cpu.c revision 1.93.2.2 1 /* $NetBSD: cpu.c,v 1.93.2.2 2017/12/03 11:36:51 jdolecek Exp $ */
2
3 /*-
4 * Copyright (c) 2000 The NetBSD Foundation, Inc.
5 * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
6 * All rights reserved.
7 *
8 * This code is derived from software contributed to The NetBSD Foundation
9 * by RedBack Networks Inc.
10 *
11 * Author: Bill Sommerfeld
12 *
13 * Redistribution and use in source and binary forms, with or without
14 * modification, are permitted provided that the following conditions
15 * are met:
16 * 1. Redistributions of source code must retain the above copyright
17 * notice, this list of conditions and the following disclaimer.
18 * 2. Redistributions in binary form must reproduce the above copyright
19 * notice, this list of conditions and the following disclaimer in the
20 * documentation and/or other materials provided with the distribution.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
23 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
24 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
25 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
26 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
27 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
28 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
29 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
30 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
31 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
32 * POSSIBILITY OF SUCH DAMAGE.
33 */
34
35 /*
36 * Copyright (c) 1999 Stefan Grefen
37 *
38 * Redistribution and use in source and binary forms, with or without
39 * modification, are permitted provided that the following conditions
40 * are met:
41 * 1. Redistributions of source code must retain the above copyright
42 * notice, this list of conditions and the following disclaimer.
43 * 2. Redistributions in binary form must reproduce the above copyright
44 * notice, this list of conditions and the following disclaimer in the
45 * documentation and/or other materials provided with the distribution.
46 * 3. All advertising materials mentioning features or use of this software
47 * must display the following acknowledgement:
48 * This product includes software developed by the NetBSD
49 * Foundation, Inc. and its contributors.
50 * 4. Neither the name of The NetBSD Foundation nor the names of its
51 * contributors may be used to endorse or promote products derived
52 * from this software without specific prior written permission.
53 *
54 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
55 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
56 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
57 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
58 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
59 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
60 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
61 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
62 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
63 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
64 * SUCH DAMAGE.
65 */
66
67 #include <sys/cdefs.h>
68 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.93.2.2 2017/12/03 11:36:51 jdolecek Exp $");
69
70 #include "opt_ddb.h"
71 #include "opt_multiprocessor.h"
72 #include "opt_mpbios.h" /* for MPDEBUG */
73 #include "opt_mtrr.h"
74 #include "opt_xen.h"
75
76 #include "lapic.h"
77 #include "ioapic.h"
78
79 #include <sys/param.h>
80 #include <sys/proc.h>
81 #include <sys/systm.h>
82 #include <sys/device.h>
83 #include <sys/kmem.h>
84 #include <sys/cpu.h>
85 #include <sys/cpufreq.h>
86 #include <sys/atomic.h>
87 #include <sys/reboot.h>
88 #include <sys/idle.h>
89
90 #include <uvm/uvm.h>
91
92 #include <machine/cpu.h>
93 #include <machine/cpufunc.h>
94 #include <machine/cpuvar.h>
95 #include <machine/pmap.h>
96 #include <machine/vmparam.h>
97 #include <machine/mpbiosvar.h>
98 #include <machine/pcb.h>
99 #include <machine/specialreg.h>
100 #include <machine/segments.h>
101 #include <machine/gdt.h>
102 #include <machine/mtrr.h>
103 #include <machine/pio.h>
104
105 #include <x86/fpu.h>
106
107 #include <xen/xen.h>
108 #include <xen/xen-public/vcpu.h>
109 #include <xen/vcpuvar.h>
110
111 #if NLAPIC > 0
112 #include <machine/apicvar.h>
113 #include <machine/i82489reg.h>
114 #include <machine/i82489var.h>
115 #endif
116
117 #include <dev/ic/mc146818reg.h>
118 #include <dev/isa/isareg.h>
119
120 static int cpu_match(device_t, cfdata_t, void *);
121 static void cpu_attach(device_t, device_t, void *);
122 static void cpu_defer(device_t);
123 static int cpu_rescan(device_t, const char *, const int *);
124 static void cpu_childdetached(device_t, device_t);
125 static int vcpu_match(device_t, cfdata_t, void *);
126 static void vcpu_attach(device_t, device_t, void *);
127 static void cpu_attach_common(device_t, device_t, void *);
128 void cpu_offline_md(void);
129
130 struct cpu_softc {
131 device_t sc_dev; /* device tree glue */
132 struct cpu_info *sc_info; /* pointer to CPU info */
133 bool sc_wasonline;
134 };
135
136 int mp_cpu_start(struct cpu_info *, vaddr_t);
137 void mp_cpu_start_cleanup(struct cpu_info *);
138 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
139 mp_cpu_start_cleanup };
140
141 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
142 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
143
144 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
145 vcpu_match, vcpu_attach, NULL, NULL);
146
147 /*
148 * Statically-allocated CPU info for the primary CPU (or the only
149 * CPU, on uniprocessors). The CPU info list is initialized to
150 * point at it.
