cpu.c revision 1.85 1 /* $NetBSD: cpu.c,v 1.85 2012/02/23 07:30:30 cherry Exp $ */
2 /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp */
3
4 /*-
5 * Copyright (c) 2000 The NetBSD Foundation, Inc.
6 * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by RedBack Networks Inc.
11 *
12 * Author: Bill Sommerfeld
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /*
37 * Copyright (c) 1999 Stefan Grefen
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by the NetBSD
50 * Foundation, Inc. and its contributors.
51 * 4. Neither the name of The NetBSD Foundation nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
56 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.85 2012/02/23 07:30:30 cherry Exp $");
70
71 #include "opt_ddb.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_mpbios.h" /* for MPDEBUG */
74 #include "opt_mtrr.h"
75 #include "opt_xen.h"
76
77 #include "lapic.h"
78 #include "ioapic.h"
79
80 #include <sys/param.h>
81 #include <sys/proc.h>
82 #include <sys/systm.h>
83 #include <sys/device.h>
84 #include <sys/kmem.h>
85 #include <sys/cpu.h>
86 #include <sys/cpufreq.h>
87 #include <sys/atomic.h>
88 #include <sys/reboot.h>
89 #include <sys/idle.h>
90
91 #include <uvm/uvm.h>
92
93 #include <machine/cpufunc.h>
94 #include <machine/cpuvar.h>
95 #include <machine/pmap.h>
96 #include <machine/vmparam.h>
97 #include <machine/mpbiosvar.h>
98 #include <machine/pcb.h>
99 #include <machine/specialreg.h>
100 #include <machine/segments.h>
101 #include <machine/gdt.h>
102 #include <machine/mtrr.h>
103 #include <machine/pio.h>
104
105 #ifdef i386
106 #include <machine/npx.h>
107 #else
108 #include <machine/fpu.h>
109 #endif
110
111 #include <xen/xen.h>
112 #include <xen/xen-public/vcpu.h>
113 #include <xen/vcpuvar.h>
114
115 #if NLAPIC > 0
116 #include <machine/apicvar.h>
117 #include <machine/i82489reg.h>
118 #include <machine/i82489var.h>
119 #endif
120
121 #include <dev/ic/mc146818reg.h>
122 #include <dev/isa/isareg.h>
123
124 #if MAXCPUS > 32
125 #error cpu_info contains 32bit bitmasks
126 #endif
127
128 static int cpu_match(device_t, cfdata_t, void *);
129 static void cpu_attach(device_t, device_t, void *);
130 static void cpu_defer(device_t);
131 static int cpu_rescan(device_t, const char *, const int *);
132 static void cpu_childdetached(device_t, device_t);
133 static int vcpu_match(device_t, cfdata_t, void *);
134 static void vcpu_attach(device_t, device_t, void *);
135 static void cpu_attach_common(device_t, device_t, void *);
136 void cpu_offline_md(void);
137
138 struct cpu_softc {
139 device_t sc_dev; /* device tree glue */
140 struct cpu_info *sc_info; /* pointer to CPU info */
141 bool sc_wasonline;
142 };
143
144 int mp_cpu_start(struct cpu_info *, vaddr_t);
145 void mp_cpu_start_cleanup(struct cpu_info *);
146 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
147 mp_cpu_start_cleanup };
148
149 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
150 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
151
152 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
153 vcpu_match, vcpu_attach, NULL, NULL);
154
155 /*
156 * Statically-allocated CPU info for the primary CPU (or the only
157 * CPU, on uniprocessors). The CPU info list is initialized to
158 * point at it.
