if_cemac.c revision 1.33 1 /* $NetBSD: if_cemac.c,v 1.33 2024/08/25 07:25:00 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2015 Genetec Corporation. All rights reserved.
5 * Written by Hashimoto Kenichi for Genetec Corporation.
6 *
7 * Based on arch/arm/at91/at91emac.c
8 *
9 * Copyright (c) 2007 Embedtronics Oy
10 * All rights reserved.
11 *
12 * Copyright (c) 2004 Jesse Off
13 * All rights reserved.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 /*
38 * Cadence EMAC/GEM ethernet controller IP driver
39 * used by arm/at91, arm/zynq SoC
40 */
41
42 #include <sys/cdefs.h>
43 __KERNEL_RCSID(0, "$NetBSD: if_cemac.c,v 1.33 2024/08/25 07:25:00 skrll Exp $");
44
45 #include <sys/param.h>
46 #include <sys/types.h>
47
48 #include <sys/bus.h>
49 #include <sys/device.h>
50 #include <sys/kernel.h>
51 #include <sys/proc.h>
52 #include <sys/systm.h>
53 #include <sys/time.h>
54
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_types.h>
58 #include <net/if_media.h>
59 #include <net/if_ether.h>
60 #include <net/bpf.h>
61
62 #include <dev/mii/mii.h>
63 #include <dev/mii/miivar.h>
64
65 #ifdef INET
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/in_var.h>
69 #include <netinet/ip.h>
70 #include <netinet/if_inarp.h>
71 #endif
72
73 #include <dev/cadence/cemacreg.h>
74 #include <dev/cadence/if_cemacvar.h>
75
76 #define DEFAULT_MDCDIV 32
77
78 #define CEMAC_READ(x) \
79 bus_space_read_4(sc->sc_iot, sc->sc_ioh, (x))
80 #define CEMAC_WRITE(x, y) \
81 bus_space_write_4(sc->sc_iot, sc->sc_ioh, (x), (y))
82 #define CEMAC_GEM_WRITE(x, y) \
83 do { \
84 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) \
85 bus_space_write_4(sc->sc_iot, sc->sc_ioh, (GEM_##x), (y)); \
86 else \
87 bus_space_write_4(sc->sc_iot, sc->sc_ioh, (ETH_##x), (y)); \
88 } while(0)
89
90 static void cemac_init(struct cemac_softc *);
91 static int cemac_gctx(struct cemac_softc *);
92 static int cemac_mediachange(struct ifnet *);
93 static void cemac_mediastatus(struct ifnet *, struct ifmediareq *);
94 static int cemac_mii_readreg(device_t, int, int, uint16_t *);
95 static int cemac_mii_writereg(device_t, int, int, uint16_t);
96 static void cemac_statchg(struct ifnet *);
97 static void cemac_tick(void *);
98 static int cemac_ifioctl(struct ifnet *, u_long, void *);
99 static void cemac_ifstart(struct ifnet *);
100 static void cemac_ifwatchdog(struct ifnet *);
101 static int cemac_ifinit(struct ifnet *);
102 static void cemac_ifstop(struct ifnet *, int);
103 static void cemac_setaddr(struct ifnet *);
104
105 #ifdef CEMAC_DEBUG
106 int cemac_debug = CEMAC_DEBUG;
107 #define DPRINTFN(n, fmt) if (cemac_debug >= (n)) printf fmt
108 #else
109 #define DPRINTFN(n, fmt)
110 #endif
111
112 void
113 cemac_attach_common(struct cemac_softc *sc)
114 {
115 uint32_t u;
116
117 aprint_naive("\n");
118 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
119 aprint_normal(": Cadence Gigabit Ethernet Controller\n");
120 else
121 aprint_normal(": Cadence Ethernet Controller\n");
122
123 /* configure emac: */
124 CEMAC_WRITE(ETH_CTL, 0); // disable everything
125 CEMAC_WRITE(ETH_IDR, -1); // disable interrupts
126 CEMAC_WRITE(ETH_RBQP, 0); // clear receive
127 CEMAC_WRITE(ETH_TBQP, 0); // clear transmit
128 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
129 CEMAC_WRITE(ETH_CFG,
130 GEM_CFG_CLK_64 | GEM_CFG_GEN | ETH_CFG_SPD | ETH_CFG_FD);
131 else
132 CEMAC_WRITE(ETH_CFG,
133 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
134 //CEMAC_WRITE(ETH_TCR, 0); // send nothing
135 //(void)CEMAC_READ(ETH_ISR);
136 u = CEMAC_READ(ETH_TSR);
137 CEMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
138 | ETH_TSR_IDLE | ETH_TSR_RLE
139 | ETH_TSR_COL | ETH_TSR_OVR)));
