if_cemac.c revision 1.35 1 1.35 skrll /* $NetBSD: if_cemac.c,v 1.35 2024/08/25 16:06:46 skrll Exp $ */
2 1.1 hkenken
3 1.1 hkenken /*
4 1.1 hkenken * Copyright (c) 2015 Genetec Corporation. All rights reserved.
5 1.1 hkenken * Written by Hashimoto Kenichi for Genetec Corporation.
6 1.1 hkenken *
7 1.1 hkenken * Based on arch/arm/at91/at91emac.c
8 1.1 hkenken *
9 1.1 hkenken * Copyright (c) 2007 Embedtronics Oy
10 1.1 hkenken * All rights reserved.
11 1.1 hkenken *
12 1.1 hkenken * Copyright (c) 2004 Jesse Off
13 1.1 hkenken * All rights reserved.
14 1.1 hkenken *
15 1.1 hkenken * Redistribution and use in source and binary forms, with or without
16 1.1 hkenken * modification, are permitted provided that the following conditions
17 1.1 hkenken * are met:
18 1.1 hkenken * 1. Redistributions of source code must retain the above copyright
19 1.1 hkenken * notice, this list of conditions and the following disclaimer.
20 1.1 hkenken * 2. Redistributions in binary form must reproduce the above copyright
21 1.1 hkenken * notice, this list of conditions and the following disclaimer in the
22 1.1 hkenken * documentation and/or other materials provided with the distribution.
23 1.1 hkenken *
24 1.1 hkenken * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 1.1 hkenken * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 1.1 hkenken * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 1.1 hkenken * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 1.1 hkenken * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 1.1 hkenken * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 1.1 hkenken * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 1.1 hkenken * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 1.1 hkenken * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 1.1 hkenken * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 1.1 hkenken * POSSIBILITY OF SUCH DAMAGE.
35 1.1 hkenken */
36 1.1 hkenken
37 1.1 hkenken /*
38 1.1 hkenken * Cadence EMAC/GEM ethernet controller IP driver
39 1.1 hkenken * used by arm/at91, arm/zynq SoC
40 1.1 hkenken */
41 1.1 hkenken
42 1.1 hkenken #include <sys/cdefs.h>
43 1.35 skrll __KERNEL_RCSID(0, "$NetBSD: if_cemac.c,v 1.35 2024/08/25 16:06:46 skrll Exp $");
44 1.1 hkenken
45 1.32 skrll #include <sys/param.h>
46 1.1 hkenken #include <sys/types.h>
47 1.32 skrll
48 1.32 skrll #include <sys/bus.h>
49 1.32 skrll #include <sys/device.h>
50 1.1 hkenken #include <sys/kernel.h>
51 1.1 hkenken #include <sys/proc.h>
52 1.32 skrll #include <sys/systm.h>
53 1.1 hkenken #include <sys/time.h>
54 1.1 hkenken
55 1.1 hkenken #include <net/if.h>
56 1.1 hkenken #include <net/if_dl.h>
57 1.1 hkenken #include <net/if_types.h>
58 1.1 hkenken #include <net/if_media.h>
59 1.1 hkenken #include <net/if_ether.h>
60 1.12 msaitoh #include <net/bpf.h>
61 1.1 hkenken
62 1.1 hkenken #include <dev/mii/mii.h>
63 1.1 hkenken #include <dev/mii/miivar.h>
64 1.1 hkenken
65 1.1 hkenken #ifdef INET
66 1.1 hkenken #include <netinet/in.h>
67 1.1 hkenken #include <netinet/in_systm.h>
68 1.1 hkenken #include <netinet/in_var.h>
69 1.1 hkenken #include <netinet/ip.h>
70 1.1 hkenken #include <netinet/if_inarp.h>
71 1.1 hkenken #endif
72 1.1 hkenken
73 1.1 hkenken #include <dev/cadence/cemacreg.h>
74 1.1 hkenken #include <dev/cadence/if_cemacvar.h>
75 1.1 hkenken
76 1.1 hkenken #define DEFAULT_MDCDIV 32
77 1.1 hkenken
78 1.1 hkenken #define CEMAC_READ(x) \
79 1.1 hkenken bus_space_read_4(sc->sc_iot, sc->sc_ioh, (x))
80 1.1 hkenken #define CEMAC_WRITE(x, y) \
81 1.1 hkenken bus_space_write_4(sc->sc_iot, sc->sc_ioh, (x), (y))
82 1.1 hkenken #define CEMAC_GEM_WRITE(x, y) \
83 1.1 hkenken do { \
84 1.1 hkenken if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) \
85 1.1 hkenken bus_space_write_4(sc->sc_iot, sc->sc_ioh, (GEM_##x), (y)); \
86 1.1 hkenken else \
87 1.1 hkenken bus_space_write_4(sc->sc_iot, sc->sc_ioh, (ETH_##x), (y)); \
88 1.1 hkenken } while(0)
89 1.1 hkenken
90 1.1 hkenken static void cemac_init(struct cemac_softc *);
91 1.1 hkenken static int cemac_gctx(struct cemac_softc *);
92 1.1 hkenken static int cemac_mediachange(struct ifnet *);
93 1.1 hkenken static void cemac_mediastatus(struct ifnet *, struct ifmediareq *);
94 1.15 msaitoh static int cemac_mii_readreg(device_t, int, int, uint16_t *);
95 1.15 msaitoh static int cemac_mii_writereg(device_t, int, int, uint16_t);
96 1.1 hkenken static void cemac_statchg(struct ifnet *);
97 1.1 hkenken static void cemac_tick(void *);
98 1.1 hkenken static int cemac_ifioctl(struct ifnet *, u_long, void *);
99 1.1 hkenken static void cemac_ifstart(struct ifnet *);
100 1.1 hkenken static void cemac_ifwatchdog(struct ifnet *);
101 1.1 hkenken static int cemac_ifinit(struct ifnet *);
102 1.1 hkenken static void cemac_ifstop(struct ifnet *, int);
103 1.1 hkenken static void cemac_setaddr(struct ifnet *);
104 1.1 hkenken
105 1.1 hkenken #ifdef CEMAC_DEBUG
106 1.1 hkenken int cemac_debug = CEMAC_DEBUG;
107 1.19 msaitoh #define DPRINTFN(n, fmt) if (cemac_debug >= (n)) printf fmt
108 1.1 hkenken #else
109 1.19 msaitoh #define DPRINTFN(n, fmt)
110 1.1 hkenken #endif
111 1.1 hkenken
112 1.1 hkenken void
113 1.33 skrll cemac_attach_common(struct cemac_softc *sc)
114 1.1 hkenken {
115 1.33 skrll uint32_t u;
116 1.1 hkenken
117 1.1 hkenken aprint_naive("\n");
118 1.1 hkenken if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
119 1.1 hkenken aprint_normal(": Cadence Gigabit Ethernet Controller\n");
120 1.1 hkenken else
121 1.1 hkenken aprint_normal(": Cadence Ethernet Controller\n");
122 1.1 hkenken
123 1.1 hkenken /* configure emac: */
124 1.1 hkenken CEMAC_WRITE(ETH_CTL, 0); // disable everything
125 1.1 hkenken CEMAC_WRITE(ETH_IDR, -1); // disable interrupts
126 1.1 hkenken CEMAC_WRITE(ETH_RBQP, 0); // clear receive