159 */
160 #ifdef TRAPLOG
161 #include <machine/tlog.h>
162 struct tlog tlog_primary;
163 #endif
164 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
165 .ci_dev = 0,
166 .ci_self = &cpu_info_primary,
167 .ci_idepth = -1,
168 .ci_curlwp = &lwp0,
169 .ci_curldt = -1,
170 .ci_cpumask = 1,
171 #ifdef TRAPLOG
172 .ci_tlog = &tlog_primary,
173 #endif
174
175 };
176 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
177 .ci_dev = 0,
178 .ci_self = &phycpu_info_primary,
179 };
180
181 struct cpu_info *cpu_info_list = &cpu_info_primary;
182 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
183
184 uint32_t cpus_attached = 1;
185 uint32_t cpus_running = 1;
186
187 uint32_t phycpus_attached = 0;
188 uint32_t phycpus_running = 0;
189
190 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
191 * [0] basic features %edx
192 * [1] basic features %ecx
193 * [2] extended features %edx
194 * [3] extended features %ecx
195 * [4] VIA padlock features
196 */
197
198 bool x86_mp_online;
199 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
200
201 #if defined(MULTIPROCESSOR)
202 void cpu_hatch(void *);
203 static void cpu_boot_secondary(struct cpu_info *ci);
204 static void cpu_start_secondary(struct cpu_info *ci);
205 #endif /* MULTIPROCESSOR */
206
207 static int
208 cpu_match(device_t parent, cfdata_t match, void *aux)
209 {
210
211 return 1;
212 }
213
214 static void
215 cpu_attach(device_t parent, device_t self, void *aux)
216 {
217 struct cpu_softc *sc = device_private(self);
218 struct cpu_attach_args *caa = aux;
219 struct cpu_info *ci;
220 uintptr_t ptr;
221 static int nphycpu = 0;
222
223 sc->sc_dev = self;
224
225 if (phycpus_attached == ~0) {
226 aprint_error(": increase MAXCPUS\n");
227 return;
228 }
229
230 /*
231 * If we're an Application Processor, allocate a cpu_info
232 * If we're the first attached CPU use the primary cpu_info,
233 * otherwise allocate a new one
234 */
235 aprint_naive("\n");
236 aprint_normal("\n");
237 if (nphycpu > 0) {
238 struct cpu_info *tmp;
239 ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
240 KM_SLEEP);
241 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
242 ci->ci_curldt = -1;
243
244 tmp = phycpu_info_list;
245 while (tmp->ci_next)
246 tmp = tmp->ci_next;
247
248 tmp->ci_next = ci;
249 } else {
250 ci = &phycpu_info_primary;
251 }
252
253 ci->ci_self = ci;
254 sc->sc_info = ci;
255
256 ci->ci_dev = self;
257 ci->ci_acpiid = caa->cpu_id;
258 ci->ci_cpuid = caa->cpu_number;
259 ci->ci_vcpu = NULL;
260 ci->ci_index = nphycpu++;
261 ci->ci_cpumask = (1 << cpu_index(ci));
262
263 atomic_or_32(&phycpus_attached, ci->ci_cpumask);
264
265 if (!pmf_device_register(self, NULL, NULL))
266 aprint_error_dev(self, "couldn't establish power handler\n");
267
268 (void)config_defer(self, cpu_defer);
269 }
270
271 static void
272 cpu_defer(device_t self)
273 {
274 cpu_rescan(self, NULL, NULL);
275 }
276
277 static int
278 cpu_rescan(device_t self, const char *ifattr, const int *locators)
279 {
280 struct cpu_softc *sc = device_private(self);
281 struct cpufeature_attach_args cfaa;
282 struct cpu_info *ci = sc->sc_info;
283
284 memset(&cfaa, 0, sizeof(cfaa));
285 cfaa.ci = ci;
286
287 if (ifattr_match(ifattr, "cpufeaturebus")) {
288
289 if (ci->ci_frequency == NULL) {
290 cfaa.name = "frequency";
291 ci->ci_frequency = config_found_ia(self,
292 "cpufeaturebus", &cfaa, NULL);
293 }
294 }
295
296 return 0;
297 }
298
299 static void
300 cpu_childdetached(device_t self, device_t child)
301 {
302 struct cpu_softc *sc = device_private(self);
303 struct cpu_info *ci = sc->sc_info;
304
305 if (ci->ci_frequency == child)
306 ci->ci_frequency = NULL;
307 }
308
309 static int
310 vcpu_match(device_t parent, cfdata_t match, void *aux)
311 {
312 struct vcpu_attach_args *vcaa = aux;
313 struct vcpu_runstate_info vcr;
314 int error;
315
316 if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
317 error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
318 vcaa->vcaa_caa.cpu_number,
319 &vcr);
320 switch (error) {
321 case 0:
322 return 1;
323 case -ENOENT:
324 return 0;
325 default:
326 panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
327 }
328 }
329
330 return 0;
331 }
332
333 static void
334 vcpu_attach(device_t parent, device_t self, void *aux)
335 {
336 struct vcpu_attach_args *vcaa = aux;
337
338 KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
339 vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
340 cpu_attach_common(parent, self, &vcaa->vcaa_caa);
341
342 if (!pmf_device_register(self, NULL, NULL))
343 aprint_error_dev(self, "couldn't establish power handler\n");
344 }
345
346 static int
347 vcpu_is_up(struct cpu_info *ci)
348 {
349 KASSERT(ci != NULL);
350 return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
351 }
352
353 static void
354 cpu_vm_init(struct cpu_info *ci)
355 {
356 int ncolors = 2, i;
357
358 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
359 struct x86_cache_info *cai;
360 int tcolors;
361
362 cai = &ci->ci_cinfo[i];
363
364 tcolors = atop(cai->cai_totalsize);
365 switch(cai->cai_associativity) {
366 case 0xff:
367 tcolors = 1; /* fully associative */
368 break;
369 case 0:
370 case 1:
371 break;
372 default:
373 tcolors /= cai->cai_associativity;
374 }
375 ncolors = max(ncolors, tcolors);
376 }
377
378 /*
379 * Knowing the size of the largest cache on this CPU, potentially
380 * re-color our pages.