140 u = CEMAC_READ(ETH_RSR);
141 CEMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
142
143 /* Fetch the Ethernet address from property if set. */
144 prop_dictionary_t prop = device_properties(sc->sc_dev);
145 prop_data_t enaddr = prop_dictionary_get(prop, "mac-address");
146
147 if (enaddr != NULL) {
148 KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA);
149 KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN);
150 memcpy(sc->sc_enaddr, prop_data_value(enaddr),
151 ETHER_ADDR_LEN);
152 } else {
153 static const uint8_t hardcoded[ETHER_ADDR_LEN] = {
154 0x00, 0x0d, 0x10, 0x81, 0x0c, 0x94
155 };
156 memcpy(sc->sc_enaddr, hardcoded, ETHER_ADDR_LEN);
157 }
158
159 cemac_init(sc);
160 }
161
162 static int
163 cemac_gctx(struct cemac_softc *sc)
164 {
165 uint32_t tsr;
166
167 tsr = CEMAC_READ(ETH_TSR);
168 if (!ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
169 // no space left
170 if (!(tsr & ETH_TSR_BNQ))
171 return 0;
172 } else {
173 if (tsr & GEM_TSR_TXGO)
174 return 0;
175 }
176 CEMAC_WRITE(ETH_TSR, tsr);
177
178 // free sent frames
179 while (sc->txqc > (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM) ? 0 :
180 (tsr & ETH_TSR_IDLE ? 0 : 1))) {
181 int bi = sc->txqi % TX_QLEN;
182
183 DPRINTFN(3,("%s: TDSC[%i].Addr 0x%08x\n",
184 __FUNCTION__, bi, sc->TDSC[bi].Addr));
185 DPRINTFN(3,("%s: TDSC[%i].Info 0x%08x\n",
186 __FUNCTION__, bi, sc->TDSC[bi].Info));
187
188 bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
189 sc->txq[bi].m->m_pkthdr.len, BUS_DMASYNC_POSTWRITE);
190 bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
191 m_freem(sc->txq[bi].m);
192 DPRINTFN(2,("%s: freed idx #%i mbuf %p (txqc=%i)\n",
193 __FUNCTION__, bi, sc->txq[bi].m, sc->txqc));
194 sc->txq[bi].m = NULL;
195 sc->txqi = (bi + 1) % TX_QLEN;
196 sc->txqc--;
197 }
198
199 // mark we're free
200 if (sc->tx_busy) {
201 sc->tx_busy = false;
202 /* Disable transmit-buffer-free interrupt */
203 /*CEMAC_WRITE(ETH_IDR, ETH_ISR_TBRE);*/
204 }
205
206 return 1;
207 }
208
209 int
210 cemac_intr(void *arg)
211 {
212 struct cemac_softc *sc = (struct cemac_softc *)arg;
213 struct ifnet * ifp = &sc->sc_ethercom.ec_if;
214 uint32_t imr, isr, ctl;
215 #ifdef CEMAC_DEBUG
216 uint32_t rsr;
217 #endif
218 int bi;
219
220 imr = ~CEMAC_READ(ETH_IMR);
221 if (!(imr & (ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE |
222 ETH_ISR_RBNA | ETH_ISR_ROVR | ETH_ISR_TCOM))) {
223 // interrupt not enabled, can't be us
224 return 0;
225 }
226
227 isr = CEMAC_READ(ETH_ISR);
228 CEMAC_WRITE(ETH_ISR, isr);
229 isr &= imr;
230 #ifdef CEMAC_DEBUG
231 rsr = CEMAC_READ(ETH_RSR); // get receive status register
232 #endif
233 DPRINTFN(2, ("%s: isr=0x%08X rsr=0x%08X imr=0x%08X\n", __FUNCTION__, isr, rsr, imr));
234
235 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
236 if (isr & ETH_ISR_RBNA) { // out of receive buffers
237 CEMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear interrupt
238 ctl = CEMAC_READ(ETH_CTL); // get current control register value
239 CEMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE); // disable receiver
240 CEMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear BNA bit
241 CEMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE); // re-enable receiver
242 if_statinc_ref(ifp, nsr, if_ierrors);
243 if_statinc_ref(ifp, nsr, if_ipackets);
244 DPRINTFN(1,("%s: out of receive buffers\n", __FUNCTION__));
245 }
246 if (isr & ETH_ISR_ROVR) {
247 CEMAC_WRITE(ETH_RSR, ETH_RSR_OVR); // clear interrupt
248 if_statinc_ref(ifp, nsr, if_ierrors);
249 if_statinc_ref(ifp, nsr, if_ipackets);
250 DPRINTFN(1,("%s: receive overrun\n", __FUNCTION__));
251 }
252
253 if (isr & ETH_ISR_RCOM) { // packet has been received!
