if_cemac.c revision 1.36 1 /* $NetBSD: if_cemac.c,v 1.36 2024/08/25 16:25:29 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2015 Genetec Corporation. All rights reserved.
5 * Written by Hashimoto Kenichi for Genetec Corporation.
6 *
7 * Based on arch/arm/at91/at91emac.c
8 *
9 * Copyright (c) 2007 Embedtronics Oy
10 * All rights reserved.
11 *
12 * Copyright (c) 2004 Jesse Off
13 * All rights reserved.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 /*
38 * Cadence EMAC/GEM ethernet controller IP driver
39 * used by arm/at91, arm/zynq SoC
40 */
41
42 #include <sys/cdefs.h>
43 __KERNEL_RCSID(0, "$NetBSD: if_cemac.c,v 1.36 2024/08/25 16:25:29 skrll Exp $");
44
45 #include <sys/param.h>
46 #include <sys/types.h>
47
48 #include <sys/bus.h>
49 #include <sys/device.h>
50 #include <sys/kernel.h>
51 #include <sys/proc.h>
52 #include <sys/systm.h>
53 #include <sys/time.h>
54
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_types.h>
58 #include <net/if_media.h>
59 #include <net/if_ether.h>
60 #include <net/bpf.h>
61
62 #include <dev/mii/mii.h>
63 #include <dev/mii/miivar.h>
64
65 #ifdef INET
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/in_var.h>
69 #include <netinet/ip.h>
70 #include <netinet/if_inarp.h>
71 #endif
72
73 #include <dev/cadence/cemacreg.h>
74 #include <dev/cadence/if_cemacvar.h>
75
76 #define DEFAULT_MDCDIV 32
77
78 #define CEMAC_READ(x) \
79 bus_space_read_4(sc->sc_iot, sc->sc_ioh, (x))
80 #define CEMAC_WRITE(x, y) \
81 bus_space_write_4(sc->sc_iot, sc->sc_ioh, (x), (y))
82 #define CEMAC_GEM_WRITE(x, y) \
83 do { \
84 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) \
85 bus_space_write_4(sc->sc_iot, sc->sc_ioh, (GEM_##x), (y)); \
86 else \
87 bus_space_write_4(sc->sc_iot, sc->sc_ioh, (ETH_##x), (y)); \
88 } while(0)
89
90 static void cemac_init(struct cemac_softc *);
91 static int cemac_gctx(struct cemac_softc *);
92 static int cemac_mediachange(struct ifnet *);
93 static void cemac_mediastatus(struct ifnet *, struct ifmediareq *);
94 static int cemac_mii_readreg(device_t, int, int, uint16_t *);
95 static int cemac_mii_writereg(device_t, int, int, uint16_t);
96 static void cemac_statchg(struct ifnet *);
97 static void cemac_tick(void *);
98 static int cemac_ifioctl(struct ifnet *, u_long, void *);
99 static void cemac_ifstart(struct ifnet *);
100 static void cemac_ifwatchdog(struct ifnet *);
101 static int cemac_ifinit(struct ifnet *);
102 static void cemac_ifstop(struct ifnet *, int);
103 static void cemac_setaddr(struct ifnet *);
104
105 #ifdef CEMAC_DEBUG
106 int cemac_debug = CEMAC_DEBUG;
107 #define DPRINTFN(n, fmt) if (cemac_debug >= (n)) printf fmt
108 #else
109 #define DPRINTFN(n, fmt)
110 #endif
111
112 void
113 cemac_attach_common(struct cemac_softc *sc)
114 {
115 uint32_t u;
116
117 aprint_naive("\n");
118 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
119 aprint_normal(": Cadence Gigabit Ethernet Controller\n");
120 else
121 aprint_normal(": Cadence Ethernet Controller\n");
122
123 /* configure emac: */
124 CEMAC_WRITE(ETH_CTL, 0); // disable everything
125 CEMAC_WRITE(ETH_IDR, -1); // disable interrupts
126 CEMAC_WRITE(ETH_RBQP, 0); // clear receive
127 CEMAC_WRITE(ETH_TBQP, 0); // clear transmit
128 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
129 CEMAC_WRITE(ETH_CFG,
130 GEM_CFG_CLK_64 | GEM_CFG_GEN | ETH_CFG_SPD | ETH_CFG_FD);
131 else
132 CEMAC_WRITE(ETH_CFG,
133 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
134 //CEMAC_WRITE(ETH_TCR, 0); // send nothing
135 //(void)CEMAC_READ(ETH_ISR);
136 u = CEMAC_READ(ETH_TSR);
137 CEMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
138 | ETH_TSR_IDLE | ETH_TSR_RLE
139 | ETH_TSR_COL | ETH_TSR_OVR)));
