if_cemac.c revision 1.41 1 /* $NetBSD: if_cemac.c,v 1.41 2024/09/29 08:55:21 skrll Exp $ */
2
3 /*
4 * Copyright (c) 2015 Genetec Corporation. All rights reserved.
5 * Written by Hashimoto Kenichi for Genetec Corporation.
6 *
7 * Based on arch/arm/at91/at91emac.c
8 *
9 * Copyright (c) 2007 Embedtronics Oy
10 * All rights reserved.
11 *
12 * Copyright (c) 2004 Jesse Off
13 * All rights reserved.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 /*
38 * Cadence EMAC/GEM ethernet controller IP driver
39 * used by arm/at91, arm/zynq SoC
40 */
41
42 #include <sys/cdefs.h>
43 __KERNEL_RCSID(0, "$NetBSD: if_cemac.c,v 1.41 2024/09/29 08:55:21 skrll Exp $");
44
45 #include <sys/param.h>
46 #include <sys/types.h>
47
48 #include <sys/bus.h>
49 #include <sys/device.h>
50 #include <sys/kernel.h>
51 #include <sys/proc.h>
52 #include <sys/systm.h>
53 #include <sys/time.h>
54
55 #include <net/if.h>
56 #include <net/if_dl.h>
57 #include <net/if_types.h>
58 #include <net/if_media.h>
59 #include <net/if_ether.h>
60 #include <net/bpf.h>
61
62 #include <dev/mii/mii.h>
63 #include <dev/mii/miivar.h>
64
65 #ifdef INET
66 #include <netinet/in.h>
67 #include <netinet/in_systm.h>
68 #include <netinet/in_var.h>
69 #include <netinet/ip.h>
70 #include <netinet/if_inarp.h>
71 #endif
72
73 #include <dev/cadence/cemacreg.h>
74 #include <dev/cadence/if_cemacvar.h>
75
76 #define DEFAULT_MDCDIV 32
77
78 #define CEMAC_READ(x) \
79 bus_space_read_4(sc->sc_iot, sc->sc_ioh, (x))
80 #define CEMAC_WRITE(x, y) \
81 bus_space_write_4(sc->sc_iot, sc->sc_ioh, (x), (y))
82 #define CEMAC_GEM_WRITE(x, y) \
83 do { \
84 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) \
85 bus_space_write_4(sc->sc_iot, sc->sc_ioh, (GEM_##x), (y)); \
86 else \
87 bus_space_write_4(sc->sc_iot, sc->sc_ioh, (ETH_##x), (y)); \
88 } while(0)
89
90 static void cemac_init(struct cemac_softc *);
91 static int cemac_gctx(struct cemac_softc *);
92 static int cemac_mediachange(struct ifnet *);
93 static void cemac_mediastatus(struct ifnet *, struct ifmediareq *);
94 static int cemac_mii_readreg(device_t, int, int, uint16_t *);
95 static int cemac_mii_writereg(device_t, int, int, uint16_t);
96 static void cemac_statchg(struct ifnet *);
97 static void cemac_tick(void *);
98 static int cemac_ifioctl(struct ifnet *, u_long, void *);
99 static void cemac_ifstart(struct ifnet *);
100 static void cemac_ifwatchdog(struct ifnet *);
101 static int cemac_ifinit(struct ifnet *);
102 static void cemac_ifstop(struct ifnet *, int);
103 static void cemac_setaddr(struct ifnet *);
104
105 #ifdef CEMAC_DEBUG
106 int cemac_debug = CEMAC_DEBUG;
107 #define DPRINTFN(n, fmt) if (cemac_debug >= (n)) printf fmt
108 #else
109 #define DPRINTFN(n, fmt)
110 #endif
111
112 void
113 cemac_attach_common(struct cemac_softc *sc)
114 {
115 uint32_t u;
116
117 aprint_naive("\n");
118 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
119 aprint_normal(": Cadence Gigabit Ethernet Controller\n");
120 else
121 aprint_normal(": Cadence Ethernet Controller\n");
122
123 /* configure emac: */
124 CEMAC_WRITE(ETH_CTL, 0); // disable everything
125 CEMAC_WRITE(ETH_IDR, -1); // disable interrupts
126 CEMAC_WRITE(ETH_RBQP, 0); // clear receive
127 CEMAC_WRITE(ETH_TBQP, 0); // clear transmit
128 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
129 CEMAC_WRITE(ETH_CFG,
130 GEM_CFG_CLK_64 | GEM_CFG_GEN | ETH_CFG_SPD | ETH_CFG_FD);
131 else
132 CEMAC_WRITE(ETH_CFG,
133 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
134 //CEMAC_WRITE(ETH_TCR, 0); // send nothing
135 //(void)CEMAC_READ(ETH_ISR);
136 u = CEMAC_READ(ETH_TSR);
137 CEMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
138 | ETH_TSR_IDLE | ETH_TSR_RLE