254 uint32_t nfo;
255 DPRINTFN(2,("#2 RDSC[%i].INFO=0x%08X\n", sc->rxqi % RX_QLEN, sc->RDSC[sc->rxqi % RX_QLEN].Info));
256 while (sc->RDSC[(bi = sc->rxqi % RX_QLEN)].Addr & ETH_RDSC_F_USED) {
257 int fl, csum;
258 struct mbuf *m;
259
260 nfo = sc->RDSC[bi].Info;
261 fl = (nfo & ETH_RDSC_I_LEN) - 4;
262 DPRINTFN(2,("## nfo=0x%08X\n", nfo));
263
264 MGETHDR(m, M_DONTWAIT, MT_DATA);
265 if (m != NULL) MCLGET(m, M_DONTWAIT);
266 if (m != NULL && (m->m_flags & M_EXT)) {
267 bus_dmamap_sync(sc->sc_dmat, sc->rxq[bi].m_dmamap, 0,
268 MCLBYTES, BUS_DMASYNC_POSTREAD);
269 bus_dmamap_unload(sc->sc_dmat,
270 sc->rxq[bi].m_dmamap);
271 m_set_rcvif(sc->rxq[bi].m, ifp);
272 sc->rxq[bi].m->m_pkthdr.len =
273 sc->rxq[bi].m->m_len = fl;
274 switch (nfo & ETH_RDSC_I_CHKSUM) {
275 case ETH_RDSC_I_CHKSUM_IP:
276 csum = M_CSUM_IPv4;
277 break;
278 case ETH_RDSC_I_CHKSUM_UDP:
279 csum = M_CSUM_IPv4 | M_CSUM_UDPv4 |
280 M_CSUM_UDPv6;
281 break;
282 case ETH_RDSC_I_CHKSUM_TCP:
283 csum = M_CSUM_IPv4 | M_CSUM_TCPv4 |
284 M_CSUM_TCPv6;
285 break;
286 default:
287 csum = 0;
288 break;
289 }
290 sc->rxq[bi].m->m_pkthdr.csum_flags = csum;
291 DPRINTFN(2,("received %u bytes packet\n", fl));
292 if_percpuq_enqueue(ifp->if_percpuq,
293 sc->rxq[bi].m);
294 if (mtod(m, intptr_t) & 3)
295 m_adj(m, mtod(m, intptr_t) & 3);
296 sc->rxq[bi].m = m;
297 bus_dmamap_load(sc->sc_dmat,
298 sc->rxq[bi].m_dmamap,
299 m->m_ext.ext_buf, MCLBYTES,
300 NULL, BUS_DMA_NOWAIT);
301 bus_dmamap_sync(sc->sc_dmat, sc->rxq[bi].m_dmamap, 0,
302 MCLBYTES, BUS_DMASYNC_PREREAD);
303 sc->RDSC[bi].Info = 0;
304 sc->RDSC[bi].Addr =
305 sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr
306 | (bi == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
307 } else {
308 /* Drop packets until we can get replacement
309 * empty mbufs for the RXDQ.
310 */
311 m_freem(m);
312 if_statinc_ref(ifp, nsr, if_ierrors);
313 }
314 sc->rxqi++;
315 }
316 }
317
318 IF_STAT_PUTREF(ifp);
319
320 if (cemac_gctx(sc) > 0)
321 if_schedule_deferred_start(ifp);
322 #if 0 // reloop
323 irq = CEMAC_READ(IntStsC);
324 if ((irq & (IntSts_RxSQ | IntSts_ECI)) != 0)
325 goto begin;
326 #endif
327
328 return 1;
329 }
330
331
332 static void
333 cemac_init(struct cemac_softc *sc)
334 {
335 bus_dma_segment_t segs;
336 int rsegs, err, i;
337 struct ifnet * ifp = &sc->sc_ethercom.ec_if;
338 struct mii_data * const mii = &sc->sc_mii;
339 uint32_t u;
340 #if 0
341 int mdcdiv = DEFAULT_MDCDIV;
342 #endif
343
344 callout_init(&sc->cemac_tick_ch, 0);
345
346 // ok...
347 CEMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything
348 CEMAC_WRITE(ETH_IDR, -1); // disable interrupts
349 CEMAC_WRITE(ETH_RBQP, 0); // clear receive
350 CEMAC_WRITE(ETH_TBQP, 0); // clear transmit
351 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
352 CEMAC_WRITE(ETH_CFG,
353 GEM_CFG_CLK_64 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
354 else
355 CEMAC_WRITE(ETH_CFG,
356 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
357 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
358 CEMAC_WRITE(GEM_DMA_CFG,
359 __SHIFTIN((MCLBYTES + 63) / 64, GEM_DMA_CFG_RX_BUF_SIZE) |
360 __SHIFTIN(3, GEM_DMA_CFG_RX_PKTBUF_MEMSZ_SEL) |
361 GEM_DMA_CFG_TX_PKTBUF_MEMSZ_SEL |
362 __SHIFTIN(16, GEM_DMA_CFG_AHB_FIXED_BURST_LEN) |
363 GEM_DMA_CFG_DISC_WHEN_NO_AHB);
364 }
365 // CEMAC_WRITE(ETH_TCR, 0); // send nothing
366 // (void)CEMAC_READ(ETH_ISR);
367 u = CEMAC_READ(ETH_TSR);
368 CEMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
369 | ETH_TSR_IDLE | ETH_TSR_RLE
370 | ETH_TSR_COL | ETH_TSR_OVR)));
371 u = CEMAC_READ(ETH_RSR);
372 CEMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
373
374 #if 0
375 if (device_cfdata(sc->sc_dev)->cf_flags)
376 mdcdiv = device_cfdata(sc->sc_dev)->cf_flags;
377 #endif
378 /* set ethernet address */
379 CEMAC_GEM_WRITE(SA1L, (sc->sc_enaddr[3] << 24)
380 | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
381 | (sc->sc_enaddr[0]));
382 CEMAC_GEM_WRITE(SA1H, (sc->sc_enaddr[5] << 8)
383 | (sc->sc_enaddr[4]));
384 CEMAC_GEM_WRITE(SA2L, 0);
385 CEMAC_GEM_WRITE(SA2H, 0);
386 CEMAC_GEM_WRITE(SA3L, 0);
387 CEMAC_GEM_WRITE(SA3H, 0);
388 CEMAC_GEM_WRITE(SA4L, 0);
389 CEMAC_GEM_WRITE(SA4H, 0);
390
391 /* Allocate a page of memory for receive queue descriptors */