140 u = CEMAC_READ(ETH_RSR);
141 CEMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
142
143 /* Fetch the Ethernet address from property if set. */
144 prop_dictionary_t prop = device_properties(sc->sc_dev);
145 prop_data_t enaddr = prop_dictionary_get(prop, "mac-address");
146
147 if (enaddr != NULL) {
148 KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA);
149 KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN);
150 memcpy(sc->sc_enaddr, prop_data_value(enaddr),
151 ETHER_ADDR_LEN);
152 } else {
153 static const uint8_t hardcoded[ETHER_ADDR_LEN] = {
154 0x00, 0x0d, 0x10, 0x81, 0x0c, 0x94
155 };
156 memcpy(sc->sc_enaddr, hardcoded, ETHER_ADDR_LEN);
157 }
158
159 cemac_init(sc);
160 }
161
162 static int
163 cemac_gctx(struct cemac_softc *sc)
164 {
165 uint32_t tsr;
166
167 tsr = CEMAC_READ(ETH_TSR);
168 if (!ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
169 // no space left
170 if (!(tsr & ETH_TSR_BNQ))
171 return 0;
172 } else {
173 if (tsr & GEM_TSR_TXGO)
174 return 0;
175 }
176 CEMAC_WRITE(ETH_TSR, tsr);
177
178 // free sent frames
179 while (sc->txqc > (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM) ? 0 :
180 (tsr & ETH_TSR_IDLE ? 0 : 1))) {
181 int bi = sc->txqi % TX_QLEN;
182
183 DPRINTFN(3,("%s: TDSC[%i].Addr 0x%08x\n",
184 __FUNCTION__, bi, sc->TDSC[bi].Addr));
185 DPRINTFN(3,("%s: TDSC[%i].Info 0x%08x\n",
186 __FUNCTION__, bi, sc->TDSC[bi].Info));
187
188 bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
189 sc->txq[bi].m->m_pkthdr.len, BUS_DMASYNC_POSTWRITE);
190 bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
191 m_freem(sc->txq[bi].m);
192 DPRINTFN(2,("%s: freed idx #%i mbuf %p (txqc=%i)\n",
193 __FUNCTION__, bi, sc->txq[bi].m, sc->txqc));
194 sc->txq[bi].m = NULL;
195 sc->txqi = (bi + 1) % TX_QLEN;
196 sc->txqc--;
197 }
198
199 // mark we're free
200 if (sc->tx_busy) {
201 sc->tx_busy = false;
202 /* Disable transmit-buffer-free interrupt */
203 /*CEMAC_WRITE(ETH_IDR, ETH_ISR_TBRE);*/
204 }
205
206 return 1;
207 }
208
209 int
210 cemac_intr(void *arg)
211 {
212 struct cemac_softc * const sc = arg;
213 struct ifnet * ifp = &sc->sc_ethercom.ec_if;
214 uint32_t imr, isr, ctl;
215 #ifdef CEMAC_DEBUG
216 uint32_t rsr;
217 #endif
218 int bi;
219
220 imr = ~CEMAC_READ(ETH_IMR);
221 if (!(imr & (ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE |
222 ETH_ISR_RBNA | ETH_ISR_ROVR | ETH_ISR_TCOM))) {
223 // interrupt not enabled, can't be us
224 return 0;
225 }
226
227 isr = CEMAC_READ(ETH_ISR);
228 CEMAC_WRITE(ETH_ISR, isr);
229 isr &= imr;
230 #ifdef CEMAC_DEBUG
231 rsr = CEMAC_READ(ETH_RSR); // get receive status register
232 #endif
233 DPRINTFN(2, ("%s: isr=0x%08X rsr=0x%08X imr=0x%08X\n", __FUNCTION__, isr, rsr, imr));
234
235 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
236 if (isr & ETH_ISR_RBNA) { // out of receive buffers
237 CEMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear interrupt
238 ctl = CEMAC_READ(ETH_CTL); // get current control register value
239 CEMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE); // disable receiver
240 CEMAC_WRITE(ETH_RSR, ETH_RSR_BNA); // clear BNA bit
241 CEMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE); // re-enable receiver
242 if_statinc_ref(ifp, nsr, if_ierrors);
243 if_statinc_ref(ifp, nsr, if_ipackets);
244 DPRINTFN(1,("%s: out of receive buffers\n", __FUNCTION__));
245 }
246 if (isr & ETH_ISR_ROVR) {
247 CEMAC_WRITE(ETH_RSR, ETH_RSR_OVR); // clear interrupt
248 if_statinc_ref(ifp, nsr, if_ierrors);
249 if_statinc_ref(ifp, nsr, if_ipackets);
250 DPRINTFN(1,("%s: receive overrun\n", __FUNCTION__));
251 }
252
253 if (isr & ETH_ISR_RCOM) { // packet has been received!