381 */
382 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
383 uvm_page_recolor(ncolors);
384 }
385
386 static void
387 cpu_attach_common(device_t parent, device_t self, void *aux)
388 {
389 struct cpu_softc *sc = device_private(self);
390 struct cpu_attach_args *caa = aux;
391 struct cpu_info *ci;
392 uintptr_t ptr;
393 int cpunum = caa->cpu_number;
394 static bool again = false;
395
396 sc->sc_dev = self;
397
398 /*
399 * If we're an Application Processor, allocate a cpu_info
400 * structure, otherwise use the primary's.
401 */
402 if (caa->cpu_role == CPU_ROLE_AP) {
403 aprint_naive(": Application Processor\n");
404 ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
405 KM_SLEEP);
406 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
407 memset(ci, 0, sizeof(*ci));
408 #ifdef TRAPLOG
409 ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
410 #endif
411 } else {
412 aprint_naive(": %s Processor\n",
413 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
414 ci = &cpu_info_primary;
415 }
416
417 ci->ci_self = ci;
418 sc->sc_info = ci;
419 ci->ci_dev = self;
420 ci->ci_cpuid = cpunum;
421
422 KASSERT(HYPERVISOR_shared_info != NULL);
423 ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
424
425 KASSERT(ci->ci_func == 0);
426 ci->ci_func = caa->cpu_func;
427
428 /* Must be called before mi_cpu_attach(). */
429 cpu_vm_init(ci);
430
431 if (caa->cpu_role == CPU_ROLE_AP) {
432 int error;
433
434 error = mi_cpu_attach(ci);
435
436 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
437 if (error != 0) {
438 aprint_normal("\n");
439 aprint_error_dev(self,
440 "mi_cpu_attach failed with %d\n", error);
441 return;
442 }
443
444 } else {
445 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
446 }
447
448 ci->ci_cpumask = (1 << cpu_index(ci));
449 pmap_reference(pmap_kernel());
450 ci->ci_pmap = pmap_kernel();
451 ci->ci_tlbstate = TLBSTATE_STALE;
452
453 /*
454 * Boot processor may not be attached first, but the below
455 * must be done to allow booting other processors.
456 */
457 if (!again) {
458 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
459 /* Basic init. */
460 cpu_intr_init(ci);
461 cpu_get_tsc_freq(ci);
462 cpu_init(ci);
463 pmap_cpu_init_late(ci);
464
465 /* Every processor needs to init it's own ipi h/w (similar to lapic) */
466 xen_ipi_init();
467
468 /* Make sure DELAY() is initialized. */
469 DELAY(1);
470 again = true;
471 }
472
473 /* further PCB init done later. */
474
475 switch (caa->cpu_role) {
476 case CPU_ROLE_SP:
477 atomic_or_32(&ci->ci_flags, CPUF_SP);
478 cpu_identify(ci);
479 x86_cpu_idle_init();
480
481 break;
482
483 case CPU_ROLE_BP:
484 atomic_or_32(&ci->ci_flags, CPUF_BSP);
485 cpu_identify(ci);
486 x86_cpu_idle_init();
487
488 break;
489
490 case CPU_ROLE_AP:
491 atomic_or_32(&ci->ci_flags, CPUF_AP);
492
493 /*
494 * report on an AP
495 */
496
497 #if defined(MULTIPROCESSOR)
498 /* interrupt handler stack */
499 cpu_intr_init(ci);
500
501 /* Setup per-cpu memory for gdt */
502 gdt_alloc_cpu(ci);
503
504 pmap_cpu_init_late(ci);
505 cpu_start_secondary(ci);
506
507 if (ci->ci_flags & CPUF_PRESENT) {
508 struct cpu_info *tmp;
509
510 cpu_identify(ci);
511 tmp = cpu_info_list;
512 while (tmp->ci_next)
513 tmp = tmp->ci_next;
514
515 tmp->ci_next = ci;
516 }
517 #else
518 aprint_error(": not started\n");
519 #endif
520 break;
521
522 default:
523 aprint_normal("\n");
524 panic("unknown processor type??\n");
525 }
526
527 atomic_or_32(&cpus_attached, ci->ci_cpumask);
528
529 #ifdef MPVERBOSE
530 if (mp_verbose) {
531 struct lwp *l = ci->ci_data.cpu_idlelwp;
532 struct pcb *pcb = lwp_getpcb(l);
533
534 aprint_verbose_dev(self,
535 "idle lwp at %p, idle sp at 0x%p\n",
536 l,
537 #ifdef i386
538 (void *)pcb->pcb_esp
539 #else /* i386 */
540 (void *)pcb->pcb_rsp
541 #endif /* i386 */
542 );
543
544 }
545 #endif /* MPVERBOSE */
546 }
547
548 /*
549 * Initialize the processor appropriately.
