if_cemac.c revision 1.45 1 /* $NetBSD: if_cemac.c,v 1.45 2024/10/15 00:58:15 lloyd Exp $ */
2
3 /*
4 * Copyright (c) 2015 Genetec Corporation. All rights reserved.
5 * Written by Hashimoto Kenichi for Genetec Corporation.
6 *
7 * Based on arch/arm/at91/at91emac.c
8 *
9 * Copyright (c) 2007 Embedtronics Oy
10 * All rights reserved.
11 *
12 * Copyright (c) 2004 Jesse Off
13 * All rights reserved.
14 *
15 * Redistribution and use in source and binary forms, with or without
16 * modification, are permitted provided that the following conditions
17 * are met:
18 * 1. Redistributions of source code must retain the above copyright
19 * notice, this list of conditions and the following disclaimer.
20 * 2. Redistributions in binary form must reproduce the above copyright
21 * notice, this list of conditions and the following disclaimer in the
22 * documentation and/or other materials provided with the distribution.
23 *
24 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
25 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
26 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
27 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
28 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
35 */
36
37 /*
38 * Cadence EMAC/GEM ethernet controller IP driver
39 * used by arm/at91, arm/zynq SoC
40 */
41
42 /*
43 * Lock order:
44 *
45 * IFNET_LOCK -> sc_mcast_lock
46 * IFNET_LOCK -> sc_intr_lock
47 */
48
49
50 #include <sys/cdefs.h>
51 __KERNEL_RCSID(0, "$NetBSD: if_cemac.c,v 1.45 2024/10/15 00:58:15 lloyd Exp $");
52
53 #include <sys/param.h>
54 #include <sys/types.h>
55
56 #include <sys/bus.h>
57 #include <sys/device.h>
58 #include <sys/kernel.h>
59 #include <sys/proc.h>
60 #include <sys/systm.h>
61 #include <sys/time.h>
62
63 #include <net/if.h>
64 #include <net/if_dl.h>
65 #include <net/if_types.h>
66 #include <net/if_media.h>
67 #include <net/if_ether.h>
68 #include <net/bpf.h>
69
70 #include <dev/mii/mii.h>
71 #include <dev/mii/miivar.h>
72
73 #ifdef INET
74 #include <netinet/in.h>
75 #include <netinet/in_systm.h>
76 #include <netinet/in_var.h>
77 #include <netinet/ip.h>
78 #include <netinet/if_inarp.h>
79 #endif
80
81 #include <dev/cadence/cemacreg.h>
82 #include <dev/cadence/if_cemacvar.h>
83
84 #ifndef CEMAC_WATCHDOG_TIMEOUT
85 #define CEMAC_WATCHDOG_TIMEOUT 5
86 #endif
87 static int cemac_watchdog_timeout = CEMAC_WATCHDOG_TIMEOUT;
88
89 #define DEFAULT_MDCDIV 32
90
91 #define CEMAC_READ(x) \
92 bus_space_read_4(sc->sc_iot, sc->sc_ioh, (x))
93 #define CEMAC_WRITE(x, y) \
94 bus_space_write_4(sc->sc_iot, sc->sc_ioh, (x), (y))
95 #define CEMAC_GEM_WRITE(x, y) \
96 do { \
97 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) \
98 bus_space_write_4(sc->sc_iot, sc->sc_ioh, (GEM_##x), (y)); \
99 else \
100 bus_space_write_4(sc->sc_iot, sc->sc_ioh, (ETH_##x), (y)); \
101 } while(0)
102
103 static void cemac_init(struct cemac_softc *);
104 static int cemac_gctx(struct cemac_softc *);
105 static int cemac_mediachange(struct ifnet *);
106 static void cemac_mediastatus(struct ifnet *, struct ifmediareq *);
107 static int cemac_mii_readreg(device_t, int, int, uint16_t *);
108 static int cemac_mii_writereg(device_t, int, int, uint16_t);
109 static void cemac_statchg(struct ifnet *);
110 static void cemac_tick(void *);
111 static int cemac_ifioctl(struct ifnet *, u_long, void *);
112 static void cemac_ifstart(struct ifnet *);
113 static void cemac_ifstart_locked(struct ifnet *);
114 static void cemac_ifwatchdog(struct ifnet *);
115 static int cemac_ifinit(struct ifnet *);
116 static void cemac_ifstop(struct ifnet *, int);
117 static void cemac_setaddr(struct ifnet *);
118
119 #ifdef CEMAC_DEBUG
120 int cemac_debug = CEMAC_DEBUG;
121 #define DPRINTFN(n, fmt) if (cemac_debug >= (n)) printf fmt
122 #else
123 #define DPRINTFN(n, fmt)
124 #endif
125
126 /*
127 * Perform an interface watchdog reset.
