cpu.c revision 1.90 1 /* $NetBSD: cpu.c,v 1.90 2012/03/11 16:16:44 jym Exp $ */
2 /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp */
3
4 /*-
5 * Copyright (c) 2000 The NetBSD Foundation, Inc.
6 * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by RedBack Networks Inc.
11 *
12 * Author: Bill Sommerfeld
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /*
37 * Copyright (c) 1999 Stefan Grefen
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by the NetBSD
50 * Foundation, Inc. and its contributors.
51 * 4. Neither the name of The NetBSD Foundation nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
56 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.90 2012/03/11 16:16:44 jym Exp $");
70
71 #include "opt_ddb.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_mpbios.h" /* for MPDEBUG */
74 #include "opt_mtrr.h"
75 #include "opt_xen.h"
76
77 #include "lapic.h"
78 #include "ioapic.h"
79
80 #include <sys/param.h>
81 #include <sys/proc.h>
82 #include <sys/systm.h>
83 #include <sys/device.h>
84 #include <sys/kmem.h>
85 #include <sys/cpu.h>
86 #include <sys/cpufreq.h>
87 #include <sys/atomic.h>
88 #include <sys/reboot.h>
89 #include <sys/idle.h>
90
91 #include <uvm/uvm.h>
92
93 #include <machine/cpufunc.h>
94 #include <machine/cpuvar.h>
95 #include <machine/pmap.h>
96 #include <machine/vmparam.h>
97 #include <machine/mpbiosvar.h>
98 #include <machine/pcb.h>
99 #include <machine/specialreg.h>
100 #include <machine/segments.h>
101 #include <machine/gdt.h>
102 #include <machine/mtrr.h>
103 #include <machine/pio.h>
104
105 #ifdef i386
106 #include <machine/npx.h>
107 #else
108 #include <machine/fpu.h>
109 #endif
110
111 #include <xen/xen.h>
112 #include <xen/xen-public/vcpu.h>
113 #include <xen/vcpuvar.h>
114
115 #if NLAPIC > 0
116 #include <machine/apicvar.h>
117 #include <machine/i82489reg.h>
118 #include <machine/i82489var.h>
119 #endif
120
121 #include <dev/ic/mc146818reg.h>
122 #include <dev/isa/isareg.h>
123
124 #if MAXCPUS > 32
125 #error cpu_info contains 32bit bitmasks
126 #endif
127
128 static int cpu_match(device_t, cfdata_t, void *);
129 static void cpu_attach(device_t, device_t, void *);
130 static void cpu_defer(device_t);
131 static int cpu_rescan(device_t, const char *, const int *);
132 static void cpu_childdetached(device_t, device_t);
133 static int vcpu_match(device_t, cfdata_t, void *);
134 static void vcpu_attach(device_t, device_t, void *);
135 static void cpu_attach_common(device_t, device_t, void *);
136 void cpu_offline_md(void);
137
138 struct cpu_softc {
139 device_t sc_dev; /* device tree glue */
140 struct cpu_info *sc_info; /* pointer to CPU info */
141 bool sc_wasonline;
142 };
143
144 int mp_cpu_start(struct cpu_info *, vaddr_t);
145 void mp_cpu_start_cleanup(struct cpu_info *);
146 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
147 mp_cpu_start_cleanup };
148
149 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
150 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
151
152 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
153 vcpu_match, vcpu_attach, NULL, NULL);
154
155 /*
156 * Statically-allocated CPU info for the primary CPU (or the only
157 * CPU, on uniprocessors). The CPU info list is initialized to
158 * point at it.