139 | ETH_TSR_COL | ETH_TSR_OVR)));
140 u = CEMAC_READ(ETH_RSR);
141 CEMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
142
143 /* Fetch the Ethernet address from property if set. */
144 prop_dictionary_t prop = device_properties(sc->sc_dev);
145 prop_data_t enaddr = prop_dictionary_get(prop, "mac-address");
146
147 if (enaddr != NULL) {
148 KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA);
149 KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN);
150 memcpy(sc->sc_enaddr, prop_data_value(enaddr),
151 ETHER_ADDR_LEN);
152 } else {
153 static const uint8_t hardcoded[ETHER_ADDR_LEN] = {
154 0x00, 0x0d, 0x10, 0x81, 0x0c, 0x94
155 };
156 memcpy(sc->sc_enaddr, hardcoded, ETHER_ADDR_LEN);
157 }
158
159 cemac_init(sc);
160 }
161
162 static int
163 cemac_gctx(struct cemac_softc *sc)
164 {
165 uint32_t tsr;
166
167 tsr = CEMAC_READ(ETH_TSR);
168 if (!ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
169 // no space left
170 if (!(tsr & ETH_TSR_BNQ))
171 return 0;
172 } else {
173 if (tsr & GEM_TSR_TXGO)
174 return 0;
175 }
176 CEMAC_WRITE(ETH_TSR, tsr);
177
178 // free sent frames
179 while (sc->txqc > (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM) ? 0 :
180 (tsr & ETH_TSR_IDLE ? 0 : 1))) {
181 int bi = sc->txqi % TX_QLEN;
182
183 DPRINTFN(3,("%s: TDSC[%i].Addr 0x%08x\n",
184 __FUNCTION__, bi, sc->TDSC[bi].Addr));
185 DPRINTFN(3,("%s: TDSC[%i].Info 0x%08x\n",
186 __FUNCTION__, bi, sc->TDSC[bi].Info));
187
188 bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
189 sc->txq[bi].m->m_pkthdr.len, BUS_DMASYNC_POSTWRITE);
190 bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
191 m_freem(sc->txq[bi].m);
192 DPRINTFN(2,("%s: freed idx #%i mbuf %p (txqc=%i)\n",
193 __FUNCTION__, bi, sc->txq[bi].m, sc->txqc));
194 sc->txq[bi].m = NULL;
195 sc->txqi = (bi + 1) % TX_QLEN;
196 sc->txqc--;
197 }
198
199 // mark we're free
200 if (sc->tx_busy) {
201 sc->tx_busy = false;
202 /* Disable transmit-buffer-free interrupt */
203 /*CEMAC_WRITE(ETH_IDR, ETH_ISR_TBRE);*/
204 }
205
206 return 1;
207 }
208
209 int
210 cemac_intr(void *arg)
211 {
212 struct cemac_softc * const sc = arg;
213 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
214 uint32_t imr, isr, ctl;
215 #ifdef CEMAC_DEBUG
216 uint32_t rsr;
217 #endif
218 int bi;
219
220 imr = ~CEMAC_READ(ETH_IMR);
221 if (!(imr & (ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE |
222 ETH_ISR_RBNA | ETH_ISR_ROVR | ETH_ISR_TCOM))) {
223 // interrupt not enabled, can't be us
224 return 0;
225 }
226
227 isr = CEMAC_READ(ETH_ISR);
228 CEMAC_WRITE(ETH_ISR, isr);
229 isr &= imr;
230 #ifdef CEMAC_DEBUG
231 rsr = CEMAC_READ(ETH_RSR); // get receive status register
232 #endif
233 DPRINTFN(2, ("%s: isr=0x%08X rsr=0x%08X imr=0x%08X\n", __FUNCTION__,
234 isr, rsr, imr));
235
236 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
237 // out of receive buffers
238 if (isr & ETH_ISR_RBNA) {
239 // clear interrupt
240 CEMAC_WRITE(ETH_RSR, ETH_RSR_BNA);
241
242 ctl = CEMAC_READ(ETH_CTL);
243 // disable receiver
244 CEMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE);
245 // clear BNA bit
246 CEMAC_WRITE(ETH_RSR, ETH_RSR_BNA);
247 // re-enable receiver
248 CEMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE);
249
250 if_statinc_ref(ifp, nsr, if_ierrors);
251 if_statinc_ref(ifp, nsr, if_ipackets);
252 DPRINTFN(1,("%s: out of receive buffers\n", __FUNCTION__));
253 }
254 if (isr & ETH_ISR_ROVR) {
255 // clear interrupt
256 CEMAC_WRITE(ETH_RSR, ETH_RSR_OVR);
257 if_statinc_ref(ifp, nsr, if_ierrors);
258 if_statinc_ref(ifp, nsr, if_ipackets);
259 DPRINTFN(1,("%s: receive overrun\n", __FUNCTION__));
260 }
261
262 // packet has been received!
