Home | History | Annotate | Line # | Download | only in x86
cpu.c revision 1.87
      1 /*	$NetBSD: cpu.c,v 1.87 2012/02/24 11:31:23 bouyer Exp $	*/
      2 /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp  */
      3 
      4 /*-
      5  * Copyright (c) 2000 The NetBSD Foundation, Inc.
      6  * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
      7  * All rights reserved.
      8  *
      9  * This code is derived from software contributed to The NetBSD Foundation
     10  * by RedBack Networks Inc.
     11  *
     12  * Author: Bill Sommerfeld
     13  *
     14  * Redistribution and use in source and binary forms, with or without
     15  * modification, are permitted provided that the following conditions
     16  * are met:
     17  * 1. Redistributions of source code must retain the above copyright
     18  *    notice, this list of conditions and the following disclaimer.
     19  * 2. Redistributions in binary form must reproduce the above copyright
     20  *    notice, this list of conditions and the following disclaimer in the
     21  *    documentation and/or other materials provided with the distribution.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     24  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     25  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     26  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     27  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     28  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     29  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     30  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     31  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     32  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     33  * POSSIBILITY OF SUCH DAMAGE.
     34  */
     35 
     36 /*
     37  * Copyright (c) 1999 Stefan Grefen
     38  *
     39  * Redistribution and use in source and binary forms, with or without
     40  * modification, are permitted provided that the following conditions
     41  * are met:
     42  * 1. Redistributions of source code must retain the above copyright
     43  *    notice, this list of conditions and the following disclaimer.
     44  * 2. Redistributions in binary form must reproduce the above copyright
     45  *    notice, this list of conditions and the following disclaimer in the
     46  *    documentation and/or other materials provided with the distribution.
     47  * 3. All advertising materials mentioning features or use of this software
     48  *    must display the following acknowledgement:
     49  *      This product includes software developed by the NetBSD
     50  *      Foundation, Inc. and its contributors.
     51  * 4. Neither the name of The NetBSD Foundation nor the names of its
     52  *    contributors may be used to endorse or promote products derived
     53  *    from this software without specific prior written permission.
     54  *
     55  * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
     56  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     57  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     58  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
     59  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     60  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     61  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     62  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     63  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     64  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     65  * SUCH DAMAGE.
     66  */
     67 
     68 #include <sys/cdefs.h>
     69 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.87 2012/02/24 11:31:23 bouyer Exp $");
     70 
     71 #include "opt_ddb.h"
     72 #include "opt_multiprocessor.h"
     73 #include "opt_mpbios.h"		/* for MPDEBUG */
     74 #include "opt_mtrr.h"
     75 #include "opt_xen.h"
     76 
     77 #include "lapic.h"
     78 #include "ioapic.h"
     79 
     80 #include <sys/param.h>
     81 #include <sys/proc.h>
     82 #include <sys/systm.h>
     83 #include <sys/device.h>
     84 #include <sys/kmem.h>
     85 #include <sys/cpu.h>
     86 #include <sys/cpufreq.h>
     87 #include <sys/atomic.h>
     88 #include <sys/reboot.h>
     89 #include <sys/idle.h>
     90 
     91 #include <uvm/uvm.h>
     92 
     93 #include <machine/cpufunc.h>
     94 #include <machine/cpuvar.h>
     95 #include <machine/pmap.h>
     96 #include <machine/vmparam.h>
     97 #include <machine/mpbiosvar.h>
     98 #include <machine/pcb.h>
     99 #include <machine/specialreg.h>
    100 #include <machine/segments.h>
    101 #include <machine/gdt.h>
    102 #include <machine/mtrr.h>
    103 #include <machine/pio.h>
    104 
    105 #ifdef i386
    106 #include <machine/npx.h>
    107 #else
    108 #include <machine/fpu.h>
    109 #endif
    110 
    111 #include <xen/xen.h>
    112 #include <xen/xen-public/vcpu.h>
    113 #include <xen/vcpuvar.h>
    114 
    115 #if NLAPIC > 0
    116 #include <machine/apicvar.h>
    117 #include <machine/i82489reg.h>
    118 #include <machine/i82489var.h>
    119 #endif
    120 
    121 #include <dev/ic/mc146818reg.h>
    122 #include <dev/isa/isareg.h>
    123 
    124 #if MAXCPUS > 32
    125 #error cpu_info contains 32bit bitmasks
    126 #endif
    127 
    128 static int	cpu_match(device_t, cfdata_t, void *);
    129 static void	cpu_attach(device_t, device_t, void *);
    130 static void	cpu_defer(device_t);
    131 static int	cpu_rescan(device_t, const char *, const int *);
    132 static void	cpu_childdetached(device_t, device_t);
    133 static int	vcpu_match(device_t, cfdata_t, void *);
    134 static void	vcpu_attach(device_t, device_t, void *);
    135 static void	cpu_attach_common(device_t, device_t, void *);
    136 void		cpu_offline_md(void);
    137 
    138 struct cpu_softc {
    139 	device_t sc_dev;		/* device tree glue */
    140 	struct cpu_info *sc_info;	/* pointer to CPU info */
    141 	bool sc_wasonline;
    142 };
    143 
    144 int mp_cpu_start(struct cpu_info *, vaddr_t);
    145 void mp_cpu_start_cleanup(struct cpu_info *);
    146 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
    147 				      mp_cpu_start_cleanup };
    148 
    149 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
    150     cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
    151 
    152 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
    153     vcpu_match, vcpu_attach, NULL, NULL);
    154 
    155 /*
    156  * Statically-allocated CPU info for the primary CPU (or the only
    157  * CPU, on uniprocessors).  The CPU info list is initialized to
    158  * point at it.