159 */
160 #ifdef TRAPLOG
161 #include <machine/tlog.h>
162 struct tlog tlog_primary;
163 #endif
164 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
165 .ci_dev = 0,
166 .ci_self = &cpu_info_primary,
167 .ci_idepth = -1,
168 .ci_curlwp = &lwp0,
169 .ci_curldt = -1,
170 .ci_cpumask = 1,
171 #ifdef TRAPLOG
172 .ci_tlog = &tlog_primary,
173 #endif
174
175 };
176 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
177 .ci_dev = 0,
178 .ci_self = &phycpu_info_primary,
179 };
180
181 struct cpu_info *cpu_info_list = &cpu_info_primary;
182 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
183
184 uint32_t cpus_attached = 1;
185 uint32_t cpus_running = 1;
186
187 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
188 * [0] basic features %edx
189 * [1] basic features %ecx
190 * [2] extended features %edx
191 * [3] extended features %ecx
192 * [4] VIA padlock features
193 */
194
195 bool x86_mp_online;
196 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
197
198 #if defined(MULTIPROCESSOR)
199 void cpu_hatch(void *);
200 static void cpu_boot_secondary(struct cpu_info *ci);
201 static void cpu_start_secondary(struct cpu_info *ci);
202 #endif /* MULTIPROCESSOR */
203
204 static int
205 cpu_match(device_t parent, cfdata_t match, void *aux)
206 {
207
208 return 1;
209 }
210
211 static void
212 cpu_attach(device_t parent, device_t self, void *aux)
213 {
214 struct cpu_softc *sc = device_private(self);
215 struct cpu_attach_args *caa = aux;
216 struct cpu_info *ci;
217 uintptr_t ptr;
218 static int nphycpu = 0;
219
220 sc->sc_dev = self;
221
222 /*
223 * If we're an Application Processor, allocate a cpu_info
224 * If we're the first attached CPU use the primary cpu_info,
225 * otherwise allocate a new one
226 */
227 aprint_naive("\n");
228 aprint_normal("\n");
229 if (nphycpu > 0) {
230 struct cpu_info *tmp;
231 ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
232 KM_SLEEP);
233 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
234 ci->ci_curldt = -1;
235
236 tmp = phycpu_info_list;
237 while (tmp->ci_next)
238 tmp = tmp->ci_next;
239
240 tmp->ci_next = ci;
241 } else {
242 ci = &phycpu_info_primary;
243 }
244
245 ci->ci_self = ci;
246 sc->sc_info = ci;
247
248 ci->ci_dev = self;
249 ci->ci_acpiid = caa->cpu_id;
250 ci->ci_cpuid = caa->cpu_number;
251 ci->ci_vcpu = NULL;
252 ci->ci_index = nphycpu++;
253
254 if (!pmf_device_register(self, NULL, NULL))
255 aprint_error_dev(self, "couldn't establish power handler\n");
256
257 (void)config_defer(self, cpu_defer);
258 }
259
260 static void
261 cpu_defer(device_t self)
262 {
263 cpu_rescan(self, NULL, NULL);
264 }
265
266 static int
267 cpu_rescan(device_t self, const char *ifattr, const int *locators)
268 {
269 struct cpu_softc *sc = device_private(self);
270 struct cpufeature_attach_args cfaa;
271 struct cpu_info *ci = sc->sc_info;
272
273 memset(&cfaa, 0, sizeof(cfaa));
274 cfaa.ci = ci;
275
276 if (ifattr_match(ifattr, "cpufeaturebus")) {
277
278 if (ci->ci_frequency == NULL) {
279 cfaa.name = "frequency";
280 ci->ci_frequency = config_found_ia(self,
281 "cpufeaturebus", &cfaa, NULL);
282 }
283 }
284
285 return 0;
286 }
287
288 static void
289 cpu_childdetached(device_t self, device_t child)
290 {
291 struct cpu_softc *sc = device_private(self);
292 struct cpu_info *ci = sc->sc_info;
293
294 if (ci->ci_frequency == child)
295 ci->ci_frequency = NULL;
296 }
297
298 static int
299 vcpu_match(device_t parent, cfdata_t match, void *aux)
300 {
301 struct vcpu_attach_args *vcaa = aux;
302 struct vcpu_runstate_info vcr;
303 int error;
304
305 if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
306 error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
307 vcaa->vcaa_caa.cpu_number,
308 &vcr);
309 switch (error) {
310 case 0:
311 return 1;
312 case -ENOENT:
313 return 0;
314 default:
315 panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
316 }
317 }
318
319 return 0;
320 }
321
322 static void
323 vcpu_attach(device_t parent, device_t self, void *aux)
324 {
325 struct vcpu_attach_args *vcaa = aux;
326
327 KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
328 vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
329 cpu_attach_common(parent, self, &vcaa->vcaa_caa);
330
331 if (!pmf_device_register(self, NULL, NULL))
332 aprint_error_dev(self, "couldn't establish power handler\n");
333 }
334
335 static int
336 vcpu_is_up(struct cpu_info *ci)
337 {
338 KASSERT(ci != NULL);
339 return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
340 }
341
342 static void
343 cpu_vm_init(struct cpu_info *ci)
344 {
345 int ncolors = 2, i;
346
347 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
348 struct x86_cache_info *cai;
349 int tcolors;
350
351 cai = &ci->ci_cinfo[i];
352
353 tcolors = atop(cai->cai_totalsize);
354 switch(cai->cai_associativity) {
355 case 0xff:
356 tcolors = 1; /* fully associative */
357 break;
358 case 0:
359 case 1:
360 break;
361 default:
362 tcolors /= cai->cai_associativity;
363 }
364 ncolors = max(ncolors, tcolors);
365 }
366
367 /*
368 * Knowing the size of the largest cache on this CPU, potentially
369 * re-color our pages.