151 */
152 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
153 .ci_dev = 0,
154 .ci_self = &cpu_info_primary,
155 .ci_idepth = -1,
156 .ci_curlwp = &lwp0,
157 .ci_curldt = -1,
158 };
159 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
160 .ci_dev = 0,
161 .ci_self = &phycpu_info_primary,
162 };
163
164 struct cpu_info *cpu_info_list = &cpu_info_primary;
165 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
166
167 uint32_t cpu_feature[7] __read_mostly; /* X86 CPUID feature bits
168 * [0] basic features %edx
169 * [1] basic features %ecx
170 * [2] extended features %edx
171 * [3] extended features %ecx
172 * [4] VIA padlock features
173 * [5] structured extended features cpuid.7:%ebx
174 * [6] structured extended features cpuid.7:%ecx
175 */
176
177 bool x86_mp_online;
178 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
179
180 #if defined(MULTIPROCESSOR)
181 void cpu_hatch(void *);
182 static void cpu_boot_secondary(struct cpu_info *ci);
183 static void cpu_start_secondary(struct cpu_info *ci);
184 #endif /* MULTIPROCESSOR */
185
186 static int
187 cpu_match(device_t parent, cfdata_t match, void *aux)
188 {
189
190 return 1;
191 }
192
193 static void
194 cpu_attach(device_t parent, device_t self, void *aux)
195 {
196 struct cpu_softc *sc = device_private(self);
197 struct cpu_attach_args *caa = aux;
198 struct cpu_info *ci;
199 uintptr_t ptr;
200 static int nphycpu = 0;
201
202 sc->sc_dev = self;
203
204 /*
205 * If we're an Application Processor, allocate a cpu_info
206 * If we're the first attached CPU use the primary cpu_info,
207 * otherwise allocate a new one
208 */
209 aprint_naive("\n");
210 aprint_normal("\n");
211 if (nphycpu > 0) {
212 struct cpu_info *tmp;
213 ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
214 KM_SLEEP);
215 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
216 ci->ci_curldt = -1;
217
218 tmp = phycpu_info_list;
219 while (tmp->ci_next)
220 tmp = tmp->ci_next;
221
222 tmp->ci_next = ci;
223 } else {
224 ci = &phycpu_info_primary;
225 }
226
227 ci->ci_self = ci;
228 sc->sc_info = ci;
229
230 ci->ci_dev = self;
231 ci->ci_acpiid = caa->cpu_id;
232 ci->ci_cpuid = caa->cpu_number;
233 ci->ci_vcpu = NULL;
234 ci->ci_index = nphycpu++;
235
236 if (!pmf_device_register(self, NULL, NULL))
237 aprint_error_dev(self, "couldn't establish power handler\n");
238
239 (void)config_defer(self, cpu_defer);
240 }
241
242 static void
243 cpu_defer(device_t self)
244 {
245 cpu_rescan(self, NULL, NULL);
246 }
247
248 static int
249 cpu_rescan(device_t self, const char *ifattr, const int *locators)
250 {
251 struct cpu_softc *sc = device_private(self);
252 struct cpufeature_attach_args cfaa;
253 struct cpu_info *ci = sc->sc_info;
254
255 memset(&cfaa, 0, sizeof(cfaa));
256 cfaa.ci = ci;
257
258 if (ifattr_match(ifattr, "cpufeaturebus")) {
259
260 if (ci->ci_frequency == NULL) {
261 cfaa.name = "frequency";
262 ci->ci_frequency = config_found_ia(self,
263 "cpufeaturebus", &cfaa, NULL);
264 }
265 }
266
267 return 0;
268 }
269
270 static void
271 cpu_childdetached(device_t self, device_t child)
272 {
273 struct cpu_softc *sc = device_private(self);
274 struct cpu_info *ci = sc->sc_info;
275
276 if (ci->ci_frequency == child)
277 ci->ci_frequency = NULL;
278 }
279
280 static int
281 vcpu_match(device_t parent, cfdata_t match, void *aux)
282 {
283 struct vcpu_attach_args *vcaa = aux;
284 struct vcpu_runstate_info vcr;
285 int error;
286
287 if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
288 error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
289 vcaa->vcaa_caa.cpu_number, &vcr);
290 switch (error) {
291 case 0:
292 return 1;
293 case -ENOENT:
294 return 0;
295 default:
296 panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
297 }
298 }
299
300 return 0;
301 }
302
303 static void
304 vcpu_attach(device_t parent, device_t self, void *aux)
305 {
306 struct vcpu_attach_args *vcaa = aux;
307
308 KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
309 vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
310 cpu_attach_common(parent, self, &vcaa->vcaa_caa);
311
312 if (!pmf_device_register(self, NULL, NULL))
313 aprint_error_dev(self, "couldn't establish power handler\n");
314 }
315
316 static int
317 vcpu_is_up(struct cpu_info *ci)
318 {
319 KASSERT(ci != NULL);
320 return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
321 }
322
323 static void
324 cpu_vm_init(struct cpu_info *ci)
325 {
326 int ncolors = 2, i;
327
328 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
329 struct x86_cache_info *cai;
330 int tcolors;
331
332 cai = &ci->ci_cinfo[i];
333
334 tcolors = atop(cai->cai_totalsize);
335 switch (cai->cai_associativity) {
336 case 0xff:
337 tcolors = 1; /* fully associative */
338 break;
339 case 0:
340 case 1:
341 break;
342 default:
343 tcolors /= cai->cai_associativity;
344 }
345 ncolors = max(ncolors, tcolors);
346 }
347
348 /*
349 * Knowing the size of the largest cache on this CPU, potentially
350 * re-color our pages.
