
928 return;
929 }
930 #else /* i386 */
931 extern union descriptor *ldt;
932 extern void Xsyscall(void);
933
934 static void
935 xen_init_i386_vcpuctxt(struct cpu_info *ci,
936 struct vcpu_guest_context *initctx,
937 void targeteip(struct cpu_info *))
938 {
939 /* page frames to point at GDT */
940 extern int gdt_size;
941 paddr_t frames[16];
942 psize_t gdt_ents;
943
944 struct lwp *l;
945 struct pcb *pcb;
946
947 volatile struct vcpu_info *vci;
948
949 KASSERT(ci != NULL);
950 KASSERT(ci != &cpu_info_primary);
951 KASSERT(initctx != NULL);
952 KASSERT(targeteip != NULL);
953
954 memset(initctx, 0, sizeof *initctx);
955
956 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT; /* XXX: re-investigate roundup(gdt_size... ) for gdt_ents. */
957 KASSERT(gdt_ents <= 16);
958
959 gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
960
961 /*
962 * Initialise the vcpu context:
963 * We use this cpu's idle_loop() pcb context.
964 */
965
966 l = ci->ci_data.cpu_idlelwp;
967
968 KASSERT(l != NULL);
969 pcb = lwp_getpcb(l);
970 KASSERT(pcb != NULL);
971
972 /* resume with interrupts off */
973 vci = ci->ci_vcpu;
974 vci->evtchn_upcall_mask = 1;
975 xen_mb();
976
977 /* resume in kernel-mode */
978 initctx->flags = VGCF_in_kernel | VGCF_online;
979
980 /* Stack frame setup for cpu_hatch():
981 * We arrange for the stack frame for cpu_hatch() to
982 * appear as a callee frame of lwp_trampoline(). Being a
983 * leaf frame prevents trampling on any of the MD stack setup
984 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
985 */
986
987 initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
988 arg1 */
989 { /* targeteip(ci); */
990 uint32_t *arg = (uint32_t *) initctx->user_regs.esp;
991 arg[1] = (uint32_t) ci; /* arg1 */
992
993 }
994
995 initctx->user_regs.eip = (vaddr_t) targeteip;
996 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
997 initctx->user_regs.eflags |= pcb->pcb_iopl;
998
999 /* Data segments */
1000 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
1001 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
1002 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
1003 initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
1004
1005 /* GDT */
1006 memcpy(initctx->gdt_frames, frames, sizeof frames);
1007 initctx->gdt_ents = gdt_ents;
1008
1009 /* LDT */
1010 initctx->ldt_base = (unsigned long) ldt;
1011 initctx->ldt_ents = NLDT;
1012
1013 /* Kernel context state */
1014 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
1015 initctx->kernel_sp = pcb->pcb_esp0;
1016 initctx->ctrlreg[0] = pcb->pcb_cr0;
1017 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
1018 initctx->ctrlreg[2] = pcb->pcb_cr2; /* XXX: */
1019 #ifdef PAE
1020 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
1021 #else /* PAE */
1022 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(pcb->pcb_cr3)));
1023 #endif /* PAE */
1024 initctx->ctrlreg[4] = /* CR4_PAE | */CR4_OSFXSR | CR4_OSXMMEXCPT;
1025
1026
1027 /* Xen callbacks */
1028 initctx->event_callback_eip = (unsigned long) hypervisor_callback;
1029 initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
1030 initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
1031 initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
1032
1033 return;
1034 }
1035 #endif /* __x86_64__ */
1036
1037 int
1038 mp_cpu_start(struct cpu_info *ci, vaddr_t target)
1039 {
1040
1041 int hyperror;
1042 struct vcpu_guest_context vcpuctx;
1043
1044 KASSERT(ci != NULL);
1045 KASSERT(ci != &cpu_info_primary);
1046 KASSERT(ci->ci_flags & CPUF_AP);
1047
1048 #ifdef __x86_64__
1049 xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
1050 #else /* i386 */
1051 xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
1052 #endif /* __x86_64__ */
1053
1054 /* Initialise the given vcpu to execute cpu_hatch(ci); */
1055 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
1056 aprint_error(": context initialisation failed. errno = %d\n", hyperror);
1057 return hyperror;
1058 }
1059
1060 /* Start it up */
1061
1062 /* First bring it down */
1063 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
1064 aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
1065 return hyperror;
1066 }
1067
1068 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
1069 aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
1070 return hyperror;
1071 }
1072
1073 if (!vcpu_is_up(ci)) {
1074 aprint_error(": did not come up\n");
1075 return -1;
1076 }
1077
1078 return 0;
1079 }
1080
1081 void
1082 mp_cpu_start_cleanup(struct cpu_info *ci)
1083 {
1084 #if 0
1085 /*
1086 * Ensure the NVRAM reset byte contains something vaguely sane.
