if_cemac.c revision 1.16 1 /* $NetBSD: if_cemac.c,v 1.16 2019/02/05 06:17:02 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 2015 Genetec Corporation. All rights reserved.
5 * Written by Hashimoto Kenichi for Genetec Corporation.
6 *
7 * Based on arch/arm/at91/at91emac.c
8 *
9 * Copyright (c) 2007 Embedtronics Oy
10 * All rights reserved.
11 *
12 * Copyright (c) 2004 Jesse Off
13 * All rights reserved.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 /*
38 * Cadence EMAC/GEM ethernet controller IP driver
39 * used by arm/at91, arm/zynq SoC
40 */
41
42 #include <sys/cdefs.h>
43 __KERNEL_RCSID(0, "$NetBSD: if_cemac.c,v 1.16 2019/02/05 06:17:02 msaitoh Exp $");
44
45 #include <sys/types.h>
46 #include <sys/param.h>
47 #include <sys/systm.h>
48 #include <sys/ioctl.h>
49 #include <sys/kernel.h>
50 #include <sys/proc.h>
51 #include <sys/malloc.h>
52 #include <sys/time.h>
53 #include <sys/device.h>
54 #include <uvm/uvm_extern.h>
55
56 #include <sys/bus.h>
57 #include <machine/intr.h>
58
59 #include <arm/cpufunc.h>
60
61 #include <net/if.h>
62 #include <net/if_dl.h>
63 #include <net/if_types.h>
64 #include <net/if_media.h>
65 #include <net/if_ether.h>
66 #include <net/bpf.h>
67
68 #include <dev/mii/mii.h>
69 #include <dev/mii/miivar.h>
70
71 #ifdef INET
72 #include <netinet/in.h>
73 #include <netinet/in_systm.h>
74 #include <netinet/in_var.h>
75 #include <netinet/ip.h>
76 #include <netinet/if_inarp.h>
77 #endif
78
79 #include <dev/cadence/cemacreg.h>
80 #include <dev/cadence/if_cemacvar.h>
81
82 #define DEFAULT_MDCDIV 32
83
84 #define CEMAC_READ(x) \
85 bus_space_read_4(sc->sc_iot, sc->sc_ioh, (x))
86 #define CEMAC_WRITE(x, y) \
87 bus_space_write_4(sc->sc_iot, sc->sc_ioh, (x), (y))
88 #define CEMAC_GEM_WRITE(x, y) \
89 do { \
90 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) \
91 bus_space_write_4(sc->sc_iot, sc->sc_ioh, (GEM_##x), (y)); \
92 else \
93 bus_space_write_4(sc->sc_iot, sc->sc_ioh, (ETH_##x), (y)); \
94 } while(0)
95
96 #define RX_QLEN 64
97 #define TX_QLEN 2 /* I'm very sorry but that's where we can get */
98
99 struct cemac_qmeta {
100 struct mbuf *m;
101 bus_dmamap_t m_dmamap;
102 };
103
104 struct cemac_softc {
105 device_t sc_dev;
106 bus_space_tag_t sc_iot;
107 bus_space_handle_t sc_ioh;
108 bus_dma_tag_t sc_dmat;
109 uint8_t sc_enaddr[ETHER_ADDR_LEN];
110 struct ethercom sc_ethercom;
111 mii_data_t sc_mii;
112
113 void *rbqpage;
114 unsigned rbqlen;
115 bus_addr_t rbqpage_dsaddr;
116 bus_dmamap_t rbqpage_dmamap;
117 void *tbqpage;
118 unsigned tbqlen;
119 bus_addr_t tbqpage_dsaddr;
120 bus_dmamap_t tbqpage_dmamap;
121
122 volatile struct eth_dsc *RDSC;
123 int rxqi;
124 struct cemac_qmeta rxq[RX_QLEN];
125 volatile struct eth_dsc *TDSC;
126 int txqi, txqc;
127 struct cemac_qmeta txq[TX_QLEN];
128 callout_t cemac_tick_ch;
129
130 int cemac_flags;
131 };
132
133 static void cemac_init(struct cemac_softc *);
134 static int cemac_gctx(struct cemac_softc *);
135 static int cemac_mediachange(struct ifnet *);
136 static void cemac_mediastatus(struct ifnet *, struct ifmediareq *);
137 static int cemac_mii_readreg(device_t, int, int, uint16_t *);
138 static int cemac_mii_writereg(device_t, int, int, uint16_t);
139 static void cemac_statchg(struct ifnet *);
140 static void cemac_tick(void *);
141 static int cemac_ifioctl(struct ifnet *, u_long, void *);
142 static void cemac_ifstart(struct ifnet *);
143 static void cemac_ifwatchdog(struct ifnet *);
144 static int cemac_ifinit(struct ifnet *);
145 static void cemac_ifstop(struct ifnet *, int);
146 static void cemac_setaddr(struct ifnet *);
147
148 #ifdef CEMAC_DEBUG
149 int cemac_debug = CEMAC_DEBUG;
150 #define DPRINTFN(n,fmt) if (cemac_debug >= (n)) printf fmt
151 #else
152 #define DPRINTFN(n,fmt)
153 #endif
154
155 CFATTACH_DECL_NEW(cemac, sizeof(struct cemac_softc),
156 cemac_match, cemac_attach, NULL, NULL);
157
158 int
159 cemac_match_common(device_t parent, cfdata_t match, void *aux)
160 {
161 if (strcmp(match->cf_name, "cemac") == 0)
162 return 1;
163 return 0;
164 }
165
166 void
167 cemac_attach_common(device_t self, bus_space_tag_t iot,
168 bus_space_handle_t ioh, bus_dma_tag_t dmat, int flags)
169 {
170 struct cemac_softc *sc = device_private(self);
171 prop_data_t enaddr;
172 uint32_t u;
173
174
175 sc->sc_dev = self;
176 sc->sc_ioh = ioh;
177 sc->sc_iot = iot;
178 sc->sc_dmat = dmat;
179 sc->cemac_flags = flags;
180
181 aprint_naive("\n");
182 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