351 */
352 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
353 uvm_page_recolor(ncolors);
354 pmap_tlb_cpu_init(ci);
355 #ifndef __HAVE_DIRECT_MAP
356 pmap_vpage_cpu_init(ci);
357 #endif
358 }
359
360 static void
361 cpu_attach_common(device_t parent, device_t self, void *aux)
362 {
363 struct cpu_softc *sc = device_private(self);
364 struct cpu_attach_args *caa = aux;
365 struct cpu_info *ci;
366 uintptr_t ptr;
367 int cpunum = caa->cpu_number;
368 static bool again = false;
369
370 sc->sc_dev = self;
371
372 /*
373 * If we're an Application Processor, allocate a cpu_info
374 * structure, otherwise use the primary's.
375 */
376 if (caa->cpu_role == CPU_ROLE_AP) {
377 aprint_naive(": Application Processor\n");
378 ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
379 KM_SLEEP);
380 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
381 memset(ci, 0, sizeof(*ci));
382 } else {
383 aprint_naive(": %s Processor\n",
384 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
385 ci = &cpu_info_primary;
386 }
387
388 ci->ci_self = ci;
389 sc->sc_info = ci;
390 ci->ci_dev = self;
391 ci->ci_cpuid = cpunum;
392
393 KASSERT(HYPERVISOR_shared_info != NULL);
394 KASSERT(cpunum < XEN_LEGACY_MAX_VCPUS);
395 ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
396
397 KASSERT(ci->ci_func == 0);
398 ci->ci_func = caa->cpu_func;
399 aprint_normal("\n");
400
401 /* Must be called before mi_cpu_attach(). */
402 cpu_vm_init(ci);
403
404 if (caa->cpu_role == CPU_ROLE_AP) {
405 int error;
406
407 error = mi_cpu_attach(ci);
408
409 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
410 if (error != 0) {
411 aprint_error_dev(self,
412 "mi_cpu_attach failed with %d\n", error);
413 return;
414 }
415
416 } else {
417 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
418 }
419
420 KASSERT(ci->ci_cpuid == ci->ci_index);
421 #ifdef __x86_64__
422 /* No user PGD mapped for this CPU yet */
423 ci->ci_xen_current_user_pgd = 0;
424 #endif
425 #if defined(__x86_64__) || defined(PAE)
426 mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
427 #endif
428 pmap_reference(pmap_kernel());
429 ci->ci_pmap = pmap_kernel();
430 ci->ci_tlbstate = TLBSTATE_STALE;
431
432 /*
433 * Boot processor may not be attached first, but the below
434 * must be done to allow booting other processors.