128 */
129 static void
130 cemac_handle_reset_work(struct work *work, void *arg)
131 {
132 struct cemac_softc * const sc = arg;
133 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
134
135 printf("%s: watchdog timeout -- resetting\n", ifp->if_xname);
136
137 /* Don't want ioctl operations to happen */
138 IFNET_LOCK(ifp);
139
140 /* reset the interface. */
141 cemac_ifinit(ifp);
142
143 IFNET_UNLOCK(ifp);
144
145 /*
146 * There are still some upper layer processing which call
147 * ifp->if_start(). e.g. ALTQ or one CPU system
148 */
149 /* Try to get more packets going. */
150 ifp->if_start(ifp);
151
152 atomic_store_relaxed(&sc->sc_reset_pending, 0);
153 }
154
155
156 void
157 cemac_attach_common(struct cemac_softc *sc)
158 {
159 uint32_t u;
160
161 aprint_naive("\n");
162 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
163 aprint_normal(": Cadence Gigabit Ethernet Controller\n");
164 else
165 aprint_normal(": Cadence Ethernet Controller\n");
166
167 /* configure emac: */
168 CEMAC_WRITE(ETH_CTL, 0); // disable everything
169 CEMAC_WRITE(ETH_IDR, -1); // disable interrupts
170 CEMAC_WRITE(ETH_RBQP, 0); // clear receive
171 CEMAC_WRITE(ETH_TBQP, 0); // clear transmit
172 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
173 CEMAC_WRITE(ETH_CFG,
174 GEM_CFG_CLK_64 | GEM_CFG_GEN | ETH_CFG_SPD | ETH_CFG_FD);
175 else
176 CEMAC_WRITE(ETH_CFG,
177 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
178 //CEMAC_WRITE(ETH_TCR, 0); // send nothing
179 //(void)CEMAC_READ(ETH_ISR);
180 u = CEMAC_READ(ETH_TSR);
181 CEMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
182 | ETH_TSR_IDLE | ETH_TSR_RLE
183 | ETH_TSR_COL | ETH_TSR_OVR)));
184 u = CEMAC_READ(ETH_RSR);
185 CEMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
186
187 /* Fetch the Ethernet address from property if set. */
188 prop_dictionary_t prop = device_properties(sc->sc_dev);
189 prop_data_t enaddr = prop_dictionary_get(prop, "mac-address");
190
191 if (enaddr != NULL) {
192 KASSERT(prop_object_type(enaddr) == PROP_TYPE_DATA);
193 KASSERT(prop_data_size(enaddr) == ETHER_ADDR_LEN);
194 memcpy(sc->sc_enaddr, prop_data_value(enaddr),
195 ETHER_ADDR_LEN);
196 } else {
197 static const uint8_t hardcoded[ETHER_ADDR_LEN] = {
198 0x00, 0x0d, 0x10, 0x81, 0x0c, 0x94
199 };
200 memcpy(sc->sc_enaddr, hardcoded, ETHER_ADDR_LEN);
201 }
202
203 cemac_init(sc);
204 }
205
206 static int
207 cemac_gctx(struct cemac_softc *sc)
208 {
209 uint32_t tsr;
210
211 tsr = CEMAC_READ(ETH_TSR);
212 if (!ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
213 // no space left
214 if (!(tsr & ETH_TSR_BNQ))
215 return 0;
216 } else {
217 if (tsr & GEM_TSR_TXGO)
218 return 0;
219 }
220 CEMAC_WRITE(ETH_TSR, tsr);
221
222 // free sent frames
223 while (sc->txqc > (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM) ? 0 :
224 (tsr & ETH_TSR_IDLE ? 0 : 1))) {
225 int bi = sc->txqi % TX_QLEN;
226
227 DPRINTFN(3,("%s: TDSC[%i].Addr 0x%08x\n",
228 __FUNCTION__, bi, sc->TDSC[bi].Addr));
229 DPRINTFN(3,("%s: TDSC[%i].Info 0x%08x\n",
230 __FUNCTION__, bi, sc->TDSC[bi].Info));
231
232 bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
233 sc->txq[bi].m->m_pkthdr.len, BUS_DMASYNC_POSTWRITE);
234 bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
235 m_freem(sc->txq[bi].m);
236 DPRINTFN(2,("%s: freed idx #%i mbuf %p (txqc=%i)\n",
237 __FUNCTION__, bi, sc->txq[bi].m, sc->txqc));
238 sc->txq[bi].m = NULL;
239 sc->txqi = (bi + 1) % TX_QLEN;
240 sc->txqc--;
241 }
242
243 // mark we're free
244 if (sc->sc_txbusy) {
245 sc->sc_txbusy = false;
246 /* Disable transmit-buffer-free interrupt */
247 /*CEMAC_WRITE(ETH_IDR, ETH_ISR_TBRE);*/
248 }
249
250 return 1;
251 }
252
253 int
254 cemac_intr(void *arg)
255 {
256 struct cemac_softc * const sc = arg;
257 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
258 uint32_t imr, isr, ctl;
259 #ifdef CEMAC_DEBUG
260 uint32_t rsr;
261 #endif
262 int bi;
263
264 mutex_enter(sc->sc_intr_lock);
265 if (sc->sc_stopping) {
266 mutex_exit(sc->sc_intr_lock);
267 return 0;
268 }
269
270 imr = ~CEMAC_READ(ETH_IMR);
271 if (!(imr & (ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE |
272 ETH_ISR_RBNA | ETH_ISR_ROVR | ETH_ISR_TCOM))) {
273 // interrupt not enabled, can't be us
274 mutex_exit(sc->sc_intr_lock);
275 return 0;
276 }
277
278 isr = CEMAC_READ(ETH_ISR);
279 CEMAC_WRITE(ETH_ISR, isr);
280 isr &= imr;
281
282 if (isr == 0) {
283 mutex_exit(sc->sc_intr_lock);
284 return 0;
285 }
286
287 #ifdef CEMAC_DEBUG
288 rsr = CEMAC_READ(ETH_RSR); // get receive status register
289 #endif
290 DPRINTFN(2, ("%s: isr=0x%08X rsr=0x%08X imr=0x%08X\n", __FUNCTION__,
291 isr, rsr, imr));
292
293 net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
294 // out of receive buffers
295 if (isr & ETH_ISR_RBNA) {
296 // clear interrupt
297 CEMAC_WRITE(ETH_RSR, ETH_RSR_BNA);
298
299 ctl = CEMAC_READ(ETH_CTL);
300 // disable receiver
301 CEMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE);
302 // clear BNA bit
303 CEMAC_WRITE(ETH_RSR, ETH_RSR_BNA);
304 // re-enable receiver
305 CEMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE);
306
307 if_statinc_ref(ifp, nsr, if_ierrors);
308 if_statinc_ref(ifp, nsr, if_ipackets);
309 DPRINTFN(1,("%s: out of receive buffers\n", __FUNCTION__));
310 }
311 if (isr & ETH_ISR_ROVR) {
312 // clear interrupt
313 CEMAC_WRITE(ETH_RSR, ETH_RSR_OVR);
314 if_statinc_ref(ifp, nsr, if_ierrors);
315 if_statinc_ref(ifp, nsr, if_ipackets);
316 DPRINTFN(1,("%s: receive overrun\n", __FUNCTION__));
317 }
318
319 // packet has been received!