392 sc->rbqlen = (ETH_DSC_SIZE * (RX_QLEN + 1) * 2 + PAGE_SIZE - 1) / PAGE_SIZE;
393 sc->rbqlen *= PAGE_SIZE;
394 DPRINTFN(1,("%s: rbqlen=%i\n", __FUNCTION__, sc->rbqlen));
395
396 err = bus_dmamem_alloc(sc->sc_dmat, sc->rbqlen, 0,
397 MAX(16384, PAGE_SIZE), // see EMAC errata why forced to 16384 byte boundary
398 &segs, 1, &rsegs, BUS_DMA_WAITOK);
399 if (err == 0) {
400 DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__));
401 err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->rbqlen,
402 &sc->rbqpage, (BUS_DMA_WAITOK | BUS_DMA_COHERENT));
403 }
404 if (err == 0) {
405 DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__));
406 err = bus_dmamap_create(sc->sc_dmat, sc->rbqlen, 1,
407 sc->rbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK,
408 &sc->rbqpage_dmamap);
409 }
410 if (err == 0) {
411 DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__));
412 err = bus_dmamap_load(sc->sc_dmat, sc->rbqpage_dmamap,
413 sc->rbqpage, sc->rbqlen, NULL, BUS_DMA_WAITOK);
414 }
415 if (err != 0)
416 panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev));
417
418 sc->rbqpage_dsaddr = sc->rbqpage_dmamap->dm_segs[0].ds_addr;
419 memset(sc->rbqpage, 0, sc->rbqlen);
420
421 /* Allocate a page of memory for transmit queue descriptors */
422 sc->tbqlen = (ETH_DSC_SIZE * (TX_QLEN + 1) * 2 + PAGE_SIZE - 1) / PAGE_SIZE;
423 sc->tbqlen *= PAGE_SIZE;
424 DPRINTFN(1,("%s: tbqlen=%i\n", __FUNCTION__, sc->tbqlen));
425
426 err = bus_dmamem_alloc(sc->sc_dmat, sc->tbqlen, 0,
427 MAX(16384, PAGE_SIZE), // see EMAC errata why forced to 16384 byte boundary
428 &segs, 1, &rsegs, BUS_DMA_WAITOK);
429 if (err == 0) {
430 DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__));
431 err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->tbqlen,
432 &sc->tbqpage, (BUS_DMA_WAITOK | BUS_DMA_COHERENT));
433 }
434 if (err == 0) {
435 DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__));
436 err = bus_dmamap_create(sc->sc_dmat, sc->tbqlen, 1,
437 sc->tbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK,
438 &sc->tbqpage_dmamap);
439 }
440 if (err == 0) {
441 DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__));
442 err = bus_dmamap_load(sc->sc_dmat, sc->tbqpage_dmamap,
443 sc->tbqpage, sc->tbqlen, NULL, BUS_DMA_WAITOK);
444 }
445 if (err != 0)
446 panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev));
447
448 sc->tbqpage_dsaddr = sc->tbqpage_dmamap->dm_segs[0].ds_addr;
449 memset(sc->tbqpage, 0, sc->tbqlen);
450
451 /* Set up pointers to start of each queue in kernel addr space.
452 * Each descriptor queue or status queue entry uses 2 words
453 */
454 sc->RDSC = (void *)sc->rbqpage;
455 sc->TDSC = (void *)sc->tbqpage;
456
457 /* init TX queue */
458 for (i = 0; i < TX_QLEN; i++) {
459 sc->TDSC[i].Addr = 0;
460 sc->TDSC[i].Info = ETH_TDSC_I_USED |
461 (i == (TX_QLEN - 1) ? ETH_TDSC_I_WRAP : 0);
462 }
463
464 /* Populate the RXQ with mbufs */
465 sc->rxqi = 0;
466 for (i = 0; i < RX_QLEN; i++) {
467 struct mbuf *m;
468
469 err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, PAGE_SIZE,
470 BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap);
471 if (err) {
472 panic("%s: dmamap_create failed: %i\n", __FUNCTION__, err);
473 }
474 MGETHDR(m, M_WAIT, MT_DATA);
475 MCLGET(m, M_WAIT);
476 sc->rxq[i].m = m;
477 if (mtod(m, intptr_t) & 3) {
478 m_adj(m, mtod(m, intptr_t) & 3);
479 }
480 err = bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap,
481 m->m_ext.ext_buf, MCLBYTES, NULL,
482 BUS_DMA_WAITOK);
483 if (err) {
484 panic("%s: dmamap_load failed: %i\n", __FUNCTION__, err);
485 }
486 sc->RDSC[i].Addr = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr
487 | (i == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
488 sc->RDSC[i].Info = 0;
489 bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0,
490 MCLBYTES, BUS_DMASYNC_PREREAD);
491 }
492
493 /* prepare transmit queue */
494 for (i = 0; i < TX_QLEN; i++) {
495 err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
496 (BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW),
497 &sc->txq[i].m_dmamap);
498 if (err)
499 panic("ARGH #1");
500 sc->txq[i].m = NULL;
501 }
502
503 /* Program each queue's start addr, cur addr, and len registers
504 * with the physical addresses.