435 */
436 if (!again) {
437 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
438 /* Basic init. */
439 cpu_intr_init(ci);
440 cpu_get_tsc_freq(ci);
441 cpu_init(ci);
442 pmap_cpu_init_late(ci);
443
444 /* Every processor needs to init its own ipi h/w (similar to lapic) */
445 xen_ipi_init();
446
447 /* Make sure DELAY() is initialized. */
448 DELAY(1);
449 again = true;
450 }
451
452 /* further PCB init done later. */
453
454 switch (caa->cpu_role) {
455 case CPU_ROLE_SP:
456 atomic_or_32(&ci->ci_flags, CPUF_SP);
457 cpu_identify(ci);
458 x86_cpu_idle_init();
459 break;
460
461 case CPU_ROLE_BP:
462 atomic_or_32(&ci->ci_flags, CPUF_BSP);
463 cpu_identify(ci);
464 x86_cpu_idle_init();
465 break;
466
467 case CPU_ROLE_AP:
468 atomic_or_32(&ci->ci_flags, CPUF_AP);
469
470 /*
471 * report on an AP
472 */
473
474 #if defined(MULTIPROCESSOR)
475 /* interrupt handler stack */
476 cpu_intr_init(ci);
477
478 /* Setup per-cpu memory for gdt */
479 gdt_alloc_cpu(ci);
480
481 pmap_cpu_init_late(ci);
482 cpu_start_secondary(ci);
483
484 if (ci->ci_flags & CPUF_PRESENT) {
485 struct cpu_info *tmp;
486
487 cpu_identify(ci);
488 tmp = cpu_info_list;
489 while (tmp->ci_next)
490 tmp = tmp->ci_next;
491
492 tmp->ci_next = ci;
493 }
494 #else
495 aprint_error_dev(ci->ci_dev, "not started\n");
496 #endif
497 break;
498
499 default:
500 panic("unknown processor type??\n");
501 }
502
503 #ifdef MPVERBOSE
504 if (mp_verbose) {
505 struct lwp *l = ci->ci_data.cpu_idlelwp;
506 struct pcb *pcb = lwp_getpcb(l);
507
508 aprint_verbose_dev(self,
509 "idle lwp at %p, idle sp at 0x%p\n",
510 l,
511 #ifdef i386
512 (void *)pcb->pcb_esp
513 #else
514 (void *)pcb->pcb_rsp
515 #endif
516 );
517
518 }
519 #endif /* MPVERBOSE */
520 }
521
522 /*
523 * Initialize the processor appropriately.
524 */
525
526 void
527 cpu_init(struct cpu_info *ci)
528 {
529
530 /*
531 * If we have FXSAVE/FXRESTOR, use them.
532 */
533 if (cpu_feature[0] & CPUID_FXSR) {
534 lcr4(rcr4() | CR4_OSFXSR);
535
536 /*
537 * If we have SSE/SSE2, enable XMM exceptions.
538 */
539 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
540 lcr4(rcr4() | CR4_OSXMMEXCPT);
541 }
542
543 if (x86_fpu_save >= FPU_SAVE_FXSAVE) {
544 fpuinit_mxcsr_mask();
545 }
546
547 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
548 }
549
550
551 #ifdef MULTIPROCESSOR
552
553 void
554 cpu_boot_secondary_processors(void)
555 {
556 struct cpu_info *ci;
557 u_long i;
558 for (i = 0; i < maxcpus; i++) {
559 ci = cpu_lookup(i);
560 if (ci == NULL)
561 continue;
562 if (ci->ci_data.cpu_idlelwp == NULL)
563 continue;
564 if ((ci->ci_flags & CPUF_PRESENT) == 0)
565 continue;
566 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
567 continue;
568 cpu_boot_secondary(ci);
569 }
570
571 x86_mp_online = true;
572 }
573
574 static void
575 cpu_init_idle_lwp(struct cpu_info *ci)
576 {
577 struct lwp *l = ci->ci_data.cpu_idlelwp;
578 struct pcb *pcb = lwp_getpcb(l);
579
580 pcb->pcb_cr0 = rcr0();
581 }
582
583 void
584 cpu_init_idle_lwps(void)
585 {
586 struct cpu_info *ci;
587 u_long i;
588
589 for (i = 0; i < maxcpus; i++) {
590 ci = cpu_lookup(i);
591 if (ci == NULL)
592 continue;
593 if (ci->ci_data.cpu_idlelwp == NULL)
594 continue;
595 if ((ci->ci_flags & CPUF_PRESENT) == 0)
596 continue;
597 cpu_init_idle_lwp(ci);
598 }
599 }
600
601 static void
602 cpu_start_secondary(struct cpu_info *ci)
603 {
604 int i;
605
606 aprint_debug_dev(ci->ci_dev, "starting\n");
607
608 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
609
610 if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
611 return;
612 }
613
614 /*
615 * wait for it to become ready
616 */
617 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
618 delay(10);
619 }
620 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
621 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
622 #if defined(MPDEBUG) && defined(DDB)
623 printf("dropping into debugger; continue from here to resume boot\n");
624 Debugger();
625 #endif
626 }
627
628 CPU_START_CLEANUP(ci);
629 }
630
631 void
632 cpu_boot_secondary(struct cpu_info *ci)
633 {
634 int i;
635 atomic_or_32(&ci->ci_flags, CPUF_GO);
636 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
637 delay(10);
638 }
639 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
640 aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
641 #if defined(MPDEBUG) && defined(DDB)
642 printf("dropping into debugger; continue from here to resume boot\n");
643 Debugger();
644 #endif
645 }
646 }
647
648 /*
649 * APs end up here immediately after initialisation and VCPUOP_up in
650 * mp_cpu_start().
651 * At this point, we are running in the idle pcb/idle stack of the new
652 * CPU. This function jumps to the idle loop and starts looking for
653 * work.