183 aprint_normal(": Cadence Gigabit Ethernet Controller\n");
184 else
185 aprint_normal(": Cadence Ethernet Controller\n");
186
187 /* configure emac: */
188 CEMAC_WRITE(ETH_CTL, 0); // disable everything
189 CEMAC_WRITE(ETH_IDR, -1); // disable interrupts
190 CEMAC_WRITE(ETH_RBQP, 0); // clear receive
191 CEMAC_WRITE(ETH_TBQP, 0); // clear transmit
192 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
193 CEMAC_WRITE(ETH_CFG,
194 GEM_CFG_CLK_64 | GEM_CFG_GEN | ETH_CFG_SPD | ETH_CFG_FD);
195 else
196 CEMAC_WRITE(ETH_CFG,
197 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
198 //CEMAC_WRITE(ETH_TCR, 0); // send nothing
199 //(void)CEMAC_READ(ETH_ISR);
200 u = CEMAC_READ(ETH_TSR);
201 CEMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
202 | ETH_TSR_IDLE | ETH_TSR_RLE
203 | ETH_TSR_COL|ETH_TSR_OVR)));
204 u = CEMAC_READ(ETH_RSR);
205 CEMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR|ETH_RSR_REC|ETH_RSR_BNA)));
206
207 /* Fetch the Ethernet address from property if set. */
208 enaddr = prop_dictionary_get(device_properties(self), "mac-address");
209
210 if (enaddr != NULL) {
211 KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA);
212 KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN);
213 memcpy(sc->sc_enaddr, prop_data_data_nocopy(enaddr),
214 ETHER_ADDR_LEN);
215 } else {
216 static const uint8_t hardcoded[ETHER_ADDR_LEN] = {
217 0x00, 0x0d, 0x10, 0x81, 0x0c, 0x94
218 };
219 memcpy(sc->sc_enaddr, hardcoded, ETHER_ADDR_LEN);
220 }
221
222 cemac_init(sc);
223 }
224
225 static int
226 cemac_gctx(struct cemac_softc *sc)
227 {
228 struct ifnet * ifp = &sc->sc_ethercom.ec_if;
229 uint32_t tsr;
230
231 tsr = CEMAC_READ(ETH_TSR);
232 if (!ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
233 // no space left
234 if (!(tsr & ETH_TSR_BNQ))
235 return 0;
236 } else {
237 if (tsr & GEM_TSR_TXGO)
238 return 0;
239 }
240 CEMAC_WRITE(ETH_TSR, tsr);
241
242 // free sent frames
243 while (sc->txqc > (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM) ? 0 :
244 (tsr & ETH_TSR_IDLE ? 0 : 1))) {
245 int bi = sc->txqi % TX_QLEN;
246
247 DPRINTFN(3,("%s: TDSC[%i].Addr 0x%08x\n",
248 __FUNCTION__, bi, sc->TDSC[bi].Addr));
249 DPRINTFN(3,("%s: TDSC[%i].Info 0x%08x\n",
250 __FUNCTION__, bi, sc->TDSC[bi].Info));
251
252 bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
253 sc->txq[bi].m->m_pkthdr.len, BUS_DMASYNC_POSTWRITE);
254 bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
255 m_freem(sc->txq[bi].m);
256 DPRINTFN(2,("%s: freed idx #%i mbuf %p (txqc=%i)\n",
257 __FUNCTION__, bi, sc->txq[bi].m, sc->txqc));
258 sc->txq[bi].m = NULL;
259 sc->txqi = (bi + 1) % TX_QLEN;
260 sc->txqc--;
261 }
262
263 // mark we're free
264 if (ifp->if_flags & IFF_OACTIVE) {
265 ifp->if_flags &= ~IFF_OACTIVE;
266 /* Disable transmit-buffer-free interrupt */
267 /*CEMAC_WRITE(ETH_IDR, ETH_ISR_TBRE);*/
268 }
269
270 return 1;
271 }
272
273 int
274 cemac_intr(void *arg)
275 {
276 struct cemac_softc *sc = (struct cemac_softc *)arg;
277 struct ifnet * ifp = &sc->sc_ethercom.ec_if;
278 uint32_t imr, isr, ctl;
279 #ifdef CEMAC_DEBUG
280 uint32_t rsr;
281 #endif
282 int bi;
283
284 imr = ~CEMAC_READ(ETH_IMR);
285 if (!(imr & (ETH_ISR_RCOM|ETH_ISR_TBRE|ETH_ISR_TIDLE|ETH_ISR_RBNA|ETH_ISR_ROVR|ETH_ISR_TCOM))) {
286 // interrupt not enabled, can't be us
287 return 0;
288 }
289
290 isr = CEMAC_READ(ETH_ISR);
291 CEMAC_WRITE(ETH_ISR, isr);
292 isr &= imr;
293 #ifdef CEMAC_DEBUG
294 rsr = CEMAC_READ(ETH_RSR); // get receive status register
295 #endif
296 DPRINTFN(2, ("%s: isr=0x%08X rsr=0x%08X imr=0x%08X\n", __FUNCTION__, isr, rsr, imr));
297
298 if (isr & ETH_ISR_RBNA) { // out of receive buffers
299 CEMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear interrupt
300 ctl = CEMAC_READ(ETH_CTL); // get current control register value
301 CEMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE); // disable receiver
302 CEMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear BNA bit
303 CEMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE); // re-enable receiver
304 ifp->if_ierrors++;
305 ifp->if_ipackets++;
306 DPRINTFN(1,("%s: out of receive buffers\n", __FUNCTION__));
307 }
308 if (isr & ETH_ISR_ROVR) {
309 CEMAC_WRITE(ETH_RSR, ETH_RSR_OVR); // clear interrupt
310 ifp->if_ierrors++;
311 ifp->if_ipackets++;
312 DPRINTFN(1,("%s: receive overrun\n", __FUNCTION__));
313 }
314
315 if (isr & ETH_ISR_RCOM) { // packet has been received!