370 */
371 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
372 uvm_page_recolor(ncolors);
373 }
374
375 static void
376 cpu_attach_common(device_t parent, device_t self, void *aux)
377 {
378 struct cpu_softc *sc = device_private(self);
379 struct cpu_attach_args *caa = aux;
380 struct cpu_info *ci;
381 uintptr_t ptr;
382 int cpunum = caa->cpu_number;
383 static bool again = false;
384
385 sc->sc_dev = self;
386
387 /*
388 * If we're an Application Processor, allocate a cpu_info
389 * structure, otherwise use the primary's.
390 */
391 if (caa->cpu_role == CPU_ROLE_AP) {
392 aprint_naive(": Application Processor\n");
393 ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
394 KM_SLEEP);
395 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
396 memset(ci, 0, sizeof(*ci));
397 #ifdef TRAPLOG
398 ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
399 #endif
400 } else {
401 aprint_naive(": %s Processor\n",
402 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
403 ci = &cpu_info_primary;
404 }
405
406 ci->ci_self = ci;
407 sc->sc_info = ci;
408 ci->ci_dev = self;
409 ci->ci_cpuid = cpunum;
410
411 KASSERT(HYPERVISOR_shared_info != NULL);
412 KASSERT(cpunum < XEN_LEGACY_MAX_VCPUS);
413 ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
414
415 KASSERT(ci->ci_func == 0);
416 ci->ci_func = caa->cpu_func;
417
418 /* Must be called before mi_cpu_attach(). */
419 cpu_vm_init(ci);
420
421 if (caa->cpu_role == CPU_ROLE_AP) {
422 int error;
423
424 error = mi_cpu_attach(ci);
425
426 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
427 if (error != 0) {
428 aprint_normal("\n");
429 aprint_error_dev(self,
430 "mi_cpu_attach failed with %d\n", error);
431 return;
432 }
433
434 } else {
435 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
436 }
437
438 KASSERT(ci->ci_cpuid == ci->ci_index);
439 ci->ci_cpumask = (1 << cpu_index(ci));
440 pmap_reference(pmap_kernel());
441 ci->ci_pmap = pmap_kernel();
442 ci->ci_tlbstate = TLBSTATE_STALE;
443
444 /*
445 * Boot processor may not be attached first, but the below
446 * must be done to allow booting other processors.
447 */
448 if (!again) {
449 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
450 /* Basic init. */
451 cpu_intr_init(ci);
452 cpu_get_tsc_freq(ci);
453 cpu_init(ci);
454 pmap_cpu_init_late(ci);
455
456 /* Every processor needs to init it's own ipi h/w (similar to lapic) */
457 xen_ipi_init();
458
459 /* Make sure DELAY() is initialized. */
460 DELAY(1);
461 again = true;
462 }
463
464 /* further PCB init done later. */
465
466 switch (caa->cpu_role) {
467 case CPU_ROLE_SP:
468 atomic_or_32(&ci->ci_flags, CPUF_SP);
469 cpu_identify(ci);
470 x86_cpu_idle_init();
471
472 break;
473
474 case CPU_ROLE_BP:
475 atomic_or_32(&ci->ci_flags, CPUF_BSP);
476 cpu_identify(ci);
477 x86_cpu_idle_init();
478
479 break;
480
481 case CPU_ROLE_AP:
482 atomic_or_32(&ci->ci_flags, CPUF_AP);
483
484 /*
485 * report on an AP
486 */
487
488 #if defined(MULTIPROCESSOR)
489 /* interrupt handler stack */
490 cpu_intr_init(ci);
491
492 /* Setup per-cpu memory for gdt */
493 gdt_alloc_cpu(ci);
494
495 pmap_cpu_init_late(ci);
496 cpu_start_secondary(ci);
497
498 if (ci->ci_flags & CPUF_PRESENT) {
499 struct cpu_info *tmp;
500
501 cpu_identify(ci);
502 tmp = cpu_info_list;
503 while (tmp->ci_next)
504 tmp = tmp->ci_next;
505
506 tmp->ci_next = ci;
507 }
508 #else
509 aprint_error(": not started\n");
510 #endif
511 break;
512
513 default:
514 aprint_normal("\n");
515 panic("unknown processor type??\n");
516 }
517
518 atomic_or_32(&cpus_attached, ci->ci_cpumask);
519
520 #ifdef MPVERBOSE
521 if (mp_verbose) {
522 struct lwp *l = ci->ci_data.cpu_idlelwp;
523 struct pcb *pcb = lwp_getpcb(l);
524
525 aprint_verbose_dev(self,
526 "idle lwp at %p, idle sp at 0x%p\n",
527 l,
528 #ifdef i386
529 (void *)pcb->pcb_esp
530 #else /* i386 */
531 (void *)pcb->pcb_rsp
532 #endif /* i386 */
533 );
534
535 }
536 #endif /* MPVERBOSE */
537 }
538
539 /*
540 * Initialize the processor appropriately.