654 */
655 extern void x86_64_tls_switch(struct lwp *);
656 void
657 cpu_hatch(void *v)
658 {
659 struct cpu_info *ci = (struct cpu_info *)v;
660 struct pcb *pcb;
661 int s, i;
662
663 /* Setup TLS and kernel GS/FS */
664 cpu_init_msrs(ci, true);
665 cpu_init_idt();
666 gdt_init_cpu(ci);
667
668 cpu_probe(ci);
669
670 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
671
672 while ((ci->ci_flags & CPUF_GO) == 0) {
673 /* Don't use delay, boot CPU may be patching the text. */
674 for (i = 10000; i != 0; i--)
675 x86_pause();
676 }
677
678 /* Because the text may have been patched in x86_patch(). */
679 x86_flush();
680 tlbflushg();
681
682 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
683
684 pcb = lwp_getpcb(curlwp);
685 pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0);
686 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
687
688 xen_ipi_init();
689
690 xen_initclocks();
691
692 #ifdef __x86_64__
693 fpuinit(ci);
694 #endif
695
696 lldt(GSEL(GLDT_SEL, SEL_KPL));
697
698 cpu_init(ci);
699 cpu_get_tsc_freq(ci);
700
701 s = splhigh();
702 x86_enable_intr();
703 splx(s);
704
705 aprint_debug_dev(ci->ci_dev, "running\n");
706
707 cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
708
709 idle_loop(NULL);
710 KASSERT(false);
711 }
712
713 #if defined(DDB)
714
715 #include <ddb/db_output.h>
716 #include <machine/db_machdep.h>
717
718 /*
719 * Dump CPU information from ddb.
720 */
721 void
722 cpu_debug_dump(void)
723 {
724 struct cpu_info *ci;
725 CPU_INFO_ITERATOR cii;
726
727 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
728 for (CPU_INFO_FOREACH(cii, ci)) {
729 db_printf("%p %s %ld %x %x %10p %10p\n",
730 ci,
731 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
732 (long)ci->ci_cpuid,
733 ci->ci_flags, ci->ci_ipis,
734 ci->ci_curlwp,
735 ci->ci_fpcurlwp);
736 }
737 }
738 #endif /* DDB */
739
740 #endif /* MULTIPROCESSOR */
741
742 extern void hypervisor_callback(void);
743 extern void failsafe_callback(void);
744 #ifdef __x86_64__
745 typedef void (vector)(void);
746 extern vector Xsyscall, Xsyscall32;
747 #endif
748
749 /*
750 * Setup the "trampoline". On Xen, we setup nearly all cpu context
751 * outside a trampoline, so we prototype and call targetip like so:
752 * void targetip(struct cpu_info *);
753 */
754
755 static void
756 gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
757 {
758 int i;
759 for (i = 0; i < entries; i++) {
760 frames[i] = ((paddr_t)xpmap_ptetomach(
761 (pt_entry_t *)(base + (i << PAGE_SHIFT)))) >> PAGE_SHIFT;
762
763 /* Mark Read-only */
764 pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
765 PG_RW);
766 }
767 }
768
769 #ifdef __x86_64__
770 extern char *ldtstore;
771
772 static void
773 xen_init_amd64_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
774 void targetrip(struct cpu_info *))
775 {
776 /* page frames to point at GDT */
777 extern int gdt_size;
778 paddr_t frames[16];
779 psize_t gdt_ents;
780
781 struct lwp *l;
782 struct pcb *pcb;
783
784 volatile struct vcpu_info *vci;
785
786 KASSERT(ci != NULL);
787 KASSERT(ci != &cpu_info_primary);
788 KASSERT(initctx != NULL);
789 KASSERT(targetrip != NULL);
790
791 memset(initctx, 0, sizeof(*initctx));
792
793 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
794 KASSERT(gdt_ents <= 16);
795
796 gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
797
798 /* Initialise the vcpu context: We use idle_loop()'s pcb context. */
799
800 l = ci->ci_data.cpu_idlelwp;
801
802 KASSERT(l != NULL);
803 pcb = lwp_getpcb(l);
804 KASSERT(pcb != NULL);
805
806 /* resume with interrupts off */
807 vci = ci->ci_vcpu;
808 vci->evtchn_upcall_mask = 1;
809 xen_mb();
810
811 /* resume in kernel-mode */
812 initctx->flags = VGCF_in_kernel | VGCF_online;
813
814 /* Stack and entry points:
815 * We arrange for the stack frame for cpu_hatch() to
816 * appear as a callee frame of lwp_trampoline(). Being a
817 * leaf frame prevents trampling on any of the MD stack setup
818 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
819 */
820
821 initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
822 initctx->user_regs.rip = (vaddr_t) targetrip;
823
824 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
825
826 initctx->user_regs.rflags = pcb->pcb_flags;
827 initctx->user_regs.rsp = pcb->pcb_rsp;
828
829 /* Data segments */
830 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
831 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
