cpu.c revision 1.92 1 /* $NetBSD: cpu.c,v 1.92 2012/06/06 22:22:41 rmind Exp $ */
2 /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp */
3
4 /*-
5 * Copyright (c) 2000 The NetBSD Foundation, Inc.
6 * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by RedBack Networks Inc.
11 *
12 * Author: Bill Sommerfeld
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /*
37 * Copyright (c) 1999 Stefan Grefen
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by the NetBSD
50 * Foundation, Inc. and its contributors.
51 * 4. Neither the name of The NetBSD Foundation nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
56 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.92 2012/06/06 22:22:41 rmind Exp $");
70
71 #include "opt_ddb.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_mpbios.h" /* for MPDEBUG */
74 #include "opt_mtrr.h"
75 #include "opt_xen.h"
76
77 #include "lapic.h"
78 #include "ioapic.h"
79
80 #include <sys/param.h>
81 #include <sys/proc.h>
82 #include <sys/systm.h>
83 #include <sys/device.h>
84 #include <sys/kmem.h>
85 #include <sys/cpu.h>
86 #include <sys/cpufreq.h>
87 #include <sys/atomic.h>
88 #include <sys/reboot.h>
89 #include <sys/idle.h>
90
91 #include <uvm/uvm.h>
92
93 #include <machine/cpufunc.h>
94 #include <machine/cpuvar.h>
95 #include <machine/pmap.h>
96 #include <machine/vmparam.h>
97 #include <machine/mpbiosvar.h>
98 #include <machine/pcb.h>
99 #include <machine/specialreg.h>
100 #include <machine/segments.h>
101 #include <machine/gdt.h>
102 #include <machine/mtrr.h>
103 #include <machine/pio.h>
104
105 #ifdef i386
106 #include <machine/npx.h>
107 #else
108 #include <machine/fpu.h>
109 #endif
110
111 #include <xen/xen.h>
112 #include <xen/xen-public/vcpu.h>
113 #include <xen/vcpuvar.h>
114
115 #if NLAPIC > 0
116 #include <machine/apicvar.h>
117 #include <machine/i82489reg.h>
118 #include <machine/i82489var.h>
119 #endif
120
121 #include <dev/ic/mc146818reg.h>
122 #include <dev/isa/isareg.h>
123
124 static int cpu_match(device_t, cfdata_t, void *);
125 static void cpu_attach(device_t, device_t, void *);
126 static void cpu_defer(device_t);
127 static int cpu_rescan(device_t, const char *, const int *);
128 static void cpu_childdetached(device_t, device_t);
129 static int vcpu_match(device_t, cfdata_t, void *);
130 static void vcpu_attach(device_t, device_t, void *);
131 static void cpu_attach_common(device_t, device_t, void *);
132 void cpu_offline_md(void);
133
134 struct cpu_softc {
135 device_t sc_dev; /* device tree glue */
136 struct cpu_info *sc_info; /* pointer to CPU info */
137 bool sc_wasonline;
138 };
139
140 int mp_cpu_start(struct cpu_info *, vaddr_t);
141 void mp_cpu_start_cleanup(struct cpu_info *);
142 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
143 mp_cpu_start_cleanup };
144
145 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
146 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
147
148 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
149 vcpu_match, vcpu_attach, NULL, NULL);
150
151 /*
152 * Statically-allocated CPU info for the primary CPU (or the only
153 * CPU, on uniprocessors). The CPU info list is initialized to
154 * point at it.