505 */
506 CEMAC_WRITE(ETH_RBQP, (uint32_t)sc->rbqpage_dsaddr);
507 CEMAC_WRITE(ETH_TBQP, (uint32_t)sc->tbqpage_dsaddr);
508
509 /* Divide HCLK by 32 for MDC clock */
510 sc->sc_ethercom.ec_mii = mii;
511 mii->mii_ifp = ifp;
512 mii->mii_readreg = cemac_mii_readreg;
513 mii->mii_writereg = cemac_mii_writereg;
514 mii->mii_statchg = cemac_statchg;
515 ifmedia_init(&mii->mii_media, IFM_IMASK, cemac_mediachange,
516 cemac_mediastatus);
517 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, 1, 0);
518 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
519
520 #if 0
521 // enable / disable interrupts
522 CEMAC_WRITE(ETH_IDR, -1);
523 CEMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
524 | ETH_ISR_RBNA | ETH_ISR_ROVR | ETH_ISR_TCOM);
525 // (void)CEMAC_READ(ETH_ISR); // why
526
527 // enable transmitter / receiver
528 CEMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
529 | ETH_CTL_CSR | ETH_CTL_MPE);
530 #endif
531 /*
532 * We can support hardware checksumming.
533 */
534 ifp->if_capabilities |=
535 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
536 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
537 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
538 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_TCPv6_Rx |
539 IFCAP_CSUM_UDPv6_Tx | IFCAP_CSUM_UDPv6_Rx;
540
541 /*
542 * We can support 802.1Q VLAN-sized frames.
543 */
544 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
545
546 strcpy(ifp->if_xname, device_xname(sc->sc_dev));
547 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
548 ifp->if_ioctl = cemac_ifioctl;
549 ifp->if_start = cemac_ifstart;
550 ifp->if_watchdog = cemac_ifwatchdog;
551 ifp->if_init = cemac_ifinit;
552 ifp->if_stop = cemac_ifstop;
553 ifp->if_timer = 0;
554 ifp->if_softc = sc;
555 IFQ_SET_READY(&ifp->if_snd);
556 if_attach(ifp);
557 if_deferred_start_init(ifp, NULL);
558 ether_ifattach(ifp, (sc)->sc_enaddr);
559 }
560
561 static int
562 cemac_mediachange(struct ifnet *ifp)
563 {
564 if (ifp->if_flags & IFF_UP)
565 cemac_ifinit(ifp);
566 return 0;
567 }
568
569 static void
570 cemac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
571 {
572 struct cemac_softc *sc = ifp->if_softc;
573
574 mii_pollstat(&sc->sc_mii);
575 ifmr->ifm_active = sc->sc_mii.mii_media_active;
576 ifmr->ifm_status = sc->sc_mii.mii_media_status;
577 }
578
579
580 static int
581 cemac_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
582 {
583 struct cemac_softc *sc;
584
585 sc = device_private(self);
586
587 CEMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_RD
588 | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
589 | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
590 | ETH_MAN_CODE_IEEE802_3));
591 while (!(CEMAC_READ(ETH_SR) & ETH_SR_IDLE))
592 ;
593
594 *val = CEMAC_READ(ETH_MAN) & ETH_MAN_DATA;
595 return 0;
596 }
597
598 static int
599 cemac_mii_writereg(device_t self, int phy, int reg, uint16_t val)
600 {
601 struct cemac_softc *sc;
602
603 sc = device_private(self);
604
605 CEMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_WR
606 | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
607 | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
608 | ETH_MAN_CODE_IEEE802_3
609 | (val & ETH_MAN_DATA)));
610 while (!(CEMAC_READ(ETH_SR) & ETH_SR_IDLE))
611 ;
612
613 return 0;
614 }
615
616
617 static void
618 cemac_statchg(struct ifnet *ifp)
619 {
620 struct cemac_softc *sc = ifp->if_softc;
621 struct mii_data *mii = &sc->sc_mii;
622 uint32_t reg;
623
624 /*
625 * We must keep the MAC and the PHY in sync as
626 * to the status of full-duplex!