    159  */
    160 #ifdef TRAPLOG
    161 #include <machine/tlog.h>
    162 struct tlog tlog_primary;
    163 #endif
    164 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    165 	.ci_dev = 0,
    166 	.ci_self = &cpu_info_primary,
    167 	.ci_idepth = -1,
    168 	.ci_curlwp = &lwp0,
    169 	.ci_curldt = -1,
    170 	.ci_cpumask = 1,
    171 #ifdef TRAPLOG
    172 	.ci_tlog = &tlog_primary,
    173 #endif
    174 
    175 };
    176 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
    177 	.ci_dev = 0,
    178 	.ci_self = &phycpu_info_primary,
    179 };
    180 
    181 struct cpu_info *cpu_info_list = &cpu_info_primary;
    182 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
    183 
    184 uint32_t cpus_attached = 1;
    185 uint32_t cpus_running = 1;
    186 
    187 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
    188 			  *	[0] basic features %edx
    189 			  *	[1] basic features %ecx
    190 			  *	[2] extended features %edx
    191 			  *	[3] extended features %ecx
    192 			  *	[4] VIA padlock features
    193 			  */
    194 
    195 bool x86_mp_online;
    196 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
    197 
    198 #if defined(MULTIPROCESSOR)
    199 void    	cpu_hatch(void *);
    200 static void    	cpu_boot_secondary(struct cpu_info *ci);
    201 static void    	cpu_start_secondary(struct cpu_info *ci);
    202 #endif	/* MULTIPROCESSOR */
    203 
    204 static int
    205 cpu_match(device_t parent, cfdata_t match, void *aux)
    206 {
    207 
    208 	return 1;
    209 }
    210 
    211 static void
    212 cpu_attach(device_t parent, device_t self, void *aux)
    213 {
    214 	struct cpu_softc *sc = device_private(self);
    215 	struct cpu_attach_args *caa = aux;
    216 	struct cpu_info *ci;
    217 	uintptr_t ptr;
    218 	static int nphycpu = 0;
    219 
    220 	sc->sc_dev = self;
    221 
    222 	/*
    223 	 * If we're an Application Processor, allocate a cpu_info
    224 	 * If we're the first attached CPU use the primary cpu_info,
    225 	 * otherwise allocate a new one
    226 	 */
    227 	aprint_naive("\n");
    228 	aprint_normal("\n");
    229 	if (nphycpu > 0) {
    230 		struct cpu_info *tmp;
    231 		ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    232 		    KM_SLEEP);
    233 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    234 		ci->ci_curldt = -1;
    235 
    236 		tmp = phycpu_info_list;
    237 		while (tmp->ci_next)
    238 			tmp = tmp->ci_next;
    239 
    240 		tmp->ci_next = ci;
    241 	} else {
    242 		ci = &phycpu_info_primary;
    243 	}
    244 
    245 	ci->ci_self = ci;
    246 	sc->sc_info = ci;
    247 
    248 	ci->ci_dev = self;
    249 	ci->ci_acpiid = caa->cpu_id;
    250 	ci->ci_cpuid = caa->cpu_number;
    251 	ci->ci_vcpu = NULL;
    252 	ci->ci_index = nphycpu++;
    253 	ci->ci_cpumask = (1 << cpu_index(ci));
    254 
    255 	if (!pmf_device_register(self, NULL, NULL))
    256 		aprint_error_dev(self, "couldn't establish power handler\n");
    257 
    258 	(void)config_defer(self, cpu_defer);
    259 }
    260 
    261 static void
    262 cpu_defer(device_t self)
    263 {
    264 	cpu_rescan(self, NULL, NULL);
    265 }
    266 
    267 static int
    268 cpu_rescan(device_t self, const char *ifattr, const int *locators)
    269 {
    270 	struct cpu_softc *sc = device_private(self);
    271 	struct cpufeature_attach_args cfaa;
    272 	struct cpu_info *ci = sc->sc_info;
    273 
    274 	memset(&cfaa, 0, sizeof(cfaa));
    275 	cfaa.ci = ci;
    276 
    277 	if (ifattr_match(ifattr, "cpufeaturebus")) {
    278 
    279 		if (ci->ci_frequency == NULL) {
    280 			cfaa.name = "frequency";
    281 			ci->ci_frequency = config_found_ia(self,
    282 			    "cpufeaturebus", &cfaa, NULL);
    283 		}
    284 	}
    285 
    286 	return 0;
    287 }
    288 
    289 static void
    290 cpu_childdetached(device_t self, device_t child)
    291 {
    292 	struct cpu_softc *sc = device_private(self);
    293 	struct cpu_info *ci = sc->sc_info;
    294 
    295 	if (ci->ci_frequency == child)
    296 		ci->ci_frequency = NULL;
    297 }
    298 
    299 static int
    300 vcpu_match(device_t parent, cfdata_t match, void *aux)
    301 {
    302 	struct vcpu_attach_args *vcaa = aux;
    303 	struct vcpu_runstate_info vcr;
    304 	int error;
    305 
    306 	if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
    307 		error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
    308 					   vcaa->vcaa_caa.cpu_number,
    309 					   &vcr);
    310 		switch (error) {
    311 		case 0:
    312 			return 1;
    313 		case -ENOENT:
    314 			return 0;
    315 		default:
    316 			panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
    317 		}
    318 	}
    319 
    320 	return 0;
    321 }
    322 
    323 static void
    324 vcpu_attach(device_t parent, device_t self, void *aux)
    325 {
    326 	struct vcpu_attach_args *vcaa = aux;
    327 
    328 	KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
    329 	vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
    330 	cpu_attach_common(parent, self, &vcaa->vcaa_caa);
    331 
    332 	if (!pmf_device_register(self, NULL, NULL))
    333 		aprint_error_dev(self, "couldn't establish power handler\n");
    334 }
    335 
    336 static int
    337 vcpu_is_up(struct cpu_info *ci)
    338 {
    339 	KASSERT(ci != NULL);
    340 	return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
    341 }
    342 
    343 static void
    344 cpu_vm_init(struct cpu_info *ci)
    345 {
    346 	int ncolors = 2, i;
    347 
    348 	for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
    349 		struct x86_cache_info *cai;
    350 		int tcolors;
    351 
    352 		cai = &ci->ci_cinfo[i];
    353 
    354 		tcolors = atop(cai->cai_totalsize);
    355 		switch(cai->cai_associativity) {
    356 		case 0xff:
    357 			tcolors = 1; /* fully associative */
    358 			break;
    359 		case 0:
    360 		case 1:
    361 			break;
    362 		default:
    363 			tcolors /= cai->cai_associativity;
    364 		}
    365 		ncolors = max(ncolors, tcolors);
    366 	}
    367 
    368 	/*
    369 	 * Knowing the size of the largest cache on this CPU, potentially
    370 	 * re-color our pages.