541 */
542
543 void
544 cpu_init(struct cpu_info *ci)
545 {
546
547 /*
548 * If we have FXSAVE/FXRESTOR, use them.
549 */
550 if (cpu_feature[0] & CPUID_FXSR) {
551 lcr4(rcr4() | CR4_OSFXSR);
552
553 /*
554 * If we have SSE/SSE2, enable XMM exceptions.
555 */
556 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
557 lcr4(rcr4() | CR4_OSXMMEXCPT);
558 }
559
560 #ifdef __x86_64__
561 /* No user PGD mapped for this CPU yet */
562 ci->ci_xen_current_user_pgd = 0;
563 #endif
564 #if defined(__x86_64__) || defined(PAE)
565 mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
566 #endif
567
568 atomic_or_32(&cpus_running, ci->ci_cpumask);
569 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
570 }
571
572
573 #ifdef MULTIPROCESSOR
574
575 void
576 cpu_boot_secondary_processors(void)
577 {
578 struct cpu_info *ci;
579 u_long i;
580 for (i = 0; i < maxcpus; i++) {
581 ci = cpu_lookup(i);
582 if (ci == NULL)
583 continue;
584 if (ci->ci_data.cpu_idlelwp == NULL)
585 continue;
586 if ((ci->ci_flags & CPUF_PRESENT) == 0)
587 continue;
588 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
589 continue;
590 cpu_boot_secondary(ci);
591 }
592
593 x86_mp_online = true;
594 }
595
596 static void
597 cpu_init_idle_lwp(struct cpu_info *ci)
598 {
599 struct lwp *l = ci->ci_data.cpu_idlelwp;
600 struct pcb *pcb = lwp_getpcb(l);
601
602 pcb->pcb_cr0 = rcr0();
603 }
604
605 void
606 cpu_init_idle_lwps(void)
607 {
608 struct cpu_info *ci;
609 u_long i;
610
611 for (i = 0; i < maxcpus; i++) {
612 ci = cpu_lookup(i);
613 if (ci == NULL)
614 continue;
615 if (ci->ci_data.cpu_idlelwp == NULL)
616 continue;
617 if ((ci->ci_flags & CPUF_PRESENT) == 0)
618 continue;
619 cpu_init_idle_lwp(ci);
620 }
621 }
622
623 static void
624 cpu_start_secondary(struct cpu_info *ci)
625 {
626 int i;
627
628 aprint_debug_dev(ci->ci_dev, "starting\n");
629
630 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
631
632 if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
633 return;
634 }
635
636 /*
637 * wait for it to become ready
638 */
639 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
640 delay(10);
641 }
642 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
643 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
644 #if defined(MPDEBUG) && defined(DDB)
645 printf("dropping into debugger; continue from here to resume boot\n");
646 Debugger();
647 #endif
648 }
649
650 CPU_START_CLEANUP(ci);
651 }
652
653 void
654 cpu_boot_secondary(struct cpu_info *ci)
655 {
656 int i;
657 atomic_or_32(&ci->ci_flags, CPUF_GO);
658 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
659 delay(10);
660 }
661 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
662 aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
663 #if defined(MPDEBUG) && defined(DDB)
664 printf("dropping into debugger; continue from here to resume boot\n");
665 Debugger();
666 #endif
667 }
668 }
669
670 /*
671 * APs end up here immediately after initialisation and VCPUOP_up in
672 * mp_cpu_start().
673 * At this point, we are running in the idle pcb/idle stack of the new
674 * CPU. This function jumps to the idle loop and starts looking for
675 * work.