155 */
156 #ifdef TRAPLOG
157 #include <machine/tlog.h>
158 struct tlog tlog_primary;
159 #endif
160 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
161 .ci_dev = 0,
162 .ci_self = &cpu_info_primary,
163 .ci_idepth = -1,
164 .ci_curlwp = &lwp0,
165 .ci_curldt = -1,
166 #ifdef TRAPLOG
167 .ci_tlog = &tlog_primary,
168 #endif
169
170 };
171 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
172 .ci_dev = 0,
173 .ci_self = &phycpu_info_primary,
174 };
175
176 struct cpu_info *cpu_info_list = &cpu_info_primary;
177 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
178
179 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
180 * [0] basic features %edx
181 * [1] basic features %ecx
182 * [2] extended features %edx
183 * [3] extended features %ecx
184 * [4] VIA padlock features
185 */
186
187 bool x86_mp_online;
188 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
189
190 #if defined(MULTIPROCESSOR)
191 void cpu_hatch(void *);
192 static void cpu_boot_secondary(struct cpu_info *ci);
193 static void cpu_start_secondary(struct cpu_info *ci);
194 #endif /* MULTIPROCESSOR */
195
196 static int
197 cpu_match(device_t parent, cfdata_t match, void *aux)
198 {
199
200 return 1;
201 }
202
203 static void
204 cpu_attach(device_t parent, device_t self, void *aux)
205 {
206 struct cpu_softc *sc = device_private(self);
207 struct cpu_attach_args *caa = aux;
208 struct cpu_info *ci;
209 uintptr_t ptr;
210 static int nphycpu = 0;
211
212 sc->sc_dev = self;
213
214 /*
215 * If we're an Application Processor, allocate a cpu_info
216 * If we're the first attached CPU use the primary cpu_info,
217 * otherwise allocate a new one
218 */
219 aprint_naive("\n");
220 aprint_normal("\n");
221 if (nphycpu > 0) {
222 struct cpu_info *tmp;
223 ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
224 KM_SLEEP);
225 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
226 ci->ci_curldt = -1;
227
228 tmp = phycpu_info_list;
229 while (tmp->ci_next)
230 tmp = tmp->ci_next;
231
232 tmp->ci_next = ci;
233 } else {
234 ci = &phycpu_info_primary;
235 }
236
237 ci->ci_self = ci;
238 sc->sc_info = ci;
239
240 ci->ci_dev = self;
241 ci->ci_acpiid = caa->cpu_id;
242 ci->ci_cpuid = caa->cpu_number;
243 ci->ci_vcpu = NULL;
244 ci->ci_index = nphycpu++;
245
246 if (!pmf_device_register(self, NULL, NULL))
247 aprint_error_dev(self, "couldn't establish power handler\n");
248
249 (void)config_defer(self, cpu_defer);
250 }
251
252 static void
253 cpu_defer(device_t self)
254 {
255 cpu_rescan(self, NULL, NULL);
256 }
257
258 static int
259 cpu_rescan(device_t self, const char *ifattr, const int *locators)
260 {
261 struct cpu_softc *sc = device_private(self);
262 struct cpufeature_attach_args cfaa;
263 struct cpu_info *ci = sc->sc_info;
264
265 memset(&cfaa, 0, sizeof(cfaa));
266 cfaa.ci = ci;
267
268 if (ifattr_match(ifattr, "cpufeaturebus")) {
269
270 if (ci->ci_frequency == NULL) {
271 cfaa.name = "frequency";
272 ci->ci_frequency = config_found_ia(self,
273 "cpufeaturebus", &cfaa, NULL);
274 }
275 }
276
277 return 0;
278 }
279
280 static void
281 cpu_childdetached(device_t self, device_t child)
282 {
283 struct cpu_softc *sc = device_private(self);
284 struct cpu_info *ci = sc->sc_info;
285
286 if (ci->ci_frequency == child)
287 ci->ci_frequency = NULL;
288 }
289
290 static int
291 vcpu_match(device_t parent, cfdata_t match, void *aux)
292 {
293 struct vcpu_attach_args *vcaa = aux;
294 struct vcpu_runstate_info vcr;
295 int error;
296
297 if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
298 error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
299 vcaa->vcaa_caa.cpu_number,
300 &vcr);
301 switch (error) {
302 case 0:
303 return 1;
304 case -ENOENT:
305 return 0;
306 default:
307 panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
308 }
309 }
310
311 return 0;
312 }
313
314 static void
315 vcpu_attach(device_t parent, device_t self, void *aux)
316 {
317 struct vcpu_attach_args *vcaa = aux;
318
319 KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
320 vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
321 cpu_attach_common(parent, self, &vcaa->vcaa_caa);
322
323 if (!pmf_device_register(self, NULL, NULL))
324 aprint_error_dev(self, "couldn't establish power handler\n");
325 }
326
327 static int
328 vcpu_is_up(struct cpu_info *ci)
329 {
330 KASSERT(ci != NULL);
331 return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
332 }
333
334 static void
335 cpu_vm_init(struct cpu_info *ci)
336 {
337 int ncolors = 2, i;
338
339 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
340 struct x86_cache_info *cai;
341 int tcolors;
342
343 cai = &ci->ci_cinfo[i];
344
345 tcolors = atop(cai->cai_totalsize);
346 switch(cai->cai_associativity) {
347 case 0xff:
348 tcolors = 1; /* fully associative */
349 break;
350 case 0:
351 case 1:
352 break;
353 default:
354 tcolors /= cai->cai_associativity;
355 }
356 ncolors = max(ncolors, tcolors);
357 }
358
359 /*
360 * Knowing the size of the largest cache on this CPU, potentially
361 * re-color our pages.