550 */
551
552 void
553 cpu_init(struct cpu_info *ci)
554 {
555
556 /*
557 * If we have FXSAVE/FXRESTOR, use them.
558 */
559 if (cpu_feature[0] & CPUID_FXSR) {
560 lcr4(rcr4() | CR4_OSFXSR);
561
562 /*
563 * If we have SSE/SSE2, enable XMM exceptions.
564 */
565 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
566 lcr4(rcr4() | CR4_OSXMMEXCPT);
567 }
568
569 #ifdef __x86_64__
570 /* No user PGD mapped for this CPU yet */
571 ci->ci_xen_current_user_pgd = 0;
572 #endif
573 #if defined(__x86_64__) || defined(PAE)
574 mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
575 #endif
576
577 atomic_or_32(&cpus_running, ci->ci_cpumask);
578 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
579 }
580
581
582 #ifdef MULTIPROCESSOR
583
584 void
585 cpu_boot_secondary_processors(void)
586 {
587 struct cpu_info *ci;
588 u_long i;
589 for (i = 0; i < maxcpus; i++) {
590 ci = cpu_lookup(i);
591 if (ci == NULL)
592 continue;
593 if (ci->ci_data.cpu_idlelwp == NULL)
594 continue;
595 if ((ci->ci_flags & CPUF_PRESENT) == 0)
596 continue;
597 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
598 continue;
599 cpu_boot_secondary(ci);
600 }
601
602 x86_mp_online = true;
603 }
604
605 static void
606 cpu_init_idle_lwp(struct cpu_info *ci)
607 {
608 struct lwp *l = ci->ci_data.cpu_idlelwp;
609 struct pcb *pcb = lwp_getpcb(l);
610
611 pcb->pcb_cr0 = rcr0();
612 }
613
614 void
615 cpu_init_idle_lwps(void)
616 {
617 struct cpu_info *ci;
618 u_long i;
619
620 for (i = 0; i < maxcpus; i++) {
621 ci = cpu_lookup(i);
622 if (ci == NULL)
623 continue;
624 if (ci->ci_data.cpu_idlelwp == NULL)
625 continue;
626 if ((ci->ci_flags & CPUF_PRESENT) == 0)
627 continue;
628 cpu_init_idle_lwp(ci);
629 }
630 }
631
632 static void
633 cpu_start_secondary(struct cpu_info *ci)
634 {
635 int i;
636
637 aprint_debug_dev(ci->ci_dev, "starting\n");
638
639 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
640
641 if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
642 return;
643 }
644
645 /*
646 * wait for it to become ready
647 */
648 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
649 delay(10);
650 }
651 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
652 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
653 #if defined(MPDEBUG) && defined(DDB)
654 printf("dropping into debugger; continue from here to resume boot\n");
655 Debugger();
656 #endif
657 }
658
659 CPU_START_CLEANUP(ci);
660 }
661
662 void
663 cpu_boot_secondary(struct cpu_info *ci)
664 {
665 int i;
666 atomic_or_32(&ci->ci_flags, CPUF_GO);
667 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
668 delay(10);
669 }
670 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
671 aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
672 #if defined(MPDEBUG) && defined(DDB)
673 printf("dropping into debugger; continue from here to resume boot\n");
674 Debugger();
675 #endif
676 }
677 }
678
679 /*
680 * APs end up here immediately after initialisation and VCPUOP_up in
681 * mp_cpu_start().
682 * At this point, we are running in the idle pcb/idle stack of the new
683 * CPU. This function jumps to the idle loop and starts looking for
684 * work.