676 */
677 extern void x86_64_tls_switch(struct lwp *);
678 void
679 cpu_hatch(void *v)
680 {
681 struct cpu_info *ci = (struct cpu_info *)v;
682 struct pcb *pcb;
683 int s, i;
684
685 /* Setup TLS and kernel GS/FS */
686 cpu_init_msrs(ci, true);
687 cpu_init_idt();
688 gdt_init_cpu(ci);
689
690 cpu_probe(ci);
691
692 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
693
694 while ((ci->ci_flags & CPUF_GO) == 0) {
695 /* Don't use delay, boot CPU may be patching the text. */
696 for (i = 10000; i != 0; i--)
697 x86_pause();
698 }
699
700 /* Because the text may have been patched in x86_patch(). */
701 x86_flush();
702 tlbflushg();
703
704 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
705
706 pcb = lwp_getpcb(curlwp);
707 pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0);
708 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
709
710 xen_ipi_init();
711
712 xen_initclocks();
713
714 #ifdef __x86_64__
715 fpuinit(ci);
716 #endif
717
718 lldt(GSEL(GLDT_SEL, SEL_KPL));
719
720 cpu_init(ci);
721 cpu_get_tsc_freq(ci);
722
723 s = splhigh();
724 x86_enable_intr();
725 splx(s);
726
727 aprint_debug_dev(ci->ci_dev, "running\n");
728
729 cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
730
731 panic("switch to idle_loop context returned!\n");
732 /* NOTREACHED */
733 }
734
735 #if defined(DDB)
736
737 #include <ddb/db_output.h>
738 #include <machine/db_machdep.h>
739
740 /*
741 * Dump CPU information from ddb.
742 */
743 void
744 cpu_debug_dump(void)
745 {
746 struct cpu_info *ci;
747 CPU_INFO_ITERATOR cii;
748
749 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
750 for (CPU_INFO_FOREACH(cii, ci)) {
751 db_printf("%p %s %ld %x %x %10p %10p\n",
752 ci,
753 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
754 (long)ci->ci_cpuid,
755 ci->ci_flags, ci->ci_ipis,
756 ci->ci_curlwp,
757 ci->ci_fpcurlwp);
758 }
759 }
760 #endif /* DDB */
761
762 #endif /* MULTIPROCESSOR */
763
764 extern void hypervisor_callback(void);
765 extern void failsafe_callback(void);
766 #ifdef __x86_64__
767 typedef void (vector)(void);
768 extern vector Xsyscall, Xsyscall32;
769 #endif
770
771 /*
772 * Setup the "trampoline". On Xen, we setup nearly all cpu context
773 * outside a trampoline, so we prototype and call targetip like so:
774 * void targetip(struct cpu_info *);
775 */
776
777 static void
778 gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
779 {
780 int i;
781 for (i = 0; i < roundup(entries, PAGE_SIZE) >> PAGE_SHIFT; i++) {
782
783 frames[i] = ((paddr_t) xpmap_ptetomach(
784 (pt_entry_t *) (base + (i << PAGE_SHIFT))))
785 >> PAGE_SHIFT;
786
787 /* Mark Read-only */
788 pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
789 PG_RW);
790 }
791 }
792
793 #ifdef __x86_64__
794 extern char *ldtstore;
795
796 static void
797 xen_init_amd64_vcpuctxt(struct cpu_info *ci,
798 struct vcpu_guest_context *initctx,
799 void targetrip(struct cpu_info *))
800 {
801 /* page frames to point at GDT */
802 extern int gdt_size;
803 paddr_t frames[16];
804 psize_t gdt_ents;
805
806 struct lwp *l;
807 struct pcb *pcb;
808
809 volatile struct vcpu_info *vci;
810
811 KASSERT(ci != NULL);
812 KASSERT(ci != &cpu_info_primary);
813 KASSERT(initctx != NULL);
814 KASSERT(targetrip != NULL);
815
816 memset(initctx, 0, sizeof *initctx);
817
818 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
819 KASSERT(gdt_ents <= 16);
820
821 gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
822
823 /* Initialise the vcpu context: We use idle_loop()'s pcb context. */
824
825 l = ci->ci_data.cpu_idlelwp;
826
827 KASSERT(l != NULL);
828 pcb = lwp_getpcb(l);
829 KASSERT(pcb != NULL);
830
831 /* resume with interrupts off */
832 vci = ci->ci_vcpu;
833 vci->evtchn_upcall_mask = 1;
834 xen_mb();
835
836 /* resume in kernel-mode */
837 initctx->flags = VGCF_in_kernel | VGCF_online;
838
839 /* Stack and entry points:
840 * We arrange for the stack frame for cpu_hatch() to
841 * appear as a callee frame of lwp_trampoline(). Being a
842 * leaf frame prevents trampling on any of the MD stack setup
843 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
844 */
845
846 initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
847 initctx->user_regs.rip = (vaddr_t) targetrip;
848
849 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
850
851 initctx->user_regs.rflags = pcb->pcb_flags;
852 initctx->user_regs.rsp = pcb->pcb_rsp;
853
854 /* Data segments */
855 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
856 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