362 */
363 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
364 uvm_page_recolor(ncolors);
365 pmap_tlb_cpu_init(ci);
366 }
367
368 static void
369 cpu_attach_common(device_t parent, device_t self, void *aux)
370 {
371 struct cpu_softc *sc = device_private(self);
372 struct cpu_attach_args *caa = aux;
373 struct cpu_info *ci;
374 uintptr_t ptr;
375 int cpunum = caa->cpu_number;
376 static bool again = false;
377
378 sc->sc_dev = self;
379
380 /*
381 * If we're an Application Processor, allocate a cpu_info
382 * structure, otherwise use the primary's.
383 */
384 if (caa->cpu_role == CPU_ROLE_AP) {
385 aprint_naive(": Application Processor\n");
386 ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
387 KM_SLEEP);
388 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
389 memset(ci, 0, sizeof(*ci));
390 #ifdef TRAPLOG
391 ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
392 #endif
393 } else {
394 aprint_naive(": %s Processor\n",
395 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
396 ci = &cpu_info_primary;
397 }
398
399 ci->ci_self = ci;
400 sc->sc_info = ci;
401 ci->ci_dev = self;
402 ci->ci_cpuid = cpunum;
403
404 KASSERT(HYPERVISOR_shared_info != NULL);
405 KASSERT(cpunum < XEN_LEGACY_MAX_VCPUS);
406 ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
407
408 KASSERT(ci->ci_func == 0);
409 ci->ci_func = caa->cpu_func;
410
411 /* Must be called before mi_cpu_attach(). */
412 cpu_vm_init(ci);
413
414 if (caa->cpu_role == CPU_ROLE_AP) {
415 int error;
416
417 error = mi_cpu_attach(ci);
418
419 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
420 if (error != 0) {
421 aprint_normal("\n");
422 aprint_error_dev(self,
423 "mi_cpu_attach failed with %d\n", error);
424 return;
425 }
426
427 } else {
428 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
429 }
430
431 KASSERT(ci->ci_cpuid == ci->ci_index);
432 pmap_reference(pmap_kernel());
433 ci->ci_pmap = pmap_kernel();
434 ci->ci_tlbstate = TLBSTATE_STALE;
435
436 /*
437 * Boot processor may not be attached first, but the below
438 * must be done to allow booting other processors.
439 */
440 if (!again) {
441 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
442 /* Basic init. */
443 cpu_intr_init(ci);
444 cpu_get_tsc_freq(ci);
445 cpu_init(ci);
446 pmap_cpu_init_late(ci);
447
448 /* Every processor needs to init it's own ipi h/w (similar to lapic) */
449 xen_ipi_init();
450
451 /* Make sure DELAY() is initialized. */
452 DELAY(1);
453 again = true;
454 }
455
456 /* further PCB init done later. */
457
458 switch (caa->cpu_role) {
459 case CPU_ROLE_SP:
460 atomic_or_32(&ci->ci_flags, CPUF_SP);
461 cpu_identify(ci);
462 x86_cpu_idle_init();
463
464 break;
465
466 case CPU_ROLE_BP:
467 atomic_or_32(&ci->ci_flags, CPUF_BSP);
468 cpu_identify(ci);
469 x86_cpu_idle_init();
470
471 break;
472
473 case CPU_ROLE_AP:
474 atomic_or_32(&ci->ci_flags, CPUF_AP);
475
476 /*
477 * report on an AP
478 */
479
480 #if defined(MULTIPROCESSOR)
481 /* interrupt handler stack */
482 cpu_intr_init(ci);
483
484 /* Setup per-cpu memory for gdt */
485 gdt_alloc_cpu(ci);
486
487 pmap_cpu_init_late(ci);
488 cpu_start_secondary(ci);
489
490 if (ci->ci_flags & CPUF_PRESENT) {
491 struct cpu_info *tmp;
492
493 cpu_identify(ci);
494 tmp = cpu_info_list;
495 while (tmp->ci_next)
496 tmp = tmp->ci_next;
497
498 tmp->ci_next = ci;
499 }
500 #else
501 aprint_error(": not started\n");
502 #endif
503 break;
504
505 default:
506 aprint_normal("\n");
507 panic("unknown processor type??\n");
508 }
509
510 #ifdef MPVERBOSE
511 if (mp_verbose) {
512 struct lwp *l = ci->ci_data.cpu_idlelwp;
513 struct pcb *pcb = lwp_getpcb(l);
514
515 aprint_verbose_dev(self,
516 "idle lwp at %p, idle sp at 0x%p\n",
517 l,
518 #ifdef i386
519 (void *)pcb->pcb_esp
520 #else /* i386 */
521 (void *)pcb->pcb_rsp
522 #endif /* i386 */
523 );
524
525 }
526 #endif /* MPVERBOSE */
527 }
528
529 /*
530 * Initialize the processor appropriately.