127 1.1 hkenken CEMAC_WRITE(ETH_TBQP, 0); // clear transmit
128 1.1 hkenken if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
129 1.1 hkenken CEMAC_WRITE(ETH_CFG,
130 1.1 hkenken GEM_CFG_CLK_64 | GEM_CFG_GEN | ETH_CFG_SPD | ETH_CFG_FD);
131 1.1 hkenken else
132 1.1 hkenken CEMAC_WRITE(ETH_CFG,
133 1.1 hkenken ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
134 1.1 hkenken //CEMAC_WRITE(ETH_TCR, 0); // send nothing
135 1.1 hkenken //(void)CEMAC_READ(ETH_ISR);
136 1.1 hkenken u = CEMAC_READ(ETH_TSR);
137 1.1 hkenken CEMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
138 1.1 hkenken | ETH_TSR_IDLE | ETH_TSR_RLE
139 1.19 msaitoh | ETH_TSR_COL | ETH_TSR_OVR)));
140 1.1 hkenken u = CEMAC_READ(ETH_RSR);
141 1.19 msaitoh CEMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
142 1.1 hkenken
143 1.1 hkenken /* Fetch the Ethernet address from property if set. */
144 1.33 skrll prop_dictionary_t prop = device_properties(sc->sc_dev);
145 1.33 skrll prop_data_t enaddr = prop_dictionary_get(prop, "mac-address");
146 1.1 hkenken
147 1.1 hkenken if (enaddr != NULL) {
148 1.1 hkenken KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA);
149 1.1 hkenken KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN);
150 1.23 skrll memcpy(sc->sc_enaddr, prop_data_value(enaddr),
151 1.1 hkenken ETHER_ADDR_LEN);
152 1.1 hkenken } else {
153 1.1 hkenken static const uint8_t hardcoded[ETHER_ADDR_LEN] = {
154 1.1 hkenken 0x00, 0x0d, 0x10, 0x81, 0x0c, 0x94
155 1.1 hkenken };
156 1.1 hkenken memcpy(sc->sc_enaddr, hardcoded, ETHER_ADDR_LEN);
157 1.1 hkenken }
158 1.1 hkenken
159 1.1 hkenken cemac_init(sc);
160 1.1 hkenken }
161 1.1 hkenken
162 1.1 hkenken static int
163 1.1 hkenken cemac_gctx(struct cemac_softc *sc)
164 1.1 hkenken {
165 1.1 hkenken uint32_t tsr;
166 1.1 hkenken
167 1.1 hkenken tsr = CEMAC_READ(ETH_TSR);
168 1.1 hkenken if (!ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
169 1.1 hkenken // no space left
170 1.1 hkenken if (!(tsr & ETH_TSR_BNQ))
171 1.1 hkenken return 0;
172 1.1 hkenken } else {
173 1.1 hkenken if (tsr & GEM_TSR_TXGO)
174 1.1 hkenken return 0;
175 1.1 hkenken }
176 1.1 hkenken CEMAC_WRITE(ETH_TSR, tsr);
177 1.1 hkenken
178 1.1 hkenken // free sent frames
179 1.1 hkenken while (sc->txqc > (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM) ? 0 :
180 1.1 hkenken (tsr & ETH_TSR_IDLE ? 0 : 1))) {
181 1.1 hkenken int bi = sc->txqi % TX_QLEN;
182 1.1 hkenken
183 1.1 hkenken DPRINTFN(3,("%s: TDSC[%i].Addr 0x%08x\n",
184 1.1 hkenken __FUNCTION__, bi, sc->TDSC[bi].Addr));
185 1.1 hkenken DPRINTFN(3,("%s: TDSC[%i].Info 0x%08x\n",
186 1.1 hkenken __FUNCTION__, bi, sc->TDSC[bi].Info));
187 1.1 hkenken
188 1.1 hkenken bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
189 1.1 hkenken sc->txq[bi].m->m_pkthdr.len, BUS_DMASYNC_POSTWRITE);
190 1.1 hkenken bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
191 1.1 hkenken m_freem(sc->txq[bi].m);
192 1.1 hkenken DPRINTFN(2,("%s: freed idx #%i mbuf %p (txqc=%i)\n",
193 1.1 hkenken __FUNCTION__, bi, sc->txq[bi].m, sc->txqc));
194 1.1 hkenken sc->txq[bi].m = NULL;
195 1.1 hkenken sc->txqi = (bi + 1) % TX_QLEN;
196 1.1 hkenken sc->txqc--;
197 1.1 hkenken }
198 1.1 hkenken
199 1.1 hkenken // mark we're free
200 1.25 thorpej if (sc->tx_busy) {
201 1.25 thorpej sc->tx_busy = false;
202 1.1 hkenken /* Disable transmit-buffer-free interrupt */
203 1.1 hkenken /*CEMAC_WRITE(ETH_IDR, ETH_ISR_TBRE);*/
204 1.1 hkenken }
205 1.1 hkenken
206 1.1 hkenken return 1;
207 1.1 hkenken }
208 1.1 hkenken
209 1.1 hkenken int
210 1.1 hkenken cemac_intr(void *arg)
211 1.1 hkenken {
212 1.35 skrll struct cemac_softc * const sc = arg;
213 1.1 hkenken struct ifnet * ifp = &sc->sc_ethercom.ec_if;
214 1.1 hkenken uint32_t imr, isr, ctl;
215 1.1 hkenken #ifdef CEMAC_DEBUG
216 1.1 hkenken uint32_t rsr;
217 1.1 hkenken #endif
218 1.1 hkenken int bi;
219 1.1 hkenken
220 1.1 hkenken imr = ~CEMAC_READ(ETH_IMR);
221 1.19 msaitoh if (!(imr & (ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE |
222 1.19 msaitoh ETH_ISR_RBNA | ETH_ISR_ROVR | ETH_ISR_TCOM))) {
223 1.1 hkenken // interrupt not enabled, can't be us
224 1.1 hkenken return 0;
225 1.1 hkenken }
226 1.1 hkenken
227 1.1 hkenken isr = CEMAC_READ(ETH_ISR);
228 1.1 hkenken CEMAC_WRITE(ETH_ISR, isr);
229 1.1 hkenken isr &= imr;
230 1.1 hkenken #ifdef CEMAC_DEBUG
231 1.1 hkenken rsr = CEMAC_READ(ETH_RSR); // get receive status register
232 1.1 hkenken #endif
233 1.1 hkenken DPRINTFN(2, ("%s: isr=0x%08X rsr=0x%08X imr=0x%08X\n", __FUNCTION__, isr, rsr, imr));
234 1.1 hkenken
235 1.22 thorpej net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
236 1.1 hkenken if (isr & ETH_ISR_RBNA) { // out of receive buffers
237 1.1 hkenken CEMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear interrupt
238 1.1 hkenken ctl = CEMAC_READ(ETH_CTL); // get current control register value
239 1.1 hkenken CEMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE); // disable receiver
240 1.1 hkenken CEMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear BNA bit
241 1.1 hkenken CEMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE); // re-enable receiver
242 1.27 riastrad if_statinc_ref(ifp, nsr, if_ierrors);
243 1.27 riastrad if_statinc_ref(ifp, nsr, if_ipackets);
244 1.1 hkenken DPRINTFN(1,("%s: out of receive buffers\n", __FUNCTION__));
245 1.1 hkenken }
246 1.1 hkenken if (isr & ETH_ISR_ROVR) {
247 1.1 hkenken CEMAC_WRITE(ETH_RSR, ETH_RSR_OVR); // clear interrupt
248 1.27 riastrad if_statinc_ref(ifp, nsr, if_ierrors);
249 1.27 riastrad if_statinc_ref(ifp, nsr, if_ipackets);
250 1.1 hkenken DPRINTFN(1,("%s: receive overrun\n", __FUNCTION__));
251 1.1 hkenken }
252 1.1 hkenken
253 1.1 hkenken if (isr & ETH_ISR_RCOM) { // packet has been received!