320 if (isr & ETH_ISR_RCOM) {
321 uint32_t nfo;
322 DPRINTFN(2,("#2 RDSC[%i].INFO=0x%08X\n", sc->rxqi % RX_QLEN,
323 sc->RDSC[sc->rxqi % RX_QLEN].Info));
324 while (sc->RDSC[(bi = sc->rxqi % RX_QLEN)].Addr & ETH_RDSC_F_USED) {
325 int fl, csum;
326 struct mbuf *m;
327
328 nfo = sc->RDSC[bi].Info;
329 fl = (nfo & ETH_RDSC_I_LEN) - 4;
330 DPRINTFN(2,("## nfo=0x%08X\n", nfo));
331
332 MGETHDR(m, M_DONTWAIT, MT_DATA);
333 if (m != NULL)
334 MCLGET(m, M_DONTWAIT);
335 if (m != NULL && (m->m_flags & M_EXT)) {
336 bus_dmamap_sync(sc->sc_dmat,
337 sc->rxq[bi].m_dmamap, 0, MCLBYTES,
338 BUS_DMASYNC_POSTREAD);
339 bus_dmamap_unload(sc->sc_dmat,
340 sc->rxq[bi].m_dmamap);
341 m_set_rcvif(sc->rxq[bi].m, ifp);
342 sc->rxq[bi].m->m_pkthdr.len =
343 sc->rxq[bi].m->m_len = fl;
344 switch (nfo & ETH_RDSC_I_CHKSUM) {
345 case ETH_RDSC_I_CHKSUM_IP:
346 csum = M_CSUM_IPv4;
347 break;
348 case ETH_RDSC_I_CHKSUM_UDP:
349 csum = M_CSUM_IPv4 | M_CSUM_UDPv4 |
350 M_CSUM_UDPv6;
351 break;
352 case ETH_RDSC_I_CHKSUM_TCP:
353 csum = M_CSUM_IPv4 | M_CSUM_TCPv4 |
354 M_CSUM_TCPv6;
355 break;
356 default:
357 csum = 0;
358 break;
359 }
360 sc->rxq[bi].m->m_pkthdr.csum_flags = csum;
361 DPRINTFN(2,("received %u bytes packet\n", fl));
362 if_percpuq_enqueue(ifp->if_percpuq,
363 sc->rxq[bi].m);
364 if (mtod(m, intptr_t) & 3)
365 m_adj(m, mtod(m, intptr_t) & 3);
366 sc->rxq[bi].m = m;
367 bus_dmamap_load(sc->sc_dmat,
368 sc->rxq[bi].m_dmamap, m->m_ext.ext_buf,
369 MCLBYTES, NULL, BUS_DMA_NOWAIT);
370 bus_dmamap_sync(sc->sc_dmat,
371 sc->rxq[bi].m_dmamap, 0, MCLBYTES,
372 BUS_DMASYNC_PREREAD);
373 sc->RDSC[bi].Info = 0;
374 sc->RDSC[bi].Addr =
375 sc->rxq[bi].m_dmamap->dm_segs[0].ds_addr
376 | (bi == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
377 } else {
378 /* Drop packets until we can get replacement
379 * empty mbufs for the RXDQ.
380 */
381 m_freem(m);
382 if_statinc_ref(ifp, nsr, if_ierrors);
383 }
384 sc->rxqi++;
385 }
386 }
387
388 IF_STAT_PUTREF(ifp);
389
390 if (cemac_gctx(sc) > 0)
391 if_schedule_deferred_start(ifp);
392 #if 0 // reloop
393 irq = CEMAC_READ(IntStsC);
394 if ((irq & (IntSts_RxSQ | IntSts_ECI)) != 0)
395 goto begin;
396 #endif
397
398 mutex_exit(sc->sc_intr_lock);
399
400 return 1;
401 }
402
403
404 static int
405 cemac_ifflags_cb(struct ethercom *ec)
406 {
407 struct ifnet * const ifp = &ec->ec_if;
408 struct cemac_softc * const sc = ifp->if_softc;
409 int ret = 0;
410
411 KASSERT(IFNET_LOCKED(ifp));
412 mutex_enter(sc->sc_mcast_lock);
413
414 u_short change = ifp->if_flags ^ sc->sc_if_flags;
415 sc->sc_if_flags = ifp->if_flags;
416
417 if ((change & ~(IFF_CANTCHANGE | IFF_DEBUG)) != 0) {
418 ret = ENETRESET;
419 } else if ((change & IFF_PROMISC) != 0) {
420 if ((sc->sc_if_flags & IFF_RUNNING) != 0)
421 cemac_setaddr(ifp);
422 }
423 mutex_exit(sc->sc_mcast_lock);
424
425 return ret;
426 }
427
428 static void
429 cemac_init(struct cemac_softc *sc)
430 {
431 bus_dma_segment_t segs;
432 int rsegs, err, i;
433 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
434 struct mii_data * const mii = &sc->sc_mii;
435 uint32_t u;
436 #if 0
437 int mdcdiv = DEFAULT_MDCDIV;
438 #endif
439
440 callout_init(&sc->cemac_tick_ch, CALLOUT_MPSAFE);
441 callout_setfunc(&sc->cemac_tick_ch, cemac_tick, sc);
442
443 // ok...
