cpu.c revision 1.99 1 /* $NetBSD: cpu.c,v 1.99 2014/10/18 08:33:27 snj Exp $ */
2 /* NetBSD: cpu.c,v 1.18 2004/02/20 17:35:01 yamt Exp */
3
4 /*-
5 * Copyright (c) 2000 The NetBSD Foundation, Inc.
6 * Copyright (c) 2002, 2006, 2007 YAMAMOTO Takashi,
7 * All rights reserved.
8 *
9 * This code is derived from software contributed to The NetBSD Foundation
10 * by RedBack Networks Inc.
11 *
12 * Author: Bill Sommerfeld
13 *
14 * Redistribution and use in source and binary forms, with or without
15 * modification, are permitted provided that the following conditions
16 * are met:
17 * 1. Redistributions of source code must retain the above copyright
18 * notice, this list of conditions and the following disclaimer.
19 * 2. Redistributions in binary form must reproduce the above copyright
20 * notice, this list of conditions and the following disclaimer in the
21 * documentation and/or other materials provided with the distribution.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
24 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
25 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
26 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
27 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
28 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
29 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
30 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
31 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
32 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33 * POSSIBILITY OF SUCH DAMAGE.
34 */
35
36 /*
37 * Copyright (c) 1999 Stefan Grefen
38 *
39 * Redistribution and use in source and binary forms, with or without
40 * modification, are permitted provided that the following conditions
41 * are met:
42 * 1. Redistributions of source code must retain the above copyright
43 * notice, this list of conditions and the following disclaimer.
44 * 2. Redistributions in binary form must reproduce the above copyright
45 * notice, this list of conditions and the following disclaimer in the
46 * documentation and/or other materials provided with the distribution.
47 * 3. All advertising materials mentioning features or use of this software
48 * must display the following acknowledgement:
49 * This product includes software developed by the NetBSD
50 * Foundation, Inc. and its contributors.
51 * 4. Neither the name of The NetBSD Foundation nor the names of its
52 * contributors may be used to endorse or promote products derived
53 * from this software without specific prior written permission.
54 *
55 * THIS SOFTWARE IS PROVIDED BY AUTHOR AND CONTRIBUTORS ``AS IS'' AND ANY
56 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
57 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
58 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR AND CONTRIBUTORS BE LIABLE
59 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
60 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
61 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
62 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
63 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
64 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
65 * SUCH DAMAGE.
66 */
67
68 #include <sys/cdefs.h>
69 __KERNEL_RCSID(0, "$NetBSD: cpu.c,v 1.99 2014/10/18 08:33:27 snj Exp $");
70
71 #include "opt_ddb.h"
72 #include "opt_multiprocessor.h"
73 #include "opt_mpbios.h" /* for MPDEBUG */
74 #include "opt_mtrr.h"
75 #include "opt_xen.h"
76
77 #include "lapic.h"
78 #include "ioapic.h"
79
80 #include <sys/param.h>
81 #include <sys/proc.h>
82 #include <sys/systm.h>
83 #include <sys/device.h>
84 #include <sys/kmem.h>
85 #include <sys/cpu.h>
86 #include <sys/cpufreq.h>
87 #include <sys/atomic.h>
88 #include <sys/reboot.h>
89 #include <sys/idle.h>
90
91 #include <uvm/uvm.h>
92
93 #include <machine/cpufunc.h>
94 #include <machine/cpuvar.h>
95 #include <machine/pmap.h>
96 #include <machine/vmparam.h>
97 #include <machine/mpbiosvar.h>
98 #include <machine/pcb.h>
99 #include <machine/specialreg.h>
100 #include <machine/segments.h>
101 #include <machine/gdt.h>
102 #include <machine/mtrr.h>
103 #include <machine/pio.h>
104
105 #include <x86/fpu.h>
106
107 #include <xen/xen.h>
108 #include <xen/xen-public/vcpu.h>
109 #include <xen/vcpuvar.h>
110
111 #if NLAPIC > 0
112 #include <machine/apicvar.h>
113 #include <machine/i82489reg.h>
114 #include <machine/i82489var.h>
115 #endif
116
117 #include <dev/ic/mc146818reg.h>
118 #include <dev/isa/isareg.h>
119
120 static int cpu_match(device_t, cfdata_t, void *);
121 static void cpu_attach(device_t, device_t, void *);
122 static void cpu_defer(device_t);
123 static int cpu_rescan(device_t, const char *, const int *);
124 static void cpu_childdetached(device_t, device_t);
125 static int vcpu_match(device_t, cfdata_t, void *);
126 static void vcpu_attach(device_t, device_t, void *);
127 static void cpu_attach_common(device_t, device_t, void *);
128 void cpu_offline_md(void);
129
130 struct cpu_softc {
131 device_t sc_dev; /* device tree glue */
132 struct cpu_info *sc_info; /* pointer to CPU info */
133 bool sc_wasonline;
134 };
135
136 int mp_cpu_start(struct cpu_info *, vaddr_t);
137 void mp_cpu_start_cleanup(struct cpu_info *);
138 const struct cpu_functions mp_cpu_funcs = { mp_cpu_start, NULL,
139 mp_cpu_start_cleanup };
140
141 CFATTACH_DECL2_NEW(cpu, sizeof(struct cpu_softc),
142 cpu_match, cpu_attach, NULL, NULL, cpu_rescan, cpu_childdetached);
143
144 CFATTACH_DECL_NEW(vcpu, sizeof(struct cpu_softc),
145 vcpu_match, vcpu_attach, NULL, NULL);
146
147 /*
148 * Statically-allocated CPU info for the primary CPU (or the only
149 * CPU, on uniprocessors). The CPU info list is initialized to
150 * point at it.