685 */
686 extern void x86_64_tls_switch(struct lwp *);
687 void
688 cpu_hatch(void *v)
689 {
690 struct cpu_info *ci = (struct cpu_info *)v;
691 struct pcb *pcb;
692 int s, i;
693
694 /* Setup TLS and kernel GS/FS */
695 cpu_init_msrs(ci, true);
696 cpu_init_idt();
697 gdt_init_cpu(ci);
698
699 cpu_probe(ci);
700
701 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
702
703 while ((ci->ci_flags & CPUF_GO) == 0) {
704 /* Don't use delay, boot CPU may be patching the text. */
705 for (i = 10000; i != 0; i--)
706 x86_pause();
707 }
708
709 /* Because the text may have been patched in x86_patch(). */
710 x86_flush();
711 tlbflushg();
712
713 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
714
715 pcb = lwp_getpcb(curlwp);
716 pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0);
717 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
718
719 xen_ipi_init();
720
721 xen_initclocks();
722
723 #ifdef __x86_64__
724 fpuinit(ci);
725 #endif
726
727 lldt(GSEL(GLDT_SEL, SEL_KPL));
728
729 cpu_init(ci);
730 cpu_get_tsc_freq(ci);
731
732 s = splhigh();
733 x86_enable_intr();
734 splx(s);
735
736 aprint_debug_dev(ci->ci_dev, "running\n");
737
738 cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
739
740 panic("switch to idle_loop context returned!\n");
741 /* NOTREACHED */
742 }
743
744 #if defined(DDB)
745
746 #include <ddb/db_output.h>
747 #include <machine/db_machdep.h>
748
749 /*
750 * Dump CPU information from ddb.
751 */
752 void
753 cpu_debug_dump(void)
754 {
755 struct cpu_info *ci;
756 CPU_INFO_ITERATOR cii;
757
758 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
759 for (CPU_INFO_FOREACH(cii, ci)) {
760 db_printf("%p %s %ld %x %x %10p %10p\n",
761 ci,
762 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
763 (long)ci->ci_cpuid,
764 ci->ci_flags, ci->ci_ipis,
765 ci->ci_curlwp,
766 ci->ci_fpcurlwp);
767 }
768 }
769 #endif /* DDB */
770
771 #endif /* MULTIPROCESSOR */
772
773 extern void hypervisor_callback(void);
774 extern void failsafe_callback(void);
775 #ifdef __x86_64__
776 typedef void (vector)(void);
777 extern vector Xsyscall, Xsyscall32;
778 #endif
779
780 /*
781 * Setup the "trampoline". On Xen, we setup nearly all cpu context
782 * outside a trampoline, so we prototype and call targetip like so:
783 * void targetip(struct cpu_info *);
784 */
785
786 static void
787 gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
788 {
789 int i;
790 for (i = 0; i < roundup(entries, PAGE_SIZE) >> PAGE_SHIFT; i++) {
791
792 frames[i] = ((paddr_t) xpmap_ptetomach(
793 (pt_entry_t *) (base + (i << PAGE_SHIFT))))
794 >> PAGE_SHIFT;
795
796 /* Mark Read-only */
797 pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
798 PG_RW);
799 }
800 }
801
802 #ifdef __x86_64__
803 extern char *ldtstore;
804
805 static void
806 xen_init_amd64_vcpuctxt(struct cpu_info *ci,
807 struct vcpu_guest_context *initctx,
808 void targetrip(struct cpu_info *))
809 {
810 /* page frames to point at GDT */
811 extern int gdt_size;
812 paddr_t frames[16];
813 psize_t gdt_ents;
814
815 struct lwp *l;
816 struct pcb *pcb;
817
818 volatile struct vcpu_info *vci;
819
820 KASSERT(ci != NULL);
821 KASSERT(ci != &cpu_info_primary);
822 KASSERT(initctx != NULL);
823 KASSERT(targetrip != NULL);
824
825 memset(initctx, 0, sizeof *initctx);
826
827 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
828 KASSERT(gdt_ents <= 16);
829
830 gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
831
832 /* Initialise the vcpu context: We use idle_loop()'s pcb context. */
833
834 l = ci->ci_data.cpu_idlelwp;
835
836 KASSERT(l != NULL);
837 pcb = lwp_getpcb(l);
838 KASSERT(pcb != NULL);
839
840 /* resume with interrupts off */
841 vci = ci->ci_vcpu;
842 vci->evtchn_upcall_mask = 1;
843 xen_mb();
844
845 /* resume in kernel-mode */
846 initctx->flags = VGCF_in_kernel | VGCF_online;
847
848 /* Stack and entry points:
849 * We arrange for the stack frame for cpu_hatch() to
850 * appear as a callee frame of lwp_trampoline(). Being a
851 * leaf frame prevents trampling on any of the MD stack setup
852 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
853 */
854
855 initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
856 initctx->user_regs.rip = (vaddr_t) targetrip;
857
858 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
859
860 initctx->user_regs.rflags = pcb->pcb_flags;
861 initctx->user_regs.rsp = pcb->pcb_rsp;
862
863 /* Data segments */
864 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
865 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
866 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
867
868 /* GDT */
869 memcpy(initctx->gdt_frames, frames, sizeof frames);