254 1.1 hkenken uint32_t nfo;
255 1.1 hkenken DPRINTFN(2,("#2 RDSC[%i].INFO=0x%08X\n", sc->rxqi % RX_QLEN, sc->RDSC[sc->rxqi % RX_QLEN].Info));
256 1.1 hkenken while (sc->RDSC[(bi = sc->rxqi % RX_QLEN)].Addr & ETH_RDSC_F_USED) {
257 1.7 rjs int fl, csum;
258 1.1 hkenken struct mbuf *m;
259 1.1 hkenken
260 1.1 hkenken nfo = sc->RDSC[bi].Info;
261 1.20 msaitoh fl = (nfo & ETH_RDSC_I_LEN) - 4;
262 1.1 hkenken DPRINTFN(2,("## nfo=0x%08X\n", nfo));
263 1.1 hkenken
264 1.1 hkenken MGETHDR(m, M_DONTWAIT, MT_DATA);
265 1.34 skrll if (m != NULL)
266 1.34 skrll MCLGET(m, M_DONTWAIT);
267 1.1 hkenken if (m != NULL && (m->m_flags & M_EXT)) {
268 1.1 hkenken bus_dmamap_sync(sc->sc_dmat, sc->rxq[bi].m_dmamap, 0,
269 1.1 hkenken MCLBYTES, BUS_DMASYNC_POSTREAD);
270 1.1 hkenken bus_dmamap_unload(sc->sc_dmat,
271 1.1 hkenken sc->rxq[bi].m_dmamap);
272 1.9 ozaki m_set_rcvif(sc->rxq[bi].m, ifp);
273 1.1 hkenken sc->rxq[bi].m->m_pkthdr.len =
274 1.1 hkenken sc->rxq[bi].m->m_len = fl;
275 1.7 rjs switch (nfo & ETH_RDSC_I_CHKSUM) {
276 1.7 rjs case ETH_RDSC_I_CHKSUM_IP:
277 1.7 rjs csum = M_CSUM_IPv4;
278 1.7 rjs break;
279 1.7 rjs case ETH_RDSC_I_CHKSUM_UDP:
280 1.7 rjs csum = M_CSUM_IPv4 | M_CSUM_UDPv4 |
281 1.7 rjs M_CSUM_UDPv6;
282 1.7 rjs break;
283 1.7 rjs case ETH_RDSC_I_CHKSUM_TCP:
284 1.7 rjs csum = M_CSUM_IPv4 | M_CSUM_TCPv4 |
285 1.7 rjs M_CSUM_TCPv6;
286 1.7 rjs break;
287 1.7 rjs default:
288 1.7 rjs csum = 0;
289 1.7 rjs break;
290 1.7 rjs }
291 1.7 rjs sc->rxq[bi].m->m_pkthdr.csum_flags = csum;
292 1.1 hkenken DPRINTFN(2,("received %u bytes packet\n", fl));
293 1.20 msaitoh if_percpuq_enqueue(ifp->if_percpuq,
294 1.8 ozaki sc->rxq[bi].m);
295 1.1 hkenken if (mtod(m, intptr_t) & 3)
296 1.1 hkenken m_adj(m, mtod(m, intptr_t) & 3);
297 1.1 hkenken sc->rxq[bi].m = m;
298 1.1 hkenken bus_dmamap_load(sc->sc_dmat,
299 1.1 hkenken sc->rxq[bi].m_dmamap,
300 1.1 hkenken m->m_ext.ext_buf, MCLBYTES,
301 1.1 hkenken NULL, BUS_DMA_NOWAIT);
302 1.1 hkenken bus_dmamap_sync(sc->sc_dmat, sc->rxq[bi].m_dmamap, 0,
303 1.1 hkenken MCLBYTES, BUS_DMASYNC_PREREAD);
304 1.1 hkenken sc->RDSC[bi].Info = 0;
305 1.1 hkenken sc->RDSC[bi].Addr =
306 1.1 hkenken sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr
307 1.1 hkenken | (bi == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
308 1.1 hkenken } else {
309 1.1 hkenken /* Drop packets until we can get replacement
310 1.1 hkenken * empty mbufs for the RXDQ.
311 1.1 hkenken */
312 1.28 rin m_freem(m);
313 1.27 riastrad if_statinc_ref(ifp, nsr, if_ierrors);
314 1.1 hkenken }
315 1.1 hkenken sc->rxqi++;
316 1.1 hkenken }
317 1.1 hkenken }
318 1.1 hkenken
319 1.22 thorpej IF_STAT_PUTREF(ifp);
320 1.22 thorpej
321 1.11 ozaki if (cemac_gctx(sc) > 0)
322 1.11 ozaki if_schedule_deferred_start(ifp);
323 1.1 hkenken #if 0 // reloop
324 1.1 hkenken irq = CEMAC_READ(IntStsC);
325 1.19 msaitoh if ((irq & (IntSts_RxSQ | IntSts_ECI)) != 0)
326 1.1 hkenken goto begin;
327 1.1 hkenken #endif
328 1.1 hkenken
329 1.29 skrll return 1;
330 1.1 hkenken }
331 1.1 hkenken
332 1.1 hkenken
333 1.1 hkenken static void
334 1.1 hkenken cemac_init(struct cemac_softc *sc)
335 1.1 hkenken {
336 1.1 hkenken bus_dma_segment_t segs;
337 1.1 hkenken int rsegs, err, i;
338 1.1 hkenken struct ifnet * ifp = &sc->sc_ethercom.ec_if;
339 1.19 msaitoh struct mii_data * const mii = &sc->sc_mii;
340 1.1 hkenken uint32_t u;
341 1.1 hkenken #if 0
342 1.1 hkenken int mdcdiv = DEFAULT_MDCDIV;
343 1.1 hkenken #endif
344 1.1 hkenken
345 1.1 hkenken callout_init(&sc->cemac_tick_ch, 0);
346 1.1 hkenken
347 1.1 hkenken // ok...