531 */
532
533 void
534 cpu_init(struct cpu_info *ci)
535 {
536
537 /*
538 * If we have FXSAVE/FXRESTOR, use them.
539 */
540 if (cpu_feature[0] & CPUID_FXSR) {
541 lcr4(rcr4() | CR4_OSFXSR);
542
543 /*
544 * If we have SSE/SSE2, enable XMM exceptions.
545 */
546 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
547 lcr4(rcr4() | CR4_OSXMMEXCPT);
548 }
549
550 #ifdef __x86_64__
551 /* No user PGD mapped for this CPU yet */
552 ci->ci_xen_current_user_pgd = 0;
553 #endif
554 #if defined(__x86_64__) || defined(PAE)
555 mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
556 #endif
557
558 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
559 }
560
561
562 #ifdef MULTIPROCESSOR
563
564 void
565 cpu_boot_secondary_processors(void)
566 {
567 struct cpu_info *ci;
568 u_long i;
569 for (i = 0; i < maxcpus; i++) {
570 ci = cpu_lookup(i);
571 if (ci == NULL)
572 continue;
573 if (ci->ci_data.cpu_idlelwp == NULL)
574 continue;
575 if ((ci->ci_flags & CPUF_PRESENT) == 0)
576 continue;
577 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
578 continue;
579 cpu_boot_secondary(ci);
580 }
581
582 x86_mp_online = true;
583 }
584
585 static void
586 cpu_init_idle_lwp(struct cpu_info *ci)
587 {
588 struct lwp *l = ci->ci_data.cpu_idlelwp;
589 struct pcb *pcb = lwp_getpcb(l);
590
591 pcb->pcb_cr0 = rcr0();
592 }
593
594 void
595 cpu_init_idle_lwps(void)
596 {
597 struct cpu_info *ci;
598 u_long i;
599
600 for (i = 0; i < maxcpus; i++) {
601 ci = cpu_lookup(i);
602 if (ci == NULL)
603 continue;
604 if (ci->ci_data.cpu_idlelwp == NULL)
605 continue;
606 if ((ci->ci_flags & CPUF_PRESENT) == 0)
607 continue;
608 cpu_init_idle_lwp(ci);
609 }
610 }
611
612 static void
613 cpu_start_secondary(struct cpu_info *ci)
614 {
615 int i;
616
617 aprint_debug_dev(ci->ci_dev, "starting\n");
618
619 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
620
621 if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
622 return;
623 }
624
625 /*
626 * wait for it to become ready
627 */
628 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
629 delay(10);
630 }
631 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
632 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
633 #if defined(MPDEBUG) && defined(DDB)
634 printf("dropping into debugger; continue from here to resume boot\n");
635 Debugger();
636 #endif
637 }
638
639 CPU_START_CLEANUP(ci);
640 }
641
642 void
643 cpu_boot_secondary(struct cpu_info *ci)
644 {
645 int i;
646 atomic_or_32(&ci->ci_flags, CPUF_GO);
647 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
648 delay(10);
649 }
650 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
651 aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
652 #if defined(MPDEBUG) && defined(DDB)
653 printf("dropping into debugger; continue from here to resume boot\n");
654 Debugger();
655 #endif
656 }
657 }
658
659 /*
660 * APs end up here immediately after initialisation and VCPUOP_up in
661 * mp_cpu_start().
662 * At this point, we are running in the idle pcb/idle stack of the new
663 * CPU. This function jumps to the idle loop and starts looking for
664 * work.