627 */
628 reg = CEMAC_READ(ETH_CFG);
629 reg &= ~ETH_CFG_FD;
630 if (sc->sc_mii.mii_media_active & IFM_FDX)
631 reg |= ETH_CFG_FD;
632
633 reg &= ~ETH_CFG_SPD;
634 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
635 reg &= ~GEM_CFG_GEN;
636 switch (IFM_SUBTYPE(mii->mii_media_active)) {
637 case IFM_10_T:
638 break;
639 case IFM_100_TX:
640 reg |= ETH_CFG_SPD;
641 break;
642 case IFM_1000_T:
643 reg |= ETH_CFG_SPD | GEM_CFG_GEN;
644 break;
645 default:
646 break;
647 }
648 CEMAC_WRITE(ETH_CFG, reg);
649 }
650
651 static void
652 cemac_tick(void *arg)
653 {
654 struct cemac_softc *sc = (struct cemac_softc *)arg;
655 struct ifnet * ifp = &sc->sc_ethercom.ec_if;
656 int s;
657
658 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
659 if_statadd(ifp, if_collisions,
660 CEMAC_READ(GEM_SCOL) + CEMAC_READ(GEM_MCOL));
661 else
662 if_statadd(ifp, if_collisions,
663 CEMAC_READ(ETH_SCOL) + CEMAC_READ(ETH_MCOL));
664
665 /* These misses are ok, they will happen if the RAM/CPU can't keep up */
666 if (!ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
667 uint32_t misses = CEMAC_READ(ETH_DRFC);
668 if (misses > 0)
669 aprint_normal_ifnet(ifp, "%d rx misses\n", misses);
670 }
671
672 s = splnet();
673 if (cemac_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0)
674 cemac_ifstart(ifp);
675 splx(s);
676
677 mii_tick(&sc->sc_mii);
678 callout_reset(&sc->cemac_tick_ch, hz, cemac_tick, sc);
679 }
680
681
682 static int
683 cemac_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
684 {
685 int s, error;
686
687 s = splnet();
688 switch (cmd) {
689 default:
690 error = ether_ioctl(ifp, cmd, data);
691 if (error != ENETRESET)
692 break;
693 error = 0;
694
695 if (cmd == SIOCSIFCAP) {
696 error = if_init(ifp);
697 } else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
698 ;
699 else if (ifp->if_flags & IFF_RUNNING) {
700 cemac_setaddr(ifp);
701 }
702 }
703 splx(s);
704 return error;
705 }
706
707 static void
708 cemac_ifstart(struct ifnet *ifp)
709 {
710 struct cemac_softc *sc = (struct cemac_softc *)ifp->if_softc;
711 struct mbuf *m;
712 bus_dma_segment_t *segs;
713 int s, bi, err, nsegs;
714
715 s = splnet();
716 start:
717 if (cemac_gctx(sc) == 0) {
718 /* Enable transmit-buffer-free interrupt */
719 CEMAC_WRITE(ETH_IER, ETH_ISR_TBRE);
720 sc->tx_busy = true;
721 ifp->if_timer = 10;
722 splx(s);
723 return;
724 }
725
726 ifp->if_timer = 0;
727
728 IFQ_POLL(&ifp->if_snd, m);
729 if (m == NULL) {
730 splx(s);
731 return;
732 }
733
734 bi = (sc->txqi + sc->txqc) % TX_QLEN;
735 if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
736 BUS_DMA_NOWAIT)) ||
737 sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 ||
738 sc->txq[bi].m_dmamap->dm_nsegs > 1) {
739 /* Copy entire mbuf chain to new single */
740 struct mbuf *mn;
741
742 if (err == 0)
743 bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
744
745 MGETHDR(mn, M_DONTWAIT, MT_DATA);
746 if (mn == NULL) goto stop;
747 if (m->m_pkthdr.len > MHLEN) {
748 MCLGET(mn, M_DONTWAIT);
749 if ((mn->m_flags & M_EXT) == 0) {
750 m_freem(mn);
751 goto stop;
752 }
753 }
754 m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *));
755 mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len;
756 IFQ_DEQUEUE(&ifp->if_snd, m);
757 m_freem(m);
758 m = mn;
759 bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
760 BUS_DMA_NOWAIT);
761 } else {
762 IFQ_DEQUEUE(&ifp->if_snd, m);
763 }
764
765 bpf_mtap(ifp, m, BPF_D_OUT);
766
767 nsegs = sc->txq[bi].m_dmamap->dm_nsegs;
768 segs = sc->txq[bi].m_dmamap->dm_segs;
769 if (nsegs > 1)
770 panic("#### ARGH #2");
771
772 sc->txq[bi].m = m;
773 sc->txqc++;
774
775 DPRINTFN(2,("%s: start sending idx #%i mbuf %p (txqc=%i, phys %p), len=%u\n",
776 __FUNCTION__, bi, sc->txq[bi].m, sc->txqc, (void *)segs->ds_addr,
777 (unsigned)m->m_pkthdr.len));
778 #ifdef DIAGNOSTIC
779 if (sc->txqc > TX_QLEN)
780 panic("%s: txqc %i > %i", __FUNCTION__, sc->txqc, TX_QLEN);
781 #endif
782
783 bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
784 sc->txq[bi].m_dmamap->dm_mapsize,
785 BUS_DMASYNC_PREWRITE);
786
787 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
788 sc->TDSC[bi].Addr = segs->ds_addr;