832 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
833
834 /* GDT */
835 memcpy(initctx->gdt_frames, frames, sizeof(frames));
836 initctx->gdt_ents = gdt_ents;
837
838 /* LDT */
839 initctx->ldt_base = (unsigned long)ldtstore;
840 initctx->ldt_ents = LDT_SIZE >> 3;
841
842 /* Kernel context state */
843 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
844 initctx->kernel_sp = pcb->pcb_rsp0;
845 initctx->ctrlreg[0] = pcb->pcb_cr0;
846 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
847 initctx->ctrlreg[2] = (vaddr_t)targetrip;
848 /*
849 * Use pmap_kernel() L4 PD directly, until we setup the
850 * per-cpu L4 PD in pmap_cpu_init_late()
851 */
852 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
853 initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
854
855 /* Xen callbacks */
856 initctx->event_callback_eip = (unsigned long)hypervisor_callback;
857 initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
858 initctx->syscall_callback_eip = (unsigned long)Xsyscall;
859
860 return;
861 }
862 #else /* i386 */
863 extern union descriptor *ldtstore;
864 extern void Xsyscall(void);
865
866 static void
867 xen_init_i386_vcpuctxt(struct cpu_info *ci, struct vcpu_guest_context *initctx,
868 void targeteip(struct cpu_info *))
869 {
870 /* page frames to point at GDT */
871 extern int gdt_size;
872 paddr_t frames[16];
873 psize_t gdt_ents;
874
875 struct lwp *l;
876 struct pcb *pcb;
877
878 volatile struct vcpu_info *vci;
879
880 KASSERT(ci != NULL);
881 KASSERT(ci != &cpu_info_primary);
882 KASSERT(initctx != NULL);
883 KASSERT(targeteip != NULL);
884
885 memset(initctx, 0, sizeof(*initctx));
886
887 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
888 KASSERT(gdt_ents <= 16);
889
890 gdt_prepframes(frames, (vaddr_t)ci->ci_gdt, gdt_ents);
891
892 /*
893 * Initialise the vcpu context:
894 * We use this cpu's idle_loop() pcb context.
895 */
896
897 l = ci->ci_data.cpu_idlelwp;
898
899 KASSERT(l != NULL);
900 pcb = lwp_getpcb(l);
901 KASSERT(pcb != NULL);
902
903 /* resume with interrupts off */
904 vci = ci->ci_vcpu;
905 vci->evtchn_upcall_mask = 1;
906 xen_mb();
907
908 /* resume in kernel-mode */
909 initctx->flags = VGCF_in_kernel | VGCF_online;
910
911 /* Stack frame setup for cpu_hatch():
912 * We arrange for the stack frame for cpu_hatch() to
913 * appear as a callee frame of lwp_trampoline(). Being a
914 * leaf frame prevents trampling on any of the MD stack setup
915 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
916 */
917
918 initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
919 arg1 */
920 {
921 /* targeteip(ci); */
922 uint32_t *arg = (uint32_t *)initctx->user_regs.esp;
923 arg[1] = (uint32_t)ci; /* arg1 */
924 }
925
926 initctx->user_regs.eip = (vaddr_t)targeteip;
927 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
928 initctx->user_regs.eflags |= pcb->pcb_iopl;
929
930 /* Data segments */
931 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
932 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
933 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
934 initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
935
936 /* GDT */
937 memcpy(initctx->gdt_frames, frames, sizeof(frames));
938 initctx->gdt_ents = gdt_ents;
939
940 /* LDT */
941 initctx->ldt_base = (unsigned long)ldtstore;
942 initctx->ldt_ents = NLDT;
943
944 /* Kernel context state */
945 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
946 initctx->kernel_sp = pcb->pcb_esp0;
947 initctx->ctrlreg[0] = pcb->pcb_cr0;
948 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
949 initctx->ctrlreg[2] = (vaddr_t)targeteip;
950 #ifdef PAE
951 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
952 #else
953 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(pcb->pcb_cr3)));
954 #endif
955 initctx->ctrlreg[4] = /* CR4_PAE | */CR4_OSFXSR | CR4_OSXMMEXCPT;
956
957 /* Xen callbacks */
958 initctx->event_callback_eip = (unsigned long)hypervisor_callback;
959 initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
960 initctx->failsafe_callback_eip = (unsigned long)failsafe_callback;
961 initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
962
963 return;
964 }
965 #endif /* __x86_64__ */
966
967 int
968 mp_cpu_start(struct cpu_info *ci, vaddr_t target)
969 {
970 int hyperror;
971 struct vcpu_guest_context vcpuctx;
972
973 KASSERT(ci != NULL);
974 KASSERT(ci != &cpu_info_primary);
975 KASSERT(ci->ci_flags & CPUF_AP);
976
977 #ifdef __x86_64__