870 initctx->gdt_ents = gdt_ents;
871
872 /* LDT */
873 initctx->ldt_base = (unsigned long) ldtstore;
874 initctx->ldt_ents = LDT_SIZE >> 3;
875
876 /* Kernel context state */
877 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
878 initctx->kernel_sp = pcb->pcb_rsp0;
879 initctx->ctrlreg[0] = pcb->pcb_cr0;
880 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
881 initctx->ctrlreg[2] = (vaddr_t) targetrip;
882 /*
883 * Use pmap_kernel() L4 PD directly, until we setup the
884 * per-cpu L4 PD in pmap_cpu_init_late()
885 */
886 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
887 initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
888
889
890 /* Xen callbacks */
891 initctx->event_callback_eip = (unsigned long) hypervisor_callback;
892 initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
893 initctx->syscall_callback_eip = (unsigned long) Xsyscall;
894
895 return;
896 }
897 #else /* i386 */
898 extern union descriptor *ldt;
899 extern void Xsyscall(void);
900
901 static void
902 xen_init_i386_vcpuctxt(struct cpu_info *ci,
903 struct vcpu_guest_context *initctx,
904 void targeteip(struct cpu_info *))
905 {
906 /* page frames to point at GDT */
907 extern int gdt_size;
908 paddr_t frames[16];
909 psize_t gdt_ents;
910
911 struct lwp *l;
912 struct pcb *pcb;
913
914 volatile struct vcpu_info *vci;
915
916 KASSERT(ci != NULL);
917 KASSERT(ci != &cpu_info_primary);
918 KASSERT(initctx != NULL);
919 KASSERT(targeteip != NULL);
920
921 memset(initctx, 0, sizeof *initctx);
922
923 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
924 KASSERT(gdt_ents <= 16);
925
926 gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
927
928 /*
929 * Initialise the vcpu context:
930 * We use this cpu's idle_loop() pcb context.
931 */
932
933 l = ci->ci_data.cpu_idlelwp;
934
935 KASSERT(l != NULL);
936 pcb = lwp_getpcb(l);
937 KASSERT(pcb != NULL);
938
939 /* resume with interrupts off */
940 vci = ci->ci_vcpu;
941 vci->evtchn_upcall_mask = 1;
942 xen_mb();
943
944 /* resume in kernel-mode */
945 initctx->flags = VGCF_in_kernel | VGCF_online;
946
947 /* Stack frame setup for cpu_hatch():
948 * We arrange for the stack frame for cpu_hatch() to
949 * appear as a callee frame of lwp_trampoline(). Being a
950 * leaf frame prevents trampling on any of the MD stack setup
951 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
952 */
953
954 initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
955 arg1 */
956 { /* targeteip(ci); */
957 uint32_t *arg = (uint32_t *) initctx->user_regs.esp;
958 arg[1] = (uint32_t) ci; /* arg1 */
959
960 }
961
962 initctx->user_regs.eip = (vaddr_t) targeteip;
963 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
964 initctx->user_regs.eflags |= pcb->pcb_iopl;
965
966 /* Data segments */
967 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
968 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
969 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
970 initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
971
972 /* GDT */
973 memcpy(initctx->gdt_frames, frames, sizeof frames);
974 initctx->gdt_ents = gdt_ents;
975
976 /* LDT */
977 initctx->ldt_base = (unsigned long) ldt;
978 initctx->ldt_ents = NLDT;
979
980 /* Kernel context state */
981 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
982 initctx->kernel_sp = pcb->pcb_esp0;
983 initctx->ctrlreg[0] = pcb->pcb_cr0;
984 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
985 initctx->ctrlreg[2] = (vaddr_t) targeteip;
986 #ifdef PAE
987 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
988 #else /* PAE */
989 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(pcb->pcb_cr3)));
990 #endif /* PAE */
991 initctx->ctrlreg[4] = /* CR4_PAE | */CR4_OSFXSR | CR4_OSXMMEXCPT;
992
993
994 /* Xen callbacks */
995 initctx->event_callback_eip = (unsigned long) hypervisor_callback;
996 initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
997 initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
998 initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
999
1000 return;
1001 }
1002 #endif /* __x86_64__ */
1003
1004 int
1005 mp_cpu_start(struct cpu_info *ci, vaddr_t target)
1006 {
1007
1008 int hyperror;
1009 struct vcpu_guest_context vcpuctx;
1010
1011 KASSERT(ci != NULL);
1012 KASSERT(ci != &cpu_info_primary);
1013 KASSERT(ci->ci_flags & CPUF_AP);
1014
1015 #ifdef __x86_64__
1016 xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
1017 #else /* i386 */
1018 xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
1019 #endif /* __x86_64__ */
1020
1021 /* Initialise the given vcpu to execute cpu_hatch(ci); */
1022 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