151 */
152 #ifdef TRAPLOG
153 #include <machine/tlog.h>
154 struct tlog tlog_primary;
155 #endif
156 struct cpu_info cpu_info_primary __aligned(CACHE_LINE_SIZE) = {
157 .ci_dev = 0,
158 .ci_self = &cpu_info_primary,
159 .ci_idepth = -1,
160 .ci_curlwp = &lwp0,
161 .ci_curldt = -1,
162 #ifdef TRAPLOG
163 .ci_tlog = &tlog_primary,
164 #endif
165
166 };
167 struct cpu_info phycpu_info_primary __aligned(CACHE_LINE_SIZE) = {
168 .ci_dev = 0,
169 .ci_self = &phycpu_info_primary,
170 };
171
172 struct cpu_info *cpu_info_list = &cpu_info_primary;
173 struct cpu_info *phycpu_info_list = &phycpu_info_primary;
174
175 uint32_t cpu_feature[5]; /* X86 CPUID feature bits
176 * [0] basic features %edx
177 * [1] basic features %ecx
178 * [2] extended features %edx
179 * [3] extended features %ecx
180 * [4] VIA padlock features
181 */
182
183 bool x86_mp_online;
184 paddr_t mp_trampoline_paddr = MP_TRAMPOLINE;
185
186 #if defined(MULTIPROCESSOR)
187 void cpu_hatch(void *);
188 static void cpu_boot_secondary(struct cpu_info *ci);
189 static void cpu_start_secondary(struct cpu_info *ci);
190 #endif /* MULTIPROCESSOR */
191
192 static int
193 cpu_match(device_t parent, cfdata_t match, void *aux)
194 {
195
196 return 1;
197 }
198
199 static void
200 cpu_attach(device_t parent, device_t self, void *aux)
201 {
202 struct cpu_softc *sc = device_private(self);
203 struct cpu_attach_args *caa = aux;
204 struct cpu_info *ci;
205 uintptr_t ptr;
206 static int nphycpu = 0;
207
208 sc->sc_dev = self;
209
210 /*
211 * If we're an Application Processor, allocate a cpu_info
212 * If we're the first attached CPU use the primary cpu_info,
213 * otherwise allocate a new one
214 */
215 aprint_naive("\n");
216 aprint_normal("\n");
217 if (nphycpu > 0) {
218 struct cpu_info *tmp;
219 ptr = (uintptr_t)kmem_zalloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
220 KM_SLEEP);
221 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
222 ci->ci_curldt = -1;
223
224 tmp = phycpu_info_list;
225 while (tmp->ci_next)
226 tmp = tmp->ci_next;
227
228 tmp->ci_next = ci;
229 } else {
230 ci = &phycpu_info_primary;
231 }
232
233 ci->ci_self = ci;
234 sc->sc_info = ci;
235
236 ci->ci_dev = self;
237 ci->ci_acpiid = caa->cpu_id;
238 ci->ci_cpuid = caa->cpu_number;
239 ci->ci_vcpu = NULL;
240 ci->ci_index = nphycpu++;
241
242 if (!pmf_device_register(self, NULL, NULL))
243 aprint_error_dev(self, "couldn't establish power handler\n");
244
245 (void)config_defer(self, cpu_defer);
246 }
247
248 static void
249 cpu_defer(device_t self)
250 {
251 cpu_rescan(self, NULL, NULL);
252 }
253
254 static int
255 cpu_rescan(device_t self, const char *ifattr, const int *locators)
256 {
257 struct cpu_softc *sc = device_private(self);
258 struct cpufeature_attach_args cfaa;
259 struct cpu_info *ci = sc->sc_info;
260
261 memset(&cfaa, 0, sizeof(cfaa));
262 cfaa.ci = ci;
263
264 if (ifattr_match(ifattr, "cpufeaturebus")) {
265
266 if (ci->ci_frequency == NULL) {
267 cfaa.name = "frequency";
268 ci->ci_frequency = config_found_ia(self,
269 "cpufeaturebus", &cfaa, NULL);
270 }
271 }
272
273 return 0;
274 }
275
276 static void
277 cpu_childdetached(device_t self, device_t child)
278 {
279 struct cpu_softc *sc = device_private(self);
280 struct cpu_info *ci = sc->sc_info;
281
282 if (ci->ci_frequency == child)
283 ci->ci_frequency = NULL;
284 }
285
286 static int
287 vcpu_match(device_t parent, cfdata_t match, void *aux)
288 {
289 struct vcpu_attach_args *vcaa = aux;
290 struct vcpu_runstate_info vcr;
291 int error;
292
293 if (strcmp(vcaa->vcaa_name, match->cf_name) == 0) {
294 error = HYPERVISOR_vcpu_op(VCPUOP_get_runstate_info,
295 vcaa->vcaa_caa.cpu_number,
296 &vcr);
297 switch (error) {
298 case 0:
299 return 1;
300 case -ENOENT:
301 return 0;
302 default:
303 panic("Unknown hypervisor error %d returned on vcpu runstate probe\n", error);
304 }
305 }
306
307 return 0;
308 }
309
310 static void
311 vcpu_attach(device_t parent, device_t self, void *aux)
312 {
313 struct vcpu_attach_args *vcaa = aux;
314
315 KASSERT(vcaa->vcaa_caa.cpu_func == NULL);
316 vcaa->vcaa_caa.cpu_func = &mp_cpu_funcs;
317 cpu_attach_common(parent, self, &vcaa->vcaa_caa);
318
319 if (!pmf_device_register(self, NULL, NULL))
320 aprint_error_dev(self, "couldn't establish power handler\n");
321 }
322
323 static int
324 vcpu_is_up(struct cpu_info *ci)
325 {
326 KASSERT(ci != NULL);
327 return HYPERVISOR_vcpu_op(VCPUOP_is_up, ci->ci_cpuid, NULL);
328 }
329
330 static void
331 cpu_vm_init(struct cpu_info *ci)
332 {
333 int ncolors = 2, i;
334
335 for (i = CAI_ICACHE; i <= CAI_L2CACHE; i++) {
336 struct x86_cache_info *cai;
337 int tcolors;
338
339 cai = &ci->ci_cinfo[i];
340
341 tcolors = atop(cai->cai_totalsize);
342 switch(cai->cai_associativity) {
343 case 0xff:
344 tcolors = 1; /* fully associative */
345 break;
346 case 0:
347 case 1:
348 break;
349 default:
350 tcolors /= cai->cai_associativity;
351 }
352 ncolors = max(ncolors, tcolors);
353 }
354
355 /*
356 * Knowing the size of the largest cache on this CPU, potentially
357 * re-color our pages.