316 uint32_t nfo;
317 DPRINTFN(2,("#2 RDSC[%i].INFO=0x%08X\n", sc->rxqi % RX_QLEN, sc->RDSC[sc->rxqi % RX_QLEN].Info));
318 while (sc->RDSC[(bi = sc->rxqi % RX_QLEN)].Addr & ETH_RDSC_F_USED) {
319 int fl, csum;
320 struct mbuf *m;
321
322 nfo = sc->RDSC[bi].Info;
323 fl = (nfo & ETH_RDSC_I_LEN) - 4;
324 DPRINTFN(2,("## nfo=0x%08X\n", nfo));
325
326 MGETHDR(m, M_DONTWAIT, MT_DATA);
327 if (m != NULL) MCLGET(m, M_DONTWAIT);
328 if (m != NULL && (m->m_flags & M_EXT)) {
329 bus_dmamap_sync(sc->sc_dmat, sc->rxq[bi].m_dmamap, 0,
330 MCLBYTES, BUS_DMASYNC_POSTREAD);
331 bus_dmamap_unload(sc->sc_dmat,
332 sc->rxq[bi].m_dmamap);
333 m_set_rcvif(sc->rxq[bi].m, ifp);
334 sc->rxq[bi].m->m_pkthdr.len =
335 sc->rxq[bi].m->m_len = fl;
336 switch (nfo & ETH_RDSC_I_CHKSUM) {
337 case ETH_RDSC_I_CHKSUM_IP:
338 csum = M_CSUM_IPv4;
339 break;
340 case ETH_RDSC_I_CHKSUM_UDP:
341 csum = M_CSUM_IPv4 | M_CSUM_UDPv4 |
342 M_CSUM_UDPv6;
343 break;
344 case ETH_RDSC_I_CHKSUM_TCP:
345 csum = M_CSUM_IPv4 | M_CSUM_TCPv4 |
346 M_CSUM_TCPv6;
347 break;
348 default:
349 csum = 0;
350 break;
351 }
352 sc->rxq[bi].m->m_pkthdr.csum_flags = csum;
353 DPRINTFN(2,("received %u bytes packet\n", fl));
354 if_percpuq_enqueue(ifp->if_percpuq,
355 sc->rxq[bi].m);
356 if (mtod(m, intptr_t) & 3)
357 m_adj(m, mtod(m, intptr_t) & 3);
358 sc->rxq[bi].m = m;
359 bus_dmamap_load(sc->sc_dmat,
360 sc->rxq[bi].m_dmamap,
361 m->m_ext.ext_buf, MCLBYTES,
362 NULL, BUS_DMA_NOWAIT);
363 bus_dmamap_sync(sc->sc_dmat, sc->rxq[bi].m_dmamap, 0,
364 MCLBYTES, BUS_DMASYNC_PREREAD);
365 sc->RDSC[bi].Info = 0;
366 sc->RDSC[bi].Addr =
367 sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr
368 | (bi == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
369 } else {
370 /* Drop packets until we can get replacement
371 * empty mbufs for the RXDQ.
372 */
373 if (m != NULL)
374 m_freem(m);
375 ifp->if_ierrors++;
376 }
377 sc->rxqi++;
378 }
379 }
380
381 if (cemac_gctx(sc) > 0)
382 if_schedule_deferred_start(ifp);
383 #if 0 // reloop
384 irq = CEMAC_READ(IntStsC);
385 if ((irq & (IntSts_RxSQ|IntSts_ECI)) != 0)
386 goto begin;
387 #endif
388
389 return (1);
390 }
391
392
393 static void
394 cemac_init(struct cemac_softc *sc)
395 {
396 bus_dma_segment_t segs;
397 int rsegs, err, i;
398 struct ifnet * ifp = &sc->sc_ethercom.ec_if;
399 uint32_t u;
400 #if 0
401 int mdcdiv = DEFAULT_MDCDIV;
402 #endif
403
404 callout_init(&sc->cemac_tick_ch, 0);
405
406 // ok...