263 if (isr & ETH_ISR_RCOM) {
264 uint32_t nfo;
265 DPRINTFN(2,("#2 RDSC[%i].INFO=0x%08X\n", sc->rxqi % RX_QLEN,
266 sc->RDSC[sc->rxqi % RX_QLEN].Info));
267 while (sc->RDSC[(bi = sc->rxqi % RX_QLEN)].Addr & ETH_RDSC_F_USED) {
268 int fl, csum;
269 struct mbuf *m;
270
271 nfo = sc->RDSC[bi].Info;
272 fl = (nfo & ETH_RDSC_I_LEN) - 4;
273 DPRINTFN(2,("## nfo=0x%08X\n", nfo));
274
275 MGETHDR(m, M_DONTWAIT, MT_DATA);
276 if (m != NULL)
277 MCLGET(m, M_DONTWAIT);
278 if (m != NULL && (m->m_flags & M_EXT)) {
279 bus_dmamap_sync(sc->sc_dmat,
280 sc->rxq[bi].m_dmamap, 0, MCLBYTES,
281 BUS_DMASYNC_POSTREAD);
282 bus_dmamap_unload(sc->sc_dmat,
283 sc->rxq[bi].m_dmamap);
284 m_set_rcvif(sc->rxq[bi].m, ifp);
285 sc->rxq[bi].m->m_pkthdr.len =
286 sc->rxq[bi].m->m_len = fl;
287 switch (nfo & ETH_RDSC_I_CHKSUM) {
288 case ETH_RDSC_I_CHKSUM_IP:
289 csum = M_CSUM_IPv4;
290 break;
291 case ETH_RDSC_I_CHKSUM_UDP:
292 csum = M_CSUM_IPv4 | M_CSUM_UDPv4 |
293 M_CSUM_UDPv6;
294 break;
295 case ETH_RDSC_I_CHKSUM_TCP:
296 csum = M_CSUM_IPv4 | M_CSUM_TCPv4 |
297 M_CSUM_TCPv6;
298 break;
299 default:
300 csum = 0;
301 break;
302 }
303 sc->rxq[bi].m->m_pkthdr.csum_flags = csum;
304 DPRINTFN(2,("received %u bytes packet\n", fl));
305 if_percpuq_enqueue(ifp->if_percpuq,
306 sc->rxq[bi].m);
307 if (mtod(m, intptr_t) & 3)
308 m_adj(m, mtod(m, intptr_t) & 3);
309 sc->rxq[bi].m = m;
310 bus_dmamap_load(sc->sc_dmat,
311 sc->rxq[bi].m_dmamap, m->m_ext.ext_buf,
312 MCLBYTES, NULL, BUS_DMA_NOWAIT);
313 bus_dmamap_sync(sc->sc_dmat,
314 sc->rxq[bi].m_dmamap, 0, MCLBYTES,
315 BUS_DMASYNC_PREREAD);
316 sc->RDSC[bi].Info = 0;
317 sc->RDSC[bi].Addr =
318 sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr
319 | (bi == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
320 } else {
321 /* Drop packets until we can get replacement
322 * empty mbufs for the RXDQ.
323 */
324 m_freem(m);
325 if_statinc_ref(ifp, nsr, if_ierrors);
326 }
327 sc->rxqi++;
328 }
329 }
330
331 IF_STAT_PUTREF(ifp);
332
333 if (cemac_gctx(sc) > 0)
334 if_schedule_deferred_start(ifp);
335 #if 0 // reloop
336 irq = CEMAC_READ(IntStsC);
337 if ((irq & (IntSts_RxSQ | IntSts_ECI)) != 0)
338 goto begin;
339 #endif
340
341 return 1;
342 }
343
344
345 static void
346 cemac_init(struct cemac_softc *sc)
347 {
348 bus_dma_segment_t segs;
349 int rsegs, err, i;
350 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
351 struct mii_data * const mii = &sc->sc_mii;
352 uint32_t u;
353 #if 0
354 int mdcdiv = DEFAULT_MDCDIV;
355 #endif
356
357 callout_init(&sc->cemac_tick_ch, 0);
358
359 // ok...