    371 	 */
    372 	aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
    373 	uvm_page_recolor(ncolors);
    374 }
    375 
    376 static void
    377 cpu_attach_common(device_t parent, device_t self, void *aux)
    378 {
    379 	struct cpu_softc *sc = device_private(self);
    380 	struct cpu_attach_args *caa = aux;
    381 	struct cpu_info *ci;
    382 	uintptr_t ptr;
    383 	int cpunum = caa->cpu_number;
    384 	static bool again = false;
    385 
    386 	sc->sc_dev = self;
    387 
    388 	/*
    389 	 * If we're an Application Processor, allocate a cpu_info
    390 	 * structure, otherwise use the primary's.
    391 	 */
    392 	if (caa->cpu_role == CPU_ROLE_AP) {
    393 		aprint_naive(": Application Processor\n");
    394 		ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
    395 		    KM_SLEEP);
    396 		ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
    397 		memset(ci, 0, sizeof(*ci));
    398 #ifdef TRAPLOG
    399 		ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
    400 #endif
    401 	} else {
    402 		aprint_naive(": %s Processor\n",
    403 		    caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
    404 		ci = &cpu_info_primary;
    405 	}
    406 
    407 	ci->ci_self = ci;
    408 	sc->sc_info = ci;
    409 	ci->ci_dev = self;
    410 	ci->ci_cpuid = cpunum;
    411 
    412 	KASSERT(HYPERVISOR_shared_info != NULL);
    413 	ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
    414 
    415 	KASSERT(ci->ci_func == 0);
    416 	ci->ci_func = caa->cpu_func;
    417 
    418 	/* Must be called before mi_cpu_attach(). */
    419 	cpu_vm_init(ci);
    420 
    421 	if (caa->cpu_role == CPU_ROLE_AP) {
    422 		int error;
    423 
    424 		error = mi_cpu_attach(ci);
    425 
    426 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    427 		if (error != 0) {
    428 			aprint_normal("\n");
    429 			aprint_error_dev(self,
    430 			    "mi_cpu_attach failed with %d\n", error);
    431 			return;
    432 		}
    433 
    434 	} else {
    435 		KASSERT(ci->ci_data.cpu_idlelwp != NULL);
    436 	}
    437 
    438 	ci->ci_cpumask = (1 << cpu_index(ci));
    439 	pmap_reference(pmap_kernel());
    440 	ci->ci_pmap = pmap_kernel();
    441 	ci->ci_tlbstate = TLBSTATE_STALE;
    442 
    443 	/*
    444 	 * Boot processor may not be attached first, but the below
    445 	 * must be done to allow booting other processors.