254 uint32_t nfo;
255 DPRINTFN(2,("#2 RDSC[%i].INFO=0x%08X\n", sc->rxqi % RX_QLEN, sc->RDSC[sc->rxqi % RX_QLEN].Info));
256 while (sc->RDSC[(bi = sc->rxqi % RX_QLEN)].Addr & ETH_RDSC_F_USED) {
257 int fl, csum;
258 struct mbuf *m;
259
260 nfo = sc->RDSC[bi].Info;
261 fl = (nfo & ETH_RDSC_I_LEN) - 4;
262 DPRINTFN(2,("## nfo=0x%08X\n", nfo));
263
264 MGETHDR(m, M_DONTWAIT, MT_DATA);
265 if (m != NULL)
266 MCLGET(m, M_DONTWAIT);
267 if (m != NULL && (m->m_flags & M_EXT)) {
268 bus_dmamap_sync(sc->sc_dmat, sc->rxq[bi].m_dmamap, 0,
269 MCLBYTES, BUS_DMASYNC_POSTREAD);
270 bus_dmamap_unload(sc->sc_dmat,
271 sc->rxq[bi].m_dmamap);
272 m_set_rcvif(sc->rxq[bi].m, ifp);
273 sc->rxq[bi].m->m_pkthdr.len =
274 sc->rxq[bi].m->m_len = fl;
275 switch (nfo & ETH_RDSC_I_CHKSUM) {
276 case ETH_RDSC_I_CHKSUM_IP:
277 csum = M_CSUM_IPv4;
278 break;
279 case ETH_RDSC_I_CHKSUM_UDP:
280 csum = M_CSUM_IPv4 | M_CSUM_UDPv4 |
281 M_CSUM_UDPv6;
282 break;
283 case ETH_RDSC_I_CHKSUM_TCP:
284 csum = M_CSUM_IPv4 | M_CSUM_TCPv4 |
285 M_CSUM_TCPv6;
286 break;
287 default:
288 csum = 0;
289 break;
290 }
291 sc->rxq[bi].m->m_pkthdr.csum_flags = csum;
292 DPRINTFN(2,("received %u bytes packet\n", fl));
293 if_percpuq_enqueue(ifp->if_percpuq,
294 sc->rxq[bi].m);
295 if (mtod(m, intptr_t) & 3)
296 m_adj(m, mtod(m, intptr_t) & 3);
297 sc->rxq[bi].m = m;
298 bus_dmamap_load(sc->sc_dmat,
299 sc->rxq[bi].m_dmamap,
300 m->m_ext.ext_buf, MCLBYTES,
301 NULL, BUS_DMA_NOWAIT);
302 bus_dmamap_sync(sc->sc_dmat, sc->rxq[bi].m_dmamap, 0,
303 MCLBYTES, BUS_DMASYNC_PREREAD);
304 sc->RDSC[bi].Info = 0;
305 sc->RDSC[bi].Addr =
306 sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr
307 | (bi == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
308 } else {
309 /* Drop packets until we can get replacement
310 * empty mbufs for the RXDQ.
311 */
312 m_freem(m);
313 if_statinc_ref(ifp, nsr, if_ierrors);
314 }
315 sc->rxqi++;
316 }
317 }
318
319 IF_STAT_PUTREF(ifp);
320
321 if (cemac_gctx(sc) > 0)
322 if_schedule_deferred_start(ifp);
323 #if 0 // reloop
324 irq = CEMAC_READ(IntStsC);
325 if ((irq & (IntSts_RxSQ | IntSts_ECI)) != 0)
326 goto begin;
327 #endif
328
329 return 1;
330 }
331
332
333 static void
334 cemac_init(struct cemac_softc *sc)
335 {
336 bus_dma_segment_t segs;
337 int rsegs, err, i;
338 struct ifnet * ifp = &sc->sc_ethercom.ec_if;
339 struct mii_data * const mii = &sc->sc_mii;
340 uint32_t u;
341 #if 0
342 int mdcdiv = DEFAULT_MDCDIV;
343 #endif
344
345 callout_init(&sc->cemac_tick_ch, 0);
346
347 // ok...