407 CEMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything
408 CEMAC_WRITE(ETH_IDR, -1); // disable interrupts
409 CEMAC_WRITE(ETH_RBQP, 0); // clear receive
410 CEMAC_WRITE(ETH_TBQP, 0); // clear transmit
411 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
412 CEMAC_WRITE(ETH_CFG,
413 GEM_CFG_CLK_64 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
414 else
415 CEMAC_WRITE(ETH_CFG,
416 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
417 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
418 CEMAC_WRITE(GEM_DMA_CFG,
419 __SHIFTIN((MCLBYTES + 63) / 64, GEM_DMA_CFG_RX_BUF_SIZE) |
420 __SHIFTIN(3, GEM_DMA_CFG_RX_PKTBUF_MEMSZ_SEL) |
421 GEM_DMA_CFG_TX_PKTBUF_MEMSZ_SEL |
422 __SHIFTIN(16, GEM_DMA_CFG_AHB_FIXED_BURST_LEN) |
423 GEM_DMA_CFG_DISC_WHEN_NO_AHB);
424 }
425 // CEMAC_WRITE(ETH_TCR, 0); // send nothing
426 // (void)CEMAC_READ(ETH_ISR);
427 u = CEMAC_READ(ETH_TSR);
428 CEMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
429 | ETH_TSR_IDLE | ETH_TSR_RLE
430 | ETH_TSR_COL|ETH_TSR_OVR)));
431 u = CEMAC_READ(ETH_RSR);
432 CEMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR|ETH_RSR_REC|ETH_RSR_BNA)));
433
434 #if 0
435 if (device_cfdata(sc->sc_dev)->cf_flags)
436 mdcdiv = device_cfdata(sc->sc_dev)->cf_flags;
437 #endif
438 /* set ethernet address */
439 CEMAC_GEM_WRITE(SA1L, (sc->sc_enaddr[3] << 24)
440 | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
441 | (sc->sc_enaddr[0]));
442 CEMAC_GEM_WRITE(SA1H, (sc->sc_enaddr[5] << 8)
443 | (sc->sc_enaddr[4]));
444 CEMAC_GEM_WRITE(SA2L, 0);
445 CEMAC_GEM_WRITE(SA2H, 0);
446 CEMAC_GEM_WRITE(SA3L, 0);
447 CEMAC_GEM_WRITE(SA3H, 0);
448 CEMAC_GEM_WRITE(SA4L, 0);
449 CEMAC_GEM_WRITE(SA4H, 0);
450
451 /* Allocate a page of memory for receive queue descriptors */
452 sc->rbqlen = (ETH_DSC_SIZE * (RX_QLEN + 1) * 2 + PAGE_SIZE - 1) / PAGE_SIZE;
453 sc->rbqlen *= PAGE_SIZE;
454 DPRINTFN(1,("%s: rbqlen=%i\n", __FUNCTION__, sc->rbqlen));
455
456 err = bus_dmamem_alloc(sc->sc_dmat, sc->rbqlen, 0,
457 MAX(16384, PAGE_SIZE), // see EMAC errata why forced to 16384 byte boundary
458 &segs, 1, &rsegs, BUS_DMA_WAITOK);
459 if (err == 0) {
460 DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__));
461 err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->rbqlen,
462 &sc->rbqpage, (BUS_DMA_WAITOK|BUS_DMA_COHERENT));
463 }
464 if (err == 0) {
465 DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__));
466 err = bus_dmamap_create(sc->sc_dmat, sc->rbqlen, 1,
467 sc->rbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK,
468 &sc->rbqpage_dmamap);
469 }
470 if (err == 0) {
471 DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__));
472 err = bus_dmamap_load(sc->sc_dmat, sc->rbqpage_dmamap,
473 sc->rbqpage, sc->rbqlen, NULL, BUS_DMA_WAITOK);
474 }
475 if (err != 0)
476 panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev));
477
478 sc->rbqpage_dsaddr = sc->rbqpage_dmamap->dm_segs[0].ds_addr;
479 memset(sc->rbqpage, 0, sc->rbqlen);
480
481 /* Allocate a page of memory for transmit queue descriptors */
482 sc->tbqlen = (ETH_DSC_SIZE * (TX_QLEN + 1) * 2 + PAGE_SIZE - 1) / PAGE_SIZE;
483 sc->tbqlen *= PAGE_SIZE;
484 DPRINTFN(1,("%s: tbqlen=%i\n", __FUNCTION__, sc->tbqlen));
485
486 err = bus_dmamem_alloc(sc->sc_dmat, sc->tbqlen, 0,
487 MAX(16384, PAGE_SIZE), // see EMAC errata why forced to 16384 byte boundary
488 &segs, 1, &rsegs, BUS_DMA_WAITOK);
489 if (err == 0) {
490 DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__));
491 err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->tbqlen,
492 &sc->tbqpage, (BUS_DMA_WAITOK|BUS_DMA_COHERENT));
493 }
494 if (err == 0) {
495 DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__));
496 err = bus_dmamap_create(sc->sc_dmat, sc->tbqlen, 1,
497 sc->tbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK,
498 &sc->tbqpage_dmamap);
499 }
500 if (err == 0) {
501 DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__));
502 err = bus_dmamap_load(sc->sc_dmat, sc->tbqpage_dmamap,
503 sc->tbqpage, sc->tbqlen, NULL, BUS_DMA_WAITOK);
504 }
505 if (err != 0)
506 panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev));
507
508 sc->tbqpage_dsaddr = sc->tbqpage_dmamap->dm_segs[0].ds_addr;
509 memset(sc->tbqpage, 0, sc->tbqlen);
510
511 /* Set up pointers to start of each queue in kernel addr space.