857 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
858
859 /* GDT */
860 memcpy(initctx->gdt_frames, frames, sizeof frames);
861 initctx->gdt_ents = gdt_ents;
862
863 /* LDT */
864 initctx->ldt_base = (unsigned long) ldtstore;
865 initctx->ldt_ents = LDT_SIZE >> 3;
866
867 /* Kernel context state */
868 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
869 initctx->kernel_sp = pcb->pcb_rsp0;
870 initctx->ctrlreg[0] = pcb->pcb_cr0;
871 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
872 initctx->ctrlreg[2] = (vaddr_t) targetrip;
873 /*
874 * Use pmap_kernel() L4 PD directly, until we setup the
875 * per-cpu L4 PD in pmap_cpu_init_late()
876 */
877 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
878 initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
879
880
881 /* Xen callbacks */
882 initctx->event_callback_eip = (unsigned long) hypervisor_callback;
883 initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
884 initctx->syscall_callback_eip = (unsigned long) Xsyscall;
885
886 return;
887 }
888 #else /* i386 */
889 extern union descriptor *ldt;
890 extern void Xsyscall(void);
891
892 static void
893 xen_init_i386_vcpuctxt(struct cpu_info *ci,
894 struct vcpu_guest_context *initctx,
895 void targeteip(struct cpu_info *))
896 {
897 /* page frames to point at GDT */
898 extern int gdt_size;
899 paddr_t frames[16];
900 psize_t gdt_ents;
901
902 struct lwp *l;
903 struct pcb *pcb;
904
905 volatile struct vcpu_info *vci;
906
907 KASSERT(ci != NULL);
908 KASSERT(ci != &cpu_info_primary);
909 KASSERT(initctx != NULL);
910 KASSERT(targeteip != NULL);
911
912 memset(initctx, 0, sizeof *initctx);
913
914 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
915 KASSERT(gdt_ents <= 16);
916
917 gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
918
919 /*
920 * Initialise the vcpu context:
921 * We use this cpu's idle_loop() pcb context.
922 */
923
924 l = ci->ci_data.cpu_idlelwp;
925
926 KASSERT(l != NULL);
927 pcb = lwp_getpcb(l);
928 KASSERT(pcb != NULL);
929
930 /* resume with interrupts off */
931 vci = ci->ci_vcpu;
932 vci->evtchn_upcall_mask = 1;
933 xen_mb();
934
935 /* resume in kernel-mode */
936 initctx->flags = VGCF_in_kernel | VGCF_online;
937
938 /* Stack frame setup for cpu_hatch():
939 * We arrange for the stack frame for cpu_hatch() to
940 * appear as a callee frame of lwp_trampoline(). Being a
941 * leaf frame prevents trampling on any of the MD stack setup
942 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
943 */
944
945 initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
946 arg1 */
947 { /* targeteip(ci); */
948 uint32_t *arg = (uint32_t *) initctx->user_regs.esp;
949 arg[1] = (uint32_t) ci; /* arg1 */
950
951 }
952
953 initctx->user_regs.eip = (vaddr_t) targeteip;
954 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
955 initctx->user_regs.eflags |= pcb->pcb_iopl;
956
957 /* Data segments */
958 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
959 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
960 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
961 initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
962
963 /* GDT */
964 memcpy(initctx->gdt_frames, frames, sizeof frames);
965 initctx->gdt_ents = gdt_ents;
966
967 /* LDT */
968 initctx->ldt_base = (unsigned long) ldt;
969 initctx->ldt_ents = NLDT;
970
971 /* Kernel context state */
972 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
973 initctx->kernel_sp = pcb->pcb_esp0;
974 initctx->ctrlreg[0] = pcb->pcb_cr0;
975 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
976 initctx->ctrlreg[2] = (vaddr_t) targeteip;
977 #ifdef PAE
978 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
979 #else /* PAE */
980 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(pcb->pcb_cr3)));
981 #endif /* PAE */
982 initctx->ctrlreg[4] = /* CR4_PAE | */CR4_OSFXSR | CR4_OSXMMEXCPT;
983
984
985 /* Xen callbacks */
986 initctx->event_callback_eip = (unsigned long) hypervisor_callback;
987 initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
988 initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
989 initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
990
991 return;
992 }
993 #endif /* __x86_64__ */
994
995 int
996 mp_cpu_start(struct cpu_info *ci, vaddr_t target)
997 {
998
999 int hyperror;
1000 struct vcpu_guest_context vcpuctx;
1001
1002 KASSERT(ci != NULL);
1003 KASSERT(ci != &cpu_info_primary);
1004 KASSERT(ci->ci_flags & CPUF_AP);
1005
1006 #ifdef __x86_64__
1007 xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
1008 #else /* i386 */