358 */
359 aprint_debug_dev(ci->ci_dev, "%d page colors\n", ncolors);
360 uvm_page_recolor(ncolors);
361 pmap_tlb_cpu_init(ci);
362 }
363
364 static void
365 cpu_attach_common(device_t parent, device_t self, void *aux)
366 {
367 struct cpu_softc *sc = device_private(self);
368 struct cpu_attach_args *caa = aux;
369 struct cpu_info *ci;
370 uintptr_t ptr;
371 int cpunum = caa->cpu_number;
372 static bool again = false;
373
374 sc->sc_dev = self;
375
376 /*
377 * If we're an Application Processor, allocate a cpu_info
378 * structure, otherwise use the primary's.
379 */
380 if (caa->cpu_role == CPU_ROLE_AP) {
381 aprint_naive(": Application Processor\n");
382 ptr = (uintptr_t)kmem_alloc(sizeof(*ci) + CACHE_LINE_SIZE - 1,
383 KM_SLEEP);
384 ci = (struct cpu_info *)roundup2(ptr, CACHE_LINE_SIZE);
385 memset(ci, 0, sizeof(*ci));
386 #ifdef TRAPLOG
387 ci->ci_tlog_base = kmem_zalloc(sizeof(struct tlog), KM_SLEEP);
388 #endif
389 } else {
390 aprint_naive(": %s Processor\n",
391 caa->cpu_role == CPU_ROLE_SP ? "Single" : "Boot");
392 ci = &cpu_info_primary;
393 }
394
395 ci->ci_self = ci;
396 sc->sc_info = ci;
397 ci->ci_dev = self;
398 ci->ci_cpuid = cpunum;
399
400 KASSERT(HYPERVISOR_shared_info != NULL);
401 KASSERT(cpunum < XEN_LEGACY_MAX_VCPUS);
402 ci->ci_vcpu = &HYPERVISOR_shared_info->vcpu_info[cpunum];
403
404 KASSERT(ci->ci_func == 0);
405 ci->ci_func = caa->cpu_func;
406
407 /* Must be called before mi_cpu_attach(). */
408 cpu_vm_init(ci);
409
410 if (caa->cpu_role == CPU_ROLE_AP) {
411 int error;
412
413 error = mi_cpu_attach(ci);
414
415 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
416 if (error != 0) {
417 aprint_normal("\n");
418 aprint_error_dev(self,
419 "mi_cpu_attach failed with %d\n", error);
420 return;
421 }
422
423 } else {
424 KASSERT(ci->ci_data.cpu_idlelwp != NULL);
425 }
426
427 KASSERT(ci->ci_cpuid == ci->ci_index);
428 pmap_reference(pmap_kernel());
429 ci->ci_pmap = pmap_kernel();
430 ci->ci_tlbstate = TLBSTATE_STALE;
431
432 /*
433 * Boot processor may not be attached first, but the below
434 * must be done to allow booting other processors.
435 */
436 if (!again) {
437 atomic_or_32(&ci->ci_flags, CPUF_PRESENT | CPUF_PRIMARY);
438 /* Basic init. */
439 cpu_intr_init(ci);
440 cpu_get_tsc_freq(ci);
441 cpu_init(ci);
442 pmap_cpu_init_late(ci);
443
444 /* Every processor needs to init its own ipi h/w (similar to lapic) */
445 xen_ipi_init();
446
447 /* Make sure DELAY() is initialized. */
448 DELAY(1);
449 again = true;
450 }
451
452 /* further PCB init done later. */
453
454 switch (caa->cpu_role) {
455 case CPU_ROLE_SP:
456 atomic_or_32(&ci->ci_flags, CPUF_SP);
457 cpu_identify(ci);
458 x86_cpu_idle_init();
459
460 break;
461
462 case CPU_ROLE_BP:
463 atomic_or_32(&ci->ci_flags, CPUF_BSP);
464 cpu_identify(ci);
465 x86_cpu_idle_init();
466
467 break;
468
469 case CPU_ROLE_AP:
470 atomic_or_32(&ci->ci_flags, CPUF_AP);
471
472 /*
473 * report on an AP
474 */
475
476 #if defined(MULTIPROCESSOR)
477 /* interrupt handler stack */
478 cpu_intr_init(ci);
479
480 /* Setup per-cpu memory for gdt */
481 gdt_alloc_cpu(ci);
482
483 pmap_cpu_init_late(ci);
484 cpu_start_secondary(ci);
485
486 if (ci->ci_flags & CPUF_PRESENT) {
487 struct cpu_info *tmp;
488
489 cpu_identify(ci);
490 tmp = cpu_info_list;
491 while (tmp->ci_next)
492 tmp = tmp->ci_next;
493
494 tmp->ci_next = ci;
495 }
496 #else
497 aprint_error(": not started\n");
498 #endif
499 break;
500
501 default:
502 aprint_normal("\n");
503 panic("unknown processor type??\n");
504 }
505
506 #ifdef MPVERBOSE
507 if (mp_verbose) {
508 struct lwp *l = ci->ci_data.cpu_idlelwp;
509 struct pcb *pcb = lwp_getpcb(l);
510
511 aprint_verbose_dev(self,
512 "idle lwp at %p, idle sp at 0x%p\n",
513 l,
514 #ifdef i386
515 (void *)pcb->pcb_esp
516 #else /* i386 */
517 (void *)pcb->pcb_rsp
518 #endif /* i386 */
519 );
520
521 }
522 #endif /* MPVERBOSE */
523 }
524
525 /*
526 * Initialize the processor appropriately.