360 CEMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything
361 CEMAC_WRITE(ETH_IDR, -1); // disable interrupts
362 CEMAC_WRITE(ETH_RBQP, 0); // clear receive
363 CEMAC_WRITE(ETH_TBQP, 0); // clear transmit
364 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
365 CEMAC_WRITE(ETH_CFG,
366 GEM_CFG_CLK_64 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
367 else
368 CEMAC_WRITE(ETH_CFG,
369 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
370 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
371 CEMAC_WRITE(GEM_DMA_CFG,
372 __SHIFTIN((MCLBYTES + 63) / 64, GEM_DMA_CFG_RX_BUF_SIZE) |
373 __SHIFTIN(3, GEM_DMA_CFG_RX_PKTBUF_MEMSZ_SEL) |
374 GEM_DMA_CFG_TX_PKTBUF_MEMSZ_SEL |
375 __SHIFTIN(16, GEM_DMA_CFG_AHB_FIXED_BURST_LEN) |
376 GEM_DMA_CFG_DISC_WHEN_NO_AHB);
377 }
378 // CEMAC_WRITE(ETH_TCR, 0); // send nothing
379 // (void)CEMAC_READ(ETH_ISR);
380 u = CEMAC_READ(ETH_TSR);
381 CEMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
382 | ETH_TSR_IDLE | ETH_TSR_RLE
383 | ETH_TSR_COL | ETH_TSR_OVR)));
384 u = CEMAC_READ(ETH_RSR);
385 CEMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
386
387 #if 0
388 if (device_cfdata(sc->sc_dev)->cf_flags)
389 mdcdiv = device_cfdata(sc->sc_dev)->cf_flags;
390 #endif
391 /* set ethernet address */
392 CEMAC_GEM_WRITE(SA1L, (sc->sc_enaddr[3] << 24)
393 | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
394 | (sc->sc_enaddr[0]));
395 CEMAC_GEM_WRITE(SA1H, (sc->sc_enaddr[5] << 8)
396 | (sc->sc_enaddr[4]));
397 CEMAC_GEM_WRITE(SA2L, 0);
398 CEMAC_GEM_WRITE(SA2H, 0);
399 CEMAC_GEM_WRITE(SA3L, 0);
400 CEMAC_GEM_WRITE(SA3H, 0);
401 CEMAC_GEM_WRITE(SA4L, 0);
402 CEMAC_GEM_WRITE(SA4H, 0);
403
404 /* Allocate memory for receive queue descriptors */
405 sc->rbqlen = roundup(ETH_DSC_SIZE * (RX_QLEN + 1) * 2, PAGE_SIZE);
406 DPRINTFN(1,("%s: rbqlen=%i\n", __FUNCTION__, sc->rbqlen));
407
408 // see EMAC errata why forced to 16384 byte boundary
409 err = bus_dmamem_alloc(sc->sc_dmat, sc->rbqlen, 0,
410 MAX(16384, PAGE_SIZE), &segs, 1, &rsegs, BUS_DMA_WAITOK);
411 if (err == 0) {
412 DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__));
413 err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->rbqlen,
414 &sc->rbqpage, (BUS_DMA_WAITOK | BUS_DMA_COHERENT));
415 }
416 if (err == 0) {
417 DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__));
418 err = bus_dmamap_create(sc->sc_dmat, sc->rbqlen, 1,
419 sc->rbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK,
420 &sc->rbqpage_dmamap);
421 }
422 if (err == 0) {
423 DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__));
424 err = bus_dmamap_load(sc->sc_dmat, sc->rbqpage_dmamap,
425 sc->rbqpage, sc->rbqlen, NULL, BUS_DMA_WAITOK);
426 }
427 if (err != 0)
428 panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev));
429
430 sc->rbqpage_dsaddr = sc->rbqpage_dmamap->dm_segs[0].ds_addr;
431 memset(sc->rbqpage, 0, sc->rbqlen);
432
433 /* Allocate memory for transmit queue descriptors */
434 sc->tbqlen = roundup(ETH_DSC_SIZE * (TX_QLEN + 1) * 2, PAGE_SIZE);
435 DPRINTFN(1,("%s: tbqlen=%i\n", __FUNCTION__, sc->tbqlen));
436
437 // see EMAC errata why forced to 16384 byte boundary
438 err = bus_dmamem_alloc(sc->sc_dmat, sc->tbqlen, 0,
439 MAX(16384, PAGE_SIZE), &segs, 1, &rsegs, BUS_DMA_WAITOK);
440 if (err == 0) {
441 DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__));
442 err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->tbqlen,
443 &sc->tbqpage, (BUS_DMA_WAITOK | BUS_DMA_COHERENT));
444 }
445 if (err == 0) {
446 DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__));
447 err = bus_dmamap_create(sc->sc_dmat, sc->tbqlen, 1,
448 sc->tbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK,
449 &sc->tbqpage_dmamap);
450 }
451 if (err == 0) {
452 DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__));
453 err = bus_dmamap_load(sc->sc_dmat, sc->tbqpage_dmamap,
454 sc->tbqpage, sc->tbqlen, NULL, BUS_DMA_WAITOK);
455 }
456 if (err != 0)
457 panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev));
458
459 sc->tbqpage_dsaddr = sc->tbqpage_dmamap->dm_segs[0].ds_addr;
460 memset(sc->tbqpage, 0, sc->tbqlen);
461
462 /* Set up pointers to start of each queue in kernel addr space.
463 * Each descriptor queue or status queue entry uses 2 words
464 */
465 sc->RDSC = (void *)sc->rbqpage;
466 sc->TDSC = (void *)sc->tbqpage;
467
468 /* init TX queue */
469 for (i = 0; i < TX_QLEN; i++) {
470 sc->TDSC[i].Addr = 0;
471 sc->TDSC[i].Info = ETH_TDSC_I_USED |
472 (i == (TX_QLEN - 1) ? ETH_TDSC_I_WRAP : 0);
473 }
474
475 /* Populate the RXQ with mbufs */
476 sc->rxqi = 0;
477 for (i = 0; i < RX_QLEN; i++) {
478 struct mbuf *m;
479
480 err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
481 PAGE_SIZE, BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap);
482 if (err) {
483 panic("%s: dmamap_create failed: %i\n", __FUNCTION__,
484 err);
485 }
486 MGETHDR(m, M_WAIT, MT_DATA);
487 MCLGET(m, M_WAIT);
488 sc->rxq[i].m = m;
489 if (mtod(m, intptr_t) & 3) {
490 m_adj(m, mtod(m, intptr_t) & 3);
491 }
492 err = bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap,
493 m->m_ext.ext_buf, MCLBYTES, NULL,
494 BUS_DMA_WAITOK);
495 if (err) {
496 panic("%s: dmamap_load failed: %i\n", __FUNCTION__, err);
497 }
498 sc->RDSC[i].Addr = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr
499 | (i == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
500 sc->RDSC[i].Info = 0;
501 bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0,
502 MCLBYTES, BUS_DMASYNC_PREREAD);
503 }
504
505 /* prepare transmit queue */
506 for (i = 0; i < TX_QLEN; i++) {
507 err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
508 (BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW),
509 &sc->txq[i].m_dmamap);
510 if (err)
511 panic("ARGH #1");
512 sc->txq[i].m = NULL;
513 }
514
515 /* Program each queue's start addr, cur addr, and len registers
516 * with the physical addresses.