444 CEMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything
445 CEMAC_WRITE(ETH_IDR, -1); // disable interrupts
446 CEMAC_WRITE(ETH_RBQP, 0); // clear receive
447 CEMAC_WRITE(ETH_TBQP, 0); // clear transmit
448 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
449 CEMAC_WRITE(ETH_CFG,
450 GEM_CFG_CLK_64 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
451 else
452 CEMAC_WRITE(ETH_CFG,
453 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
454 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
455 CEMAC_WRITE(GEM_DMA_CFG,
456 __SHIFTIN((MCLBYTES + 63) / 64, GEM_DMA_CFG_RX_BUF_SIZE) |
457 __SHIFTIN(3, GEM_DMA_CFG_RX_PKTBUF_MEMSZ_SEL) |
458 GEM_DMA_CFG_TX_PKTBUF_MEMSZ_SEL |
459 __SHIFTIN(16, GEM_DMA_CFG_AHB_FIXED_BURST_LEN) |
460 GEM_DMA_CFG_DISC_WHEN_NO_AHB);
461 }
462 // CEMAC_WRITE(ETH_TCR, 0); // send nothing
463 // (void)CEMAC_READ(ETH_ISR);
464 u = CEMAC_READ(ETH_TSR);
465 CEMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
466 | ETH_TSR_IDLE | ETH_TSR_RLE
467 | ETH_TSR_COL | ETH_TSR_OVR)));
468 u = CEMAC_READ(ETH_RSR);
469 CEMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
470
471 #if 0
472 if (device_cfdata(sc->sc_dev)->cf_flags)
473 mdcdiv = device_cfdata(sc->sc_dev)->cf_flags;
474 #endif
475 /* set ethernet address */
476 CEMAC_GEM_WRITE(SA1L, (sc->sc_enaddr[3] << 24)
477 | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
478 | (sc->sc_enaddr[0]));
479 CEMAC_GEM_WRITE(SA1H, (sc->sc_enaddr[5] << 8)
480 | (sc->sc_enaddr[4]));
481 CEMAC_GEM_WRITE(SA2L, 0);
482 CEMAC_GEM_WRITE(SA2H, 0);
483 CEMAC_GEM_WRITE(SA3L, 0);
484 CEMAC_GEM_WRITE(SA3H, 0);
485 CEMAC_GEM_WRITE(SA4L, 0);
486 CEMAC_GEM_WRITE(SA4H, 0);
487
488 char wqname[MAXCOMLEN];
489 snprintf(wqname, sizeof(wqname), "%sReset", device_xname(sc->sc_dev));
490 int error = workqueue_create(&sc->sc_reset_wq, wqname,
491 cemac_handle_reset_work, sc, PRI_NONE, IPL_SOFTCLOCK,
492 WQ_MPSAFE);
493 if (error) {
494 aprint_error_dev(sc->sc_dev,
495 "unable to create reset workqueue\n");
496 return;
497 }
498
499 /* Allocate memory for receive queue descriptors */
500 sc->rbqlen = roundup(ETH_DSC_SIZE * (RX_QLEN + 1) * 2, PAGE_SIZE);
501 DPRINTFN(1,("%s: rbqlen=%i\n", __FUNCTION__, sc->rbqlen));
502
503 // see EMAC errata why forced to 16384 byte boundary
504 err = bus_dmamem_alloc(sc->sc_dmat, sc->rbqlen, 0,
505 MAX(16384, PAGE_SIZE), &segs, 1, &rsegs, BUS_DMA_WAITOK);
506 if (err == 0) {
507 DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__));
508 err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->rbqlen,
509 &sc->rbqpage, (BUS_DMA_WAITOK | BUS_DMA_COHERENT));
510 }
511 if (err == 0) {
512 DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__));
513 err = bus_dmamap_create(sc->sc_dmat, sc->rbqlen, 1,
514 sc->rbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK,
515 &sc->rbqpage_dmamap);
516 }
517 if (err == 0) {
518 DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__));
519 err = bus_dmamap_load(sc->sc_dmat, sc->rbqpage_dmamap,
520 sc->rbqpage, sc->rbqlen, NULL, BUS_DMA_WAITOK);
521 }
522 if (err != 0)
523 panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev));
524
525 sc->rbqpage_dsaddr = sc->rbqpage_dmamap->dm_segs[0].ds_addr;
526 memset(sc->rbqpage, 0, sc->rbqlen);
527
528 /* Allocate memory for transmit queue descriptors */
529 sc->tbqlen = roundup(ETH_DSC_SIZE * (TX_QLEN + 1) * 2, PAGE_SIZE);
530 DPRINTFN(1,("%s: tbqlen=%i\n", __FUNCTION__, sc->tbqlen));
531
532 // see EMAC errata why forced to 16384 byte boundary
533 err = bus_dmamem_alloc(sc->sc_dmat, sc->tbqlen, 0,
534 MAX(16384, PAGE_SIZE), &segs, 1, &rsegs, BUS_DMA_WAITOK);
535 if (err == 0) {
536 DPRINTFN(1,("%s: -> bus_dmamem_map\n", __FUNCTION__));
537 err = bus_dmamem_map(sc->sc_dmat, &segs, 1, sc->tbqlen,
538 &sc->tbqpage, (BUS_DMA_WAITOK | BUS_DMA_COHERENT));
539 }
540 if (err == 0) {
541 DPRINTFN(1,("%s: -> bus_dmamap_create\n", __FUNCTION__));
542 err = bus_dmamap_create(sc->sc_dmat, sc->tbqlen, 1,
543 sc->tbqlen, MAX(16384, PAGE_SIZE), BUS_DMA_WAITOK,
544 &sc->tbqpage_dmamap);
545 }
546 if (err == 0) {
547 DPRINTFN(1,("%s: -> bus_dmamap_load\n", __FUNCTION__));
548 err = bus_dmamap_load(sc->sc_dmat, sc->tbqpage_dmamap,
549 sc->tbqpage, sc->tbqlen, NULL, BUS_DMA_WAITOK);
550 }
551 if (err != 0)
552 panic("%s: Cannot get DMA memory", device_xname(sc->sc_dev));
553
554 sc->tbqpage_dsaddr = sc->tbqpage_dmamap->dm_segs[0].ds_addr;
555 memset(sc->tbqpage, 0, sc->tbqlen);
556
557 /* Set up pointers to start of each queue in kernel addr space.