    446 	 */
    447 	if (!again) {
    448 		atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
    449 		/* Basic init. */
    450 		cpu_intr_init(ci);
    451 		cpu_get_tsc_freq(ci);
    452 		cpu_init(ci);
    453 		pmap_cpu_init_late(ci);
    454 
    455 		/* Every processor needs to init it's own ipi h/w (similar to lapic) */
    456 		xen_ipi_init();
    457 
    458 		/* Make sure DELAY() is initialized. */
    459 		DELAY(1);
    460 		again = true;
    461 	}
    462 
    463 	/* further PCB init done later. */
    464 
    465 	switch (caa->cpu_role) {
    466 	case CPU_ROLE_SP:
    467 		atomic_or_32(&ci->ci_flags, CPUF_SP);
    468 		cpu_identify(ci);
    469 		x86_cpu_idle_init();
    470 
    471 		break;
    472 
    473 	case CPU_ROLE_BP:
    474 		atomic_or_32(&ci->ci_flags, CPUF_BSP);
    475 		cpu_identify(ci);
    476 		x86_cpu_idle_init();
    477 
    478 		break;
    479 
    480 	case CPU_ROLE_AP:
    481 		atomic_or_32(&ci->ci_flags, CPUF_AP);
    482 
    483 		/*
    484 		 * report on an AP
    485 		 */
    486 
    487 #if defined(MULTIPROCESSOR)
    488 		/* interrupt handler stack */
    489 		cpu_intr_init(ci);
    490 
    491 		/* Setup per-cpu memory for gdt */
    492 		gdt_alloc_cpu(ci);
    493 
    494 		pmap_cpu_init_late(ci);
    495 		cpu_start_secondary(ci);
    496 
    497 		if (ci->ci_flags & CPUF_PRESENT) {
    498 			struct cpu_info *tmp;
    499 
    500 			cpu_identify(ci);
    501 			tmp = cpu_info_list;
    502 			while (tmp->ci_next)
    503 				tmp = tmp->ci_next;
    504 
    505 			tmp->ci_next = ci;
    506 		}
    507 #else
    508 		aprint_error(": not started\n");
    509 #endif
    510 		break;
    511 
    512 	default:
    513 		aprint_normal("\n");
    514 		panic("unknown processor type??\n");
    515 	}
    516 
    517 	atomic_or_32(&cpus_attached, ci->ci_cpumask);
    518 
    519 #ifdef MPVERBOSE
    520 	if (mp_verbose) {
    521 		struct lwp *l = ci->ci_data.cpu_idlelwp;
    522 		struct pcb *pcb = lwp_getpcb(l);
    523 
    524 		aprint_verbose_dev(self,
    525 		    "idle lwp at %p, idle sp at 0x%p\n",
    526 		    l,
    527 #ifdef i386
    528 		    (void *)pcb->pcb_esp
    529 #else /* i386 */
    530 		    (void *)pcb->pcb_rsp
    531 #endif /* i386 */
    532 		);
    533 
    534 	}
    535 #endif /* MPVERBOSE */
    536 }
    537 
    538 /*
    539  * Initialize the processor appropriately.
    540  */
    541 
    542 void
    543 cpu_init(struct cpu_info *ci)
    544 {
    545 
    546 	/*
    547 	 * If we have FXSAVE/FXRESTOR, use them.
    548 	 */
    549 	if (cpu_feature[0] & CPUID_FXSR) {
    550 		lcr4(rcr4() | CR4_OSFXSR);
    551 
    552 		/*
    553 		 * If we have SSE/SSE2, enable XMM exceptions.
    554 		 */
    555 		if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
    556 			lcr4(rcr4() | CR4_OSXMMEXCPT);
    557 	}
    558 
    559 #ifdef __x86_64__
    560 	/* No user PGD mapped for this CPU yet */
    561 	ci->ci_xen_current_user_pgd = 0;
    562 #endif
    563 #if defined(__x86_64__) || defined(PAE)
    564 	mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
    565 #endif
    566 
    567 	atomic_or_32(&cpus_running, ci->ci_cpumask);
    568 	atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
    569 }
    570 
    571 
    572 #ifdef MULTIPROCESSOR
    573 
    574 void
    575 cpu_boot_secondary_processors(void)
    576 {
    577 	struct cpu_info *ci;
    578 	u_long i;
    579 	for (i = 0; i < maxcpus; i++) {
    580 		ci = cpu_lookup(i);
    581 		if (ci == NULL)
    582 			continue;
    583 		if (ci->ci_data.cpu_idlelwp == NULL)
    584 			continue;
    585 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    586 			continue;
    587 		if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
    588 			continue;
    589 		cpu_boot_secondary(ci);
    590 	}
    591 
    592 	x86_mp_online = true;
    593 }
    594 
    595 static void
    596 cpu_init_idle_lwp(struct cpu_info *ci)
    597 {
    598 	struct lwp *l = ci->ci_data.cpu_idlelwp;
    599 	struct pcb *pcb = lwp_getpcb(l);
    600 
    601 	pcb->pcb_cr0 = rcr0();
    602 }
    603 
    604 void
    605 cpu_init_idle_lwps(void)
    606 {
    607 	struct cpu_info *ci;
    608 	u_long i;
    609 
    610 	for (i = 0; i < maxcpus; i++) {
    611 		ci = cpu_lookup(i);
    612 		if (ci == NULL)
    613 			continue;
    614 		if (ci->ci_data.cpu_idlelwp == NULL)
    615 			continue;
    616 		if ((ci->ci_flags & CPUF_PRESENT) == 0)
    617 			continue;
    618 		cpu_init_idle_lwp(ci);
    619 	}
    620 }
    621 
    622 static void
    623 cpu_start_secondary(struct cpu_info *ci)
    624 {
    625 	int i;
    626 
    627 	aprint_debug_dev(ci->ci_dev, "starting\n");
    628 
    629 	ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
    630 
    631 	if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
    632 		return;
    633 	}
    634 
    635 	/*
    636 	 * wait for it to become ready
    637 	 */
    638 	for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
    639 		delay(10);
    640 	}
    641 	if ((ci->ci_flags & CPUF_PRESENT) == 0) {
    642 		aprint_error_dev(ci->ci_dev, "failed to become ready\n");
    643 #if defined(MPDEBUG) && defined(DDB)
    644 		printf("dropping into debugger; continue from here to resume boot\n");
    645 		Debugger();
    646 #endif
    647 	}
    648 
    649 	CPU_START_CLEANUP(ci);
    650 }
    651 
    652 void
    653 cpu_boot_secondary(struct cpu_info *ci)
    654 {
    655 	int i;
    656 	atomic_or_32(&ci->ci_flags, CPUF_GO);
    657 	for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
    658 		delay(10);
    659 	}
    660 	if ((ci->ci_flags & CPUF_RUNNING) == 0) {
    661 		aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
    662 #if defined(MPDEBUG) && defined(DDB)
    663 		printf("dropping into debugger; continue from here to resume boot\n");
    664 		Debugger();
    665 #endif
    666 	}
    667 }
    668 
    669 /*
    670  * APs end up here immediately after initialisation and VCPUOP_up in
    671  * mp_cpu_start().