517 */
518 CEMAC_WRITE(ETH_RBQP, (uint32_t)sc->rbqpage_dsaddr);
519 CEMAC_WRITE(ETH_TBQP, (uint32_t)sc->tbqpage_dsaddr);
520
521 /* Divide HCLK by 32 for MDC clock */
522 sc->sc_ethercom.ec_mii = mii;
523 mii->mii_ifp = ifp;
524 mii->mii_readreg = cemac_mii_readreg;
525 mii->mii_writereg = cemac_mii_writereg;
526 mii->mii_statchg = cemac_statchg;
527 ifmedia_init(&mii->mii_media, IFM_IMASK, cemac_mediachange,
528 cemac_mediastatus);
529 mii_attach(sc->sc_dev, mii, 0xffffffff, MII_PHY_ANY, 1, 0);
530 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
531
532 #if 0
533 // enable / disable interrupts
534 CEMAC_WRITE(ETH_IDR, -1);
535 CEMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
536 | ETH_ISR_RBNA | ETH_ISR_ROVR | ETH_ISR_TCOM);
537 // (void)CEMAC_READ(ETH_ISR); // why
538
539 // enable transmitter / receiver
540 CEMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
541 | ETH_CTL_CSR | ETH_CTL_MPE);
542 #endif
543 /*
544 * We can support hardware checksumming.
545 */
546 ifp->if_capabilities |=
547 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
548 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
549 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
550 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_TCPv6_Rx |
551 IFCAP_CSUM_UDPv6_Tx | IFCAP_CSUM_UDPv6_Rx;
552
553 /*
554 * We can support 802.1Q VLAN-sized frames.
555 */
556 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
557
558 strcpy(ifp->if_xname, device_xname(sc->sc_dev));
559 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
560 ifp->if_ioctl = cemac_ifioctl;
561 ifp->if_start = cemac_ifstart;
562 ifp->if_watchdog = cemac_ifwatchdog;
563 ifp->if_init = cemac_ifinit;
564 ifp->if_stop = cemac_ifstop;
565 ifp->if_timer = 0;
566 ifp->if_softc = sc;
567 IFQ_SET_READY(&ifp->if_snd);
568 if_attach(ifp);
569 if_deferred_start_init(ifp, NULL);
570 ether_ifattach(ifp, (sc)->sc_enaddr);
571 }
572
573 static int
574 cemac_mediachange(struct ifnet *ifp)
575 {
576 if (ifp->if_flags & IFF_UP)
577 cemac_ifinit(ifp);
578 return 0;
579 }
580
581 static void
582 cemac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
583 {
584 struct cemac_softc * const sc = ifp->if_softc;
585
586 mii_pollstat(&sc->sc_mii);
587 ifmr->ifm_active = sc->sc_mii.mii_media_active;
588 ifmr->ifm_status = sc->sc_mii.mii_media_status;
589 }
590
591
592 static int
593 cemac_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
594 {
595 struct cemac_softc * const sc = device_private(self);
596
597 CEMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_RD
598 | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
599 | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
600 | ETH_MAN_CODE_IEEE802_3));
601 while (!(CEMAC_READ(ETH_SR) & ETH_SR_IDLE))
602 ;
603
604 *val = CEMAC_READ(ETH_MAN) & ETH_MAN_DATA;
605 return 0;
606 }
607
608 static int
609 cemac_mii_writereg(device_t self, int phy, int reg, uint16_t val)
610 {
611 struct cemac_softc * const sc = device_private(self);
612
613 CEMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_WR
614 | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
615 | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
616 | ETH_MAN_CODE_IEEE802_3
617 | (val & ETH_MAN_DATA)));
618 while (!(CEMAC_READ(ETH_SR) & ETH_SR_IDLE))
619 ;
620
621 return 0;
622 }
623
624
625 static void
626 cemac_statchg(struct ifnet *ifp)
627 {
628 struct cemac_softc * const sc = ifp->if_softc;
629 struct mii_data *mii = &sc->sc_mii;
630 uint32_t reg;
631
632 /*
633 * We must keep the MAC and the PHY in sync as
634 * to the status of full-duplex!