558 * Each descriptor queue or status queue entry uses 2 words
559 */
560 sc->RDSC = (void *)sc->rbqpage;
561 sc->TDSC = (void *)sc->tbqpage;
562
563 /* init TX queue */
564 for (i = 0; i < TX_QLEN; i++) {
565 sc->TDSC[i].Addr = 0;
566 sc->TDSC[i].Info = ETH_TDSC_I_USED |
567 (i == (TX_QLEN - 1) ? ETH_TDSC_I_WRAP : 0);
568 }
569
570 /* Populate the RXQ with mbufs */
571 sc->rxqi = 0;
572 for (i = 0; i < RX_QLEN; i++) {
573 struct mbuf *m;
574
575 err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES,
576 PAGE_SIZE, BUS_DMA_WAITOK, &sc->rxq[i].m_dmamap);
577 if (err) {
578 panic("%s: dmamap_create failed: %i\n", __FUNCTION__,
579 err);
580 }
581 MGETHDR(m, M_WAIT, MT_DATA);
582 MCLGET(m, M_WAIT);
583 sc->rxq[i].m = m;
584 if (mtod(m, intptr_t) & 3) {
585 m_adj(m, mtod(m, intptr_t) & 3);
586 }
587 err = bus_dmamap_load(sc->sc_dmat, sc->rxq[i].m_dmamap,
588 m->m_ext.ext_buf, MCLBYTES, NULL,
589 BUS_DMA_WAITOK);
590 if (err) {
591 panic("%s: dmamap_load failed: %i\n", __FUNCTION__, err);
592 }
593 sc->RDSC[i].Addr = sc->rxq[i].m_dmamap->dm_segs[0].ds_addr
594 | (i == (RX_QLEN-1) ? ETH_RDSC_F_WRAP : 0);
595 sc->RDSC[i].Info = 0;
596 bus_dmamap_sync(sc->sc_dmat, sc->rxq[i].m_dmamap, 0,
597 MCLBYTES, BUS_DMASYNC_PREREAD);
598 }
599
600 /* prepare transmit queue */
601 for (i = 0; i < TX_QLEN; i++) {
602 err = bus_dmamap_create(sc->sc_dmat, MCLBYTES, 1, MCLBYTES, 0,
603 (BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW),
604 &sc->txq[i].m_dmamap);
605 if (err)
606 panic("ARGH #1");
607 sc->txq[i].m = NULL;
608 }
609
610 /* Program each queue's start addr, cur addr, and len registers
611 * with the physical addresses.
612 */
613 CEMAC_WRITE(ETH_RBQP, (uint32_t)sc->rbqpage_dsaddr);
614 CEMAC_WRITE(ETH_TBQP, (uint32_t)sc->tbqpage_dsaddr);
615
616 sc->sc_mcast_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_SOFTNET);
617 sc->sc_intr_lock = mutex_obj_alloc(MUTEX_DEFAULT, IPL_NET);
618
619 /* Divide HCLK by 32 for MDC clock */
620 sc->sc_ethercom.ec_mii = mii;
621 mii->mii_ifp = ifp;
622 mii->mii_readreg = cemac_mii_readreg;
623 mii->mii_writereg = cemac_mii_writereg;
624 mii->mii_statchg = cemac_statchg;
625 ifmedia_init(&mii->mii_media, IFM_IMASK, cemac_mediachange,
626 cemac_mediastatus);
627 mii_attach(sc->sc_dev, mii, 0xffffffff, sc->sc_phyno, MII_OFFSET_ANY, 0);
628 ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
629
630 #if 0
631 // enable / disable interrupts
632 CEMAC_WRITE(ETH_IDR, -1);
633 CEMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
634 | ETH_ISR_RBNA | ETH_ISR_ROVR | ETH_ISR_TCOM);
635 // (void)CEMAC_READ(ETH_ISR); // why
636
637 // enable transmitter / receiver
638 CEMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
639 | ETH_CTL_CSR | ETH_CTL_MPE);
640 #endif
641 /*
642 * We can support hardware checksumming.
643 */
644 ifp->if_capabilities |=
645 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
646 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
647 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx |
648 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_TCPv6_Rx |
649 IFCAP_CSUM_UDPv6_Tx | IFCAP_CSUM_UDPv6_Rx;
650
651 /*
652 * We can support 802.1Q VLAN-sized frames.
653 */
654 sc->sc_ethercom.ec_capabilities |= ETHERCAP_VLAN_MTU;
655
656 strcpy(ifp->if_xname, device_xname(sc->sc_dev));
657 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
658 ifp->if_extflags = IFEF_MPSAFE;
659 ifp->if_ioctl = cemac_ifioctl;
660 ifp->if_start = cemac_ifstart;
661 ifp->if_watchdog = cemac_ifwatchdog;
662 ifp->if_init = cemac_ifinit;
663 ifp->if_stop = cemac_ifstop;
664 ifp->if_softc = sc;
665 IFQ_SET_READY(&ifp->if_snd);
666 if_attach(ifp);
667 if_deferred_start_init(ifp, NULL);
668 ether_ifattach(ifp, (sc)->sc_enaddr);
669 ether_set_ifflags_cb(&sc->sc_ethercom, cemac_ifflags_cb);
670 }
671
672 static int
673 cemac_mediachange(struct ifnet *ifp)
674 {
675 if (ifp->if_flags & IFF_UP)
676 cemac_ifinit(ifp);
677 return 0;
678 }
679
680 static void
681 cemac_mediastatus(struct ifnet *ifp, struct ifmediareq *ifmr)
682 {
683 struct cemac_softc * const sc = ifp->if_softc;
684
685 mii_pollstat(&sc->sc_mii);
686 ifmr->ifm_active = sc->sc_mii.mii_media_active;
687 ifmr->ifm_status = sc->sc_mii.mii_media_status;
688 }
689
690
691 static int
692 cemac_mii_readreg(device_t self, int phy, int reg, uint16_t *val)
693 {
694 struct cemac_softc * const sc = device_private(self);
695
696 CEMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_RD
697 | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
698 | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
699 | ETH_MAN_CODE_IEEE802_3));
700 while (!(CEMAC_READ(ETH_SR) & ETH_SR_IDLE))
701 ;
702
703 *val = CEMAC_READ(ETH_MAN) & ETH_MAN_DATA;
704 return 0;
705 }
706
707 static int
708 cemac_mii_writereg(device_t self, int phy, int reg, uint16_t val)
709 {
710 struct cemac_softc * const sc = device_private(self);
711
712 CEMAC_WRITE(ETH_MAN, (ETH_MAN_HIGH | ETH_MAN_RW_WR
713 | ((phy << ETH_MAN_PHYA_SHIFT) & ETH_MAN_PHYA)
714 | ((reg << ETH_MAN_REGA_SHIFT) & ETH_MAN_REGA)
715 | ETH_MAN_CODE_IEEE802_3
716 | (val & ETH_MAN_DATA)));
717 while (!(CEMAC_READ(ETH_SR) & ETH_SR_IDLE))
718 ;
719
720 return 0;
721 }
722
723
724 static void
725 cemac_statchg(struct ifnet *ifp)
726 {
727 struct cemac_softc * const sc = ifp->if_softc;
728 struct mii_data *mii = &sc->sc_mii;
729 uint32_t reg;
730
731 /*
732 * We must keep the MAC and the PHY in sync as
733 * to the status of full-duplex!