348 CEMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything
349 CEMAC_WRITE(ETH_IDR, -1); // disable interrupts
350 CEMAC_WRITE(ETH_RBQP, 0); // clear receive
351 CEMAC_WRITE(ETH_TBQP, 0); // clear transmit
352 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
353 CEMAC_WRITE(ETH_CFG,
354 GEM_CFG_CLK_64 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
355 else
356 CEMAC_WRITE(ETH_CFG,
357 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
358 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
359 CEMAC_WRITE(GEM_DMA_CFG,
360 __SHIFTIN((MCLBYTES + 63) / 64, GEM_DMA_CFG_RX_BUF_SIZE) |
361 __SHIFTIN(3, GEM_DMA_CFG_RX_PKTBUF_MEMSZ_SEL) |
362 GEM_DMA_CFG_TX_PKTBUF_MEMSZ_SEL |
363 __SHIFTIN(16, GEM_DMA_CFG_AHB_FIXED_BURST_LEN) |
364 GEM_DMA_CFG_DISC_WHEN_NO_AHB);
365 }
366 // CEMAC_WRITE(ETH_TCR, 0); // send nothing
367 // (void)CEMAC_READ(ETH_ISR);
368 u = CEMAC_READ(ETH_TSR);
369 CEMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
370 | ETH_TSR_IDLE | ETH_TSR_RLE
371 | ETH_TSR_COL | ETH_TSR_OVR)));
372 u = CEMAC_READ(ETH_RSR);
373 CEMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
374
375 #if 0
376 if (device_cfdata(sc->sc_dev)->cf_flags)
377 mdcdiv = device_cfdata(sc->sc_dev)->cf_flags;
378 #endif
379 /* set ethernet address */
380 CEMAC_GEM_WRITE(SA1L, (sc->sc_enaddr[3] << 24)
381 | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
382 | (sc->sc_enaddr[0]));
383 CEMAC_GEM_WRITE(SA1H, (sc->sc_enaddr[5] << 8)
384 | (sc->sc_enaddr[4]));
385 CEMAC_GEM_WRITE(SA2L, 0);
386 CEMAC_GEM_WRITE(SA2H, 0);
387 CEMAC_GEM_WRITE(SA3L, 0);
388 CEMAC_GEM_WRITE(SA3H, 0);
389 CEMAC_GEM_WRITE(SA4L, 0);
390 CEMAC_GEM_WRITE(SA4H, 0);
391
392 /* Allocate a page of memory for receive queue descriptors */
393 sc->rbqlen = roundup(ETH_DSC_SIZE * (RX_QLEN + 1) * 2, PAGE_SIZE);
394 DPRINTFN(1,("%s: rbqlen=%i\n", __FUNCTION__, sc->rbqlen));
395
396 err = bus_dmamem_alloc(sc->sc_dmat, sc->rbqlen, 0,
397 MAX(16384, PAGE_SIZE), // see EMAC errata why forced to 16384 byte boundary
398 &segs, 1, &rsegs, BUS_DMA_WAITOK);
399 if (err == 0) {
400 DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__));
401 err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->rbqlen,
402 &sc->rbqpage, (BUS_DMA_WAITOK | BUS_DMA_COHERENT));
403 }
404 if (err == 0) {
405 DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__));
406 err = bus_dmamap_create(sc->sc_dmat, sc->rbqlen, 1,
407 sc->rbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK,
408 &sc->rbqpage_dmamap);
409 }
410 if (err == 0) {
411 DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__));
412 err = bus_dmamap_load(sc->sc_dmat, sc->rbqpage_dmamap,
413 sc->rbqpage, sc->rbqlen, NULL, BUS_DMA_WAITOK);
414 }
415 if (err != 0)
416 panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev));
417
418 sc->rbqpage_dsaddr = sc->rbqpage_dmamap->dm_segs[0].ds_addr;
419 memset(sc->rbqpage, 0, sc->rbqlen);
420
421 /* Allocate a page of memory for transmit queue descriptors */
422 sc->tbqlen = roundup(ETH_DSC_SIZE * (TX_QLEN + 1) * 2, PAGE_SIZE);
423 DPRINTFN(1,("%s: tbqlen=%i\n", __FUNCTION__, sc->tbqlen));
424
425 err = bus_dmamem_alloc(sc->sc_dmat, sc->tbqlen, 0,
426 MAX(16384, PAGE_SIZE), // see EMAC errata why forced to 16384 byte boundary
427 &segs, 1, &rsegs, BUS_DMA_WAITOK);
428 if (err == 0) {
429 DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__));
430 err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->tbqlen,
431 &sc->tbqpage, (BUS_DMA_WAITOK | BUS_DMA_COHERENT));
432 }
433 if (err == 0) {
434 DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__));
435 err = bus_dmamap_create(sc->sc_dmat, sc->tbqlen, 1,
436 sc->tbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK,
437 &sc->tbqpage_dmamap);
438 }
439 if (err == 0) {
440 DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__));
441 err = bus_dmamap_load(sc->sc_dmat, sc->tbqpage_dmamap,
442 sc->tbqpage, sc->tbqlen, NULL, BUS_DMA_WAITOK);
443 }
444 if (err != 0)
445 panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev));
446
447 sc->tbqpage_dsaddr = sc->tbqpage_dmamap->dm_segs[0].ds_addr;
448 memset(sc->tbqpage, 0, sc->tbqlen);
449
450 /* Set up pointers to start of each queue in kernel addr space.
451 * Each descriptor queue or status queue entry uses 2 words
452 */
453 sc->RDSC = (void *)sc->rbqpage;
454 sc->TDSC = (void *)sc->tbqpage;
455
456 /* init TX queue */
457 for (i = 0; i < TX_QLEN; i++) {
458 sc->TDSC[i].Addr = 0;
459 sc->TDSC[i].Info = ETH_TDSC_I_USED |
460 (i == (TX_QLEN - 1) ? ETH_TDSC_I_WRAP : 0);
461 }
462
463 /* Populate the RXQ with mbufs */
464 sc->rxqi = 0;
465 for (i = 0; i < RX_QLEN; i++) {
466 struct mbuf *m;
467
468 err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, PAGE_SIZE,
469 BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap);
470 if (err) {
471 panic("%s: dmamap_create failed: %i\n", __FUNCTION__, err);
472 }
473 MGETHDR(m, M_WAIT, MT_DATA);
474 MCLGET(m, M_WAIT);
475 sc->rxq[i].m = m;
476 if (mtod(m, intptr_t) & 3) {
477 m_adj(m, mtod(m, intptr_t) & 3);
478 }
479 err = bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap,
480 m->m_ext.ext_buf, MCLBYTES, NULL,
481 BUS_DMA_WAITOK);
482 if (err) {
483 panic("%s: dmamap_load failed: %i\n", __FUNCTION__, err);
484 }
485 sc->RDSC[i].Addr = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr
486 | (i == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
487 sc->RDSC[i].Info = 0;
488 bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0,
489 MCLBYTES, BUS_DMASYNC_PREREAD);
490 }
491
492 /* prepare transmit queue */
493 for (i = 0; i < TX_QLEN; i++) {
494 err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
495 (BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW),
496 &sc->txq[i].m_dmamap);
497 if (err)
498 panic("ARGH #1");
499 sc->txq[i].m = NULL;
500 }
501
502 /* Program each queue's start addr, cur addr, and len registers
503 * with the physical addresses.