348 1.1 hkenken CEMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything
349 1.1 hkenken CEMAC_WRITE(ETH_IDR, -1); // disable interrupts
350 1.1 hkenken CEMAC_WRITE(ETH_RBQP, 0); // clear receive
351 1.1 hkenken CEMAC_WRITE(ETH_TBQP, 0); // clear transmit
352 1.1 hkenken if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
353 1.1 hkenken CEMAC_WRITE(ETH_CFG,
354 1.1 hkenken GEM_CFG_CLK_64 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
355 1.1 hkenken else
356 1.1 hkenken CEMAC_WRITE(ETH_CFG,
357 1.1 hkenken ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
358 1.1 hkenken if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
359 1.1 hkenken CEMAC_WRITE(GEM_DMA_CFG,
360 1.1 hkenken __SHIFTIN((MCLBYTES + 63) / 64, GEM_DMA_CFG_RX_BUF_SIZE) |
361 1.1 hkenken __SHIFTIN(3, GEM_DMA_CFG_RX_PKTBUF_MEMSZ_SEL) |
362 1.1 hkenken GEM_DMA_CFG_TX_PKTBUF_MEMSZ_SEL |
363 1.1 hkenken __SHIFTIN(16, GEM_DMA_CFG_AHB_FIXED_BURST_LEN) |
364 1.1 hkenken GEM_DMA_CFG_DISC_WHEN_NO_AHB);
365 1.1 hkenken }
366 1.1 hkenken // CEMAC_WRITE(ETH_TCR, 0); // send nothing
367 1.1 hkenken // (void)CEMAC_READ(ETH_ISR);
368 1.1 hkenken u = CEMAC_READ(ETH_TSR);
369 1.1 hkenken CEMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
370 1.1 hkenken | ETH_TSR_IDLE | ETH_TSR_RLE
371 1.19 msaitoh | ETH_TSR_COL | ETH_TSR_OVR)));
372 1.1 hkenken u = CEMAC_READ(ETH_RSR);
373 1.19 msaitoh CEMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
374 1.1 hkenken
375 1.1 hkenken #if 0
376 1.1 hkenken if (device_cfdata(sc->sc_dev)->cf_flags)
377 1.1 hkenken mdcdiv = device_cfdata(sc->sc_dev)->cf_flags;
378 1.1 hkenken #endif
379 1.1 hkenken /* set ethernet address */
380 1.1 hkenken CEMAC_GEM_WRITE(SA1L, (sc->sc_enaddr[3] << 24)
381 1.1 hkenken | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
382 1.1 hkenken | (sc->sc_enaddr[0]));
383 1.1 hkenken CEMAC_GEM_WRITE(SA1H, (sc->sc_enaddr[5] << 8)
384 1.1 hkenken | (sc->sc_enaddr[4]));
385 1.1 hkenken CEMAC_GEM_WRITE(SA2L, 0);
386 1.1 hkenken CEMAC_GEM_WRITE(SA2H, 0);
387 1.1 hkenken CEMAC_GEM_WRITE(SA3L, 0);
388 1.1 hkenken CEMAC_GEM_WRITE(SA3H, 0);
389 1.1 hkenken CEMAC_GEM_WRITE(SA4L, 0);
390 1.1 hkenken CEMAC_GEM_WRITE(SA4H, 0);
391 1.1 hkenken
392 1.1 hkenken /* Allocate a page of memory for receive queue descriptors */
393 1.1 hkenken sc->rbqlen = (ETH_DSC_SIZE * (RX_QLEN + 1) * 2 + PAGE_SIZE - 1) / PAGE_SIZE;
394 1.1 hkenken sc->rbqlen *= PAGE_SIZE;
395 1.1 hkenken DPRINTFN(1,("%s: rbqlen=%i\n", __FUNCTION__, sc->rbqlen));
396 1.1 hkenken
397 1.1 hkenken err = bus_dmamem_alloc(sc->sc_dmat, sc->rbqlen, 0,
398 1.1 hkenken MAX(16384, PAGE_SIZE), // see EMAC errata why forced to 16384 byte boundary
399 1.1 hkenken &segs, 1, &rsegs, BUS_DMA_WAITOK);
400 1.1 hkenken if (err == 0) {
401 1.1 hkenken DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__));
402 1.1 hkenken err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->rbqlen,
403 1.19 msaitoh &sc->rbqpage, (BUS_DMA_WAITOK | BUS_DMA_COHERENT));
404 1.1 hkenken }
405 1.1 hkenken if (err == 0) {
406 1.1 hkenken DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__));
407 1.1 hkenken err = bus_dmamap_create(sc->sc_dmat, sc->rbqlen, 1,
408 1.1 hkenken sc->rbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK,
409 1.1 hkenken &sc->rbqpage_dmamap);
410 1.1 hkenken }
411 1.1 hkenken if (err == 0) {
412 1.1 hkenken DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__));
413 1.1 hkenken err = bus_dmamap_load(sc->sc_dmat, sc->rbqpage_dmamap,
414 1.1 hkenken sc->rbqpage, sc->rbqlen, NULL, BUS_DMA_WAITOK);
415 1.1 hkenken }
416 1.1 hkenken if (err != 0)
417 1.1 hkenken panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev));
418 1.1 hkenken
419 1.1 hkenken sc->rbqpage_dsaddr = sc->rbqpage_dmamap->dm_segs[0].ds_addr;
420 1.1 hkenken memset(sc->rbqpage, 0, sc->rbqlen);
421 1.1 hkenken
422 1.1 hkenken /* Allocate a page of memory for transmit queue descriptors */
423 1.1 hkenken sc->tbqlen = (ETH_DSC_SIZE * (TX_QLEN + 1) * 2 + PAGE_SIZE - 1) / PAGE_SIZE;
424 1.1 hkenken sc->tbqlen *= PAGE_SIZE;
425 1.1 hkenken DPRINTFN(1,("%s: tbqlen=%i\n", __FUNCTION__, sc->tbqlen));
426 1.1 hkenken
427 1.1 hkenken err = bus_dmamem_alloc(sc->sc_dmat, sc->tbqlen, 0,
428 1.1 hkenken MAX(16384, PAGE_SIZE), // see EMAC errata why forced to 16384 byte boundary
429 1.1 hkenken &segs, 1, &rsegs, BUS_DMA_WAITOK);
430 1.1 hkenken if (err == 0) {
431 1.1 hkenken DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__));
432 1.1 hkenken err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->tbqlen,
433 1.19 msaitoh &sc->tbqpage, (BUS_DMA_WAITOK | BUS_DMA_COHERENT));
434 1.1 hkenken }
435 1.1 hkenken if (err == 0) {
436 1.1 hkenken DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__));
437 1.1 hkenken err = bus_dmamap_create(sc->sc_dmat, sc->tbqlen, 1,
438 1.1 hkenken sc->tbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK,
439 1.1 hkenken &sc->tbqpage_dmamap);
440 1.1 hkenken }
441 1.1 hkenken if (err == 0) {
442 1.1 hkenken DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__));
443 1.1 hkenken err = bus_dmamap_load(sc->sc_dmat, sc->tbqpage_dmamap,
444 1.1 hkenken sc->tbqpage, sc->tbqlen, NULL, BUS_DMA_WAITOK);
445 1.1 hkenken }
446 1.1 hkenken if (err != 0)
447 1.1 hkenken panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev));
448 1.1 hkenken
449 1.1 hkenken sc->tbqpage_dsaddr = sc->tbqpage_dmamap->dm_segs[0].ds_addr;
450 1.1 hkenken memset(sc->tbqpage, 0, sc->tbqlen);
451 1.1 hkenken
452 1.1 hkenken /* Set up pointers to start of each queue in kernel addr space.
453 1.1 hkenken * Each descriptor queue or status queue entry uses 2 words
454 1.1 hkenken */
455 1.1 hkenken sc->RDSC = (void *)sc->rbqpage;
456 1.1 hkenken sc->TDSC = (void *)sc->tbqpage;
457 1.1 hkenken
458 1.1 hkenken /* init TX queue */
459 1.1 hkenken for (i = 0; i < TX_QLEN; i++) {
460 1.1 hkenken sc->TDSC[i].Addr = 0;
461 1.1 hkenken sc->TDSC[i].Info = ETH_TDSC_I_USED |
462 1.1 hkenken (i == (TX_QLEN - 1) ? ETH_TDSC_I_WRAP : 0);
463 1.1 hkenken }
464 1.1 hkenken
465 1.1 hkenken /* Populate the RXQ with mbufs */
466 1.1 hkenken sc->rxqi = 0;
467 1.19 msaitoh for (i = 0; i < RX_QLEN; i++) {
468 1.1 hkenken struct mbuf *m;
469 1.1 hkenken
470 1.1 hkenken err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, PAGE_SIZE,
471 1.1 hkenken BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap);
472 1.1 hkenken if (err) {
473 1.1 hkenken panic("%s: dmamap_create failed: %i\n", __FUNCTION__, err);
474 1.1 hkenken }
475 1.1 hkenken MGETHDR(m, M_WAIT, MT_DATA);
476 1.1 hkenken MCLGET(m, M_WAIT);
477 1.1 hkenken sc->rxq[i].m = m;
478 1.1 hkenken if (mtod(m, intptr_t) & 3) {
479 1.1 hkenken m_adj(m, mtod(m, intptr_t) & 3);
480 1.1 hkenken }
481 1.1 hkenken err = bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap,
482 1.1 hkenken m->m_ext.ext_buf, MCLBYTES, NULL,
483 1.1 hkenken BUS_DMA_WAITOK);
484 1.1 hkenken if (err) {
485 1.1 hkenken panic("%s: dmamap_load failed: %i\n", __FUNCTION__, err);
486 1.1 hkenken }
487 1.1 hkenken sc->RDSC[i].Addr = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr
488 1.1 hkenken | (i == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
489 1.1 hkenken sc->RDSC[i].Info = 0;
490 1.1 hkenken bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0,
491 1.1 hkenken MCLBYTES, BUS_DMASYNC_PREREAD);
492 1.1 hkenken }
493 1.1 hkenken
494 1.1 hkenken /* prepare transmit queue */
495 1.1 hkenken for (i = 0; i < TX_QLEN; i++) {
496 1.1 hkenken err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
497 1.1 hkenken (BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW),
498 1.1 hkenken &sc->txq[i].m_dmamap);
499 1.1 hkenken if (err)
500 1.1 hkenken panic("ARGH #1");
501 1.1 hkenken sc->txq[i].m = NULL;
502 1.1 hkenken }
503 1.1 hkenken
504 1.1 hkenken /* Program each queue's start addr, cur addr, and len registers
505 1.1 hkenken * with the physical addresses.