635 */
636 reg = CEMAC_READ(ETH_CFG);
637 reg &= ~ETH_CFG_FD;
638 if (sc->sc_mii.mii_media_active & IFM_FDX)
639 reg |= ETH_CFG_FD;
640
641 reg &= ~ETH_CFG_SPD;
642 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
643 reg &= ~GEM_CFG_GEN;
644 switch (IFM_SUBTYPE(mii->mii_media_active)) {
645 case IFM_10_T:
646 break;
647 case IFM_100_TX:
648 reg |= ETH_CFG_SPD;
649 break;
650 case IFM_1000_T:
651 reg |= ETH_CFG_SPD | GEM_CFG_GEN;
652 break;
653 default:
654 break;
655 }
656 CEMAC_WRITE(ETH_CFG, reg);
657 }
658
659 static void
660 cemac_tick(void *arg)
661 {
662 struct cemac_softc * const sc = arg;
663 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
664 int s;
665
666 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
667 if_statadd(ifp, if_collisions,
668 CEMAC_READ(GEM_SCOL) + CEMAC_READ(GEM_MCOL));
669 else
670 if_statadd(ifp, if_collisions,
671 CEMAC_READ(ETH_SCOL) + CEMAC_READ(ETH_MCOL));
672
673 /* These misses are ok, they will happen if the RAM/CPU can't keep up */
674 if (!ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
675 uint32_t misses = CEMAC_READ(ETH_DRFC);
676 if (misses > 0)
677 aprint_normal_ifnet(ifp, "%d rx misses\n", misses);
678 }
679
680 s = splnet();
681 if (cemac_gctx(sc) > 0 && IFQ_IS_EMPTY(&ifp->if_snd) == 0)
682 cemac_ifstart(ifp);
683 splx(s);
684
685 mii_tick(&sc->sc_mii);
686 callout_reset(&sc->cemac_tick_ch, hz, cemac_tick, sc);
687 }
688
689
690 static int
691 cemac_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
692 {
693 int s, error;
694
695 s = splnet();
696 switch (cmd) {
697 default:
698 error = ether_ioctl(ifp, cmd, data);
699 if (error != ENETRESET)
700 break;
701 error = 0;
702
703 if (cmd == SIOCSIFCAP) {
704 error = if_init(ifp);
705 } else if (cmd != SIOCADDMULTI && cmd != SIOCDELMULTI)
706 ;
707 else if (ifp->if_flags & IFF_RUNNING) {
708 cemac_setaddr(ifp);
709 }
710 }
711 splx(s);
712 return error;
713 }
714
715 static void
716 cemac_ifstart(struct ifnet *ifp)
717 {
718 struct cemac_softc * const sc = ifp->if_softc;
719 struct mbuf *m;
720 bus_dma_segment_t *segs;
721 int s, bi, err, nsegs;
722
723 s = splnet();
724 start:
725 if (cemac_gctx(sc) == 0) {
726 /* Enable transmit-buffer-free interrupt */
727 CEMAC_WRITE(ETH_IER, ETH_ISR_TBRE);
728 sc->tx_busy = true;
729 ifp->if_timer = 10;
730 splx(s);
731 return;
732 }
733
734 ifp->if_timer = 0;
735
736 IFQ_POLL(&ifp->if_snd, m);
737 if (m == NULL) {
738 splx(s);
739 return;
740 }
741
742 bi = (sc->txqi + sc->txqc) % TX_QLEN;
743 if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
744 BUS_DMA_NOWAIT)) ||
745 sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 ||
746 sc->txq[bi].m_dmamap->dm_nsegs > 1) {
747 /* Copy entire mbuf chain to new single */
748 struct mbuf *mn;
749
750 if (err == 0)
751 bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
752
753 MGETHDR(mn, M_DONTWAIT, MT_DATA);
754 if (mn == NULL)
755 goto stop;
756 if (m->m_pkthdr.len > MHLEN) {
757 MCLGET(mn, M_DONTWAIT);
758 if ((mn->m_flags & M_EXT) == 0) {
759 m_freem(mn);
760 goto stop;
761 }
762 }
763 m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *));
764 mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len;
765 IFQ_DEQUEUE(&ifp->if_snd, m);
766 m_freem(m);
767 m = mn;
768 bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
769 BUS_DMA_NOWAIT);
770 } else {
771 IFQ_DEQUEUE(&ifp->if_snd, m);
772 }
773
774 bpf_mtap(ifp, m, BPF_D_OUT);
775
776 nsegs = sc->txq[bi].m_dmamap->dm_nsegs;
777 segs = sc->txq[bi].m_dmamap->dm_segs;
778 if (nsegs > 1)
779 panic("#### ARGH #2");
780
781 sc->txq[bi].m = m;
782 sc->txqc++;
783
784 DPRINTFN(2,("%s: start sending idx #%i mbuf %p (txqc=%i, phys %p), "
785 "len=%u\n", __FUNCTION__, bi, sc->txq[bi].m, sc->txqc,
786 (void *)segs->ds_addr, (unsigned)m->m_pkthdr.len));
787 #ifdef DIAGNOSTIC
788 if (sc->txqc > TX_QLEN)
789 panic("%s: txqc %i > %i", __FUNCTION__, sc->txqc, TX_QLEN);
790 #endif
791
792 bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
793 sc->txq[bi].m_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
794
795 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
796 sc->TDSC[bi].Addr = segs->ds_addr;
797 sc->TDSC[bi].Info =