1023 aprint_error(": context initialisation failed. errno = %d\n", hyperror);
1024 return hyperror;
1025 }
1026
1027 /* Start it up */
1028
1029 /* First bring it down */
1030 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
1031 aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
1032 return hyperror;
1033 }
1034
1035 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
1036 aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
1037 return hyperror;
1038 }
1039
1040 if (!vcpu_is_up(ci)) {
1041 aprint_error(": did not come up\n");
1042 return -1;
1043 }
1044
1045 return 0;
1046 }
1047
1048 void
1049 mp_cpu_start_cleanup(struct cpu_info *ci)
1050 {
1051 if (vcpu_is_up(ci)) {
1052 aprint_debug_dev(ci->ci_dev, "is started.\n");
1053 }
1054 else {
1055 aprint_error_dev(ci->ci_dev, "did not start up.\n");
1056 }
1057
1058 }
1059
1060 /* curcpu() uses %fs - shim for until cpu_init_msrs(), below */
1061 static struct cpu_info *cpu_primary(void)
1062 {
1063 return &cpu_info_primary;
1064 }
1065 /* XXX: rename to something more generic. users other than xpq exist */
1066 struct cpu_info * (*xpq_cpu)(void) = cpu_primary;
1067
1068 void
1069 cpu_init_msrs(struct cpu_info *ci, bool full)
1070 {
1071 #ifdef __x86_64__
1072 if (full) {
1073 HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
1074 HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
1075 HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
1076 xpq_cpu = x86_curcpu;
1077 }
1078 #endif /* __x86_64__ */
1079
1080 if (cpu_feature[2] & CPUID_NOX)
1081 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1082
1083 }
1084
1085 void
1086 cpu_offline_md(void)
1087 {
1088 int s;
1089
1090 s = splhigh();
1091 #ifdef __i386__
1092 npxsave_cpu(true);
1093 #else
1094 fpusave_cpu(true);
1095 #endif
1096 splx(s);
1097 }
1098
1099 void
1100 cpu_get_tsc_freq(struct cpu_info *ci)
1101 {
1102 uint32_t vcpu_tversion;
1103 const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1104
1105 vcpu_tversion = tinfo->version;
1106 while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
1107
1108 uint64_t freq = 1000000000ULL << 32;
1109 freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1110 if ( tinfo->tsc_shift < 0 )
1111 freq = freq << -tinfo->tsc_shift;
1112 else
1113 freq = freq >> tinfo->tsc_shift;
1114 ci->ci_data.cpu_cc_freq = freq;
1115 }
1116
1117 void
1118 x86_cpu_idle_xen(void)
1119 {
1120 struct cpu_info *ci = curcpu();
1121
1122 KASSERT(ci->ci_ilevel == IPL_NONE);
1123
1124 x86_disable_intr();
1125 if (!__predict_false(ci->ci_want_resched)) {
1126 idle_block();
1127 } else {
1128 x86_enable_intr();
1129 }
1130 }
1131
1132 /*
1133 * Loads pmap for the current CPU.
1134 */
1135 void
1136 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1137 {
1138 KASSERT(pmap != pmap_kernel());
1139
1140 #if defined(__x86_64__) || defined(PAE)
1141 struct cpu_info *ci = curcpu();
1142 uint32_t cpumask = ci->ci_cpumask;
1143
1144 mutex_enter(&ci->ci_kpm_mtx);
1145 /* make new pmap visible to pmap_kpm_sync_xcall() */
1146 atomic_or_32(&pmap->pm_xen_ptp_cpus, cpumask);
1147 #endif
1148 #ifdef i386
1149 #ifdef PAE
1150 {
1151 int i;
1152 paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
1153 /* don't update the kernel L3 slot */
1154 for (i = 0 ; i < PDP_SIZE - 1; i++) {
1155 xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
1156 xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
1157 }
1158 tlbflush();
1159 }
1160 #else /* PAE */
1161 lcr3(pmap_pdirpa(pmap, 0));
1162 #endif /* PAE */
1163 #endif /* i386 */
1164
1165 #ifdef __x86_64__
1166 {
1167 int i;
1168 pd_entry_t *new_pgd;
1169 paddr_t l4_pd_ma;
1170
1171 l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
1172
1173 /*
1174 * Map user space address in kernel space and load
1175 * user cr3
1176 */
1177 new_pgd = pmap->pm_pdir;
1178 KASSERT(pmap == ci->ci_pmap);
1179
1180 /* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
1181 for (i = 0; i < PDIR_SLOT_PTE; i++) {
1182 KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
1183 if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
1184 xpq_queue_pte_update(
1185 l4_pd_ma + i * sizeof(pd_entry_t),
1186 new_pgd[i]);
1187 }
1188 }
1189
1190 xen_set_user_pgd(pmap_pdirpa(pmap, 0));
1191 ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
1192
1193 tlbflush();
1194 }
1195
1196 #endif /* __x86_64__ */
1197 #if defined(__x86_64__) || defined(PAE)
1198 /* old pmap no longer visible to pmap_kpm_sync_xcall() */
1199 atomic_and_32(&oldpmap->pm_xen_ptp_cpus, ~cpumask);
1200 mutex_exit(&ci->ci_kpm_mtx);
1201 #endif
1202 }
1203
1204 /*
1205 * pmap_cpu_init_late: perform late per-CPU initialization.