665 */
666 extern void x86_64_tls_switch(struct lwp *);
667 void
668 cpu_hatch(void *v)
669 {
670 struct cpu_info *ci = (struct cpu_info *)v;
671 struct pcb *pcb;
672 int s, i;
673
674 /* Setup TLS and kernel GS/FS */
675 cpu_init_msrs(ci, true);
676 cpu_init_idt();
677 gdt_init_cpu(ci);
678
679 cpu_probe(ci);
680
681 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
682
683 while ((ci->ci_flags & CPUF_GO) == 0) {
684 /* Don't use delay, boot CPU may be patching the text. */
685 for (i = 10000; i != 0; i--)
686 x86_pause();
687 }
688
689 /* Because the text may have been patched in x86_patch(). */
690 x86_flush();
691 tlbflushg();
692
693 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
694
695 pcb = lwp_getpcb(curlwp);
696 pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0);
697 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
698
699 xen_ipi_init();
700
701 xen_initclocks();
702
703 #ifdef __x86_64__
704 fpuinit(ci);
705 #endif
706
707 lldt(GSEL(GLDT_SEL, SEL_KPL));
708
709 cpu_init(ci);
710 cpu_get_tsc_freq(ci);
711
712 s = splhigh();
713 x86_enable_intr();
714 splx(s);
715
716 aprint_debug_dev(ci->ci_dev, "running\n");
717
718 cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
719
720 idle_loop(NULL);
721 KASSERT(false);
722 }
723
724 #if defined(DDB)
725
726 #include <ddb/db_output.h>
727 #include <machine/db_machdep.h>
728
729 /*
730 * Dump CPU information from ddb.
731 */
732 void
733 cpu_debug_dump(void)
734 {
735 struct cpu_info *ci;
736 CPU_INFO_ITERATOR cii;
737
738 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
739 for (CPU_INFO_FOREACH(cii, ci)) {
740 db_printf("%p %s %ld %x %x %10p %10p\n",
741 ci,
742 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
743 (long)ci->ci_cpuid,
744 ci->ci_flags, ci->ci_ipis,
745 ci->ci_curlwp,
746 ci->ci_fpcurlwp);
747 }
748 }
749 #endif /* DDB */
750
751 #endif /* MULTIPROCESSOR */
752
753 extern void hypervisor_callback(void);
754 extern void failsafe_callback(void);
755 #ifdef __x86_64__
756 typedef void (vector)(void);
757 extern vector Xsyscall, Xsyscall32;
758 #endif
759
760 /*
761 * Setup the "trampoline". On Xen, we setup nearly all cpu context
762 * outside a trampoline, so we prototype and call targetip like so:
763 * void targetip(struct cpu_info *);
764 */
765
766 static void
767 gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
768 {
769 int i;
770 for (i = 0; i < roundup(entries, PAGE_SIZE) >> PAGE_SHIFT; i++) {
771
772 frames[i] = ((paddr_t) xpmap_ptetomach(
773 (pt_entry_t *) (base + (i << PAGE_SHIFT))))
774 >> PAGE_SHIFT;
775
776 /* Mark Read-only */
777 pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
778 PG_RW);
779 }
780 }
781
782 #ifdef __x86_64__
783 extern char *ldtstore;
784
785 static void
786 xen_init_amd64_vcpuctxt(struct cpu_info *ci,
787 struct vcpu_guest_context *initctx,
788 void targetrip(struct cpu_info *))
789 {
790 /* page frames to point at GDT */
791 extern int gdt_size;
792 paddr_t frames[16];
793 psize_t gdt_ents;
794
795 struct lwp *l;
796 struct pcb *pcb;
797
798 volatile struct vcpu_info *vci;
799
800 KASSERT(ci != NULL);
801 KASSERT(ci != &cpu_info_primary);
802 KASSERT(initctx != NULL);
803 KASSERT(targetrip != NULL);
804
805 memset(initctx, 0, sizeof *initctx);
806
807 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
808 KASSERT(gdt_ents <= 16);
809
810 gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
811
812 /* Initialise the vcpu context: We use idle_loop()'s pcb context. */
813
814 l = ci->ci_data.cpu_idlelwp;
815
816 KASSERT(l != NULL);
817 pcb = lwp_getpcb(l);
818 KASSERT(pcb != NULL);
819
820 /* resume with interrupts off */
821 vci = ci->ci_vcpu;
822 vci->evtchn_upcall_mask = 1;
823 xen_mb();
824
825 /* resume in kernel-mode */
826 initctx->flags = VGCF_in_kernel | VGCF_online;
827
828 /* Stack and entry points:
829 * We arrange for the stack frame for cpu_hatch() to
830 * appear as a callee frame of lwp_trampoline(). Being a
831 * leaf frame prevents trampling on any of the MD stack setup
832 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
833 */
834
835 initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
836 initctx->user_regs.rip = (vaddr_t) targetrip;
837
838 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
839
840 initctx->user_regs.rflags = pcb->pcb_flags;
841 initctx->user_regs.rsp = pcb->pcb_rsp;
842
843 /* Data segments */
844 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
845 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
846 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