734 */
735 reg = CEMAC_READ(ETH_CFG);
736 reg &= ~ETH_CFG_FD;
737 if (sc->sc_mii.mii_media_active & IFM_FDX)
738 reg |= ETH_CFG_FD;
739
740 reg &= ~ETH_CFG_SPD;
741 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
742 reg &= ~GEM_CFG_GEN;
743 switch (IFM_SUBTYPE(mii->mii_media_active)) {
744 case IFM_10_T:
745 break;
746 case IFM_100_TX:
747 reg |= ETH_CFG_SPD;
748 break;
749 case IFM_1000_T:
750 reg |= ETH_CFG_SPD | GEM_CFG_GEN;
751 break;
752 default:
753 break;
754 }
755 CEMAC_WRITE(ETH_CFG, reg);
756 }
757
758 static bool
759 cemac_watchdog_check(struct cemac_softc * const sc)
760 {
761
762 KASSERT(mutex_owned(sc->sc_intr_lock));
763
764 if (!sc->sc_tx_sending)
765 return true;
766
767 if (time_uptime - sc->sc_tx_lastsent <= cemac_watchdog_timeout)
768 return true;
769
770 return false;
771 }
772
773 static bool
774 cemac_watchdog_tick(struct ifnet *ifp)
775 {
776 struct cemac_softc * const sc = ifp->if_softc;
777
778 KASSERT(mutex_owned(sc->sc_intr_lock));
779
780 if (!sc->sc_trigger_reset && cemac_watchdog_check(sc))
781 return true;
782
783 if (atomic_swap_uint(&sc->sc_reset_pending, 1) == 0)
784 workqueue_enqueue(sc->sc_reset_wq, &sc->sc_reset_work, NULL);
785
786 return false;
787 }
788
789
790 static void
791 cemac_tick(void *arg)
792 {
793 struct cemac_softc * const sc = arg;
794 struct ifnet * const ifp = &sc->sc_ethercom.ec_if;
795
796 mutex_enter(sc->sc_intr_lock);
797 if (sc->sc_stopping) {
798 mutex_exit(sc->sc_intr_lock);
799 return;
800 }
801
802 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
803 if_statadd(ifp, if_collisions,
804 CEMAC_READ(GEM_SCOL) + CEMAC_READ(GEM_MCOL));
805 else
806 if_statadd(ifp, if_collisions,
807 CEMAC_READ(ETH_SCOL) + CEMAC_READ(ETH_MCOL));
808
809 /* These misses are ok, they will happen if the RAM/CPU can't keep up */
810 if (!ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
811 uint32_t misses = CEMAC_READ(ETH_DRFC);
812 if (misses > 0)
813 aprint_normal_ifnet(ifp, "%d rx misses\n", misses);
814 }
815
816 mii_tick(&sc->sc_mii);
817
818 const bool ok = cemac_watchdog_tick(ifp);
819 if (ok)
820 callout_schedule(&sc->cemac_tick_ch, hz);
821
822 mutex_exit(sc->sc_intr_lock);
823 }
824
825
826 static int
827 cemac_ifioctl(struct ifnet *ifp, u_long cmd, void *data)
828 {
829 struct cemac_softc * const sc = ifp->if_softc;
830 int error;
831
832 switch (cmd) {
833 case SIOCADDMULTI:
834 case SIOCDELMULTI:
835 break;
836 default:
837 KASSERT(IFNET_LOCKED(ifp));
838 }
839
840 const int s = splnet();
841 error = ether_ioctl(ifp, cmd, data);
842 splx(s);
843
844 if (error == ENETRESET) {
845 error = 0;
846
847 if (cmd == SIOCADDMULTI || cmd == SIOCDELMULTI) {
848 mutex_enter(sc->sc_mcast_lock);
849 if ((sc->sc_if_flags & IFF_RUNNING) != 0)
850 cemac_setaddr(ifp);
851
852 mutex_exit(sc->sc_mcast_lock);
853 }
854 }
855
856 return error;
857 }
858
859
860
861 static void
862 cemac_ifstart(struct ifnet *ifp)
863 {
864 struct cemac_softc * const sc = ifp->if_softc;
865 KASSERT(if_is_mpsafe(ifp));
866
867 mutex_enter(sc->sc_intr_lock);
868 if (!sc->sc_stopping) {
869 cemac_ifstart_locked(ifp);
870 }
871 mutex_exit(sc->sc_intr_lock);
872 }
873
874 static void
875 cemac_ifstart_locked(struct ifnet *ifp)
876 {
877 struct cemac_softc * const sc = ifp->if_softc;
878 struct mbuf *m;
879 bus_dma_segment_t *segs;
880 int bi, err, nsegs;
881
882 KASSERT(mutex_owned(sc->sc_intr_lock));
883
884 start:
885 if (cemac_gctx(sc) == 0) {
886 /* Enable transmit-buffer-free interrupt */