512 * Each descriptor queue or status queue entry uses 2 words
513 */
514 sc->RDSC = (void *)sc->rbqpage;
515 sc->TDSC = (void *)sc->tbqpage;
516
517 /* init TX queue */
518 for (i = 0; i < TX_QLEN; i++) {
519 sc->TDSC[i].Addr = 0;
520 sc->TDSC[i].Info = ETH_TDSC_I_USED |
521 (i == (TX_QLEN - 1) ? ETH_TDSC_I_WRAP : 0);
522 }
523
524 /* Populate the RXQ with mbufs */
525 sc->rxqi = 0;
526 for(i = 0; i < RX_QLEN; i++) {
527 struct mbuf *m;
528
529 err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, PAGE_SIZE,
530 BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap);
531 if (err) {
532 panic("%s: dmamap_create failed: %i\n", __FUNCTION__, err);
533 }
534 MGETHDR(m, M_WAIT, MT_DATA);
535 MCLGET(m, M_WAIT);
536 sc->rxq[i].m = m;
537 if (mtod(m, intptr_t) & 3) {
538 m_adj(m, mtod(m, intptr_t) & 3);
539 }
540 err = bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap,
541 m->m_ext.ext_buf, MCLBYTES, NULL,
542 BUS_DMA_WAITOK);
543 if (err) {
544 panic("%s: dmamap_load failed: %i\n", __FUNCTION__, err);
545 }
546 sc->RDSC[i].Addr = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr
547 | (i == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
548 sc->RDSC[i].Info = 0;
549 bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0,
550 MCLBYTES, BUS_DMASYNC_PREREAD);
551 }
552
553 /* prepare transmit queue */
554 for (i = 0; i < TX_QLEN; i++) {
555 err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
556 (BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW),
557 &sc->txq[i].m_dmamap);
558 if (err)
559 panic("ARGH #1");
560 sc->txq[i].m = NULL;
561 }
562
563 /* Program each queue's start addr, cur addr, and len registers
564 * with the physical addresses.
565 */
566 CEMAC_WRITE(ETH_RBQP, (uint32_t)sc->rbqpage_dsaddr);
567 CEMAC_WRITE(ETH_TBQP, (uint32_t)sc->tbqpage_dsaddr);
568
569 /* Divide HCLK by 32 for MDC clock */
570 sc->sc_ethercom.ec_mii = &sc->sc_mii;
571 sc->sc_mii.mii_ifp = ifp;
572 sc->sc_mii.mii_readreg = cemac_mii_readreg;
573 sc->sc_mii.mii_writereg = cemac_mii_writereg;
574 sc->sc_mii.mii_statchg = cemac_statchg;
575 ifmedia_init(&sc->sc_mii.mii_media, IFM_IMASK, cemac_mediachange,
576 cemac_mediastatus);
577 mii_attach(sc->sc_dev, &sc->sc_mii, 0xffffffff, MII_PHY_ANY,
578 MII_OFFSET_ANY, 0);
579 ifmedia_set(&sc->sc_mii.mii_media, IFM_ETHER|IFM_AUTO);
580
581 #if 0
582 // enable / disable interrupts
583 CEMAC_WRITE(ETH_IDR, -1);
584 CEMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
585 | ETH_ISR_RBNA | ETH_ISR_ROVR | ETH_ISR_TCOM);
586 // (void)CEMAC_READ(ETH_ISR); // why
587
588 // enable transmitter / receiver
589 CEMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
590 | ETH_CTL_CSR | ETH_CTL_MPE);
591 #endif
592 /*
593 * We can support hardware checksumming.
594 */
595 ifp->if_capabilities |=
596 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
597 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
598 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
599 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_TCPv6_Rx |
600 IFCAP_CSUM_UDPv6_Tx | IFCAP_CSUM_UDPv6_Rx;
601
602 /*
603 * We can support 802.1Q VLAN-sized frames.
604 */
605 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
606
607 strcpy(ifp->if_xname, device_xname(sc->sc_dev));
608 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
609 ifp->if_ioctl = cemac_ifioctl;
610 ifp->if_start = cemac_ifstart;
611 ifp->if_watchdog = cemac_ifwatchdog;
612 ifp->if_init = cemac_ifinit;
613 ifp->if_stop = cemac_ifstop;
614 ifp->if_timer = 0;
615 ifp->if_softc = sc;
616 IFQ_SET_READY(&ifp->if_snd);
617 if_attach(ifp);
618 if_deferred_start_init(ifp, NULL);
619 ether_ifattach(ifp, (sc)->sc_enaddr);
620 }
621
622 static int
623 cemac_mediachange(struct ifnet *ifp)
624 {
625 if (ifp->if_flags & IFF_UP)
626 cemac_ifinit(ifp);
627 return (0);
628 }
629
630 static void
631 cemac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
632 {
633 struct cemac_softc *sc = ifp->if_softc;
634
635 mii_pollstat(&sc->sc_mii);
636 ifmr->ifm_active = sc->sc_mii.mii_media_active;
637 ifmr->ifm_status = sc->sc_mii.mii_media_status;
638 }
639
640
641 static int
642 cemac_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
643 {
644 struct cemac_softc *sc;
645
646 sc = device_private(self);
647
648 CEMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_RD
649 | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
650 | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
651 | ETH_MAN_CODE_IEEE802_3));
652 while (!(CEMAC_READ(ETH_SR) & ETH_SR_IDLE));
653
654 *val = CEMAC_READ(ETH_MAN) & ETH_MAN_DATA;
655 return 0;
656 }
657
658 static int
659 cemac_mii_writereg(device_t self, int phy, int reg, uint16_t val)
660 {
661 struct cemac_softc *sc;
662
663 sc = device_private(self);
664
665 CEMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_WR
666 | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
667 | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
668 | ETH_MAN_CODE_IEEE802_3
669 | (val & ETH_MAN_DATA)));
670 while (!(CEMAC_READ(ETH_SR) & ETH_SR_IDLE)) ;
671
672 return 0;
673 }
674
675
676 static void
677 cemac_statchg(struct ifnet *ifp)
678 {
679 struct cemac_softc *sc = ifp->if_softc;
680 struct mii_data *mii = &sc->sc_mii;
681 uint32_t reg;
682
683 /*
684 * We must keep the MAC and the PHY in sync as
685 * to the status of full-duplex!