527 */
528
529 void
530 cpu_init(struct cpu_info *ci)
531 {
532
533 /*
534 * If we have FXSAVE/FXRESTOR, use them.
535 */
536 if (cpu_feature[0] & CPUID_FXSR) {
537 lcr4(rcr4() | CR4_OSFXSR);
538
539 /*
540 * If we have SSE/SSE2, enable XMM exceptions.
541 */
542 if (cpu_feature[0] & (CPUID_SSE|CPUID_SSE2))
543 lcr4(rcr4() | CR4_OSXMMEXCPT);
544 }
545
546 #ifdef __x86_64__
547 /* No user PGD mapped for this CPU yet */
548 ci->ci_xen_current_user_pgd = 0;
549 #endif
550 #if defined(__x86_64__) || defined(PAE)
551 mutex_init(&ci->ci_kpm_mtx, MUTEX_DEFAULT, IPL_VM);
552 #endif
553
554 atomic_or_32(&ci->ci_flags, CPUF_RUNNING);
555 }
556
557
558 #ifdef MULTIPROCESSOR
559
560 void
561 cpu_boot_secondary_processors(void)
562 {
563 struct cpu_info *ci;
564 u_long i;
565 for (i = 0; i < maxcpus; i++) {
566 ci = cpu_lookup(i);
567 if (ci == NULL)
568 continue;
569 if (ci->ci_data.cpu_idlelwp == NULL)
570 continue;
571 if ((ci->ci_flags & CPUF_PRESENT) == 0)
572 continue;
573 if (ci->ci_flags & (CPUF_BSP|CPUF_SP|CPUF_PRIMARY))
574 continue;
575 cpu_boot_secondary(ci);
576 }
577
578 x86_mp_online = true;
579 }
580
581 static void
582 cpu_init_idle_lwp(struct cpu_info *ci)
583 {
584 struct lwp *l = ci->ci_data.cpu_idlelwp;
585 struct pcb *pcb = lwp_getpcb(l);
586
587 pcb->pcb_cr0 = rcr0();
588 }
589
590 void
591 cpu_init_idle_lwps(void)
592 {
593 struct cpu_info *ci;
594 u_long i;
595
596 for (i = 0; i < maxcpus; i++) {
597 ci = cpu_lookup(i);
598 if (ci == NULL)
599 continue;
600 if (ci->ci_data.cpu_idlelwp == NULL)
601 continue;
602 if ((ci->ci_flags & CPUF_PRESENT) == 0)
603 continue;
604 cpu_init_idle_lwp(ci);
605 }
606 }
607
608 static void
609 cpu_start_secondary(struct cpu_info *ci)
610 {
611 int i;
612
613 aprint_debug_dev(ci->ci_dev, "starting\n");
614
615 ci->ci_curlwp = ci->ci_data.cpu_idlelwp;
616
617 if (CPU_STARTUP(ci, (vaddr_t) cpu_hatch) != 0) {
618 return;
619 }
620
621 /*
622 * wait for it to become ready
623 */
624 for (i = 100000; (!(ci->ci_flags & CPUF_PRESENT)) && i > 0; i--) {
625 delay(10);
626 }
627 if ((ci->ci_flags & CPUF_PRESENT) == 0) {
628 aprint_error_dev(ci->ci_dev, "failed to become ready\n");
629 #if defined(MPDEBUG) && defined(DDB)
630 printf("dropping into debugger; continue from here to resume boot\n");
631 Debugger();
632 #endif
633 }
634
635 CPU_START_CLEANUP(ci);
636 }
637
638 void
639 cpu_boot_secondary(struct cpu_info *ci)
640 {
641 int i;
642 atomic_or_32(&ci->ci_flags, CPUF_GO);
643 for (i = 100000; (!(ci->ci_flags & CPUF_RUNNING)) && i > 0; i--) {
644 delay(10);
645 }
646 if ((ci->ci_flags & CPUF_RUNNING) == 0) {
647 aprint_error_dev(ci->ci_dev, "CPU failed to start\n");
648 #if defined(MPDEBUG) && defined(DDB)
649 printf("dropping into debugger; continue from here to resume boot\n");
650 Debugger();
651 #endif
652 }
653 }
654
655 /*
656 * APs end up here immediately after initialisation and VCPUOP_up in
657 * mp_cpu_start().
658 * At this point, we are running in the idle pcb/idle stack of the new
659 * CPU. This function jumps to the idle loop and starts looking for
660 * work.