847
848 /* GDT */
849 memcpy(initctx->gdt_frames, frames, sizeof frames);
850 initctx->gdt_ents = gdt_ents;
851
852 /* LDT */
853 initctx->ldt_base = (unsigned long) ldtstore;
854 initctx->ldt_ents = LDT_SIZE >> 3;
855
856 /* Kernel context state */
857 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
858 initctx->kernel_sp = pcb->pcb_rsp0;
859 initctx->ctrlreg[0] = pcb->pcb_cr0;
860 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
861 initctx->ctrlreg[2] = (vaddr_t) targetrip;
862 /*
863 * Use pmap_kernel() L4 PD directly, until we setup the
864 * per-cpu L4 PD in pmap_cpu_init_late()
865 */
866 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
867 initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
868
869
870 /* Xen callbacks */
871 initctx->event_callback_eip = (unsigned long) hypervisor_callback;
872 initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
873 initctx->syscall_callback_eip = (unsigned long) Xsyscall;
874
875 return;
876 }
877 #else /* i386 */
878 extern union descriptor *ldt;
879 extern void Xsyscall(void);
880
881 static void
882 xen_init_i386_vcpuctxt(struct cpu_info *ci,
883 struct vcpu_guest_context *initctx,
884 void targeteip(struct cpu_info *))
885 {
886 /* page frames to point at GDT */
887 extern int gdt_size;
888 paddr_t frames[16];
889 psize_t gdt_ents;
890
891 struct lwp *l;
892 struct pcb *pcb;
893
894 volatile struct vcpu_info *vci;
895
896 KASSERT(ci != NULL);
897 KASSERT(ci != &cpu_info_primary);
898 KASSERT(initctx != NULL);
899 KASSERT(targeteip != NULL);
900
901 memset(initctx, 0, sizeof *initctx);
902
903 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
904 KASSERT(gdt_ents <= 16);
905
906 gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
907
908 /*
909 * Initialise the vcpu context:
910 * We use this cpu's idle_loop() pcb context.
911 */
912
913 l = ci->ci_data.cpu_idlelwp;
914
915 KASSERT(l != NULL);
916 pcb = lwp_getpcb(l);
917 KASSERT(pcb != NULL);
918
919 /* resume with interrupts off */
920 vci = ci->ci_vcpu;
921 vci->evtchn_upcall_mask = 1;
922 xen_mb();
923
924 /* resume in kernel-mode */
925 initctx->flags = VGCF_in_kernel | VGCF_online;
926
927 /* Stack frame setup for cpu_hatch():
928 * We arrange for the stack frame for cpu_hatch() to
929 * appear as a callee frame of lwp_trampoline(). Being a
930 * leaf frame prevents trampling on any of the MD stack setup
931 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
932 */
933
934 initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
935 arg1 */
936 { /* targeteip(ci); */
937 uint32_t *arg = (uint32_t *) initctx->user_regs.esp;
938 arg[1] = (uint32_t) ci; /* arg1 */
939
940 }
941
942 initctx->user_regs.eip = (vaddr_t) targeteip;
943 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
944 initctx->user_regs.eflags |= pcb->pcb_iopl;
945
946 /* Data segments */
947 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
948 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
949 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
950 initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
951
952 /* GDT */
953 memcpy(initctx->gdt_frames, frames, sizeof frames);
954 initctx->gdt_ents = gdt_ents;
955
956 /* LDT */
957 initctx->ldt_base = (unsigned long) ldt;
958 initctx->ldt_ents = NLDT;
959
960 /* Kernel context state */
961 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
962 initctx->kernel_sp = pcb->pcb_esp0;
963 initctx->ctrlreg[0] = pcb->pcb_cr0;
964 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
965 initctx->ctrlreg[2] = (vaddr_t) targeteip;
966 #ifdef PAE
967 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
968 #else /* PAE */
969 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(pcb->pcb_cr3)));
970 #endif /* PAE */
971 initctx->ctrlreg[4] = /* CR4_PAE | */CR4_OSFXSR | CR4_OSXMMEXCPT;
972
973
974 /* Xen callbacks */
975 initctx->event_callback_eip = (unsigned long) hypervisor_callback;
976 initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
977 initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
978 initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
979
980 return;
981 }
982 #endif /* __x86_64__ */
983
984 int
985 mp_cpu_start(struct cpu_info *ci, vaddr_t target)
986 {
987
988 int hyperror;
989 struct vcpu_guest_context vcpuctx;
990
991 KASSERT(ci != NULL);
992 KASSERT(ci != &cpu_info_primary);
993 KASSERT(ci->ci_flags & CPUF_AP);
994
995 #ifdef __x86_64__
996 xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
997 #else /* i386 */
998 xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