789 sc->TDSC[bi].Info = __SHIFTIN(m->m_pkthdr.len, ETH_TDSC_I_LEN) |
790 ETH_TDSC_I_LAST_BUF | (bi == (TX_QLEN - 1) ? ETH_TDSC_I_WRAP : 0);
791
792 DPRINTFN(3,("%s: TDSC[%i].Addr 0x%08x\n",
793 __FUNCTION__, bi, sc->TDSC[bi].Addr));
794 DPRINTFN(3,("%s: TDSC[%i].Info 0x%08x\n",
795 __FUNCTION__, bi, sc->TDSC[bi].Info));
796
797 uint32_t ctl = CEMAC_READ(ETH_CTL) | GEM_CTL_STARTTX;
798 CEMAC_WRITE(ETH_CTL, ctl);
799 DPRINTFN(3,("%s: ETH_CTL 0x%08x\n", __FUNCTION__, CEMAC_READ(ETH_CTL)));
800 } else {
801 CEMAC_WRITE(ETH_TAR, segs->ds_addr);
802 CEMAC_WRITE(ETH_TCR, m->m_pkthdr.len);
803 }
804 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
805 goto start;
806 stop:
807
808 splx(s);
809 return;
810 }
811
812 static void
813 cemac_ifwatchdog(struct ifnet *ifp)
814 {
815 struct cemac_softc *sc = (struct cemac_softc *)ifp->if_softc;
816
817 if ((ifp->if_flags & IFF_RUNNING) == 0)
818 return;
819 aprint_error_ifnet(ifp, "device timeout, CTL = 0x%08x, CFG = 0x%08x\n",
820 CEMAC_READ(ETH_CTL), CEMAC_READ(ETH_CFG));
821 }
822
823 static int
824 cemac_ifinit(struct ifnet *ifp)
825 {
826 struct cemac_softc *sc = ifp->if_softc;
827 uint32_t dma, cfg;
828 int s = splnet();
829
830 callout_stop(&sc->cemac_tick_ch);
831
832 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
833
834 if (ifp->if_capenable &
835 (IFCAP_CSUM_IPv4_Tx |
836 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
837 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) {
838 dma = CEMAC_READ(GEM_DMA_CFG);
839 dma |= GEM_DMA_CFG_CHKSUM_GEN_OFFLOAD_EN;
840 CEMAC_WRITE(GEM_DMA_CFG, dma);
841 }
842 if (ifp->if_capenable &
843 (IFCAP_CSUM_IPv4_Rx |
844 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
845 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) {
846 cfg = CEMAC_READ(ETH_CFG);
847 cfg |= GEM_CFG_RX_CHKSUM_OFFLD_EN;
848 CEMAC_WRITE(ETH_CFG, cfg);
849 }
850 }
851
852 // enable interrupts
853 CEMAC_WRITE(ETH_IDR, -1);
854 CEMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
855 | ETH_ISR_RBNA | ETH_ISR_ROVR | ETH_ISR_TCOM);
856
857 // enable transmitter / receiver
858 CEMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
859 | ETH_CTL_CSR | ETH_CTL_MPE);
860
861 mii_mediachg(&sc->sc_mii);
862 callout_reset(&sc->cemac_tick_ch, hz, cemac_tick, sc);
863 ifp->if_flags |= IFF_RUNNING;
864 splx(s);
865 return 0;
866 }
867
868 static void
869 cemac_ifstop(struct ifnet *ifp, int disable)
870 {
871 // uint32_t u;
872 struct cemac_softc *sc = ifp->if_softc;
873
874 #if 0
875 CEMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything
876 CEMAC_WRITE(ETH_IDR, -1); // disable interrupts
877 // CEMAC_WRITE(ETH_RBQP, 0); // clear receive
878 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
879 CEMAC_WRITE(ETH_CFG,
880 GEM_CFG_CLK_64 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
881 else
882 CEMAC_WRITE(ETH_CFG,
883 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
884 // CEMAC_WRITE(ETH_TCR, 0); // send nothing
885 // (void)CEMAC_READ(ETH_ISR);
886 u = CEMAC_READ(ETH_TSR);
887 CEMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
888 | ETH_TSR_IDLE | ETH_TSR_RLE
889 | ETH_TSR_COL | ETH_TSR_OVR)));
890 u = CEMAC_READ(ETH_RSR);
891 CEMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
892 #endif
893 callout_stop(&sc->cemac_tick_ch);
894
895 /* Down the MII. */
896 mii_down(&sc->sc_mii);
897
898 ifp->if_flags &= ~IFF_RUNNING;
899 ifp->if_timer = 0;
900 sc->tx_busy = false;
901 sc->sc_mii.mii_media_status &= ~IFM_ACTIVE;
902 }
903
904 static void
905 cemac_setaddr(struct ifnet *ifp)
906 {
907 struct cemac_softc *sc = ifp->if_softc;
908 struct ethercom *ec = &sc->sc_ethercom;
909 struct ether_multi *enm;
910 struct ether_multistep step;
911 uint8_t ias[3][ETHER_ADDR_LEN];
912 uint32_t h, nma = 0, hashes[2] = { 0, 0 };
913 uint32_t ctl = CEMAC_READ(ETH_CTL);
914 uint32_t cfg = CEMAC_READ(ETH_CFG);
915
916 /* disable receiver temporarily */
917 CEMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE);
918
919 cfg &= ~(ETH_CFG_MTI | ETH_CFG_UNI | ETH_CFG_CAF | ETH_CFG_UNI);
920
921 if (ifp->if_flags & IFF_PROMISC) {
922 cfg |= ETH_CFG_CAF;
923 } else {
924 cfg &= ~ETH_CFG_CAF;
925 }
926
927 // ETH_CFG_BIG?