1087 */
1088
1089 outb(IO_RTC, NVRAM_RESET);
1090 outb(IO_RTC+1, NVRAM_RESET_RST);
1091 #endif
1092 if (vcpu_is_up(ci)) {
1093 aprint_debug_dev(ci->ci_dev, "is started.\n");
1094 }
1095 else {
1096 aprint_error_dev(ci->ci_dev, "did not start up.\n");
1097 }
1098
1099 }
1100
1101 /* curcpu() uses %fs - shim for until cpu_init_msrs(), below */
1102 static struct cpu_info *cpu_primary(void)
1103 {
1104 return &cpu_info_primary;
1105 }
1106 /* XXX: rename to something more generic. users other than xpq exist */
1107 struct cpu_info * (*xpq_cpu)(void) = cpu_primary;
1108
1109 void
1110 cpu_init_msrs(struct cpu_info *ci, bool full)
1111 {
1112 #ifdef __x86_64__
1113 if (full) {
1114 HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
1115 HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
1116 HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
1117 xpq_cpu = x86_curcpu;
1118 }
1119 #endif /* __x86_64__ */
1120
1121 if (cpu_feature[2] & CPUID_NOX)
1122 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1123
1124 }
1125
1126 void
1127 cpu_offline_md(void)
1128 {
1129 int s;
1130
1131 s = splhigh();
1132 #ifdef __i386__
1133 npxsave_cpu(true);
1134 #else
1135 fpusave_cpu(true);
1136 #endif
1137 splx(s);
1138 }
1139
1140 void
1141 cpu_get_tsc_freq(struct cpu_info *ci)
1142 {
1143 uint32_t vcpu_tversion;
1144 const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1145
1146 vcpu_tversion = tinfo->version;
1147 while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
1148
1149 uint64_t freq = 1000000000ULL << 32;
1150 freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1151 if ( tinfo->tsc_shift < 0 )
1152 freq = freq << -tinfo->tsc_shift;
1153 else
1154 freq = freq >> tinfo->tsc_shift;
1155 ci->ci_data.cpu_cc_freq = freq;
1156 }
1157
1158 void
1159 x86_cpu_idle_xen(void)
1160 {
1161 struct cpu_info *ci = curcpu();
1162
1163 KASSERT(ci->ci_ilevel == IPL_NONE);
1164
1165 x86_disable_intr();
1166 if (!__predict_false(ci->ci_want_resched)) {
1167 idle_block();
1168 } else {
1169 x86_enable_intr();
1170 }
1171 }
1172
1173 /*
1174 * Loads pmap for the current CPU.
1175 */
1176 void
1177 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1178 {
1179 #if defined(__x86_64__) || defined(PAE)
1180 struct cpu_info *ci = curcpu();
1181 uint32_t cpumask = ci->ci_cpumask;
1182
1183 mutex_enter(&ci->ci_kpm_mtx);
1184 /* make new pmap visible to pmap_kpm_sync_xcall() */
1185 atomic_or_32(&pmap->pm_xen_ptp_cpus, cpumask);
1186 #endif
1187 #ifdef i386
1188 #ifdef PAE
1189 {
1190 int i;
1191 paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
1192 /* don't update the kernel L3 slot */
1193 for (i = 0 ; i < PDP_SIZE - 1; i++) {
1194 xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
1195 xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
1196 }
1197 tlbflush();
1198 }
1199 #else /* PAE */
1200 lcr3(pmap_pdirpa(pmap, 0));
1201 #endif /* PAE */
1202 #endif /* i386 */
1203
1204 #ifdef __x86_64__
1205 {
1206 int i;
1207 pd_entry_t *new_pgd;
1208 paddr_t l4_pd_ma;
1209
1210 l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
1211
1212 /*
1213 * Map user space address in kernel space and load
1214 * user cr3
1215 */
1216 new_pgd = pmap->pm_pdir;
1217 KASSERT(pmap == ci->ci_pmap);
1218
1219 /* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
1220 for (i = 0; i < PDIR_SLOT_PTE; i++) {
1221 KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
1222 if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
1223 xpq_queue_pte_update(
1224 l4_pd_ma + i * sizeof(pd_entry_t),
1225 new_pgd[i]);
1226 }
1227 }
1228
1229 if (__predict_true(pmap != pmap_kernel())) {
1230 xen_set_user_pgd(pmap_pdirpa(pmap, 0));
1231 ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
1232 }
1233 else {
1234 xpq_queue_pt_switch(l4_pd_ma);
1235 ci->ci_xen_current_user_pgd = 0;
1236 }
1237
1238 tlbflush();
1239 }
1240
1241 #endif /* __x86_64__ */
1242 #if defined(__x86_64__) || defined(PAE)
1243 /* old pmap no longer visible to pmap_kpm_sync_xcall() */
1244 atomic_and_32(&oldpmap->pm_xen_ptp_cpus, ~cpumask);
1245 mutex_exit(&ci->ci_kpm_mtx);
1246 #endif
1247 }
1248
1249 /*
1250 * pmap_cpu_init_late: perform late per-CPU initialization.