798 __SHIFTIN(m->m_pkthdr.len, ETH_TDSC_I_LEN) |
799 ETH_TDSC_I_LAST_BUF |
800 (bi == (TX_QLEN - 1) ? ETH_TDSC_I_WRAP : 0);
801
802 DPRINTFN(3,("%s: TDSC[%i].Addr 0x%08x\n",
803 __FUNCTION__, bi, sc->TDSC[bi].Addr));
804 DPRINTFN(3,("%s: TDSC[%i].Info 0x%08x\n",
805 __FUNCTION__, bi, sc->TDSC[bi].Info));
806
807 uint32_t ctl = CEMAC_READ(ETH_CTL) | GEM_CTL_STARTTX;
808 CEMAC_WRITE(ETH_CTL, ctl);
809 DPRINTFN(3,("%s: ETH_CTL 0x%08x\n", __FUNCTION__,
810 CEMAC_READ(ETH_CTL)));
811 } else {
812 CEMAC_WRITE(ETH_TAR, segs->ds_addr);
813 CEMAC_WRITE(ETH_TCR, m->m_pkthdr.len);
814 }
815 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
816 goto start;
817 stop:
818
819 splx(s);
820 return;
821 }
822
823 static void
824 cemac_ifwatchdog(struct ifnet *ifp)
825 {
826 struct cemac_softc * const sc = ifp->if_softc;
827
828 if ((ifp->if_flags & IFF_RUNNING) == 0)
829 return;
830 aprint_error_ifnet(ifp, "device timeout, CTL = 0x%08x, CFG = 0x%08x\n",
831 CEMAC_READ(ETH_CTL), CEMAC_READ(ETH_CFG));
832 }
833
834 static int
835 cemac_ifinit(struct ifnet *ifp)
836 {
837 struct cemac_softc * const sc = ifp->if_softc;
838 uint32_t dma, cfg;
839 int s = splnet();
840
841 callout_stop(&sc->cemac_tick_ch);
842
843 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
844
845 if (ifp->if_capenable &
846 (IFCAP_CSUM_IPv4_Tx |
847 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
848 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) {
849 dma = CEMAC_READ(GEM_DMA_CFG);
850 dma |= GEM_DMA_CFG_CHKSUM_GEN_OFFLOAD_EN;
851 CEMAC_WRITE(GEM_DMA_CFG, dma);
852 }
853 if (ifp->if_capenable &
854 (IFCAP_CSUM_IPv4_Rx |
855 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
856 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) {
857 cfg = CEMAC_READ(ETH_CFG);
858 cfg |= GEM_CFG_RXCOEN;
859 CEMAC_WRITE(ETH_CFG, cfg);
860 }
861 }
862
863 // enable interrupts
864 CEMAC_WRITE(ETH_IDR, -1);
865 CEMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
866 | ETH_ISR_RBNA | ETH_ISR_ROVR | ETH_ISR_TCOM);
867
868 // enable transmitter / receiver
869 CEMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
870 | ETH_CTL_CSR | ETH_CTL_MPE);
871
872 mii_mediachg(&sc->sc_mii);
873 callout_reset(&sc->cemac_tick_ch, hz, cemac_tick, sc);
874 ifp->if_flags |= IFF_RUNNING;
875 splx(s);
876 return 0;
877 }
878
879 static void
880 cemac_ifstop(struct ifnet *ifp, int disable)
881 {
882 // uint32_t u;
883 struct cemac_softc * const sc = ifp->if_softc;
884
885 #if 0
886 CEMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything
887 CEMAC_WRITE(ETH_IDR, -1); // disable interrupts
888 // CEMAC_WRITE(ETH_RBQP, 0); // clear receive
889 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
890 CEMAC_WRITE(ETH_CFG,
891 GEM_CFG_CLK_64 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
892 else
893 CEMAC_WRITE(ETH_CFG,
894 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
895 // CEMAC_WRITE(ETH_TCR, 0); // send nothing
896 // (void)CEMAC_READ(ETH_ISR);
897 u = CEMAC_READ(ETH_TSR);
898 CEMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
899 | ETH_TSR_IDLE | ETH_TSR_RLE
900 | ETH_TSR_COL | ETH_TSR_OVR)));
901 u = CEMAC_READ(ETH_RSR);
902 CEMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
903 #endif
904 callout_stop(&sc->cemac_tick_ch);
905
906 /* Down the MII. */
907 mii_down(&sc->sc_mii);
908
909 ifp->if_flags &= ~IFF_RUNNING;
910 ifp->if_timer = 0;
911 sc->tx_busy = false;
912 sc->sc_mii.mii_media_status &= ~IFM_ACTIVE;
913 }
914
915 static void
916 cemac_setaddr(struct ifnet *ifp)
917 {
918 struct cemac_softc * const sc = ifp->if_softc;
919 struct ethercom *ec = &sc->sc_ethercom;
920 struct ether_multi *enm;
921 struct ether_multistep step;
922 uint8_t ias[3][ETHER_ADDR_LEN];
923 uint32_t h, nma = 0, hashes[2] = { 0, 0 };
924 uint32_t ctl = CEMAC_READ(ETH_CTL);
925 uint32_t cfg = CEMAC_READ(ETH_CFG);
926
927 /* disable receiver temporarily */
928 CEMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE);
929
930 cfg &= ~(ETH_CFG_MTI | ETH_CFG_UNI | ETH_CFG_CAF | ETH_CFG_UNI);
931
932 if (ifp->if_flags & IFF_PROMISC) {
933 cfg |= ETH_CFG_CAF;
934 } else {
935 cfg &= ~ETH_CFG_CAF;
936 }
937
938 // ETH_CFG_BIG?