504 */
505 CEMAC_WRITE(ETH_RBQP, (uint32_t)sc->rbqpage_dsaddr);
506 CEMAC_WRITE(ETH_TBQP, (uint32_t)sc->tbqpage_dsaddr);
507
508 /* Divide HCLK by 32 for MDC clock */
509 sc->sc_ethercom.ec_mii = mii;
510 mii->mii_ifp = ifp;
511 mii->mii_readreg = cemac_mii_readreg;
512 mii->mii_writereg = cemac_mii_writereg;
513 mii->mii_statchg = cemac_statchg;
514 ifmedia_init(&mii->mii_media, IFM_IMASK, cemac_mediachange,
515 cemac_mediastatus);
516 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, 1, 0);
517 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
518
519 #if 0
520 // enable / disable interrupts
521 CEMAC_WRITE(ETH_IDR, -1);
522 CEMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
523 | ETH_ISR_RBNA | ETH_ISR_ROVR | ETH_ISR_TCOM);
524 // (void)CEMAC_READ(ETH_ISR); // why
525
526 // enable transmitter / receiver
527 CEMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
528 | ETH_CTL_CSR | ETH_CTL_MPE);
529 #endif
530 /*
531 * We can support hardware checksumming.
532 */
533 ifp->if_capabilities |=
534 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
535 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
536 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
537 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_TCPv6_Rx |
538 IFCAP_CSUM_UDPv6_Tx | IFCAP_CSUM_UDPv6_Rx;
539
540 /*
541 * We can support 802.1Q VLAN-sized frames.
542 */
543 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
544
545 strcpy(ifp->if_xname, device_xname(sc->sc_dev));
546 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
547 ifp->if_ioctl = cemac_ifioctl;
548 ifp->if_start = cemac_ifstart;
549 ifp->if_watchdog = cemac_ifwatchdog;
550 ifp->if_init = cemac_ifinit;
551 ifp->if_stop = cemac_ifstop;
552 ifp->if_timer = 0;
553 ifp->if_softc = sc;
554 IFQ_SET_READY(&ifp->if_snd);
555 if_attach(ifp);
556 if_deferred_start_init(ifp, NULL);
557 ether_ifattach(ifp, (sc)->sc_enaddr);
558 }
559
560 static int
561 cemac_mediachange(struct ifnet *ifp)
562 {
563 if (ifp->if_flags & IFF_UP)
564 cemac_ifinit(ifp);
565 return 0;
566 }
567
568 static void
569 cemac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
570 {
571 struct cemac_softc * const sc = ifp->if_softc;
572
573 mii_pollstat(&sc->sc_mii);
574 ifmr->ifm_active = sc->sc_mii.mii_media_active;
575 ifmr->ifm_status = sc->sc_mii.mii_media_status;
576 }
577
578
579 static int
580 cemac_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
581 {
582 struct cemac_softc * const sc = device_private(self);
583
584 CEMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_RD
585 | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
586 | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
587 | ETH_MAN_CODE_IEEE802_3));
588 while (!(CEMAC_READ(ETH_SR) & ETH_SR_IDLE))
589 ;
590
591 *val = CEMAC_READ(ETH_MAN) & ETH_MAN_DATA;
592 return 0;
593 }
594
595 static int
596 cemac_mii_writereg(device_t self, int phy, int reg, uint16_t val)
597 {
598 struct cemac_softc * const sc = device_private(self);
599
600 CEMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_WR
601 | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
602 | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
603 | ETH_MAN_CODE_IEEE802_3
604 | (val & ETH_MAN_DATA)));
605 while (!(CEMAC_READ(ETH_SR) & ETH_SR_IDLE))
606 ;
607
608 return 0;
609 }
610
611
612 static void
613 cemac_statchg(struct ifnet *ifp)
614 {
615 struct cemac_softc * const sc = ifp->if_softc;
616 struct mii_data *mii = &sc->sc_mii;
617 uint32_t reg;
618
619 /*
620 * We must keep the MAC and the PHY in sync as
621 * to the status of full-duplex!