661 */
662 extern void x86_64_tls_switch(struct lwp *);
663 void
664 cpu_hatch(void *v)
665 {
666 struct cpu_info *ci = (struct cpu_info *)v;
667 struct pcb *pcb;
668 int s, i;
669
670 /* Setup TLS and kernel GS/FS */
671 cpu_init_msrs(ci, true);
672 cpu_init_idt();
673 gdt_init_cpu(ci);
674
675 cpu_probe(ci);
676
677 atomic_or_32(&ci->ci_flags, CPUF_PRESENT);
678
679 while ((ci->ci_flags & CPUF_GO) == 0) {
680 /* Don't use delay, boot CPU may be patching the text. */
681 for (i = 10000; i != 0; i--)
682 x86_pause();
683 }
684
685 /* Because the text may have been patched in x86_patch(). */
686 x86_flush();
687 tlbflushg();
688
689 KASSERT((ci->ci_flags & CPUF_RUNNING) == 0);
690
691 pcb = lwp_getpcb(curlwp);
692 pcb->pcb_cr3 = pmap_pdirpa(pmap_kernel(), 0);
693 pcb = lwp_getpcb(ci->ci_data.cpu_idlelwp);
694
695 xen_ipi_init();
696
697 xen_initclocks();
698
699 #ifdef __x86_64__
700 fpuinit(ci);
701 #endif
702
703 lldt(GSEL(GLDT_SEL, SEL_KPL));
704
705 cpu_init(ci);
706 cpu_get_tsc_freq(ci);
707
708 s = splhigh();
709 x86_enable_intr();
710 splx(s);
711
712 aprint_debug_dev(ci->ci_dev, "running\n");
713
714 cpu_switchto(NULL, ci->ci_data.cpu_idlelwp, true);
715
716 idle_loop(NULL);
717 KASSERT(false);
718 }
719
720 #if defined(DDB)
721
722 #include <ddb/db_output.h>
723 #include <machine/db_machdep.h>
724
725 /*
726 * Dump CPU information from ddb.
727 */
728 void
729 cpu_debug_dump(void)
730 {
731 struct cpu_info *ci;
732 CPU_INFO_ITERATOR cii;
733
734 db_printf("addr dev id flags ipis curlwp fpcurlwp\n");
735 for (CPU_INFO_FOREACH(cii, ci)) {
736 db_printf("%p %s %ld %x %x %10p %10p\n",
737 ci,
738 ci->ci_dev == NULL ? "BOOT" : device_xname(ci->ci_dev),
739 (long)ci->ci_cpuid,
740 ci->ci_flags, ci->ci_ipis,
741 ci->ci_curlwp,
742 ci->ci_fpcurlwp);
743 }
744 }
745 #endif /* DDB */
746
747 #endif /* MULTIPROCESSOR */
748
749 extern void hypervisor_callback(void);
750 extern void failsafe_callback(void);
751 #ifdef __x86_64__
752 typedef void (vector)(void);
753 extern vector Xsyscall, Xsyscall32;
754 #endif
755
756 /*
757 * Setup the "trampoline". On Xen, we setup nearly all cpu context
758 * outside a trampoline, so we prototype and call targetip like so:
759 * void targetip(struct cpu_info *);
760 */
761
762 static void
763 gdt_prepframes(paddr_t *frames, vaddr_t base, uint32_t entries)
764 {
765 int i;
766 for (i = 0; i < roundup(entries, PAGE_SIZE) >> PAGE_SHIFT; i++) {
767
768 frames[i] = ((paddr_t) xpmap_ptetomach(
769 (pt_entry_t *) (base + (i << PAGE_SHIFT))))
770 >> PAGE_SHIFT;
771
772 /* Mark Read-only */
773 pmap_pte_clearbits(kvtopte(base + (i << PAGE_SHIFT)),
774 PG_RW);
775 }
776 }
777
778 #ifdef __x86_64__
779 extern char *ldtstore;
780
781 static void
782 xen_init_amd64_vcpuctxt(struct cpu_info *ci,
783 struct vcpu_guest_context *initctx,
784 void targetrip(struct cpu_info *))
785 {
786 /* page frames to point at GDT */
787 extern int gdt_size;
788 paddr_t frames[16];
789 psize_t gdt_ents;
790
791 struct lwp *l;
792 struct pcb *pcb;
793
794 volatile struct vcpu_info *vci;
795
796 KASSERT(ci != NULL);
797 KASSERT(ci != &cpu_info_primary);
798 KASSERT(initctx != NULL);
799 KASSERT(targetrip != NULL);
800
801 memset(initctx, 0, sizeof *initctx);
802
803 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
804 KASSERT(gdt_ents <= 16);
805
806 gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
807
808 /* Initialise the vcpu context: We use idle_loop()'s pcb context. */
809
810 l = ci->ci_data.cpu_idlelwp;
811
812 KASSERT(l != NULL);
813 pcb = lwp_getpcb(l);
814 KASSERT(pcb != NULL);
815
816 /* resume with interrupts off */
817 vci = ci->ci_vcpu;
818 vci->evtchn_upcall_mask = 1;
819 xen_mb();
820
821 /* resume in kernel-mode */
822 initctx->flags = VGCF_in_kernel | VGCF_online;
823
824 /* Stack and entry points:
825 * We arrange for the stack frame for cpu_hatch() to
826 * appear as a callee frame of lwp_trampoline(). Being a
827 * leaf frame prevents trampling on any of the MD stack setup
828 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
829 */
830
831 initctx->user_regs.rdi = (uint64_t) ci; /* targetrip(ci); */
832 initctx->user_regs.rip = (vaddr_t) targetrip;
833
834 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
835
836 initctx->user_regs.rflags = pcb->pcb_flags;
837 initctx->user_regs.rsp = pcb->pcb_rsp;
838
839 /* Data segments */
840 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
841 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
842 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
843
844 /* GDT */
845 memcpy(initctx->gdt_frames, frames, sizeof frames);
846 initctx->gdt_ents = gdt_ents;
847
848 /* LDT */
849 initctx->ldt_base = (unsigned long) ldtstore;
850 initctx->ldt_ents = LDT_SIZE >> 3;
851
852 /* Kernel context state */
853 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
854 initctx->kernel_sp = pcb->pcb_rsp0;
855 initctx->ctrlreg[0] = pcb->pcb_cr0;
856 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
857 initctx->ctrlreg[2] = (vaddr_t) targetrip;
858 /*
859 * Use pmap_kernel() L4 PD directly, until we setup the
860 * per-cpu L4 PD in pmap_cpu_init_late()
861 */
862 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_kpm_pdirpa)));
863 initctx->ctrlreg[4] = CR4_PAE | CR4_OSFXSR | CR4_OSXMMEXCPT;
864
865
866 /* Xen callbacks */
867 initctx->event_callback_eip = (unsigned long) hypervisor_callback;
868 initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
869 initctx->syscall_callback_eip = (unsigned long) Xsyscall;
870
871 return;
872 }
873 #else /* i386 */
874 extern union descriptor *ldt;
875 extern void Xsyscall(void);
876
877 static void
878 xen_init_i386_vcpuctxt(struct cpu_info *ci,
879 struct vcpu_guest_context *initctx,
880 void targeteip(struct cpu_info *))
881 {
882 /* page frames to point at GDT */
883 extern int gdt_size;
884 paddr_t frames[16];
885 psize_t gdt_ents;
886
887 struct lwp *l;
888 struct pcb *pcb;
889
890 volatile struct vcpu_info *vci;
891
892 KASSERT(ci != NULL);
893 KASSERT(ci != &cpu_info_primary);
894 KASSERT(initctx != NULL);
895 KASSERT(targeteip != NULL);
896
897 memset(initctx, 0, sizeof *initctx);
898
899 gdt_ents = roundup(gdt_size, PAGE_SIZE) >> PAGE_SHIFT;
900 KASSERT(gdt_ents <= 16);
901
902 gdt_prepframes(frames, (vaddr_t) ci->ci_gdt, gdt_ents);
903
904 /*
905 * Initialise the vcpu context:
906 * We use this cpu's idle_loop() pcb context.