506 1.1 hkenken */
507 1.1 hkenken CEMAC_WRITE(ETH_RBQP, (uint32_t)sc->rbqpage_dsaddr);
508 1.1 hkenken CEMAC_WRITE(ETH_TBQP, (uint32_t)sc->tbqpage_dsaddr);
509 1.1 hkenken
510 1.1 hkenken /* Divide HCLK by 32 for MDC clock */
511 1.19 msaitoh sc->sc_ethercom.ec_mii = mii;
512 1.19 msaitoh mii->mii_ifp = ifp;
513 1.19 msaitoh mii->mii_readreg = cemac_mii_readreg;
514 1.19 msaitoh mii->mii_writereg = cemac_mii_writereg;
515 1.19 msaitoh mii->mii_statchg = cemac_statchg;
516 1.19 msaitoh ifmedia_init(&mii->mii_media, IFM_IMASK, cemac_mediachange,
517 1.1 hkenken cemac_mediastatus);
518 1.26 jmcneill mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, 1, 0);
519 1.19 msaitoh ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
520 1.1 hkenken
521 1.1 hkenken #if 0
522 1.1 hkenken // enable / disable interrupts
523 1.1 hkenken CEMAC_WRITE(ETH_IDR, -1);
524 1.1 hkenken CEMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
525 1.1 hkenken | ETH_ISR_RBNA | ETH_ISR_ROVR | ETH_ISR_TCOM);
526 1.1 hkenken // (void)CEMAC_READ(ETH_ISR); // why
527 1.1 hkenken
528 1.1 hkenken // enable transmitter / receiver
529 1.1 hkenken CEMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
530 1.1 hkenken | ETH_CTL_CSR | ETH_CTL_MPE);
531 1.1 hkenken #endif
532 1.1 hkenken /*
533 1.7 rjs * We can support hardware checksumming.
534 1.7 rjs */
535 1.7 rjs ifp->if_capabilities |=
536 1.19 msaitoh IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
537 1.7 rjs IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
538 1.7 rjs IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
539 1.7 rjs IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_TCPv6_Rx |
540 1.7 rjs IFCAP_CSUM_UDPv6_Tx | IFCAP_CSUM_UDPv6_Rx;
541 1.7 rjs
542 1.7 rjs /*
543 1.1 hkenken * We can support 802.1Q VLAN-sized frames.
544 1.1 hkenken */
545 1.1 hkenken sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
546 1.1 hkenken
547 1.1 hkenken strcpy(ifp->if_xname, device_xname(sc->sc_dev));
548 1.20 msaitoh ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
549 1.20 msaitoh ifp->if_ioctl = cemac_ifioctl;
550 1.20 msaitoh ifp->if_start = cemac_ifstart;
551 1.20 msaitoh ifp->if_watchdog = cemac_ifwatchdog;
552 1.20 msaitoh ifp->if_init = cemac_ifinit;
553 1.20 msaitoh ifp->if_stop = cemac_ifstop;
554 1.20 msaitoh ifp->if_timer = 0;
555 1.1 hkenken ifp->if_softc = sc;
556 1.20 msaitoh IFQ_SET_READY(&ifp->if_snd);
557 1.20 msaitoh if_attach(ifp);
558 1.11 ozaki if_deferred_start_init(ifp, NULL);
559 1.20 msaitoh ether_ifattach(ifp, (sc)->sc_enaddr);
560 1.1 hkenken }
561 1.1 hkenken
562 1.1 hkenken static int
563 1.1 hkenken cemac_mediachange(struct ifnet *ifp)
564 1.1 hkenken {
565 1.1 hkenken if (ifp->if_flags & IFF_UP)
566 1.1 hkenken cemac_ifinit(ifp);
567 1.29 skrll return 0;
568 1.1 hkenken }
569 1.1 hkenken
570 1.1 hkenken static void
571 1.1 hkenken cemac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
572 1.1 hkenken {
573 1.35 skrll struct cemac_softc * const sc = ifp->if_softc;
574 1.1 hkenken
575 1.1 hkenken mii_pollstat(&sc->sc_mii);
576 1.1 hkenken ifmr->ifm_active = sc->sc_mii.mii_media_active;
577 1.1 hkenken ifmr->ifm_status = sc->sc_mii.mii_media_status;
578 1.1 hkenken }
579 1.1 hkenken
580 1.1 hkenken
581 1.1 hkenken static int
582 1.15 msaitoh cemac_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
583 1.1 hkenken {
584 1.35 skrll struct cemac_softc * const sc = device_private(self);
585 1.1 hkenken
586 1.1 hkenken CEMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_RD
587 1.1 hkenken | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
588 1.1 hkenken | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
589 1.1 hkenken | ETH_MAN_CODE_IEEE802_3));
590 1.19 msaitoh while (!(CEMAC_READ(ETH_SR) & ETH_SR_IDLE))
591 1.19 msaitoh ;
592 1.1 hkenken
593 1.15 msaitoh *val = CEMAC_READ(ETH_MAN) & ETH_MAN_DATA;
594 1.15 msaitoh return 0;
595 1.1 hkenken }
596 1.1 hkenken
597 1.15 msaitoh static int
598 1.15 msaitoh cemac_mii_writereg(device_t self, int phy, int reg, uint16_t val)
599 1.1 hkenken {
600 1.35 skrll struct cemac_softc * const sc = device_private(self);
601 1.1 hkenken
602 1.1 hkenken CEMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_WR
603 1.1 hkenken | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
604 1.1 hkenken | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
605 1.1 hkenken | ETH_MAN_CODE_IEEE802_3
606 1.1 hkenken | (val & ETH_MAN_DATA)));
607 1.19 msaitoh while (!(CEMAC_READ(ETH_SR) & ETH_SR_IDLE))
608 1.19 msaitoh ;
609 1.15 msaitoh
610 1.15 msaitoh return 0;
611 1.1 hkenken }
612 1.1 hkenken
613 1.1 hkenken
614 1.1 hkenken static void
615 1.1 hkenken cemac_statchg(struct ifnet *ifp)
616 1.1 hkenken {
617 1.35 skrll struct cemac_softc * const sc = ifp->if_softc;
618 1.1 hkenken struct mii_data *mii = &sc->sc_mii;
619 1.20 msaitoh uint32_t reg;
620 1.1 hkenken
621 1.20 msaitoh /*
622 1.20 msaitoh * We must keep the MAC and the PHY in sync as
623 1.20 msaitoh * to the status of full-duplex!