686 */
687 reg = CEMAC_READ(ETH_CFG);
688 reg &= ~ETH_CFG_FD;
689 if (sc->sc_mii.mii_media_active & IFM_FDX)
690 reg |= ETH_CFG_FD;
691
692 reg &= ~ETH_CFG_SPD;
693 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
694 reg &= ~GEM_CFG_GEN;
695 switch (IFM_SUBTYPE(mii->mii_media_active)) {
696 case IFM_10_T:
697 break;
698 case IFM_100_TX:
699 reg |= ETH_CFG_SPD;
700 break;
701 case IFM_1000_T:
702 reg |= ETH_CFG_SPD | GEM_CFG_GEN;
703 break;
704 default:
705 break;
706 }
707 CEMAC_WRITE(ETH_CFG, reg);
708 }
709
710 static void
711 cemac_tick(void *arg)
712 {
713 struct cemac_softc* sc = (struct cemac_softc *)arg;
714 struct ifnet * ifp = &sc->sc_ethercom.ec_if;
715 int s;
716
717 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
718 ifp->if_collisions += CEMAC_READ(GEM_SCOL) + CEMAC_READ(GEM_MCOL);
719 else
720 ifp->if_collisions += CEMAC_READ(ETH_SCOL) + CEMAC_READ(ETH_MCOL);
721
722 /* These misses are ok, they will happen if the RAM/CPU can't keep up */
723 if (!ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
724 uint32_t misses = CEMAC_READ(ETH_DRFC);
725 if (misses > 0)
726 aprint_normal_ifnet(ifp, "%d rx misses\n", misses);
727 }
728
729 s = splnet();
730 if (cemac_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0)
731 cemac_ifstart(ifp);
732 splx(s);
733
734 mii_tick(&sc->sc_mii);
735 callout_reset(&sc->cemac_tick_ch, hz, cemac_tick, sc);
736 }
737
738
739 static int
740 cemac_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
741 {
742 struct cemac_softc *sc = ifp->if_softc;
743 struct ifreq *ifr = (struct ifreq *)data;
744 int s, error;
745
746 s = splnet();
747 switch(cmd) {
748 case SIOCSIFMEDIA:
749 case SIOCGIFMEDIA:
750 error = ifmedia_ioctl(ifp, ifr, &sc->sc_mii.mii_media, cmd);
751 break;
752 default:
753 error = ether_ioctl(ifp, cmd, data);
754 if (error != ENETRESET)
755 break;
756 error = 0;
757
758 if (cmd == SIOCSIFCAP) {
759 error = (*ifp->if_init)(ifp);
760 } else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
761 ;
762 else if (ifp->if_flags & IFF_RUNNING) {
763 cemac_setaddr(ifp);
764 }
765 }
766 splx(s);
767 return error;
768 }
769
770 static void
771 cemac_ifstart(struct ifnet *ifp)
772 {
773 struct cemac_softc *sc = (struct cemac_softc *)ifp->if_softc;
774 struct mbuf *m;
775 bus_dma_segment_t *segs;
776 int s, bi, err, nsegs;
777
778 s = splnet();
779 start:
780 if (cemac_gctx(sc) == 0) {
781 /* Enable transmit-buffer-free interrupt */
782 CEMAC_WRITE(ETH_IER, ETH_ISR_TBRE);
783 ifp->if_flags |= IFF_OACTIVE;
784 ifp->if_timer = 10;
785 splx(s);
786 return;
787 }
788
789 ifp->if_timer = 0;
790
791 IFQ_POLL(&ifp->if_snd, m);
792 if (m == NULL) {
793 splx(s);
794 return;
795 }
796
797 bi = (sc->txqi + sc->txqc) % TX_QLEN;
798 if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
799 BUS_DMA_NOWAIT)) ||
800 sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 ||
801 sc->txq[bi].m_dmamap->dm_nsegs > 1) {
802 /* Copy entire mbuf chain to new single */
803 struct mbuf *mn;
804
805 if (err == 0)
806 bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
807
808 MGETHDR(mn, M_DONTWAIT, MT_DATA);
809 if (mn == NULL) goto stop;
810 if (m->m_pkthdr.len > MHLEN) {
811 MCLGET(mn, M_DONTWAIT);
812 if ((mn->m_flags & M_EXT) == 0) {
813 m_freem(mn);
814 goto stop;
815 }
816 }
817 m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *));
818 mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len;
819 IFQ_DEQUEUE(&ifp->if_snd, m);
820 m_freem(m);
821 m = mn;
822 bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
823 BUS_DMA_NOWAIT);
824 } else {
825 IFQ_DEQUEUE(&ifp->if_snd, m);
826 }
827
828 bpf_mtap(ifp, m, BPF_D_OUT);
829
830 nsegs = sc->txq[bi].m_dmamap->dm_nsegs;
831 segs = sc->txq[bi].m_dmamap->dm_segs;
832 if (nsegs > 1)
833 panic("#### ARGH #2");
834
835 sc->txq[bi].m = m;
836 sc->txqc++;
837
838 DPRINTFN(2,("%s: start sending idx #%i mbuf %p (txqc=%i, phys %p), len=%u\n",
839 __FUNCTION__, bi, sc->txq[bi].m, sc->txqc, (void*)segs->ds_addr,
840 (unsigned)m->m_pkthdr.len));
841 #ifdef DIAGNOSTIC
842 if (sc->txqc > TX_QLEN)
843 panic("%s: txqc %i > %i", __FUNCTION__, sc->txqc, TX_QLEN);
844 #endif
845
846 bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
847 sc->txq[bi].m_dmamap->dm_mapsize,
848 BUS_DMASYNC_PREWRITE);
849