907 */
908
909 l = ci->ci_data.cpu_idlelwp;
910
911 KASSERT(l != NULL);
912 pcb = lwp_getpcb(l);
913 KASSERT(pcb != NULL);
914
915 /* resume with interrupts off */
916 vci = ci->ci_vcpu;
917 vci->evtchn_upcall_mask = 1;
918 xen_mb();
919
920 /* resume in kernel-mode */
921 initctx->flags = VGCF_in_kernel | VGCF_online;
922
923 /* Stack frame setup for cpu_hatch():
924 * We arrange for the stack frame for cpu_hatch() to
925 * appear as a callee frame of lwp_trampoline(). Being a
926 * leaf frame prevents trampling on any of the MD stack setup
927 * that x86/vm_machdep.c:cpu_lwp_fork() does for idle_loop()
928 */
929
930 initctx->user_regs.esp = pcb->pcb_esp - 4; /* Leave word for
931 arg1 */
932 { /* targeteip(ci); */
933 uint32_t *arg = (uint32_t *) initctx->user_regs.esp;
934 arg[1] = (uint32_t) ci; /* arg1 */
935
936 }
937
938 initctx->user_regs.eip = (vaddr_t) targeteip;
939 initctx->user_regs.cs = GSEL(GCODE_SEL, SEL_KPL);
940 initctx->user_regs.eflags |= pcb->pcb_iopl;
941
942 /* Data segments */
943 initctx->user_regs.ss = GSEL(GDATA_SEL, SEL_KPL);
944 initctx->user_regs.es = GSEL(GDATA_SEL, SEL_KPL);
945 initctx->user_regs.ds = GSEL(GDATA_SEL, SEL_KPL);
946 initctx->user_regs.fs = GSEL(GDATA_SEL, SEL_KPL);
947
948 /* GDT */
949 memcpy(initctx->gdt_frames, frames, sizeof frames);
950 initctx->gdt_ents = gdt_ents;
951
952 /* LDT */
953 initctx->ldt_base = (unsigned long) ldt;
954 initctx->ldt_ents = NLDT;
955
956 /* Kernel context state */
957 initctx->kernel_ss = GSEL(GDATA_SEL, SEL_KPL);
958 initctx->kernel_sp = pcb->pcb_esp0;
959 initctx->ctrlreg[0] = pcb->pcb_cr0;
960 initctx->ctrlreg[1] = 0; /* "resuming" from kernel - no User cr3. */
961 initctx->ctrlreg[2] = (vaddr_t) targeteip;
962 #ifdef PAE
963 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(ci->ci_pae_l3_pdirpa)));
964 #else /* PAE */
965 initctx->ctrlreg[3] = xen_pfn_to_cr3(x86_btop(xpmap_ptom(pcb->pcb_cr3)));
966 #endif /* PAE */
967 initctx->ctrlreg[4] = /* CR4_PAE | */CR4_OSFXSR | CR4_OSXMMEXCPT;
968
969
970 /* Xen callbacks */
971 initctx->event_callback_eip = (unsigned long) hypervisor_callback;
972 initctx->event_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
973 initctx->failsafe_callback_eip = (unsigned long) failsafe_callback;
974 initctx->failsafe_callback_cs = GSEL(GCODE_SEL, SEL_KPL);
975
976 return;
977 }
978 #endif /* __x86_64__ */
979
980 int
981 mp_cpu_start(struct cpu_info *ci, vaddr_t target)
982 {
983
984 int hyperror;
985 struct vcpu_guest_context vcpuctx;
986
987 KASSERT(ci != NULL);
988 KASSERT(ci != &cpu_info_primary);
989 KASSERT(ci->ci_flags & CPUF_AP);
990
991 #ifdef __x86_64__
992 xen_init_amd64_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
993 #else /* i386 */
994 xen_init_i386_vcpuctxt(ci, &vcpuctx, (void (*)(struct cpu_info *))target);
995 #endif /* __x86_64__ */
996
997 /* Initialise the given vcpu to execute cpu_hatch(ci); */
998 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_initialise, ci->ci_cpuid, &vcpuctx))) {
999 aprint_error(": context initialisation failed. errno = %d\n", hyperror);
1000 return hyperror;
1001 }
1002
1003 /* Start it up */
1004
1005 /* First bring it down */
1006 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_down, ci->ci_cpuid, NULL))) {
1007 aprint_error(": VCPUOP_down hypervisor command failed. errno = %d\n", hyperror);
1008 return hyperror;
1009 }
1010
1011 if ((hyperror = HYPERVISOR_vcpu_op(VCPUOP_up, ci->ci_cpuid, NULL))) {
1012 aprint_error(": VCPUOP_up hypervisor command failed. errno = %d\n", hyperror);
1013 return hyperror;
1014 }
1015
1016 if (!vcpu_is_up(ci)) {
1017 aprint_error(": did not come up\n");
1018 return -1;
1019 }
1020
1021 return 0;