624 1.20 msaitoh */
625 1.1 hkenken reg = CEMAC_READ(ETH_CFG);
626 1.1 hkenken reg &= ~ETH_CFG_FD;
627 1.20 msaitoh if (sc->sc_mii.mii_media_active & IFM_FDX)
628 1.20 msaitoh reg |= ETH_CFG_FD;
629 1.1 hkenken
630 1.1 hkenken reg &= ~ETH_CFG_SPD;
631 1.1 hkenken if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
632 1.1 hkenken reg &= ~GEM_CFG_GEN;
633 1.1 hkenken switch (IFM_SUBTYPE(mii->mii_media_active)) {
634 1.1 hkenken case IFM_10_T:
635 1.1 hkenken break;
636 1.1 hkenken case IFM_100_TX:
637 1.1 hkenken reg |= ETH_CFG_SPD;
638 1.1 hkenken break;
639 1.1 hkenken case IFM_1000_T:
640 1.1 hkenken reg |= ETH_CFG_SPD | GEM_CFG_GEN;
641 1.1 hkenken break;
642 1.1 hkenken default:
643 1.1 hkenken break;
644 1.1 hkenken }
645 1.1 hkenken CEMAC_WRITE(ETH_CFG, reg);
646 1.1 hkenken }
647 1.1 hkenken
648 1.1 hkenken static void
649 1.1 hkenken cemac_tick(void *arg)
650 1.1 hkenken {
651 1.35 skrll struct cemac_softc * const sc = arg;
652 1.1 hkenken struct ifnet * ifp = &sc->sc_ethercom.ec_if;
653 1.1 hkenken int s;
654 1.1 hkenken
655 1.3 rjs if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
656 1.22 thorpej if_statadd(ifp, if_collisions,
657 1.22 thorpej CEMAC_READ(GEM_SCOL) + CEMAC_READ(GEM_MCOL));
658 1.3 rjs else
659 1.22 thorpej if_statadd(ifp, if_collisions,
660 1.22 thorpej CEMAC_READ(ETH_SCOL) + CEMAC_READ(ETH_MCOL));
661 1.3 rjs
662 1.1 hkenken /* These misses are ok, they will happen if the RAM/CPU can't keep up */
663 1.1 hkenken if (!ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
664 1.1 hkenken uint32_t misses = CEMAC_READ(ETH_DRFC);
665 1.1 hkenken if (misses > 0)
666 1.4 rjs aprint_normal_ifnet(ifp, "%d rx misses\n", misses);
667 1.1 hkenken }
668 1.1 hkenken
669 1.1 hkenken s = splnet();
670 1.1 hkenken if (cemac_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0)
671 1.1 hkenken cemac_ifstart(ifp);
672 1.1 hkenken splx(s);
673 1.1 hkenken
674 1.1 hkenken mii_tick(&sc->sc_mii);
675 1.1 hkenken callout_reset(&sc->cemac_tick_ch, hz, cemac_tick, sc);
676 1.1 hkenken }
677 1.1 hkenken
678 1.1 hkenken
679 1.1 hkenken static int
680 1.1 hkenken cemac_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
681 1.1 hkenken {
682 1.1 hkenken int s, error;
683 1.1 hkenken
684 1.1 hkenken s = splnet();
685 1.19 msaitoh switch (cmd) {
686 1.1 hkenken default:
687 1.1 hkenken error = ether_ioctl(ifp, cmd, data);
688 1.7 rjs if (error != ENETRESET)
689 1.7 rjs break;
690 1.7 rjs error = 0;
691 1.7 rjs
692 1.7 rjs if (cmd == SIOCSIFCAP) {
693 1.24 riastrad error = if_init(ifp);
694 1.7 rjs } else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
695 1.7 rjs ;
696 1.7 rjs else if (ifp->if_flags & IFF_RUNNING) {
697 1.7 rjs cemac_setaddr(ifp);
698 1.1 hkenken }
699 1.1 hkenken }
700 1.1 hkenken splx(s);
701 1.1 hkenken return error;
702 1.1 hkenken }
703 1.1 hkenken
704 1.1 hkenken static void
705 1.1 hkenken cemac_ifstart(struct ifnet *ifp)
706 1.1 hkenken {
707 1.35 skrll struct cemac_softc * const sc = ifp->if_softc;
708 1.1 hkenken struct mbuf *m;
709 1.1 hkenken bus_dma_segment_t *segs;
710 1.1 hkenken int s, bi, err, nsegs;
711 1.1 hkenken
712 1.1 hkenken s = splnet();
713 1.1 hkenken start:
714 1.1 hkenken if (cemac_gctx(sc) == 0) {
715 1.1 hkenken /* Enable transmit-buffer-free interrupt */
716 1.1 hkenken CEMAC_WRITE(ETH_IER, ETH_ISR_TBRE);
717 1.25 thorpej sc->tx_busy = true;
718 1.1 hkenken ifp->if_timer = 10;
719 1.1 hkenken splx(s);
720 1.1 hkenken return;
721 1.1 hkenken }
722 1.1 hkenken
723 1.1 hkenken ifp->if_timer = 0;
724 1.1 hkenken
725 1.1 hkenken IFQ_POLL(&ifp->if_snd, m);
726 1.1 hkenken if (m == NULL) {
727 1.1 hkenken splx(s);
728 1.1 hkenken return;
729 1.1 hkenken }
730 1.1 hkenken
731 1.1 hkenken bi = (sc->txqi + sc->txqc) % TX_QLEN;
732 1.1 hkenken if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
733 1.1 hkenken BUS_DMA_NOWAIT)) ||
734 1.1 hkenken sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 ||
735 1.1 hkenken sc->txq[bi].m_dmamap->dm_nsegs > 1) {
736 1.1 hkenken /* Copy entire mbuf chain to new single */
737 1.1 hkenken struct mbuf *mn;
738 1.1 hkenken
739 1.1 hkenken if (err == 0)
740 1.1 hkenken bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
741 1.1 hkenken
742 1.1 hkenken MGETHDR(mn, M_DONTWAIT, MT_DATA);
743 1.34 skrll if (mn == NULL)
744 1.34 skrll goto stop;
745 1.1 hkenken if (m->m_pkthdr.len > MHLEN) {
746 1.1 hkenken MCLGET(mn, M_DONTWAIT);
747 1.1 hkenken if ((mn->m_flags & M_EXT) == 0) {
748 1.1 hkenken m_freem(mn);
749 1.1 hkenken goto stop;
750 1.1 hkenken }
751 1.1 hkenken }
752 1.1 hkenken m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *));
753 1.1 hkenken mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len;
754 1.1 hkenken IFQ_DEQUEUE(&ifp->if_snd, m);
755 1.1 hkenken m_freem(m);
756 1.1 hkenken m = mn;
757 1.1 hkenken bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
758 1.1 hkenken BUS_DMA_NOWAIT);
759 1.1 hkenken } else {
760 1.1 hkenken IFQ_DEQUEUE(&ifp->if_snd, m);
761 1.1 hkenken }
762 1.1 hkenken
763 1.13 msaitoh bpf_mtap(ifp, m, BPF_D_OUT);
764 1.1 hkenken
765 1.1 hkenken nsegs = sc->txq[bi].m_dmamap->dm_nsegs;
766 1.1 hkenken segs = sc->txq[bi].m_dmamap->dm_segs;
767 1.1 hkenken if (nsegs > 1)
768 1.1 hkenken panic("#### ARGH #2");
769 1.1 hkenken
770 1.1 hkenken sc->txq[bi].m = m;
771 1.1 hkenken sc->txqc++;
772 1.1 hkenken
773 1.1 hkenken DPRINTFN(2,("%s: start sending idx #%i mbuf %p (txqc=%i, phys %p), len=%u\n",
774 1.31 skrll __FUNCTION__, bi, sc->txq[bi].m, sc->txqc, (void *)segs->ds_addr,
775 1.1 hkenken (unsigned)m->m_pkthdr.len));
776 1.1 hkenken #ifdef DIAGNOSTIC
777 1.1 hkenken if (sc->txqc > TX_QLEN)
778 1.1 hkenken panic("%s: txqc %i > %i", __FUNCTION__, sc->txqc, TX_QLEN);
779 1.1 hkenken #endif
780 1.1 hkenken
781 1.1 hkenken bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
782 1.1 hkenken sc->txq[bi].m_dmamap->dm_mapsize,
783 1.1 hkenken BUS_DMASYNC_PREWRITE);