887 CEMAC_WRITE(ETH_IER, ETH_ISR_TBRE);
888 sc->sc_txbusy = true;
889 return;
890 }
891
892 IFQ_POLL(&ifp->if_snd, m);
893 if (m == NULL) {
894 return;
895 }
896
897 bi = (sc->txqi + sc->txqc) % TX_QLEN;
898 if ((err = bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
899 BUS_DMA_NOWAIT)) ||
900 sc->txq[bi].m_dmamap->dm_segs[0].ds_addr & 0x3 ||
901 sc->txq[bi].m_dmamap->dm_nsegs > 1) {
902 /* Copy entire mbuf chain to new single */
903 struct mbuf *mn;
904
905 if (err == 0)
906 bus_dmamap_unload(sc->sc_dmat, sc->txq[bi].m_dmamap);
907
908 MGETHDR(mn, M_DONTWAIT, MT_DATA);
909 if (mn == NULL)
910 return;
911 if (m->m_pkthdr.len > MHLEN) {
912 MCLGET(mn, M_DONTWAIT);
913 if ((mn->m_flags & M_EXT) == 0) {
914 m_freem(mn);
915 return;
916 }
917 }
918 m_copydata(m, 0, m->m_pkthdr.len, mtod(mn, void *));
919 mn->m_pkthdr.len = mn->m_len = m->m_pkthdr.len;
920 IFQ_DEQUEUE(&ifp->if_snd, m);
921 m_freem(m);
922 m = mn;
923 bus_dmamap_load_mbuf(sc->sc_dmat, sc->txq[bi].m_dmamap, m,
924 BUS_DMA_NOWAIT);
925 } else {
926 IFQ_DEQUEUE(&ifp->if_snd, m);
927 }
928
929 bpf_mtap(ifp, m, BPF_D_OUT);
930
931 nsegs = sc->txq[bi].m_dmamap->dm_nsegs;
932 segs = sc->txq[bi].m_dmamap->dm_segs;
933 if (nsegs > 1)
934 panic("#### ARGH #2");
935
936 sc->txq[bi].m = m;
937 sc->txqc++;
938
939 DPRINTFN(2,("%s: start sending idx #%i mbuf %p (txqc=%i, phys %p), "
940 "len=%u\n", __FUNCTION__, bi, sc->txq[bi].m, sc->txqc,
941 (void *)segs->ds_addr, (unsigned)m->m_pkthdr.len));
942 #ifdef DIAGNOSTIC
943 if (sc->txqc > TX_QLEN)
944 panic("%s: txqc %i > %i", __FUNCTION__, sc->txqc, TX_QLEN);
945 #endif
946
947 bus_dmamap_sync(sc->sc_dmat, sc->txq[bi].m_dmamap, 0,
948 sc->txq[bi].m_dmamap->dm_mapsize, BUS_DMASYNC_PREWRITE);
949
950 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
951 sc->TDSC[bi].Addr = segs->ds_addr;
952 sc->TDSC[bi].Info =
953 __SHIFTIN(m->m_pkthdr.len, ETH_TDSC_I_LEN) |
954 ETH_TDSC_I_LAST_BUF |
955 (bi == (TX_QLEN - 1) ? ETH_TDSC_I_WRAP : 0);
956
957 DPRINTFN(3,("%s: TDSC[%i].Addr 0x%08x\n",
958 __FUNCTION__, bi, sc->TDSC[bi].Addr));
959 DPRINTFN(3,("%s: TDSC[%i].Info 0x%08x\n",
960 __FUNCTION__, bi, sc->TDSC[bi].Info));
961
962 uint32_t ctl = CEMAC_READ(ETH_CTL) | GEM_CTL_STARTTX;
963 CEMAC_WRITE(ETH_CTL, ctl);
964 DPRINTFN(3,("%s: ETH_CTL 0x%08x\n", __FUNCTION__,
965 CEMAC_READ(ETH_CTL)));
966 } else {
967 CEMAC_WRITE(ETH_TAR, segs->ds_addr);
968 CEMAC_WRITE(ETH_TCR, m->m_pkthdr.len);
969 }
970 sc->sc_tx_lastsent = time_uptime;
971
972 if (IFQ_IS_EMPTY(&ifp->if_snd) == 0)
973 goto start;
974
975 return;
976 }
977
978 static void
979 cemac_ifwatchdog(struct ifnet *ifp)
980 {
981 struct cemac_softc * const sc = ifp->if_softc;
982
983 if ((ifp->if_flags & IFF_RUNNING) == 0)
984 return;
985 aprint_error_ifnet(ifp, "device timeout, CTL = 0x%08x, CFG = 0x%08x\n",
986 CEMAC_READ(ETH_CTL), CEMAC_READ(ETH_CFG));
987 }
988
989 static int
990 cemac_ifinit(struct ifnet *ifp)
991 {
992 struct cemac_softc * const sc = ifp->if_softc;
993 uint32_t dma, cfg;
994
995 ASSERT_SLEEPABLE();
996 KASSERT(IFNET_LOCKED(ifp));
997
998 /* Cancel pending I/O and flush buffers. */
999 cemac_ifstop(ifp, 0);
1000
1001 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM)) {
1002
1003 if (ifp->if_capenable &
1004 (IFCAP_CSUM_IPv4_Tx |
1005 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_UDPv4_Tx |
1006 IFCAP_CSUM_TCPv6_Tx | IFCAP_CSUM_UDPv6_Tx)) {
1007 dma = CEMAC_READ(GEM_DMA_CFG);
1008 dma |= GEM_DMA_CFG_CHKSUM_GEN_OFFLOAD_EN;