1022 }
1023
1024 void
1025 mp_cpu_start_cleanup(struct cpu_info *ci)
1026 {
1027 if (vcpu_is_up(ci)) {
1028 aprint_debug_dev(ci->ci_dev, "is started.\n");
1029 }
1030 else {
1031 aprint_error_dev(ci->ci_dev, "did not start up.\n");
1032 }
1033
1034 }
1035
1036 void
1037 cpu_init_msrs(struct cpu_info *ci, bool full)
1038 {
1039 #ifdef __x86_64__
1040 if (full) {
1041 HYPERVISOR_set_segment_base (SEGBASE_FS, 0);
1042 HYPERVISOR_set_segment_base (SEGBASE_GS_KERNEL, (uint64_t) ci);
1043 HYPERVISOR_set_segment_base (SEGBASE_GS_USER, 0);
1044 }
1045 #endif /* __x86_64__ */
1046
1047 if (cpu_feature[2] & CPUID_NOX)
1048 wrmsr(MSR_EFER, rdmsr(MSR_EFER) | EFER_NXE);
1049
1050 }
1051
1052 void
1053 cpu_offline_md(void)
1054 {
1055 int s;
1056
1057 s = splhigh();
1058 fpusave_cpu(true);
1059 splx(s);
1060 }
1061
1062 void
1063 cpu_get_tsc_freq(struct cpu_info *ci)
1064 {
1065 uint32_t vcpu_tversion;
1066 const volatile vcpu_time_info_t *tinfo = &ci->ci_vcpu->time;
1067
1068 vcpu_tversion = tinfo->version;
1069 while (tinfo->version == vcpu_tversion); /* Wait for a time update. XXX: timeout ? */
1070
1071 uint64_t freq = 1000000000ULL << 32;
1072 freq = freq / (uint64_t)tinfo->tsc_to_system_mul;
1073 if ( tinfo->tsc_shift < 0 )
1074 freq = freq << -tinfo->tsc_shift;
1075 else
1076 freq = freq >> tinfo->tsc_shift;
1077 ci->ci_data.cpu_cc_freq = freq;
1078 }
1079
1080 void
1081 x86_cpu_idle_xen(void)
1082 {
1083 struct cpu_info *ci = curcpu();
1084
1085 KASSERT(ci->ci_ilevel == IPL_NONE);
1086
1087 x86_disable_intr();
1088 if (!__predict_false(ci->ci_want_resched)) {
1089 idle_block();
1090 } else {
1091 x86_enable_intr();
1092 }
1093 }
1094
1095 /*
1096 * Loads pmap for the current CPU.
1097 */
1098 void
1099 cpu_load_pmap(struct pmap *pmap, struct pmap *oldpmap)
1100 {
1101 KASSERT(pmap != pmap_kernel());
1102
1103 #if defined(__x86_64__) || defined(PAE)
1104 struct cpu_info *ci = curcpu();
1105 cpuid_t cid = cpu_index(ci);
1106
1107 mutex_enter(&ci->ci_kpm_mtx);
1108 /* make new pmap visible to xen_kpm_sync() */
1109 kcpuset_atomic_set(pmap->pm_xen_ptp_cpus, cid);
1110 #endif
1111 #ifdef i386
1112 #ifdef PAE
1113 {
1114 int i;
1115 paddr_t l3_pd = xpmap_ptom_masked(ci->ci_pae_l3_pdirpa);
1116 /* don't update the kernel L3 slot */
1117 for (i = 0 ; i < PDP_SIZE - 1; i++) {
1118 xpq_queue_pte_update(l3_pd + i * sizeof(pd_entry_t),
1119 xpmap_ptom(pmap->pm_pdirpa[i]) | PG_V);
1120 }
1121 tlbflush();
1122 }
1123 #else /* PAE */
1124 lcr3(pmap_pdirpa(pmap, 0));
1125 #endif /* PAE */
1126 #endif /* i386 */
1127
1128 #ifdef __x86_64__
1129 {
1130 int i;
1131 pd_entry_t *new_pgd;
1132 paddr_t l4_pd_ma;
1133
1134 l4_pd_ma = xpmap_ptom_masked(ci->ci_kpm_pdirpa);
1135
1136 /*
1137 * Map user space address in kernel space and load
1138 * user cr3
1139 */
1140 new_pgd = pmap->pm_pdir;
1141 KASSERT(pmap == ci->ci_pmap);
1142
1143 /* Copy user pmap L4 PDEs (in user addr. range) to per-cpu L4 */
1144 for (i = 0; i < PDIR_SLOT_PTE; i++) {
1145 KASSERT(pmap != pmap_kernel() || new_pgd[i] == 0);
1146 if (ci->ci_kpm_pdir[i] != new_pgd[i]) {
1147 xpq_queue_pte_update(
1148 l4_pd_ma + i * sizeof(pd_entry_t),
1149 new_pgd[i]);
1150 }
1151 }
1152
1153 xen_set_user_pgd(pmap_pdirpa(pmap, 0));
1154 ci->ci_xen_current_user_pgd = pmap_pdirpa(pmap, 0);
1155
1156 tlbflush();
1157 }
1158
1159 #endif /* __x86_64__ */
1160 #if defined(__x86_64__) || defined(PAE)
1161 /* old pmap no longer visible to xen_kpm_sync() */
1162 if (oldpmap != pmap_kernel()) {
1163 kcpuset_atomic_clear(oldpmap->pm_xen_ptp_cpus, cid);
1164 }
1165 mutex_exit(&ci->ci_kpm_mtx);
1166 #endif
1167 }
1168
1169 /*
1170 * pmap_cpu_init_late: perform late per-CPU initialization.