1009 xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
1010 #endif /* __x86_64__ */
1011
1012 /* Initialise the given vcpu to execute cpu_hatch(ci); */
1013 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
1014 aprint_error(": context initialisation failed. errno = %d\n", hyperror);
1015 return hyperror;
1016 }
1017
1018 /* Start it up */
1019
1020 /* First bring it down */
1021 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
1022 aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
1023 return hyperror;
1024 }
1025
1026 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
1027 aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
1028 return hyperror;
1029 }
1030
1031 if (!vcpu_is_up(ci)) {
1032 aprint_error(": did not come up\n");
1033 return -1;
1034 }
1035
1036 return 0;
1037 }
1038
1039 void
1040 mp_cpu_start_cleanup(struct cpu_info *ci)
1041 {
1042 if (vcpu_is_up(ci)) {
1043 aprint_debug_dev(ci->ci_dev, "is started.\n");
1044 }
1045 else {
1046 aprint_error_dev(ci->ci_dev, "did not start up.\n");
1047 }
1048
1049 }
1050
1051 void
1052 cpu_init_msrs(struct cpu_info *ci, bool full)
1053 {
1054 #ifdef __x86_64__
1055 if (full) {
1056 HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
1057 HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
1058 HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
1059 }
1060 #endif /* __x86_64__ */
1061
1062 if (cpu_feature[2] & CPUID_NOX)
1063 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1064
1065 }
1066
1067 void
1068 cpu_offline_md(void)
1069 {
1070 int s;
1071
1072 s = splhigh();
1073 #ifdef __i386__
1074 npxsave_cpu(true);
1075 #else
1076 fpusave_cpu(true);
1077 #endif
1078 splx(s);
1079 }
1080
1081 void
1082 cpu_get_tsc_freq(struct cpu_info *ci)
1083 {
1084 uint32_t vcpu_tversion;
1085 const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1086
1087 vcpu_tversion = tinfo->version;
1088 while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
1089
1090 uint64_t freq = 1000000000ULL << 32;
1091 freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1092 if ( tinfo->tsc_shift < 0 )
1093 freq = freq << -tinfo->tsc_shift;
1094 else
1095 freq = freq >> tinfo->tsc_shift;
1096 ci->ci_data.cpu_cc_freq = freq;
1097 }
1098
1099 void
1100 x86_cpu_idle_xen(void)
1101 {
1102 struct cpu_info *ci = curcpu();
1103
1104 KASSERT(ci->ci_ilevel == IPL_NONE);
1105
1106 x86_disable_intr();
1107 if (!__predict_false(ci->ci_want_resched)) {
1108 idle_block();
1109 } else {
1110 x86_enable_intr();
1111 }
1112 }
1113
1114 /*
1115 * Loads pmap for the current CPU.
1116 */
1117 void
1118 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1119 {
1120 KASSERT(pmap != pmap_kernel());
1121
1122 #if defined(__x86_64__) || defined(PAE)
1123 struct cpu_info *ci = curcpu();
1124 uint32_t cpumask = ci->ci_cpumask;
1125
1126 mutex_enter(&ci->ci_kpm_mtx);
1127 /* make new pmap visible to pmap_kpm_sync_xcall() */
1128 atomic_or_32(&pmap->pm_xen_ptp_cpus, cpumask);
1129 #endif
1130 #ifdef i386
1131 #ifdef PAE
1132 {
1133 int i;
1134 paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
1135 /* don't update the kernel L3 slot */
1136 for (i = 0 ; i < PDP_SIZE - 1; i++) {
1137 xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
1138 xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
1139 }
1140 tlbflush();
1141 }
1142 #else /* PAE */
1143 lcr3(pmap_pdirpa(pmap, 0));
1144 #endif /* PAE */
1145 #endif /* i386 */
1146
1147 #ifdef __x86_64__
1148 {
1149 int i;
1150 pd_entry_t *new_pgd;
1151 paddr_t l4_pd_ma;
1152
1153 l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
1154
1155 /*
1156 * Map user space address in kernel space and load
1157 * user cr3
1158 */
1159 new_pgd = pmap->pm_pdir;
1160 KASSERT(pmap == ci->ci_pmap);
1161
1162 /* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
1163 for (i = 0; i < PDIR_SLOT_PTE; i++) {
1164 KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
1165 if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
1166 xpq_queue_pte_update(
1167 l4_pd_ma + i * sizeof(pd_entry_t),
1168 new_pgd[i]);
1169 }
1170 }
1171
1172 xen_set_user_pgd(pmap_pdirpa(pmap, 0));
1173 ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
1174
1175 tlbflush();
1176 }
1177
1178 #endif /* __x86_64__ */
1179 #if defined(__x86_64__) || defined(PAE)
1180 /* old pmap no longer visible to pmap_kpm_sync_xcall() */
1181 atomic_and_32(&oldpmap->pm_xen_ptp_cpus, ~cpumask);
1182 mutex_exit(&ci->ci_kpm_mtx);
1183 #endif
1184 }
1185
1186 /*
1187 * pmap_cpu_init_late: perform late per-CPU initialization.