    672  * At this point, we are running in the idle pcb/idle stack of the new
    673  * CPU.  This function jumps to the idle loop and starts looking for
    674  * work.
    675  */
    676 extern void x86_64_tls_switch(struct lwp *);
    677 void
    678 cpu_hatch(void *v)
    679 {
    680 	struct cpu_info *ci = (struct cpu_info *)v;
    681 	struct pcb *pcb;
    682 	int s, i;
    683 
    684 	/* Setup TLS and kernel GS/FS */
    685 	cpu_init_msrs(ci, true);
    686 	cpu_init_idt();
    687 	gdt_init_cpu(ci);
    688 
    689 	cpu_probe(ci);
    690 
    691 	atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
    692 
    693 	while ((ci->ci_flags & CPUF_GO) == 0) {
    694 		/* Don't use delay, boot CPU may be patching the text. */
    695 		for (i = 10000; i != 0; i--)
    696 			x86_pause();
    697 	}
    698 
    699 	/* Because the text may have been patched in x86_patch(). */
    700 	x86_flush();
    701 	tlbflushg();
    702 
    703 	KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
    704 
    705 	pcb = lwp_getpcb(curlwp);
    706 	pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0);
    707 	pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
    708 
    709 	xen_ipi_init();
    710 
    711 	xen_initclocks();
    712 
    713 #ifdef __x86_64__
    714 	fpuinit(ci);
    715 #endif
    716 
    717 	lldt(GSEL(GLDT_SEL, SEL_KPL));
    718 
    719 	cpu_init(ci);
    720 	cpu_get_tsc_freq(ci);
    721 
    722 	s = splhigh();
    723 	x86_enable_intr();
    724 	splx(s);
    725 
    726 	aprint_debug_dev(ci->ci_dev, "running\n");
    727 
    728 	cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
    729 
    730 	panic("switch to idle_loop context returned!\n");
    731 	/* NOTREACHED */
    732 }
    733 
    734 #if defined(DDB)
    735 
    736 #include <ddb/db_output.h>
    737 #include <machine/db_machdep.h>
    738 
    739 /*
    740  * Dump CPU information from ddb.
    741  */
    742 void
    743 cpu_debug_dump(void)
    744 {
    745 	struct cpu_info *ci;
    746 	CPU_INFO_ITERATOR cii;
    747 
    748 	db_printf("addr		dev	id	flags	ipis	curlwp 		fpcurlwp\n");
    749 	for (CPU_INFO_FOREACH(cii, ci)) {
    750 		db_printf("%p	%s	%ld	%x	%x	%10p	%10p\n",
    751 		    ci,
    752 		    ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
    753 		    (long)ci->ci_cpuid,
    754 		    ci->ci_flags, ci->ci_ipis,
    755 		    ci->ci_curlwp,
    756 		    ci->ci_fpcurlwp);
    757 	}
    758 }
    759 #endif /* DDB */
    760 
    761 #endif /* MULTIPROCESSOR */
    762 
    763 extern void hypervisor_callback(void);
    764 extern void failsafe_callback(void);
    765 #ifdef __x86_64__
    766 typedef void (vector)(void);
    767 extern vector Xsyscall, Xsyscall32;
    768 #endif
    769 
    770 /*
    771  * Setup the "trampoline". On Xen, we setup nearly all cpu context
    772  * outside a trampoline, so we prototype and call targetip like so:
    773  * void targetip(struct cpu_info *);
    774  */
    775 
    776 static void
    777 gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
    778 {
    779 	int i;
    780 	for (i = 0; i < roundup(entries, PAGE_SIZE) >> PAGE_SHIFT; i++) {
    781 
    782 		frames[i] = ((paddr_t) xpmap_ptetomach(
    783 				(pt_entry_t *) (base + (i << PAGE_SHIFT))))
    784 			>> PAGE_SHIFT;
    785 
    786 		/* Mark Read-only */
    787 		pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
    788 		    PG_RW);
    789 	}
    790 }
    791 
    792 #ifdef __x86_64__
    793 extern char *ldtstore;
    794 
    795 static void
    796 xen_init_amd64_vcpuctxt(struct cpu_info *ci,
    797 			struct vcpu_guest_context *initctx,
    798 			void targetrip(struct cpu_info *))
    799 {
    800 	/* page frames to point at GDT */
    801 	extern int gdt_size;
    802 	paddr_t frames[16];
    803 	psize_t gdt_ents;
    804 
    805 	struct lwp *l;
    806 	struct pcb *pcb;
    807 
    808 	volatile struct vcpu_info *vci;
    809 
    810 	KASSERT(ci != NULL);
    811 	KASSERT(ci != &cpu_info_primary);
    812 	KASSERT(initctx != NULL);
    813 	KASSERT(targetrip != NULL);
    814 
    815 	memset(initctx, 0, sizeof *initctx);
    816 
    817 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
    818 	KASSERT(gdt_ents <= 16);
    819 
    820 	gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
    821 
    822 	/* Initialise the vcpu context: We use idle_loop()'s pcb context. */
    823 
    824 	l = ci->ci_data.cpu_idlelwp;
    825 
    826 	KASSERT(l != NULL);
    827 	pcb = lwp_getpcb(l);
    828 	KASSERT(pcb != NULL);
    829 
    830 	/* resume with interrupts off */
    831 	vci = ci->ci_vcpu;
    832 	vci->evtchn_upcall_mask = 1;
    833 	xen_mb();
    834 
    835 	/* resume in kernel-mode */
    836 	initctx->flags = VGCF_in_kernel | VGCF_online;
    837 
    838 	/* Stack and entry points:
    839 	 * We arrange for the stack frame for cpu_hatch() to
    840 	 * appear as a callee frame of lwp_trampoline(). Being a
    841 	 * leaf frame prevents trampling on any of the MD stack setup
    842 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
    843 	 */
    844 
    845 	initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
    846 	initctx->user_regs.rip = (vaddr_t) targetrip;
    847 
    848 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
    849 
    850 	initctx->user_regs.rflags = pcb->pcb_flags;