999 #endif /* __x86_64__ */
1000
1001 /* Initialise the given vcpu to execute cpu_hatch(ci); */
1002 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
1003 aprint_error(": context initialisation failed. errno = %d\n", hyperror);
1004 return hyperror;
1005 }
1006
1007 /* Start it up */
1008
1009 /* First bring it down */
1010 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
1011 aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
1012 return hyperror;
1013 }
1014
1015 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
1016 aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
1017 return hyperror;
1018 }
1019
1020 if (!vcpu_is_up(ci)) {
1021 aprint_error(": did not come up\n");
1022 return -1;
1023 }
1024
1025 return 0;
1026 }
1027
1028 void
1029 mp_cpu_start_cleanup(struct cpu_info *ci)
1030 {
1031 if (vcpu_is_up(ci)) {
1032 aprint_debug_dev(ci->ci_dev, "is started.\n");
1033 }
1034 else {
1035 aprint_error_dev(ci->ci_dev, "did not start up.\n");
1036 }
1037
1038 }
1039
1040 void
1041 cpu_init_msrs(struct cpu_info *ci, bool full)
1042 {
1043 #ifdef __x86_64__
1044 if (full) {
1045 HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
1046 HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
1047 HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
1048 }
1049 #endif /* __x86_64__ */
1050
1051 if (cpu_feature[2] & CPUID_NOX)
1052 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1053
1054 }
1055
1056 void
1057 cpu_offline_md(void)
1058 {
1059 int s;
1060
1061 s = splhigh();
1062 #ifdef __i386__
1063 npxsave_cpu(true);
1064 #else
1065 fpusave_cpu(true);
1066 #endif
1067 splx(s);
1068 }
1069
1070 void
1071 cpu_get_tsc_freq(struct cpu_info *ci)
1072 {
1073 uint32_t vcpu_tversion;
1074 const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1075
1076 vcpu_tversion = tinfo->version;
1077 while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
1078
1079 uint64_t freq = 1000000000ULL << 32;
1080 freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1081 if ( tinfo->tsc_shift < 0 )
1082 freq = freq << -tinfo->tsc_shift;
1083 else
1084 freq = freq >> tinfo->tsc_shift;
1085 ci->ci_data.cpu_cc_freq = freq;
1086 }
1087
1088 void
1089 x86_cpu_idle_xen(void)
1090 {
1091 struct cpu_info *ci = curcpu();
1092
1093 KASSERT(ci->ci_ilevel == IPL_NONE);
1094
1095 x86_disable_intr();
1096 if (!__predict_false(ci->ci_want_resched)) {
1097 idle_block();
1098 } else {
1099 x86_enable_intr();
1100 }
1101 }
1102
1103 /*
1104 * Loads pmap for the current CPU.
1105 */
1106 void
1107 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1108 {
1109 KASSERT(pmap != pmap_kernel());
1110
1111 #if defined(__x86_64__) || defined(PAE)
1112 struct cpu_info *ci = curcpu();
1113 cpuid_t cid = cpu_index(ci);
1114
1115 mutex_enter(&ci->ci_kpm_mtx);
1116 /* make new pmap visible to pmap_kpm_sync_xcall() */
1117 kcpuset_atomic_set(pmap->pm_xen_ptp_cpus, cid);
1118 #endif
1119 #ifdef i386
1120 #ifdef PAE
1121 {
1122 int i;
1123 paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
1124 /* don't update the kernel L3 slot */
1125 for (i = 0 ; i < PDP_SIZE - 1; i++) {
1126 xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
1127 xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
1128 }
1129 tlbflush();
1130 }
1131 #else /* PAE */
1132 lcr3(pmap_pdirpa(pmap, 0));
1133 #endif /* PAE */
1134 #endif /* i386 */
1135
1136 #ifdef __x86_64__
1137 {
1138 int i;
1139 pd_entry_t *new_pgd;
1140 paddr_t l4_pd_ma;
1141
1142 l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
1143
1144 /*
1145 * Map user space address in kernel space and load
1146 * user cr3
1147 */
1148 new_pgd = pmap->pm_pdir;
1149 KASSERT(pmap == ci->ci_pmap);
1150
1151 /* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
1152 for (i = 0; i < PDIR_SLOT_PTE; i++) {
1153 KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
1154 if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
1155 xpq_queue_pte_update(
1156 l4_pd_ma + i * sizeof(pd_entry_t),
1157 new_pgd[i]);
1158 }
1159 }
1160
1161 xen_set_user_pgd(pmap_pdirpa(pmap, 0));
1162 ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
1163
1164 tlbflush();
1165 }
1166
1167 #endif /* __x86_64__ */
1168 #if defined(__x86_64__) || defined(PAE)
1169 /* old pmap no longer visible to pmap_kpm_sync_xcall() */
1170 if (oldpmap != pmap_kernel()) {
1171 kcpuset_atomic_clear(oldpmap->pm_xen_ptp_cpus, cid);
1172 }
1173 mutex_exit(&ci->ci_kpm_mtx);
1174 #endif
1175 }
1176
1177 /*
1178 * pmap_cpu_init_late: perform late per-CPU initialization.