850 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
851 sc->TDSC[bi].Addr = segs->ds_addr;
852 sc->TDSC[bi].Info = __SHIFTIN(m->m_pkthdr.len, ETH_TDSC_I_LEN) |
853 ETH_TDSC_I_LAST_BUF | (bi == (TX_QLEN - 1) ? ETH_TDSC_I_WRAP : 0);
854
855 DPRINTFN(3,("%s: TDSC[%i].Addr 0x%08x\n",
856 __FUNCTION__, bi, sc->TDSC[bi].Addr));
857 DPRINTFN(3,("%s: TDSC[%i].Info 0x%08x\n",
858 __FUNCTION__, bi, sc->TDSC[bi].Info));
859
860 uint32_t ctl = CEMAC_READ(ETH_CTL) | GEM_CTL_STARTTX;
861 CEMAC_WRITE(ETH_CTL, ctl);
862 DPRINTFN(3,("%s: ETH_CTL 0x%08x\n", __FUNCTION__, CEMAC_READ(ETH_CTL)));
863 } else {
864 CEMAC_WRITE(ETH_TAR, segs->ds_addr);
865 CEMAC_WRITE(ETH_TCR, m->m_pkthdr.len);
866 }
867 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
868 goto start;
869 stop:
870
871 splx(s);
872 return;
873 }
874
875 static void
876 cemac_ifwatchdog(struct ifnet *ifp)
877 {
878 struct cemac_softc *sc = (struct cemac_softc *)ifp->if_softc;
879
880 if ((ifp->if_flags & IFF_RUNNING) == 0)
881 return;
882 aprint_error_ifnet(ifp, "device timeout, CTL = 0x%08x, CFG = 0x%08x\n",
883 CEMAC_READ(ETH_CTL), CEMAC_READ(ETH_CFG));
884 }
885
886 static int
887 cemac_ifinit(struct ifnet *ifp)
888 {
889 struct cemac_softc *sc = ifp->if_softc;
890 uint32_t dma, cfg;
891 int s = splnet();
892
893 callout_stop(&sc->cemac_tick_ch);
894
895 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
896
897 if (ifp->if_capenable &
898 (IFCAP_CSUM_IPv4_Tx |
899 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
900 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) {
901 dma = CEMAC_READ(GEM_DMA_CFG);
902 dma |= GEM_DMA_CFG_CHKSUM_GEN_OFFLOAD_EN;
903 CEMAC_WRITE(GEM_DMA_CFG, dma);
904 }
905 if (ifp->if_capenable &
906 (IFCAP_CSUM_IPv4_Rx |
907 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
908 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) {
909 cfg = CEMAC_READ(ETH_CFG);
910 cfg |= GEM_CFG_RX_CHKSUM_OFFLD_EN;
911 CEMAC_WRITE(ETH_CFG, cfg);
912 }
913 }
914
915 // enable interrupts
916 CEMAC_WRITE(ETH_IDR, -1);
917 CEMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
918 | ETH_ISR_RBNA | ETH_ISR_ROVR | ETH_ISR_TCOM);
919
920 // enable transmitter / receiver
921 CEMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
922 | ETH_CTL_CSR | ETH_CTL_MPE);
923
924 mii_mediachg(&sc->sc_mii);
925 callout_reset(&sc->cemac_tick_ch, hz, cemac_tick, sc);
926 ifp->if_flags |= IFF_RUNNING;
927 splx(s);
928 return 0;
929 }
930
931 static void
932 cemac_ifstop(struct ifnet *ifp, int disable)
933 {
934 // uint32_t u;
935 struct cemac_softc *sc = ifp->if_softc;
936
937 #if 0
938 CEMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything
939 CEMAC_WRITE(ETH_IDR, -1); // disable interrupts
940 // CEMAC_WRITE(ETH_RBQP, 0); // clear receive
941 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
942 CEMAC_WRITE(ETH_CFG,
943 GEM_CFG_CLK_64 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
944 else
945 CEMAC_WRITE(ETH_CFG,
946 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
947 // CEMAC_WRITE(ETH_TCR, 0); // send nothing
948 // (void)CEMAC_READ(ETH_ISR);
949 u = CEMAC_READ(ETH_TSR);
950 CEMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
951 | ETH_TSR_IDLE | ETH_TSR_RLE
952 | ETH_TSR_COL|ETH_TSR_OVR)));
953 u = CEMAC_READ(ETH_RSR);
954 CEMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR|ETH_RSR_REC|ETH_RSR_BNA)));
955 #endif
956 callout_stop(&sc->cemac_tick_ch);
957
958 /* Down the MII. */
959 mii_down(&sc->sc_mii);
960
961 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
962 ifp->if_timer = 0;
963 sc->sc_mii.mii_media_status &= ~IFM_ACTIVE;
964 }
965
966 static void
967 cemac_setaddr(struct ifnet *ifp)
968 {
969 struct cemac_softc *sc = ifp->if_softc;
970 struct ethercom *ac = &sc->sc_ethercom;
971 struct ether_multi *enm;
972 struct ether_multistep step;
973 uint8_t ias[3][ETHER_ADDR_LEN];
974 uint32_t h, nma = 0, hashes[2] = { 0, 0 };
975 uint32_t ctl = CEMAC_READ(ETH_CTL);
976 uint32_t cfg = CEMAC_READ(ETH_CFG);
977
978 /* disable receiver temporarily */
979 CEMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE);
980
981 cfg &= ~(ETH_CFG_MTI | ETH_CFG_UNI | ETH_CFG_CAF | ETH_CFG_UNI);
982
983 if (ifp->if_flags & IFF_PROMISC) {
984 cfg |= ETH_CFG_CAF;
985 } else {
986 cfg &= ~ETH_CFG_CAF;
987 }
988
989 // ETH_CFG_BIG?