    851 	initctx->user_regs.rsp = pcb->pcb_rsp;
    852 
    853 	/* Data segments */
    854 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
    855 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
    856 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
    857 
    858 	/* GDT */
    859 	memcpy(initctx->gdt_frames, frames, sizeof frames);
    860 	initctx->gdt_ents = gdt_ents;
    861 
    862 	/* LDT */
    863 	initctx->ldt_base = (unsigned long) ldtstore;
    864 	initctx->ldt_ents = LDT_SIZE >> 3;
    865 
    866 	/* Kernel context state */
    867 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
    868 	initctx->kernel_sp = pcb->pcb_rsp0;
    869 	initctx->ctrlreg[0] = pcb->pcb_cr0;
    870 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
    871 	initctx->ctrlreg[2] = (vaddr_t) targetrip;
    872 	/*
    873 	 * Use pmap_kernel() L4 PD directly, until we setup the
    874 	 * per-cpu L4 PD in pmap_cpu_init_late()
    875 	 */
    876 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
    877 	initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
    878 
    879 
    880 	/* Xen callbacks */
    881 	initctx->event_callback_eip = (unsigned long) hypervisor_callback;
    882 	initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
    883 	initctx->syscall_callback_eip = (unsigned long) Xsyscall;
    884 
    885 	return;
    886 }
    887 #else /* i386 */
    888 extern union descriptor *ldt;
    889 extern void Xsyscall(void);
    890 
    891 static void
    892 xen_init_i386_vcpuctxt(struct cpu_info *ci,
    893 			struct vcpu_guest_context *initctx,
    894 			void targeteip(struct cpu_info *))
    895 {
    896 	/* page frames to point at GDT */
    897 	extern int gdt_size;
    898 	paddr_t frames[16];
    899 	psize_t gdt_ents;
    900 
    901 	struct lwp *l;
    902 	struct pcb *pcb;
    903 
    904 	volatile struct vcpu_info *vci;
    905 
    906 	KASSERT(ci != NULL);
    907 	KASSERT(ci != &cpu_info_primary);
    908 	KASSERT(initctx != NULL);
    909 	KASSERT(targeteip != NULL);
    910 
    911 	memset(initctx, 0, sizeof *initctx);
    912 
    913 	gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
    914 	KASSERT(gdt_ents <= 16);
    915 
    916 	gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
    917 
    918 	/*
    919 	 * Initialise the vcpu context:
    920 	 * We use this cpu's idle_loop() pcb context.
    921 	 */
    922 
    923 	l = ci->ci_data.cpu_idlelwp;
    924 
    925 	KASSERT(l != NULL);
    926 	pcb = lwp_getpcb(l);
    927 	KASSERT(pcb != NULL);
    928 
    929 	/* resume with interrupts off */
    930 	vci = ci->ci_vcpu;
    931 	vci->evtchn_upcall_mask = 1;
    932 	xen_mb();
    933 
    934 	/* resume in kernel-mode */
    935 	initctx->flags = VGCF_in_kernel | VGCF_online;
    936 
    937 	/* Stack frame setup for cpu_hatch():
    938 	 * We arrange for the stack frame for cpu_hatch() to
    939 	 * appear as a callee frame of lwp_trampoline(). Being a
    940 	 * leaf frame prevents trampling on any of the MD stack setup
    941 	 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
    942 	 */
    943 
    944 	initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
    945 						      arg1 */
    946 	{ /* targeteip(ci); */
    947 		uint32_t *arg = (uint32_t *) initctx->user_regs.esp;
    948 		arg[1] = (uint32_t) ci; /* arg1 */
    949 
    950 	}
    951 
    952 	initctx->user_regs.eip = (vaddr_t) targeteip;
    953 	initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
    954 	initctx->user_regs.eflags |= pcb->pcb_iopl;
    955 
    956 	/* Data segments */
    957 	initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
    958 	initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
    959 	initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
    960 	initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
    961 
    962 	/* GDT */
    963 	memcpy(initctx->gdt_frames, frames, sizeof frames);
    964 	initctx->gdt_ents = gdt_ents;
    965 
    966 	/* LDT */
    967 	initctx->ldt_base = (unsigned long) ldt;
    968 	initctx->ldt_ents = NLDT;
    969 
    970 	/* Kernel context state */
    971 	initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
    972 	initctx->kernel_sp = pcb->pcb_esp0;
    973 	initctx->ctrlreg[0] = pcb->pcb_cr0;
    974 	initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
    975 	initctx->ctrlreg[2] = (vaddr_t) targeteip;
    976 #ifdef PAE
    977 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
    978 #else /* PAE */
    979 	initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(pcb->pcb_cr3)));
    980 #endif /* PAE */
    981 	initctx->ctrlreg[4] = /* CR4_PAE |  */CR4_OSFXSR | CR4_OSXMMEXCPT;
    982 
    983 
    984 	/* Xen callbacks */
    985 	initctx->event_callback_eip = (unsigned long) hypervisor_callback;
    986 	initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
    987 	initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
    988 	initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
    989 
    990 	return;
    991 }
    992 #endif /* __x86_64__ */
    993 
    994 int
    995 mp_cpu_start(struct cpu_info *ci, vaddr_t target)
    996 {
    997 
    998 	int hyperror;
    999 	struct vcpu_guest_context vcpuctx;
   1000 
   1001 	KASSERT(ci != NULL);
   1002 	KASSERT(ci != &cpu_info_primary);
   1003 	KASSERT(ci->ci_flags & CPUF_AP);
   1004 