1251 * Short note about percpu PDIR pages:
1252 * Both the PAE and __x86_64__ architectures have per-cpu PDIR
1253 * tables. This is to get around Xen's pagetable setup constraints for
1254 * PAE (multiple L3[3]s cannot point to the same L2 - Xen
1255 * will refuse to pin a table setup this way.) and for multiple cpus
1256 * to map in different user pmaps on __x86_64__ (see: cpu_load_pmap())
1257 *
1258 * What this means for us is that the PDIR of the pmap_kernel() is
1259 * considered to be a canonical "SHADOW" PDIR with the following
1260 * properties:
1261 * - Its recursive mapping points to itself
1262 * - per-cpu recurseive mappings point to themselves on __x86_64__
1263 * - per-cpu L4 pages' kernel entries are expected to be in sync with
1264 * the shadow
1265 */
1266
1267 void
1268 pmap_cpu_init_late(struct cpu_info *ci)
1269 {
1270 #if defined(PAE) || defined(__x86_64__)
1271 /*
1272 * The BP has already its own PD page allocated during early
1273 * MD startup.
1274 */
1275
1276 #if defined(__x86_64__)
1277 /* Setup per-cpu normal_pdes */
1278 int i;
1279 extern pd_entry_t * const normal_pdes[];
1280 for (i = 0;i < PTP_LEVELS - 1;i++) {
1281 ci->ci_normal_pdes[i] = normal_pdes[i];
1282 }
1283 #endif /* __x86_64__ */
1284
1285 if (ci == &cpu_info_primary)
1286 return;
1287
1288 KASSERT(ci != NULL);
1289
1290 #if defined(PAE)
1291 cpu_alloc_l3_page(ci);
1292 KASSERT(ci->ci_pae_l3_pdirpa != 0);
1293
1294 /* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
1295 int i;
1296 for (i = 0 ; i < PDP_SIZE - 1; i++) {
1297 ci->ci_pae_l3_pdir[i] =
1298 xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PG_V;
1299 }
1300 #endif /* PAE */
1301
1302 ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1303 UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
1304
1305 if (ci->ci_kpm_pdir == NULL) {
1306 panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
1307 __func__, cpu_index(ci));
1308 }
1309 ci->ci_kpm_pdirpa = vtophys((vaddr_t) ci->ci_kpm_pdir);
1310 KASSERT(ci->ci_kpm_pdirpa != 0);
1311
1312 #if defined(__x86_64__)
1313 /*
1314 * Copy over the pmap_kernel() shadow L4 entries
1315 */
1316
1317 memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
1318
1319 /* Recursive kernel mapping */
1320 ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
1321 #elif defined(PAE)
1322 /* Copy over the pmap_kernel() shadow L2 entries that map the kernel */
1323 memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN, nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
1324 #endif /* __x86_64__ else PAE */
1325
1326 /* Xen wants R/O */
1327 pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
1328 (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
1329 pmap_update(pmap_kernel());
1330 #if defined(PAE)
1331 /* Initialise L3 entry 3. This mapping is shared across all
1332 * pmaps and is static, ie; loading a new pmap will not update
1333 * this entry.
1334 */
1335
1336 ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
1337
1338 /* Mark L3 R/O (Xen wants this) */
1339 pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
1340 (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
1341 pmap_update(pmap_kernel());
1342
1343 xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
1344
1345 #elif defined(__x86_64__)
1346 xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
1347 #endif /* PAE , __x86_64__ */
1348 #endif /* defined(PAE) || defined(__x86_64__) */
1349 }
1350
1351 /*
1352 * Notify all other cpus to halt.
1353 */
1354
1355 void
1356 cpu_broadcast_halt(void)
1357 {
1358 xen_broadcast_ipi(XEN_IPI_HALT);
1359 }
1360
1361 /*
1362 * Send a dummy ipi to a cpu.
1363 */
1364
1365 void
1366 cpu_kick(struct cpu_info *ci)
1367 {
1368 (void)xen_send_ipi(ci, XEN_IPI_KICK);
1369 }
1370