1179 * Short note about percpu PDIR pages:
1180 * Both the PAE and __x86_64__ architectures have per-cpu PDIR
1181 * tables. This is to get around Xen's pagetable setup constraints for
1182 * PAE (multiple L3[3]s cannot point to the same L2 - Xen
1183 * will refuse to pin a table setup this way.) and for multiple cpus
1184 * to map in different user pmaps on __x86_64__ (see: cpu_load_pmap())
1185 *
1186 * What this means for us is that the PDIR of the pmap_kernel() is
1187 * considered to be a canonical "SHADOW" PDIR with the following
1188 * properties:
1189 * - Its recursive mapping points to itself
1190 * - per-cpu recursive mappings point to themselves on __x86_64__
1191 * - per-cpu L4 pages' kernel entries are expected to be in sync with
1192 * the shadow
1193 */
1194
1195 void
1196 pmap_cpu_init_late(struct cpu_info *ci)
1197 {
1198 #if defined(PAE) || defined(__x86_64__)
1199 /*
1200 * The BP has already its own PD page allocated during early
1201 * MD startup.
1202 */
1203
1204 #if defined(__x86_64__)
1205 /* Setup per-cpu normal_pdes */
1206 int i;
1207 extern pd_entry_t * const normal_pdes[];
1208 for (i = 0;i < PTP_LEVELS - 1;i++) {
1209 ci->ci_normal_pdes[i] = normal_pdes[i];
1210 }
1211 #endif /* __x86_64__ */
1212
1213 if (ci == &cpu_info_primary)
1214 return;
1215
1216 KASSERT(ci != NULL);
1217
1218 #if defined(PAE)
1219 cpu_alloc_l3_page(ci);
1220 KASSERT(ci->ci_pae_l3_pdirpa != 0);
1221
1222 /* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
1223 int i;
1224 for (i = 0 ; i < PDP_SIZE - 1; i++) {
1225 ci->ci_pae_l3_pdir[i] =
1226 xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PG_V;
1227 }
1228 #endif /* PAE */
1229
1230 ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1231 UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
1232
1233 if (ci->ci_kpm_pdir == NULL) {
1234 panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
1235 __func__, cpu_index(ci));
1236 }
1237 ci->ci_kpm_pdirpa = vtophys((vaddr_t) ci->ci_kpm_pdir);
1238 KASSERT(ci->ci_kpm_pdirpa != 0);
1239
1240 #if defined(__x86_64__)
1241 /*
1242 * Copy over the pmap_kernel() shadow L4 entries
1243 */
1244
1245 memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
1246
1247 /* Recursive kernel mapping */
1248 ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
1249 #elif defined(PAE)
1250 /* Copy over the pmap_kernel() shadow L2 entries that map the kernel */
1251 memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN, nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
1252 #endif /* __x86_64__ else PAE */
1253
1254 /* Xen wants R/O */
1255 pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
1256 (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
1257 pmap_update(pmap_kernel());
1258 #if defined(PAE)
1259 /* Initialise L3 entry 3. This mapping is shared across all
1260 * pmaps and is static, ie; loading a new pmap will not update
1261 * this entry.
1262 */
1263
1264 ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
1265
1266 /* Mark L3 R/O (Xen wants this) */
1267 pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
1268 (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
1269 pmap_update(pmap_kernel());
1270
1271 xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
1272
1273 #elif defined(__x86_64__)
1274 xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
1275 #endif /* PAE , __x86_64__ */
1276 #endif /* defined(PAE) || defined(__x86_64__) */
1277 }
1278
1279 /*
1280 * Notify all other cpus to halt.
1281 */
1282
1283 void
1284 cpu_broadcast_halt(void)
1285 {
1286 xen_broadcast_ipi(XEN_IPI_HALT);
1287 }
1288
1289 /*
1290 * Send a dummy ipi to a cpu.
1291 */
1292
1293 void
1294 cpu_kick(struct cpu_info *ci)
1295 {
1296 (void)xen_send_ipi(ci, XEN_IPI_KICK);
1297 }
1298