622 */
623 reg = CEMAC_READ(ETH_CFG);
624 reg &= ~ETH_CFG_FD;
625 if (sc->sc_mii.mii_media_active & IFM_FDX)
626 reg |= ETH_CFG_FD;
627
628 reg &= ~ETH_CFG_SPD;
629 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
630 reg &= ~GEM_CFG_GEN;
631 switch (IFM_SUBTYPE(mii->mii_media_active)) {
632 case IFM_10_T:
633 break;
634 case IFM_100_TX:
635 reg |= ETH_CFG_SPD;
636 break;
637 case IFM_1000_T:
638 reg |= ETH_CFG_SPD | GEM_CFG_GEN;
639 break;
640 default:
641 break;
642 }
643 CEMAC_WRITE(ETH_CFG, reg);
644 }
645
646 static void
647 cemac_tick(void *arg)
648 {
649 struct cemac_softc * const sc = arg;
650 struct ifnet * ifp = &sc->sc_ethercom.ec_if;
651 int s;
652
653 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
654 if_statadd(ifp, if_collisions,
655 CEMAC_READ(GEM_SCOL) + CEMAC_READ(GEM_MCOL));
656 else
657 if_statadd(ifp, if_collisions,
658 CEMAC_READ(ETH_SCOL) + CEMAC_READ(ETH_MCOL));
659
660 /* These misses are ok, they will happen if the RAM/CPU can't keep up */
661 if (!ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
662 uint32_t misses = CEMAC_READ(ETH_DRFC);
663 if (misses > 0)
664 aprint_normal_ifnet(ifp, "%d rx misses\n", misses);
665 }
666
667 s = splnet();
668 if (cemac_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0)
669 cemac_ifstart(ifp);
670 splx(s);
671
672 mii_tick(&sc->sc_mii);
673 callout_reset(&sc->cemac_tick_ch, hz, cemac_tick, sc);
674 }
675
676
677 static int
678 cemac_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
679 {
680 int s, error;
681
682 s = splnet();
683 switch (cmd) {
684 default:
685 error = ether_ioctl(ifp, cmd, data);
686 if (error != ENETRESET)
687 break;
688 error = 0;
689
690 if (cmd == SIOCSIFCAP) {
691 error = if_init(ifp);
692 } else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
693 ;
694 else if (ifp->if_flags & IFF_RUNNING) {
695 cemac_setaddr(ifp);
696 }
697 }
698 splx(s);
699 return error;
700 }
701
702 static void
703 cemac_ifstart(struct ifnet *ifp)
704 {
705 struct cemac_softc * const sc = ifp->if_softc;
706 struct mbuf *m;
707 bus_dma_segment_t *segs;
708 int s, bi, err, nsegs;
709
710 s = splnet();
711 start:
712 if (cemac_gctx(sc) == 0) {
713 /* Enable transmit-buffer-free interrupt */
714 CEMAC_WRITE(ETH_IER, ETH_ISR_TBRE);
715 sc->tx_busy = true;
716 ifp->if_timer = 10;
717 splx(s);
718 return;
719 }
720
721 ifp->if_timer = 0;
722
723 IFQ_POLL(&ifp->if_snd, m);
724 if (m == NULL) {
725 splx(s);
726 return;
727 }
728
729 bi = (sc->txqi + sc->txqc) % TX_QLEN;
730 if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
731 BUS_DMA_NOWAIT)) ||
732 sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 ||
733 sc->txq[bi].m_dmamap->dm_nsegs > 1) {
734 /* Copy entire mbuf chain to new single */
735 struct mbuf *mn;
736
737 if (err == 0)
738 bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
739
740 MGETHDR(mn, M_DONTWAIT, MT_DATA);
741 if (mn == NULL)
742 goto stop;
743 if (m->m_pkthdr.len > MHLEN) {
744 MCLGET(mn, M_DONTWAIT);
745 if ((mn->m_flags & M_EXT) == 0) {
746 m_freem(mn);
747 goto stop;
748 }
749 }
750 m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *));
751 mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len;
752 IFQ_DEQUEUE(&ifp->if_snd, m);
753 m_freem(m);
754 m = mn;
755 bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
756 BUS_DMA_NOWAIT);
757 } else {
758 IFQ_DEQUEUE(&ifp->if_snd, m);
759 }
760
761 bpf_mtap(ifp, m, BPF_D_OUT);
762
763 nsegs = sc->txq[bi].m_dmamap->dm_nsegs;
764 segs = sc->txq[bi].m_dmamap->dm_segs;
765 if (nsegs > 1)
766 panic("#### ARGH #2");
767
768 sc->txq[bi].m = m;
769 sc->txqc++;
770
771 DPRINTFN(2,("%s: start sending idx #%i mbuf %p (txqc=%i, phys %p), len=%u\n",
772 __FUNCTION__, bi, sc->txq[bi].m, sc->txqc, (void *)segs->ds_addr,
773 (unsigned)m->m_pkthdr.len));
774 #ifdef DIAGNOSTIC
775 if (sc->txqc > TX_QLEN)
776 panic("%s: txqc %i > %i", __FUNCTION__, sc->txqc, TX_QLEN);
777 #endif
778
779 bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
780 sc->txq[bi].m_dmamap->dm_mapsize,
781 BUS_DMASYNC_PREWRITE);
782
783 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
784 sc->TDSC[bi].Addr = segs->ds_addr;