   1005 #ifdef __x86_64__
   1006 	xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
   1007 #else  /* i386 */
   1008 	xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
   1009 #endif /* __x86_64__ */
   1010 
   1011 	/* Initialise the given vcpu to execute cpu_hatch(ci); */
   1012 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
   1013 		aprint_error(": context initialisation failed. errno = %d\n", hyperror);
   1014 		return hyperror;
   1015 	}
   1016 
   1017 	/* Start it up */
   1018 
   1019 	/* First bring it down */
   1020 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
   1021 		aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
   1022 		return hyperror;
   1023 	}
   1024 
   1025 	if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
   1026 		aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
   1027 		return hyperror;
   1028 	}
   1029 
   1030 	if (!vcpu_is_up(ci)) {
   1031 		aprint_error(": did not come up\n");
   1032 		return -1;
   1033 	}
   1034 
   1035 	return 0;
   1036 }
   1037 
   1038 void
   1039 mp_cpu_start_cleanup(struct cpu_info *ci)
   1040 {
   1041 	if (vcpu_is_up(ci)) {
   1042 		aprint_debug_dev(ci->ci_dev, "is started.\n");
   1043 	}
   1044 	else {
   1045 		aprint_error_dev(ci->ci_dev, "did not start up.\n");
   1046 	}
   1047 
   1048 }
   1049 
   1050 void
   1051 cpu_init_msrs(struct cpu_info *ci, bool full)
   1052 {
   1053 #ifdef __x86_64__
   1054 	if (full) {
   1055 		HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
   1056 		HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
   1057 		HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
   1058 	}
   1059 #endif	/* __x86_64__ */
   1060 
   1061 	if (cpu_feature[2] & CPUID_NOX)
   1062 		wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
   1063 
   1064 }
   1065 
   1066 void
   1067 cpu_offline_md(void)
   1068 {
   1069         int s;
   1070 
   1071         s = splhigh();
   1072 #ifdef __i386__
   1073         npxsave_cpu(true);
   1074 #else
   1075         fpusave_cpu(true);
   1076 #endif
   1077         splx(s);
   1078 }
   1079 
   1080 void
   1081 cpu_get_tsc_freq(struct cpu_info *ci)
   1082 {
   1083 	uint32_t vcpu_tversion;
   1084 	const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
   1085 
   1086 	vcpu_tversion = tinfo->version;
   1087 	while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
   1088 
   1089 	uint64_t freq = 1000000000ULL << 32;
   1090 	freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
   1091 	if ( tinfo->tsc_shift < 0 )
   1092 		freq = freq << -tinfo->tsc_shift;
   1093 	else
   1094 		freq = freq >> tinfo->tsc_shift;
   1095 	ci->ci_data.cpu_cc_freq = freq;
   1096 }
   1097 
   1098 void
   1099 x86_cpu_idle_xen(void)
   1100 {
   1101 	struct cpu_info *ci = curcpu();
   1102 
   1103 	KASSERT(ci->ci_ilevel == IPL_NONE);
   1104 
   1105 	x86_disable_intr();
   1106 	if (!__predict_false(ci->ci_want_resched)) {
   1107 		idle_block();
   1108 	} else {
   1109 		x86_enable_intr();
   1110 	}
   1111 }
   1112 
   1113 /*
   1114  * Loads pmap for the current CPU.
   1115  */
   1116 void
   1117 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
   1118 {
   1119 	KASSERT(pmap != pmap_kernel());
   1120 
   1121 #if defined(__x86_64__) || defined(PAE)
   1122 	struct cpu_info *ci = curcpu();
   1123 	uint32_t cpumask = ci->ci_cpumask;
   1124 
   1125 	mutex_enter(&ci->ci_kpm_mtx);
   1126 	/* make new pmap visible to pmap_kpm_sync_xcall() */
   1127 	atomic_or_32(&pmap->pm_xen_ptp_cpus, cpumask);
   1128 #endif
   1129 #ifdef i386
   1130 #ifdef PAE
   1131 	{
   1132 		int i;
   1133 		paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
   1134 		/* don't update the kernel L3 slot */
   1135 		for (i = 0 ; i < PDP_SIZE - 1; i++) {
   1136 			xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
   1137 			    xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
   1138 		}
   1139 		tlbflush();
   1140 	}
   1141 #else /* PAE */
   1142 	lcr3(pmap_pdirpa(pmap, 0));
   1143 #endif /* PAE */
   1144 #endif /* i386 */
   1145 
   1146 #ifdef __x86_64__
   1147 	{
   1148 		int i;
   1149 		pd_entry_t *new_pgd;
   1150 		paddr_t l4_pd_ma;
   1151 
   1152 		l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
   1153 
   1154 		/*
   1155 		 * Map user space address in kernel space and load
   1156 		 * user cr3
   1157 		 */
   1158 		new_pgd = pmap->pm_pdir;
   1159 		KASSERT(pmap == ci->ci_pmap);
   1160 
   1161 		/* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
   1162 		for (i = 0; i < PDIR_SLOT_PTE; i++) {
   1163 			KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
   1164 			if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
   1165 				xpq_queue_pte_update(
   1166 				   l4_pd_ma + i * sizeof(pd_entry_t),
   1167 				    new_pgd[i]);
   1168 			}
   1169 		}
   1170 
   1171 		xen_set_user_pgd(pmap_pdirpa(pmap, 0));
   1172 		ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
   1173 
   1174 		tlbflush();
   1175 	}
   1176 
   1177 #endif /* __x86_64__ */
   1178 #if defined(__x86_64__) || defined(PAE)
   1179 	/* old pmap no longer visible to pmap_kpm_sync_xcall() */
   1180 	atomic_and_32(&oldpmap->pm_xen_ptp_cpus, ~cpumask);
   1181 	mutex_exit(&ci->ci_kpm_mtx);
   1182 #endif
   1183 }
   1184 
   1185  /*
   1186   * pmap_cpu_init_late: perform late per-CPU initialization.