1171 * Short note about percpu PDIR pages:
1172 * Both the PAE and __x86_64__ architectures have per-cpu PDIR
1173 * tables. This is to get around Xen's pagetable setup constraints for
1174 * PAE (multiple L3[3]s cannot point to the same L2 - Xen
1175 * will refuse to pin a table setup this way.) and for multiple cpus
1176 * to map in different user pmaps on __x86_64__ (see: cpu_load_pmap())
1177 *
1178 * What this means for us is that the PDIR of the pmap_kernel() is
1179 * considered to be a canonical "SHADOW" PDIR with the following
1180 * properties:
1181 * - Its recursive mapping points to itself
1182 * - per-cpu recursive mappings point to themselves on __x86_64__
1183 * - per-cpu L4 pages' kernel entries are expected to be in sync with
1184 * the shadow
1185 */
1186
1187 void
1188 pmap_cpu_init_late(struct cpu_info *ci)
1189 {
1190 #if defined(PAE) || defined(__x86_64__)
1191 /*
1192 * The BP has already its own PD page allocated during early
1193 * MD startup.
1194 */
1195
1196 #if defined(__x86_64__)
1197 /* Setup per-cpu normal_pdes */
1198 int i;
1199 extern pd_entry_t * const normal_pdes[];
1200 for (i = 0;i < PTP_LEVELS - 1;i++) {
1201 ci->ci_normal_pdes[i] = normal_pdes[i];
1202 }
1203 #endif /* __x86_64__ */
1204
1205 if (ci == &cpu_info_primary)
1206 return;
1207
1208 KASSERT(ci != NULL);
1209
1210 #if defined(PAE)
1211 cpu_alloc_l3_page(ci);
1212 KASSERT(ci->ci_pae_l3_pdirpa != 0);
1213
1214 /* Initialise L2 entries 0 - 2: Point them to pmap_kernel() */
1215 int i;
1216 for (i = 0 ; i < PDP_SIZE - 1; i++) {
1217 ci->ci_pae_l3_pdir[i] =
1218 xpmap_ptom_masked(pmap_kernel()->pm_pdirpa[i]) | PG_V;
1219 }
1220 #endif /* PAE */
1221
1222 ci->ci_kpm_pdir = (pd_entry_t *)uvm_km_alloc(kernel_map, PAGE_SIZE, 0,
1223 UVM_KMF_WIRED | UVM_KMF_ZERO | UVM_KMF_NOWAIT);
1224
1225 if (ci->ci_kpm_pdir == NULL) {
1226 panic("%s: failed to allocate L4 per-cpu PD for CPU %d\n",
1227 __func__, cpu_index(ci));
1228 }
1229 ci->ci_kpm_pdirpa = vtophys((vaddr_t) ci->ci_kpm_pdir);
1230 KASSERT(ci->ci_kpm_pdirpa != 0);
1231
1232 #if defined(__x86_64__)
1233 /*
1234 * Copy over the pmap_kernel() shadow L4 entries
1235 */
1236
1237 memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir, PAGE_SIZE);
1238
1239 /* Recursive kernel mapping */
1240 ci->ci_kpm_pdir[PDIR_SLOT_PTE] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
1241 #elif defined(PAE)
1242 /* Copy over the pmap_kernel() shadow L2 entries that map the kernel */
1243 memcpy(ci->ci_kpm_pdir, pmap_kernel()->pm_pdir + PDIR_SLOT_KERN, nkptp[PTP_LEVELS - 1] * sizeof(pd_entry_t));
1244 #endif /* __x86_64__ else PAE */
1245
1246 /* Xen wants R/O */
1247 pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_kpm_pdir,
1248 (vaddr_t)ci->ci_kpm_pdir + PAGE_SIZE, VM_PROT_READ);
1249 pmap_update(pmap_kernel());
1250 #if defined(PAE)
1251 /* Initialise L3 entry 3. This mapping is shared across all
1252 * pmaps and is static, ie; loading a new pmap will not update
1253 * this entry.
1254 */
1255
1256 ci->ci_pae_l3_pdir[3] = xpmap_ptom_masked(ci->ci_kpm_pdirpa) | PG_k | PG_V;
1257
1258 /* Mark L3 R/O (Xen wants this) */
1259 pmap_protect(pmap_kernel(), (vaddr_t)ci->ci_pae_l3_pdir,
1260 (vaddr_t)ci->ci_pae_l3_pdir + PAGE_SIZE, VM_PROT_READ);
1261 pmap_update(pmap_kernel());
1262
1263 xpq_queue_pin_l3_table(xpmap_ptom_masked(ci->ci_pae_l3_pdirpa));
1264
1265 #elif defined(__x86_64__)
1266 xpq_queue_pin_l4_table(xpmap_ptom_masked(ci->ci_kpm_pdirpa));
1267 #endif /* PAE , __x86_64__ */
1268 #endif /* defined(PAE) || defined(__x86_64__) */
1269 }
1270
1271 /*
1272 * Notify all other cpus to halt.
1273 */
1274
1275 void
1276 cpu_broadcast_halt(void)
1277 {
1278 xen_broadcast_ipi(XEN_IPI_HALT);
1279 }
1280
1281 /*
1282 * Send a dummy ipi to a cpu.
1283 */
1284
1285 void
1286 cpu_kick(struct cpu_info *ci)
1287 {
1288 (void)xen_send_ipi(ci, XEN_IPI_KICK);
1289 }
1290