978 xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
979 #else
980 xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
981 #endif
982
983 /* Initialise the given vcpu to execute cpu_hatch(ci); */
984 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
985 aprint_error(": context initialisation failed. errno = %d\n", hyperror);
986 return hyperror;
987 }
988
989 /* Start it up */
990
991 /* First bring it down */
992 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
993 aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
994 return hyperror;
995 }
996
997 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
998 aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
999 return hyperror;
1000 }
1001
1002 if (!vcpu_is_up(ci)) {
1003 aprint_error(": did not come up\n");
1004 return -1;
1005 }
1006
1007 return 0;
1008 }
1009
1010 void
1011 mp_cpu_start_cleanup(struct cpu_info *ci)
1012 {
1013 if (vcpu_is_up(ci)) {
1014 aprint_debug_dev(ci->ci_dev, "is started.\n");
1015 } else {
1016 aprint_error_dev(ci->ci_dev, "did not start up.\n");
1017 }
1018 }
1019
1020 void
1021 cpu_init_msrs(struct cpu_info *ci, bool full)
1022 {
1023 #ifdef __x86_64__
1024 if (full) {
1025 HYPERVISOR_set_segment_base(SEGBASE_FS, 0);
1026 HYPERVISOR_set_segment_base(SEGBASE_GS_KERNEL, (uint64_t)ci);
1027 HYPERVISOR_set_segment_base(SEGBASE_GS_USER, 0);
1028 }
1029 #endif
1030
1031 if (cpu_feature[2] & CPUID_NOX)
1032 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1033 }
1034
1035 void
1036 cpu_offline_md(void)
1037 {
1038 int s;
1039
1040 s = splhigh();
1041 fpusave_cpu(true);
1042 splx(s);
1043 }
1044
1045 void
1046 cpu_get_tsc_freq(struct cpu_info *ci)
1047 {
1048 uint32_t vcpu_tversion;
1049 const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1050
1051 vcpu_tversion = tinfo->version;
1052 while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
1053
1054 uint64_t freq = 1000000000ULL << 32;
1055 freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1056 if (tinfo->tsc_shift < 0)
1057 freq = freq << -tinfo->tsc_shift;
1058 else
1059 freq = freq >> tinfo->tsc_shift;
1060 ci->ci_data.cpu_cc_freq = freq;
1061 }
1062
1063 void
1064 x86_cpu_idle_xen(void)
1065 {
1066 struct cpu_info *ci = curcpu();
1067
1068 KASSERT(ci->ci_ilevel == IPL_NONE);
1069
1070 x86_disable_intr();
1071 if (!__predict_false(ci->ci_want_resched)) {
1072 idle_block();
1073 } else {
1074 x86_enable_intr();
1075 }
1076 }
1077
1078 /*
1079 * Loads pmap for the current CPU.
1080 */
1081 void
1082 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1083 {
1084 KASSERT(pmap != pmap_kernel());
1085
1086 #if defined(__x86_64__) || defined(PAE)
1087 struct cpu_info *ci = curcpu();
1088 cpuid_t cid = cpu_index(ci);
1089
1090 mutex_enter(&ci->ci_kpm_mtx);
1091 /* make new pmap visible to xen_kpm_sync() */
1092 kcpuset_atomic_set(pmap->pm_xen_ptp_cpus, cid);
1093 #endif
1094
1095 #ifdef i386
1096 #ifdef PAE
1097 {
1098 int i;
1099 paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
1100 /* don't update the kernel L3 slot */
1101 for (i = 0 ; i < PDP_SIZE - 1; i++) {
1102 xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
1103 xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
1104 }
1105 tlbflush();
1106 }
1107 #else /* PAE */
1108 lcr3(pmap_pdirpa(pmap, 0));
1109 #endif /* PAE */
1110 #endif /* i386 */
1111
1112 #ifdef __x86_64__
1113 {
1114 int i;
1115 pd_entry_t *new_pgd;
1116 paddr_t l4_pd_ma;
1117
1118 l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
1119
1120 /*
1121 * Map user space address in kernel space and load
1122 * user cr3
1123 */
1124 new_pgd = pmap->pm_pdir;
1125 KASSERT(pmap == ci->ci_pmap);
1126
1127 /* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
1128 for (i = 0; i < PDIR_SLOT_PTE; i++) {
1129 KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
1130 if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
1131 xpq_queue_pte_update(
1132 l4_pd_ma + i * sizeof(pd_entry_t),
1133 new_pgd[i]);
1134 }
1135 }
1136
1137 xen_set_user_pgd(pmap_pdirpa(pmap, 0));
1138 ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
1139
1140 tlbflush();
1141 }
1142 #endif /* __x86_64__ */
1143
1144 #if defined(__x86_64__) || defined(PAE)
1145 /* old pmap no longer visible to xen_kpm_sync() */
1146 if (oldpmap != pmap_kernel()) {
1147 kcpuset_atomic_clear(oldpmap->pm_xen_ptp_cpus, cid);
1148 }
1149 mutex_exit(&ci->ci_kpm_mtx);
1150 #endif
1151 }
1152
1153 /*
1154 * pmap_cpu_init_late: perform late per-CPU initialization.