939
940 ifp->if_flags &= ~IFF_ALLMULTI;
941
942 ETHER_LOCK(ec);
943 ETHER_FIRST_MULTI(step, ec, enm);
944 while (enm != NULL) {
945 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
946 /*
947 * We must listen to a range of multicast addresses.
948 * For now, just accept all multicasts, rather than
949 * trying to set only those filter bits needed to match
950 * the range. (At this time, the only use of address
951 * ranges is for IP multicast routing, for which the
952 * range is big enough to require all bits set.)
953 */
954 cfg |= ETH_CFG_MTI;
955 hashes[0] = 0xffffffffUL;
956 hashes[1] = 0xffffffffUL;
957 ifp->if_flags |= IFF_ALLMULTI;
958 nma = 0;
959 break;
960 }
961
962 if (nma < 3) {
963 /* We can program 3 perfect address filters for mcast */
964 memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN);
965 } else {
966 /*
967 * XXX: Datasheet is not very clear here, I'm not sure
968 * if I'm doing this right. --joff
969 */
970 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
971
972 /* Just want the 6 most-significant bits. */
973 h = h >> 26;
974 #if 0
975 hashes[h / 32] |= (1 << (h % 32));
976 #else
977 hashes[0] = 0xffffffffUL;
978 hashes[1] = 0xffffffffUL;
979 #endif
980 cfg |= ETH_CFG_MTI;
981 }
982 ETHER_NEXT_MULTI(step, enm);
983 nma++;
984 }
985 ETHER_UNLOCK(ec);
986
987 // program...
988 DPRINTFN(1,("%s: en0 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
989 sc->sc_enaddr[0], sc->sc_enaddr[1], sc->sc_enaddr[2],
990 sc->sc_enaddr[3], sc->sc_enaddr[4], sc->sc_enaddr[5]));
991 CEMAC_GEM_WRITE(SA1L, (sc->sc_enaddr[3] << 24)
992 | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
993 | (sc->sc_enaddr[0]));
994 CEMAC_GEM_WRITE(SA1H, (sc->sc_enaddr[5] << 8)
995 | (sc->sc_enaddr[4]));
996 if (nma > 0) {
997 DPRINTFN(1,("%s: en1 %02x:%02x:%02x:%02x:%02x:%02x\n",
998 __FUNCTION__,
999 ias[0][0], ias[0][1], ias[0][2],
1000 ias[0][3], ias[0][4], ias[0][5]));
1001 CEMAC_WRITE(ETH_SA2L, (ias[0][3] << 24)
1002 | (ias[0][2] << 16) | (ias[0][1] << 8)
1003 | (ias[0][0]));
1004 CEMAC_WRITE(ETH_SA2H, (ias[0][4] << 8)
1005 | (ias[0][5]));
1006 }
1007 if (nma > 1) {
1008 DPRINTFN(1,("%s: en2 %02x:%02x:%02x:%02x:%02x:%02x\n",
1009 __FUNCTION__,
1010 ias[1][0], ias[1][1], ias[1][2],
1011 ias[1][3], ias[1][4], ias[1][5]));
1012 CEMAC_WRITE(ETH_SA3L, (ias[1][3] << 24)
1013 | (ias[1][2] << 16) | (ias[1][1] << 8)
1014 | (ias[1][0]));
1015 CEMAC_WRITE(ETH_SA3H, (ias[1][4] << 8)
1016 | (ias[1][5]));
1017 }
1018 if (nma > 2) {
1019 DPRINTFN(1,("%s: en3 %02x:%02x:%02x:%02x:%02x:%02x\n",
1020 __FUNCTION__,
1021 ias[2][0], ias[2][1], ias[2][2],
1022 ias[2][3], ias[2][4], ias[2][5]));
1023 CEMAC_WRITE(ETH_SA4L, (ias[2][3] << 24)
1024 | (ias[2][2] << 16) | (ias[2][1] << 8)
1025 | (ias[2][0]));
1026 CEMAC_WRITE(ETH_SA4H, (ias[2][4] << 8)
1027 | (ias[2][5]));
1028 }
1029 CEMAC_GEM_WRITE(HSH, hashes[0]);
1030 CEMAC_GEM_WRITE(HSL, hashes[1]);
1031 CEMAC_WRITE(ETH_CFG, cfg);
1032 CEMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE);
1033 }
1034