   1187   * Short note about percpu PDIR pages:
   1188   * Both the PAE and __x86_64__ architectures have per-cpu PDIR
   1189   * tables. This is to get around Xen's pagetable setup constraints for
   1190   * PAE (multiple L3[3]s cannot point to the same L2 - Xen
   1191   * will refuse to pin a table setup this way.) and for multiple cpus
   1192   * to map in different user pmaps on __x86_64__ (see: cpu_load_pmap())
   1193   *
   1194   * What this means for us is that the PDIR of the pmap_kernel() is
   1195   * considered to be a canonical "SHADOW" PDIR with the following
   1196   * properties:
   1197   * - Its recursive mapping points to itself
   1198   * - per-cpu recurseive mappings point to themselves on __x86_64__
   1199   * - per-cpu L4 pages' kernel entries are expected to be in sync with
   1200   *   the shadow
   1201   */
   1202 
   1203 void
   1204 pmap_cpu_init_late(struct cpu_info *ci)
   1205 {
   1206 #if defined(PAE) || defined(__x86_64__)
   1207 	/*
   1208 	 * The BP has already its own PD page allocated during early
   1209 	 * MD startup.
   1210 	 */
   1211 
   1212 #if defined(__x86_64__)
   1213 	/* Setup per-cpu normal_pdes */
   1214 	int i;
   1215 	extern pd_entry_t * const normal_pdes[];
   1216 	for (i = 0;i < PTP_LEVELS - 1;i++) {
   1217 		ci->ci_normal_pdes[i] = normal_pdes[i];
   1218 	}
   1219 #endif /* __x86_64__ */
   1220 
   1221 	if (ci == &cpu_info_primary)
   1222 		return;
   1223 
   1224 	KASSERT(ci != NULL);
   1225 
   1226 #if defined(PAE)
   1227 	cpu_alloc_l3_page(ci);
   1228 	KASSERT(ci->ci_pae_l3_pdirpa != 0);
   1229 
   1230 	/* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
   1231 	int i;
   1232 	for (i = 0 ; i < PDP_SIZE - 1; i++) {
   1233 		ci->ci_pae_l3_pdir[i] =
   1234 		    xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PG_V;
   1235 	}
   1236 #endif /* PAE */
   1237 
   1238 	ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
   1239 	    UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
   1240 
   1241 	if (ci->ci_kpm_pdir == NULL) {
   1242 		panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
   1243 		      __func__, cpu_index(ci));
   1244 	}
   1245 	ci->ci_kpm_pdirpa = vtophys((vaddr_t) ci->ci_kpm_pdir);
   1246 	KASSERT(ci->ci_kpm_pdirpa != 0);
   1247 
   1248 #if defined(__x86_64__)
   1249 	/*
   1250 	 * Copy over the pmap_kernel() shadow L4 entries
   1251 	 */
   1252 
   1253 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
   1254 
   1255 	/* Recursive kernel mapping */
   1256 	ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
   1257 #elif defined(PAE)
   1258 	/* Copy over the pmap_kernel() shadow L2 entries that map the kernel */
   1259 	memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN, nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
   1260 #endif /* __x86_64__ else PAE */
   1261 
   1262 	/* Xen wants R/O */
   1263 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
   1264 	    (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
   1265 	pmap_update(pmap_kernel());
   1266 #if defined(PAE)
   1267 	/* Initialise L3 entry 3. This mapping is shared across all
   1268 	 * pmaps and is static, ie; loading a new pmap will not update
   1269 	 * this entry.
   1270 	 */
   1271 
   1272 	ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
   1273 
   1274 	/* Mark L3 R/O (Xen wants this) */
   1275 	pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
   1276 	    (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
   1277 	pmap_update(pmap_kernel());
   1278 
   1279 	xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
   1280 
   1281 #elif defined(__x86_64__)
   1282 	xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
   1283 #endif /* PAE , __x86_64__ */
   1284 #endif /* defined(PAE) || defined(__x86_64__) */
   1285 }
   1286 
   1287 /*
   1288  * Notify all other cpus to halt.
   1289  */
   1290 
   1291 void
   1292 cpu_broadcast_halt(void)
   1293 {
   1294 	xen_broadcast_ipi(XEN_IPI_HALT);
   1295 }
   1296 
   1297 /*
   1298  * Send a dummy ipi to a cpu.
   1299  */
   1300 
   1301 void
   1302 cpu_kick(struct cpu_info *ci)
   1303 {
   1304 	(void)xen_send_ipi(ci, XEN_IPI_KICK);
   1305 }
   1306