784 1.1 hkenken
785 1.1 hkenken if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
786 1.1 hkenken sc->TDSC[bi].Addr = segs->ds_addr;
787 1.1 hkenken sc->TDSC[bi].Info = __SHIFTIN(m->m_pkthdr.len, ETH_TDSC_I_LEN) |
788 1.1 hkenken ETH_TDSC_I_LAST_BUF | (bi == (TX_QLEN - 1) ? ETH_TDSC_I_WRAP : 0);
789 1.1 hkenken
790 1.1 hkenken DPRINTFN(3,("%s: TDSC[%i].Addr 0x%08x\n",
791 1.1 hkenken __FUNCTION__, bi, sc->TDSC[bi].Addr));
792 1.1 hkenken DPRINTFN(3,("%s: TDSC[%i].Info 0x%08x\n",
793 1.1 hkenken __FUNCTION__, bi, sc->TDSC[bi].Info));
794 1.1 hkenken
795 1.1 hkenken uint32_t ctl = CEMAC_READ(ETH_CTL) | GEM_CTL_STARTTX;
796 1.1 hkenken CEMAC_WRITE(ETH_CTL, ctl);
797 1.1 hkenken DPRINTFN(3,("%s: ETH_CTL 0x%08x\n", __FUNCTION__, CEMAC_READ(ETH_CTL)));
798 1.1 hkenken } else {
799 1.1 hkenken CEMAC_WRITE(ETH_TAR, segs->ds_addr);
800 1.1 hkenken CEMAC_WRITE(ETH_TCR, m->m_pkthdr.len);
801 1.1 hkenken }
802 1.1 hkenken if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
803 1.1 hkenken goto start;
804 1.1 hkenken stop:
805 1.1 hkenken
806 1.1 hkenken splx(s);
807 1.1 hkenken return;
808 1.1 hkenken }
809 1.1 hkenken
810 1.1 hkenken static void
811 1.1 hkenken cemac_ifwatchdog(struct ifnet *ifp)
812 1.1 hkenken {
813 1.35 skrll struct cemac_softc * const sc = ifp->if_softc;
814 1.1 hkenken
815 1.1 hkenken if ((ifp->if_flags & IFF_RUNNING) == 0)
816 1.1 hkenken return;
817 1.5 rjs aprint_error_ifnet(ifp, "device timeout, CTL = 0x%08x, CFG = 0x%08x\n",
818 1.4 rjs CEMAC_READ(ETH_CTL), CEMAC_READ(ETH_CFG));
819 1.1 hkenken }
820 1.1 hkenken
821 1.1 hkenken static int
822 1.1 hkenken cemac_ifinit(struct ifnet *ifp)
823 1.1 hkenken {
824 1.35 skrll struct cemac_softc * const sc = ifp->if_softc;
825 1.7 rjs uint32_t dma, cfg;
826 1.1 hkenken int s = splnet();
827 1.1 hkenken
828 1.1 hkenken callout_stop(&sc->cemac_tick_ch);
829 1.1 hkenken
830 1.7 rjs if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
831 1.7 rjs
832 1.7 rjs if (ifp->if_capenable &
833 1.7 rjs (IFCAP_CSUM_IPv4_Tx |
834 1.7 rjs IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
835 1.7 rjs IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) {
836 1.7 rjs dma = CEMAC_READ(GEM_DMA_CFG);
837 1.7 rjs dma |= GEM_DMA_CFG_CHKSUM_GEN_OFFLOAD_EN;
838 1.7 rjs CEMAC_WRITE(GEM_DMA_CFG, dma);
839 1.7 rjs }
840 1.7 rjs if (ifp->if_capenable &
841 1.7 rjs (IFCAP_CSUM_IPv4_Rx |
842 1.7 rjs IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
843 1.7 rjs IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) {
844 1.7 rjs cfg = CEMAC_READ(ETH_CFG);
845 1.7 rjs cfg |= GEM_CFG_RX_CHKSUM_OFFLD_EN;
846 1.7 rjs CEMAC_WRITE(ETH_CFG, cfg);
847 1.7 rjs }
848 1.7 rjs }
849 1.7 rjs
850 1.1 hkenken // enable interrupts
851 1.1 hkenken CEMAC_WRITE(ETH_IDR, -1);
852 1.1 hkenken CEMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
853 1.1 hkenken | ETH_ISR_RBNA | ETH_ISR_ROVR | ETH_ISR_TCOM);
854 1.1 hkenken
855 1.1 hkenken // enable transmitter / receiver
856 1.1 hkenken CEMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
857 1.1 hkenken | ETH_CTL_CSR | ETH_CTL_MPE);
858 1.1 hkenken
859 1.1 hkenken mii_mediachg(&sc->sc_mii);
860 1.1 hkenken callout_reset(&sc->cemac_tick_ch, hz, cemac_tick, sc);
861 1.20 msaitoh ifp->if_flags |= IFF_RUNNING;
862 1.1 hkenken splx(s);
863 1.1 hkenken return 0;
864 1.1 hkenken }
865 1.1 hkenken
866 1.1 hkenken static void
867 1.1 hkenken cemac_ifstop(struct ifnet *ifp, int disable)
868 1.1 hkenken {
869 1.1 hkenken // uint32_t u;
870 1.35 skrll struct cemac_softc * const sc = ifp->if_softc;
871 1.1 hkenken
872 1.1 hkenken #if 0
873 1.1 hkenken CEMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything
874 1.1 hkenken CEMAC_WRITE(ETH_IDR, -1); // disable interrupts
875 1.1 hkenken // CEMAC_WRITE(ETH_RBQP, 0); // clear receive
876 1.1 hkenken if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
877 1.1 hkenken CEMAC_WRITE(ETH_CFG,
878 1.1 hkenken GEM_CFG_CLK_64 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
879 1.1 hkenken else
880 1.1 hkenken CEMAC_WRITE(ETH_CFG,
881 1.1 hkenken ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
882 1.1 hkenken // CEMAC_WRITE(ETH_TCR, 0); // send nothing
883 1.1 hkenken // (void)CEMAC_READ(ETH_ISR);
884 1.1 hkenken u = CEMAC_READ(ETH_TSR);
885 1.1 hkenken CEMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
886 1.1 hkenken | ETH_TSR_IDLE | ETH_TSR_RLE
887 1.19 msaitoh | ETH_TSR_COL | ETH_TSR_OVR)));
888 1.1 hkenken u = CEMAC_READ(ETH_RSR);
889 1.19 msaitoh CEMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
890 1.1 hkenken #endif
891 1.1 hkenken callout_stop(&sc->cemac_tick_ch);
892 1.1 hkenken
893 1.1 hkenken /* Down the MII. */
894 1.1 hkenken mii_down(&sc->sc_mii);
895 1.1 hkenken
896 1.25 thorpej ifp->if_flags &= ~IFF_RUNNING;
897 1.1 hkenken ifp->if_timer = 0;
898 1.25 thorpej sc->tx_busy = false;
899 1.1 hkenken sc->sc_mii.mii_media_status &= ~IFM_ACTIVE;
900 1.1 hkenken }
901 1.1 hkenken
902 1.1 hkenken static void
903 1.1 hkenken cemac_setaddr(struct ifnet *ifp)
904 1.1 hkenken {
905 1.35 skrll struct cemac_softc * const sc = ifp->if_softc;
906 1.19 msaitoh struct ethercom *ec = &sc->sc_ethercom;
907 1.1 hkenken struct ether_multi *enm;
908 1.1 hkenken struct ether_multistep step;
909 1.1 hkenken uint8_t ias[3][ETHER_ADDR_LEN];
910 1.1 hkenken uint32_t h, nma = 0, hashes[2] = { 0, 0 };
911 1.1 hkenken uint32_t ctl = CEMAC_READ(ETH_CTL);
912 1.1 hkenken uint32_t cfg = CEMAC_READ(ETH_CFG);
913 1.1 hkenken
914 1.1 hkenken /* disable receiver temporarily */
915 1.1 hkenken CEMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE);
916 1.1 hkenken
917 1.1 hkenken cfg &= ~(ETH_CFG_MTI | ETH_CFG_UNI | ETH_CFG_CAF | ETH_CFG_UNI);
918 1.1 hkenken
919 1.1 hkenken if (ifp->if_flags & IFF_PROMISC) {
920 1.20 msaitoh cfg |= ETH_CFG_CAF;
921 1.1 hkenken } else {
922 1.1 hkenken cfg &= ~ETH_CFG_CAF;
923 1.1 hkenken }
924 1.1 hkenken
925 1.1 hkenken // ETH_CFG_BIG?