1188 * Short note about percpu PDIR pages:
1189 * Both the PAE and __x86_64__ architectures have per-cpu PDIR
1190 * tables. This is to get around Xen's pagetable setup constraints for
1191 * PAE (multiple L3[3]s cannot point to the same L2 - Xen
1192 * will refuse to pin a table setup this way.) and for multiple cpus
1193 * to map in different user pmaps on __x86_64__ (see: cpu_load_pmap())
1194 *
1195 * What this means for us is that the PDIR of the pmap_kernel() is
1196 * considered to be a canonical "SHADOW" PDIR with the following
1197 * properties:
1198 * - Its recursive mapping points to itself
1199 * - per-cpu recursive mappings point to themselves on __x86_64__
1200 * - per-cpu L4 pages' kernel entries are expected to be in sync with
1201 * the shadow
1202 */
1203
1204 void
1205 pmap_cpu_init_late(struct cpu_info *ci)
1206 {
1207 #if defined(PAE) || defined(__x86_64__)
1208 /*
1209 * The BP has already its own PD page allocated during early
1210 * MD startup.
1211 */
1212
1213 #if defined(__x86_64__)
1214 /* Setup per-cpu normal_pdes */
1215 int i;
1216 extern pd_entry_t * const normal_pdes[];
1217 for (i = 0;i < PTP_LEVELS - 1;i++) {
1218 ci->ci_normal_pdes[i] = normal_pdes[i];
1219 }
1220 #endif /* __x86_64__ */
1221
1222 if (ci == &cpu_info_primary)
1223 return;
1224
1225 KASSERT(ci != NULL);
1226
1227 #if defined(PAE)
1228 cpu_alloc_l3_page(ci);
1229 KASSERT(ci->ci_pae_l3_pdirpa != 0);
1230
1231 /* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
1232 int i;
1233 for (i = 0 ; i < PDP_SIZE - 1; i++) {
1234 ci->ci_pae_l3_pdir[i] =
1235 xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PG_V;
1236 }
1237 #endif /* PAE */
1238
1239 ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1240 UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
1241
1242 if (ci->ci_kpm_pdir == NULL) {
1243 panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
1244 __func__, cpu_index(ci));
1245 }
1246 ci->ci_kpm_pdirpa = vtophys((vaddr_t) ci->ci_kpm_pdir);
1247 KASSERT(ci->ci_kpm_pdirpa != 0);
1248
1249 #if defined(__x86_64__)
1250 /*
1251 * Copy over the pmap_kernel() shadow L4 entries
1252 */
1253
1254 memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
1255
1256 /* Recursive kernel mapping */
1257 ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
1258 #elif defined(PAE)
1259 /* Copy over the pmap_kernel() shadow L2 entries that map the kernel */
1260 memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN, nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
1261 #endif /* __x86_64__ else PAE */
1262
1263 /* Xen wants R/O */
1264 pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
1265 (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
1266 pmap_update(pmap_kernel());
1267 #if defined(PAE)
1268 /* Initialise L3 entry 3. This mapping is shared across all
1269 * pmaps and is static, ie; loading a new pmap will not update
1270 * this entry.
1271 */
1272
1273 ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
1274
1275 /* Mark L3 R/O (Xen wants this) */
1276 pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
1277 (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
1278 pmap_update(pmap_kernel());
1279
1280 xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
1281
1282 #elif defined(__x86_64__)
1283 xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
1284 #endif /* PAE , __x86_64__ */
1285 #endif /* defined(PAE) || defined(__x86_64__) */
1286 }
1287
1288 /*
1289 * Notify all other cpus to halt.
1290 */
1291
1292 void
1293 cpu_broadcast_halt(void)
1294 {
1295 xen_broadcast_ipi(XEN_IPI_HALT);
1296 }
1297
1298 /*
1299 * Send a dummy ipi to a cpu.
1300 */
1301
1302 void
1303 cpu_kick(struct cpu_info *ci)
1304 {
1305 (void)xen_send_ipi(ci, XEN_IPI_KICK);
1306 }
1307