785 sc->TDSC[bi].Info = __SHIFTIN(m->m_pkthdr.len, ETH_TDSC_I_LEN) |
786 ETH_TDSC_I_LAST_BUF | (bi == (TX_QLEN - 1) ? ETH_TDSC_I_WRAP : 0);
787
788 DPRINTFN(3,("%s: TDSC[%i].Addr 0x%08x\n",
789 __FUNCTION__, bi, sc->TDSC[bi].Addr));
790 DPRINTFN(3,("%s: TDSC[%i].Info 0x%08x\n",
791 __FUNCTION__, bi, sc->TDSC[bi].Info));
792
793 uint32_t ctl = CEMAC_READ(ETH_CTL) | GEM_CTL_STARTTX;
794 CEMAC_WRITE(ETH_CTL, ctl);
795 DPRINTFN(3,("%s: ETH_CTL 0x%08x\n", __FUNCTION__, CEMAC_READ(ETH_CTL)));
796 } else {
797 CEMAC_WRITE(ETH_TAR, segs->ds_addr);
798 CEMAC_WRITE(ETH_TCR, m->m_pkthdr.len);
799 }
800 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
801 goto start;
802 stop:
803
804 splx(s);
805 return;
806 }
807
808 static void
809 cemac_ifwatchdog(struct ifnet *ifp)
810 {
811 struct cemac_softc * const sc = ifp->if_softc;
812
813 if ((ifp->if_flags & IFF_RUNNING) == 0)
814 return;
815 aprint_error_ifnet(ifp, "device timeout, CTL = 0x%08x, CFG = 0x%08x\n",
816 CEMAC_READ(ETH_CTL), CEMAC_READ(ETH_CFG));
817 }
818
819 static int
820 cemac_ifinit(struct ifnet *ifp)
821 {
822 struct cemac_softc * const sc = ifp->if_softc;
823 uint32_t dma, cfg;
824 int s = splnet();
825
826 callout_stop(&sc->cemac_tick_ch);
827
828 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
829
830 if (ifp->if_capenable &
831 (IFCAP_CSUM_IPv4_Tx |
832 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
833 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) {
834 dma = CEMAC_READ(GEM_DMA_CFG);
835 dma |= GEM_DMA_CFG_CHKSUM_GEN_OFFLOAD_EN;
836 CEMAC_WRITE(GEM_DMA_CFG, dma);
837 }
838 if (ifp->if_capenable &
839 (IFCAP_CSUM_IPv4_Rx |
840 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
841 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) {
842 cfg = CEMAC_READ(ETH_CFG);
843 cfg |= GEM_CFG_RX_CHKSUM_OFFLD_EN;
844 CEMAC_WRITE(ETH_CFG, cfg);
845 }
846 }
847
848 // enable interrupts
849 CEMAC_WRITE(ETH_IDR, -1);
850 CEMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
851 | ETH_ISR_RBNA | ETH_ISR_ROVR | ETH_ISR_TCOM);
852
853 // enable transmitter / receiver
854 CEMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
855 | ETH_CTL_CSR | ETH_CTL_MPE);
856
857 mii_mediachg(&sc->sc_mii);
858 callout_reset(&sc->cemac_tick_ch, hz, cemac_tick, sc);
859 ifp->if_flags |= IFF_RUNNING;
860 splx(s);
861 return 0;
862 }
863
864 static void
865 cemac_ifstop(struct ifnet *ifp, int disable)
866 {
867 // uint32_t u;
868 struct cemac_softc * const sc = ifp->if_softc;
869
870 #if 0
871 CEMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything
872 CEMAC_WRITE(ETH_IDR, -1); // disable interrupts
873 // CEMAC_WRITE(ETH_RBQP, 0); // clear receive
874 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
875 CEMAC_WRITE(ETH_CFG,
876 GEM_CFG_CLK_64 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
877 else
878 CEMAC_WRITE(ETH_CFG,
879 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
880 // CEMAC_WRITE(ETH_TCR, 0); // send nothing
881 // (void)CEMAC_READ(ETH_ISR);
882 u = CEMAC_READ(ETH_TSR);
883 CEMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
884 | ETH_TSR_IDLE | ETH_TSR_RLE
885 | ETH_TSR_COL | ETH_TSR_OVR)));
886 u = CEMAC_READ(ETH_RSR);
887 CEMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
888 #endif
889 callout_stop(&sc->cemac_tick_ch);
890
891 /* Down the MII. */
892 mii_down(&sc->sc_mii);
893
894 ifp->if_flags &= ~IFF_RUNNING;
895 ifp->if_timer = 0;
896 sc->tx_busy = false;
897 sc->sc_mii.mii_media_status &= ~IFM_ACTIVE;
898 }
899
900 static void
901 cemac_setaddr(struct ifnet *ifp)
902 {
903 struct cemac_softc * const sc = ifp->if_softc;
904 struct ethercom *ec = &sc->sc_ethercom;
905 struct ether_multi *enm;
906 struct ether_multistep step;
907 uint8_t ias[3][ETHER_ADDR_LEN];
908 uint32_t h, nma = 0, hashes[2] = { 0, 0 };
909 uint32_t ctl = CEMAC_READ(ETH_CTL);
910 uint32_t cfg = CEMAC_READ(ETH_CFG);
911
912 /* disable receiver temporarily */
913 CEMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE);
914
915 cfg &= ~(ETH_CFG_MTI | ETH_CFG_UNI | ETH_CFG_CAF | ETH_CFG_UNI);
916
917 if (ifp->if_flags & IFF_PROMISC) {
918 cfg |= ETH_CFG_CAF;
919 } else {
920 cfg &= ~ETH_CFG_CAF;
921 }
922
923 // ETH_CFG_BIG?