1206 * Short note about percpu PDIR pages:
1207 * Both the PAE and __x86_64__ architectures have per-cpu PDIR
1208 * tables. This is to get around Xen's pagetable setup constraints for
1209 * PAE (multiple L3[3]s cannot point to the same L2 - Xen
1210 * will refuse to pin a table setup this way.) and for multiple cpus
1211 * to map in different user pmaps on __x86_64__ (see: cpu_load_pmap())
1212 *
1213 * What this means for us is that the PDIR of the pmap_kernel() is
1214 * considered to be a canonical "SHADOW" PDIR with the following
1215 * properties:
1216 * - Its recursive mapping points to itself
1217 * - per-cpu recurseive mappings point to themselves on __x86_64__
1218 * - per-cpu L4 pages' kernel entries are expected to be in sync with
1219 * the shadow
1220 */
1221
1222 void
1223 pmap_cpu_init_late(struct cpu_info *ci)
1224 {
1225 #if defined(PAE) || defined(__x86_64__)
1226 /*
1227 * The BP has already its own PD page allocated during early
1228 * MD startup.
1229 */
1230
1231 #if defined(__x86_64__)
1232 /* Setup per-cpu normal_pdes */
1233 int i;
1234 extern pd_entry_t * const normal_pdes[];
1235 for (i = 0;i < PTP_LEVELS - 1;i++) {
1236 ci->ci_normal_pdes[i] = normal_pdes[i];
1237 }
1238 #endif /* __x86_64__ */
1239
1240 if (ci == &cpu_info_primary)
1241 return;
1242
1243 KASSERT(ci != NULL);
1244
1245 #if defined(PAE)
1246 cpu_alloc_l3_page(ci);
1247 KASSERT(ci->ci_pae_l3_pdirpa != 0);
1248
1249 /* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
1250 int i;
1251 for (i = 0 ; i < PDP_SIZE - 1; i++) {
1252 ci->ci_pae_l3_pdir[i] =
1253 xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PG_V;
1254 }
1255 #endif /* PAE */
1256
1257 ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1258 UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
1259
1260 if (ci->ci_kpm_pdir == NULL) {
1261 panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
1262 __func__, cpu_index(ci));
1263 }
1264 ci->ci_kpm_pdirpa = vtophys((vaddr_t) ci->ci_kpm_pdir);
1265 KASSERT(ci->ci_kpm_pdirpa != 0);
1266
1267 #if defined(__x86_64__)
1268 /*
1269 * Copy over the pmap_kernel() shadow L4 entries
1270 */
1271
1272 memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
1273
1274 /* Recursive kernel mapping */
1275 ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
1276 #elif defined(PAE)
1277 /* Copy over the pmap_kernel() shadow L2 entries that map the kernel */
1278 memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN, nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
1279 #endif /* __x86_64__ else PAE */
1280
1281 /* Xen wants R/O */
1282 pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
1283 (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
1284 pmap_update(pmap_kernel());
1285 #if defined(PAE)
1286 /* Initialise L3 entry 3. This mapping is shared across all
1287 * pmaps and is static, ie; loading a new pmap will not update
1288 * this entry.
1289 */
1290
1291 ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
1292
1293 /* Mark L3 R/O (Xen wants this) */
1294 pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
1295 (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
1296 pmap_update(pmap_kernel());
1297
1298 xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
1299
1300 #elif defined(__x86_64__)
1301 xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
1302 #endif /* PAE , __x86_64__ */
1303 #endif /* defined(PAE) || defined(__x86_64__) */
1304 }
1305
1306 /*
1307 * Notify all other cpus to halt.
1308 */
1309
1310 void
1311 cpu_broadcast_halt(void)
1312 {
1313 xen_broadcast_ipi(XEN_IPI_HALT);
1314 }
1315
1316 /*
1317 * Send a dummy ipi to a cpu.
1318 */
1319
1320 void
1321 cpu_kick(struct cpu_info *ci)
1322 {
1323 (void)xen_send_ipi(ci, XEN_IPI_KICK);
1324 }
1325