928
929 ifp->if_flags &= ~IFF_ALLMULTI;
930
931 ETHER_LOCK(ec);
932 ETHER_FIRST_MULTI(step, ec, enm);
933 while (enm != NULL) {
934 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
935 /*
936 * We must listen to a range of multicast addresses.
937 * For now, just accept all multicasts, rather than
938 * trying to set only those filter bits needed to match
939 * the range. (At this time, the only use of address
940 * ranges is for IP multicast routing, for which the
941 * range is big enough to require all bits set.)
942 */
943 cfg |= ETH_CFG_MTI;
944 hashes[0] = 0xffffffffUL;
945 hashes[1] = 0xffffffffUL;
946 ifp->if_flags |= IFF_ALLMULTI;
947 nma = 0;
948 break;
949 }
950
951 if (nma < 3) {
952 /* We can program 3 perfect address filters for mcast */
953 memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN);
954 } else {
955 /*
956 * XXX: Datasheet is not very clear here, I'm not sure
957 * if I'm doing this right. --joff
958 */
959 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
960
961 /* Just want the 6 most-significant bits. */
962 h = h >> 26;
963 #if 0
964 hashes[h / 32] |= (1 << (h % 32));
965 #else
966 hashes[0] = 0xffffffffUL;
967 hashes[1] = 0xffffffffUL;
968 #endif
969 cfg |= ETH_CFG_MTI;
970 }
971 ETHER_NEXT_MULTI(step, enm);
972 nma++;
973 }
974 ETHER_UNLOCK(ec);
975
976 // program...
977 DPRINTFN(1,("%s: en0 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
978 sc->sc_enaddr[0], sc->sc_enaddr[1], sc->sc_enaddr[2],
979 sc->sc_enaddr[3], sc->sc_enaddr[4], sc->sc_enaddr[5]));
980 CEMAC_GEM_WRITE(SA1L, (sc->sc_enaddr[3] << 24)
981 | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
982 | (sc->sc_enaddr[0]));
983 CEMAC_GEM_WRITE(SA1H, (sc->sc_enaddr[5] << 8)
984 | (sc->sc_enaddr[4]));
985 if (nma > 0) {
986 DPRINTFN(1,("%s: en1 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
987 ias[0][0], ias[0][1], ias[0][2],
988 ias[0][3], ias[0][4], ias[0][5]));
989 CEMAC_WRITE(ETH_SA2L, (ias[0][3] << 24)
990 | (ias[0][2] << 16) | (ias[0][1] << 8)
991 | (ias[0][0]));
992 CEMAC_WRITE(ETH_SA2H, (ias[0][4] << 8)
993 | (ias[0][5]));
994 }
995 if (nma > 1) {
996 DPRINTFN(1,("%s: en2 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
997 ias[1][0], ias[1][1], ias[1][2],
998 ias[1][3], ias[1][4], ias[1][5]));
999 CEMAC_WRITE(ETH_SA3L, (ias[1][3] << 24)
1000 | (ias[1][2] << 16) | (ias[1][1] << 8)
1001 | (ias[1][0]));
1002 CEMAC_WRITE(ETH_SA3H, (ias[1][4] << 8)
1003 | (ias[1][5]));
1004 }
1005 if (nma > 2) {
1006 DPRINTFN(1,("%s: en3 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
1007 ias[2][0], ias[2][1], ias[2][2],
1008 ias[2][3], ias[2][4], ias[2][5]));
1009 CEMAC_WRITE(ETH_SA4L, (ias[2][3] << 24)
1010 | (ias[2][2] << 16) | (ias[2][1] << 8)
1011 | (ias[2][0]));
1012 CEMAC_WRITE(ETH_SA4H, (ias[2][4] << 8)
1013 | (ias[2][5]));
1014 }
1015 CEMAC_GEM_WRITE(HSH, hashes[0]);
1016 CEMAC_GEM_WRITE(HSL, hashes[1]);
1017 CEMAC_WRITE(ETH_CFG, cfg);
1018 CEMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE);
1019 }
1020