924
925 ifp->if_flags &= ~IFF_ALLMULTI;
926
927 ETHER_LOCK(ec);
928 ETHER_FIRST_MULTI(step, ec, enm);
929 while (enm != NULL) {
930 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
931 /*
932 * We must listen to a range of multicast addresses.
933 * For now, just accept all multicasts, rather than
934 * trying to set only those filter bits needed to match
935 * the range. (At this time, the only use of address
936 * ranges is for IP multicast routing, for which the
937 * range is big enough to require all bits set.)
938 */
939 cfg |= ETH_CFG_MTI;
940 hashes[0] = 0xffffffffUL;
941 hashes[1] = 0xffffffffUL;
942 ifp->if_flags |= IFF_ALLMULTI;
943 nma = 0;
944 break;
945 }
946
947 if (nma < 3) {
948 /* We can program 3 perfect address filters for mcast */
949 memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN);
950 } else {
951 /*
952 * XXX: Datasheet is not very clear here, I'm not sure
953 * if I'm doing this right. --joff
954 */
955 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
956
957 /* Just want the 6 most-significant bits. */
958 h = h >> 26;
959 #if 0
960 hashes[h / 32] |= (1 << (h % 32));
961 #else
962 hashes[0] = 0xffffffffUL;
963 hashes[1] = 0xffffffffUL;
964 #endif
965 cfg |= ETH_CFG_MTI;
966 }
967 ETHER_NEXT_MULTI(step, enm);
968 nma++;
969 }
970 ETHER_UNLOCK(ec);
971
972 // program...
973 DPRINTFN(1,("%s: en0 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
974 sc->sc_enaddr[0], sc->sc_enaddr[1], sc->sc_enaddr[2],
975 sc->sc_enaddr[3], sc->sc_enaddr[4], sc->sc_enaddr[5]));
976 CEMAC_GEM_WRITE(SA1L, (sc->sc_enaddr[3] << 24)
977 | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
978 | (sc->sc_enaddr[0]));
979 CEMAC_GEM_WRITE(SA1H, (sc->sc_enaddr[5] << 8)
980 | (sc->sc_enaddr[4]));
981 if (nma > 0) {
982 DPRINTFN(1,("%s: en1 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
983 ias[0][0], ias[0][1], ias[0][2],
984 ias[0][3], ias[0][4], ias[0][5]));
985 CEMAC_WRITE(ETH_SA2L, (ias[0][3] << 24)
986 | (ias[0][2] << 16) | (ias[0][1] << 8)
987 | (ias[0][0]));
988 CEMAC_WRITE(ETH_SA2H, (ias[0][4] << 8)
989 | (ias[0][5]));
990 }
991 if (nma > 1) {
992 DPRINTFN(1,("%s: en2 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
993 ias[1][0], ias[1][1], ias[1][2],
994 ias[1][3], ias[1][4], ias[1][5]));
995 CEMAC_WRITE(ETH_SA3L, (ias[1][3] << 24)
996 | (ias[1][2] << 16) | (ias[1][1] << 8)
997 | (ias[1][0]));
998 CEMAC_WRITE(ETH_SA3H, (ias[1][4] << 8)
999 | (ias[1][5]));
1000 }
1001 if (nma > 2) {
1002 DPRINTFN(1,("%s: en3 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
1003 ias[2][0], ias[2][1], ias[2][2],
1004 ias[2][3], ias[2][4], ias[2][5]));
1005 CEMAC_WRITE(ETH_SA4L, (ias[2][3] << 24)
1006 | (ias[2][2] << 16) | (ias[2][1] << 8)
1007 | (ias[2][0]));
1008 CEMAC_WRITE(ETH_SA4H, (ias[2][4] << 8)
1009 | (ias[2][5]));
1010 }
1011 CEMAC_GEM_WRITE(HSH, hashes[0]);
1012 CEMAC_GEM_WRITE(HSL, hashes[1]);
1013 CEMAC_WRITE(ETH_CFG, cfg);
1014 CEMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE);
1015 }
1016