990
991 ifp->if_flags &= ~IFF_ALLMULTI;
992
993 ETHER_FIRST_MULTI(step, ac, enm);
994 while (enm != NULL) {
995 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
996 /*
997 * We must listen to a range of multicast addresses.
998 * For now, just accept all multicasts, rather than
999 * trying to set only those filter bits needed to match
1000 * the range. (At this time, the only use of address
1001 * ranges is for IP multicast routing, for which the
1002 * range is big enough to require all bits set.)
1003 */
1004 cfg |= ETH_CFG_MTI;
1005 hashes[0] = 0xffffffffUL;
1006 hashes[1] = 0xffffffffUL;
1007 ifp->if_flags |= IFF_ALLMULTI;
1008 nma = 0;
1009 break;
1010 }
1011
1012 if (nma < 3) {
1013 /* We can program 3 perfect address filters for mcast */
1014 memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN);
1015 } else {
1016 /*
1017 * XXX: Datasheet is not very clear here, I'm not sure
1018 * if I'm doing this right. --joff
1019 */
1020 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1021
1022 /* Just want the 6 most-significant bits. */
1023 h = h >> 26;
1024 #if 0
1025 hashes[h / 32] |= (1 << (h % 32));
1026 #else
1027 hashes[0] = 0xffffffffUL;
1028 hashes[1] = 0xffffffffUL;
1029 #endif
1030 cfg |= ETH_CFG_MTI;
1031 }
1032 ETHER_NEXT_MULTI(step, enm);
1033 nma++;
1034 }
1035
1036 // program...
1037 DPRINTFN(1,("%s: en0 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
1038 sc->sc_enaddr[0], sc->sc_enaddr[1], sc->sc_enaddr[2],
1039 sc->sc_enaddr[3], sc->sc_enaddr[4], sc->sc_enaddr[5]));
1040 CEMAC_GEM_WRITE(SA1L, (sc->sc_enaddr[3] << 24)
1041 | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
1042 | (sc->sc_enaddr[0]));
1043 CEMAC_GEM_WRITE(SA1H, (sc->sc_enaddr[5] << 8)
1044 | (sc->sc_enaddr[4]));
1045 if (nma > 0) {
1046 DPRINTFN(1,("%s: en1 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
1047 ias[0][0], ias[0][1], ias[0][2],
1048 ias[0][3], ias[0][4], ias[0][5]));
1049 CEMAC_WRITE(ETH_SA2L, (ias[0][3] << 24)
1050 | (ias[0][2] << 16) | (ias[0][1] << 8)
1051 | (ias[0][0]));
1052 CEMAC_WRITE(ETH_SA2H, (ias[0][4] << 8)
1053 | (ias[0][5]));
1054 }
1055 if (nma > 1) {
1056 DPRINTFN(1,("%s: en2 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
1057 ias[1][0], ias[1][1], ias[1][2],
1058 ias[1][3], ias[1][4], ias[1][5]));
1059 CEMAC_WRITE(ETH_SA3L, (ias[1][3] << 24)
1060 | (ias[1][2] << 16) | (ias[1][1] << 8)
1061 | (ias[1][0]));
1062 CEMAC_WRITE(ETH_SA3H, (ias[1][4] << 8)
1063 | (ias[1][5]));
1064 }
1065 if (nma > 2) {
1066 DPRINTFN(1,("%s: en3 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
1067 ias[2][0], ias[2][1], ias[2][2],
1068 ias[2][3], ias[2][4], ias[2][5]));
1069 CEMAC_WRITE(ETH_SA4L, (ias[2][3] << 24)
1070 | (ias[2][2] << 16) | (ias[2][1] << 8)
1071 | (ias[2][0]));
1072 CEMAC_WRITE(ETH_SA4H, (ias[2][4] << 8)
1073 | (ias[2][5]));
1074 }
1075 CEMAC_GEM_WRITE(HSH, hashes[0]);
1076 CEMAC_GEM_WRITE(HSL, hashes[1]);
1077 CEMAC_WRITE(ETH_CFG, cfg);
1078 CEMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE);
1079 }
1080