1155 *
1156 * Short note about percpu PDIR pages. Both the PAE and __x86_64__ architectures
1157 * have per-cpu PDIR tables, for two different reasons:
1158 * - on PAE, this is to get around Xen's pagetable setup constraints (multiple
1159 * L3[3]s cannot point to the same L2 - Xen will refuse to pin a table set up
1160 * this way).
1161 * - on __x86_64__, this is for multiple CPUs to map in different user pmaps
1162 * (see cpu_load_pmap()).
1163 *
1164 * What this means for us is that the PDIR of the pmap_kernel() is considered
1165 * to be a canonical "SHADOW" PDIR with the following properties:
1166 * - its recursive mapping points to itself
1167 * - per-cpu recursive mappings point to themselves on __x86_64__
1168 * - per-cpu L4 pages' kernel entries are expected to be in sync with
1169 * the shadow
1170 */
1171
1172 void
1173 pmap_cpu_init_late(struct cpu_info *ci)
1174 {
1175 #if defined(PAE) || defined(__x86_64__)
1176 /*
1177 * The BP has already its own PD page allocated during early
1178 * MD startup.
1179 */
1180
1181 #if defined(__x86_64__)
1182 /* Setup per-cpu normal_pdes */
1183 int i;
1184 extern pd_entry_t * const normal_pdes[];
1185 for (i = 0;i < PTP_LEVELS - 1;i++) {
1186 ci->ci_normal_pdes[i] = normal_pdes[i];
1187 }
1188 #endif /* __x86_64__ */
1189
1190 if (ci == &cpu_info_primary)
1191 return;
1192
1193 KASSERT(ci != NULL);
1194
1195 #if defined(PAE)
1196 cpu_alloc_l3_page(ci);
1197 KASSERT(ci->ci_pae_l3_pdirpa != 0);
1198
1199 /* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
1200 int i;
1201 for (i = 0 ; i < PDP_SIZE - 1; i++) {
1202 ci->ci_pae_l3_pdir[i] =
1203 xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PG_V;
1204 }
1205 #endif /* PAE */
1206
1207 ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1208 UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
1209
1210 if (ci->ci_kpm_pdir == NULL) {
1211 panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
1212 __func__, cpu_index(ci));
1213 }
1214 ci->ci_kpm_pdirpa = vtophys((vaddr_t)ci->ci_kpm_pdir);
1215 KASSERT(ci->ci_kpm_pdirpa != 0);
1216
1217 #if defined(__x86_64__)
1218 extern pt_entry_t xpmap_pg_nx;
1219
1220 /* Copy over the pmap_kernel() shadow L4 entries */
1221 memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
1222
1223 /* Recursive kernel mapping */
1224 ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa)
1225 | PG_V | xpmap_pg_nx;
1226 #elif defined(PAE)
1227 /* Copy over the pmap_kernel() shadow L2 entries */
1228 memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN,
1229 nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
1230 #endif
1231
1232 /* Xen wants a RO pdir. */
1233 pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
1234 (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
1235 pmap_update(pmap_kernel());
1236 #if defined(PAE)
1237 /*
1238 * Initialize L3 entry 3. This mapping is shared across all pmaps and is
1239 * static, ie: loading a new pmap will not update this entry.
1240 */
1241 ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_V;
1242
1243 /* Xen wants a RO L3. */
1244 pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
1245 (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
1246 pmap_update(pmap_kernel());
1247
1248 xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
1249
1250 #elif defined(__x86_64__)
1251 xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
1252 #endif /* PAE , __x86_64__ */
1253 #endif /* defined(PAE) || defined(__x86_64__) */
1254 }
1255
1256 /*
1257 * Notify all other cpus to halt.
1258 */
1259
1260 void
1261 cpu_broadcast_halt(void)
1262 {
1263 xen_broadcast_ipi(XEN_IPI_HALT);
1264 }
1265
1266 /*
1267 * Send a dummy ipi to a cpu.
1268 */
1269
1270 void
1271 cpu_kick(struct cpu_info *ci)
1272 {
1273 (void)xen_send_ipi(ci, XEN_IPI_KICK);
1274 }
1275