926 1.1 hkenken
927 1.1 hkenken ifp->if_flags &= ~IFF_ALLMULTI;
928 1.1 hkenken
929 1.21 msaitoh ETHER_LOCK(ec);
930 1.19 msaitoh ETHER_FIRST_MULTI(step, ec, enm);
931 1.1 hkenken while (enm != NULL) {
932 1.1 hkenken if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
933 1.1 hkenken /*
934 1.1 hkenken * We must listen to a range of multicast addresses.
935 1.1 hkenken * For now, just accept all multicasts, rather than
936 1.1 hkenken * trying to set only those filter bits needed to match
937 1.1 hkenken * the range. (At this time, the only use of address
938 1.1 hkenken * ranges is for IP multicast routing, for which the
939 1.1 hkenken * range is big enough to require all bits set.)
940 1.1 hkenken */
941 1.6 rjs cfg |= ETH_CFG_MTI;
942 1.1 hkenken hashes[0] = 0xffffffffUL;
943 1.1 hkenken hashes[1] = 0xffffffffUL;
944 1.1 hkenken ifp->if_flags |= IFF_ALLMULTI;
945 1.1 hkenken nma = 0;
946 1.1 hkenken break;
947 1.1 hkenken }
948 1.1 hkenken
949 1.1 hkenken if (nma < 3) {
950 1.1 hkenken /* We can program 3 perfect address filters for mcast */
951 1.1 hkenken memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN);
952 1.1 hkenken } else {
953 1.1 hkenken /*
954 1.1 hkenken * XXX: Datasheet is not very clear here, I'm not sure
955 1.1 hkenken * if I'm doing this right. --joff
956 1.1 hkenken */
957 1.1 hkenken h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
958 1.1 hkenken
959 1.1 hkenken /* Just want the 6 most-significant bits. */
960 1.1 hkenken h = h >> 26;
961 1.6 rjs #if 0
962 1.1 hkenken hashes[h / 32] |= (1 << (h % 32));
963 1.6 rjs #else
964 1.6 rjs hashes[0] = 0xffffffffUL;
965 1.6 rjs hashes[1] = 0xffffffffUL;
966 1.6 rjs #endif
967 1.1 hkenken cfg |= ETH_CFG_MTI;
968 1.1 hkenken }
969 1.1 hkenken ETHER_NEXT_MULTI(step, enm);
970 1.1 hkenken nma++;
971 1.1 hkenken }
972 1.21 msaitoh ETHER_UNLOCK(ec);
973 1.1 hkenken
974 1.1 hkenken // program...
975 1.1 hkenken DPRINTFN(1,("%s: en0 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
976 1.1 hkenken sc->sc_enaddr[0], sc->sc_enaddr[1], sc->sc_enaddr[2],
977 1.1 hkenken sc->sc_enaddr[3], sc->sc_enaddr[4], sc->sc_enaddr[5]));
978 1.1 hkenken CEMAC_GEM_WRITE(SA1L, (sc->sc_enaddr[3] << 24)
979 1.1 hkenken | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
980 1.1 hkenken | (sc->sc_enaddr[0]));
981 1.1 hkenken CEMAC_GEM_WRITE(SA1H, (sc->sc_enaddr[5] << 8)
982 1.1 hkenken | (sc->sc_enaddr[4]));
983 1.6 rjs if (nma > 0) {
984 1.1 hkenken DPRINTFN(1,("%s: en1 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
985 1.1 hkenken ias[0][0], ias[0][1], ias[0][2],
986 1.1 hkenken ias[0][3], ias[0][4], ias[0][5]));
987 1.1 hkenken CEMAC_WRITE(ETH_SA2L, (ias[0][3] << 24)
988 1.1 hkenken | (ias[0][2] << 16) | (ias[0][1] << 8)
989 1.1 hkenken | (ias[0][0]));
990 1.1 hkenken CEMAC_WRITE(ETH_SA2H, (ias[0][4] << 8)
991 1.1 hkenken | (ias[0][5]));
992 1.1 hkenken }
993 1.6 rjs if (nma > 1) {
994 1.1 hkenken DPRINTFN(1,("%s: en2 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
995 1.1 hkenken ias[1][0], ias[1][1], ias[1][2],
996 1.1 hkenken ias[1][3], ias[1][4], ias[1][5]));
997 1.1 hkenken CEMAC_WRITE(ETH_SA3L, (ias[1][3] << 24)
998 1.1 hkenken | (ias[1][2] << 16) | (ias[1][1] << 8)
999 1.1 hkenken | (ias[1][0]));
1000 1.1 hkenken CEMAC_WRITE(ETH_SA3H, (ias[1][4] << 8)
1001 1.1 hkenken | (ias[1][5]));
1002 1.1 hkenken }
1003 1.6 rjs if (nma > 2) {
1004 1.1 hkenken DPRINTFN(1,("%s: en3 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
1005 1.1 hkenken ias[2][0], ias[2][1], ias[2][2],
1006 1.1 hkenken ias[2][3], ias[2][4], ias[2][5]));
1007 1.6 rjs CEMAC_WRITE(ETH_SA4L, (ias[2][3] << 24)
1008 1.1 hkenken | (ias[2][2] << 16) | (ias[2][1] << 8)
1009 1.1 hkenken | (ias[2][0]));
1010 1.6 rjs CEMAC_WRITE(ETH_SA4H, (ias[2][4] << 8)
1011 1.1 hkenken | (ias[2][5]));
1012 1.1 hkenken }
1013 1.1 hkenken CEMAC_GEM_WRITE(HSH, hashes[0]);
1014 1.1 hkenken CEMAC_GEM_WRITE(HSL, hashes[1]);
1015 1.1 hkenken CEMAC_WRITE(ETH_CFG, cfg);
1016 1.1 hkenken CEMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE);
1017 1.1 hkenken }
1018