1009 CEMAC_WRITE(GEM_DMA_CFG, dma);
1010 }
1011 if (ifp->if_capenable &
1012 (IFCAP_CSUM_IPv4_Rx |
1013 IFCAP_CSUM_TCPv4_Rx | IFCAP_CSUM_UDPv4_Rx |
1014 IFCAP_CSUM_TCPv6_Rx | IFCAP_CSUM_UDPv6_Rx)) {
1015 cfg = CEMAC_READ(ETH_CFG);
1016 cfg |= GEM_CFG_RXCOEN;
1017 CEMAC_WRITE(ETH_CFG, cfg);
1018 }
1019 }
1020
1021 // enable interrupts
1022 CEMAC_WRITE(ETH_IDR, -1);
1023 CEMAC_WRITE(ETH_IER, ETH_ISR_RCOM | ETH_ISR_TBRE | ETH_ISR_TIDLE
1024 | ETH_ISR_RBNA | ETH_ISR_ROVR | ETH_ISR_TCOM);
1025
1026 // enable transmitter / receiver
1027 CEMAC_WRITE(ETH_CTL, ETH_CTL_TE | ETH_CTL_RE | ETH_CTL_ISR
1028 | ETH_CTL_CSR | ETH_CTL_MPE);
1029
1030 mii_mediachg(&sc->sc_mii);
1031 callout_reset(&sc->cemac_tick_ch, hz, cemac_tick, sc);
1032 ifp->if_flags |= IFF_RUNNING;
1033
1034 mutex_enter(sc->sc_intr_lock);
1035 sc->sc_stopping = false;
1036 mutex_exit(sc->sc_intr_lock);
1037
1038 return 0;
1039 }
1040
1041 static void
1042 cemac_ifstop(struct ifnet *ifp, int disable)
1043 {
1044 // uint32_t u;
1045 struct cemac_softc * const sc = ifp->if_softc;
1046
1047 ASSERT_SLEEPABLE();
1048 KASSERT(IFNET_LOCKED(ifp));
1049
1050 ifp->if_flags &= ~IFF_RUNNING;
1051
1052 mutex_enter(sc->sc_mcast_lock);
1053 sc->sc_if_flags = ifp->if_flags;
1054 mutex_exit(sc->sc_mcast_lock);
1055
1056 mutex_enter(sc->sc_intr_lock);
1057 sc->sc_stopping = true;
1058 mutex_exit(sc->sc_intr_lock);
1059
1060 #if 0
1061 CEMAC_WRITE(ETH_CTL, ETH_CTL_MPE); // disable everything
1062 CEMAC_WRITE(ETH_IDR, -1); // disable interrupts
1063 // CEMAC_WRITE(ETH_RBQP, 0); // clear receive
1064 if (ISSET(sc->cemac_flags, CEMAC_FLAG_GEM))
1065 CEMAC_WRITE(ETH_CFG,
1066 GEM_CFG_CLK_64 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
1067 else
1068 CEMAC_WRITE(ETH_CFG,
1069 ETH_CFG_CLK_32 | ETH_CFG_SPD | ETH_CFG_FD | ETH_CFG_BIG);
1070 // CEMAC_WRITE(ETH_TCR, 0); // send nothing
1071 // (void)CEMAC_READ(ETH_ISR);
1072 u = CEMAC_READ(ETH_TSR);
1073 CEMAC_WRITE(ETH_TSR, (u & (ETH_TSR_UND | ETH_TSR_COMP | ETH_TSR_BNQ
1074 | ETH_TSR_IDLE | ETH_TSR_RLE
1075 | ETH_TSR_COL | ETH_TSR_OVR)));
1076 u = CEMAC_READ(ETH_RSR);
1077 CEMAC_WRITE(ETH_RSR, (u & (ETH_RSR_OVR | ETH_RSR_REC | ETH_RSR_BNA)));
1078 #endif
1079 callout_halt(&sc->cemac_tick_ch, NULL);
1080
1081 /* Down the MII. */
1082 mii_down(&sc->sc_mii);
1083
1084 ifp->if_flags &= ~IFF_RUNNING;
1085 sc->sc_txbusy = false;
1086 sc->sc_mii.mii_media_status &= ~IFM_ACTIVE;
1087 }
1088
1089 static void
1090 cemac_setaddr(struct ifnet *ifp)
1091 {
1092 struct cemac_softc * const sc = ifp->if_softc;
1093 struct ethercom *ec = &sc->sc_ethercom;
1094 struct ether_multi *enm;
1095 struct ether_multistep step;
1096 uint8_t ias[3][ETHER_ADDR_LEN];
1097 uint32_t h, nma = 0, hashes[2] = { 0, 0 };
1098 uint32_t ctl = CEMAC_READ(ETH_CTL);
1099 uint32_t cfg = CEMAC_READ(ETH_CFG);
1100
1101 KASSERT(mutex_owned(sc->sc_mcast_lock));
1102
1103 /* disable receiver temporarily */
1104 CEMAC_WRITE(ETH_CTL, ctl & ~ETH_CTL_RE);
1105
1106 cfg &= ~(ETH_CFG_MTI | ETH_CFG_UNI | ETH_CFG_CAF | ETH_CFG_UNI);
1107
1108 if (sc->sc_if_flags & IFF_PROMISC) {
1109 cfg |= ETH_CFG_CAF;
1110 } else {
1111 cfg &= ~ETH_CFG_CAF;
1112 }
1113
1114 // ETH_CFG_BIG?
1115
1116 ETHER_LOCK(ec);
1117 ec->ec_flags &= ~ETHER_F_ALLMULTI;
1118
1119 ETHER_FIRST_MULTI(step, ec, enm);
1120 while (enm != NULL) {
1121 if (memcmp(enm->enm_addrlo, enm->enm_addrhi, ETHER_ADDR_LEN)) {
1122 /*
1123 * We must listen to a range of multicast addresses.
1124 * For now, just accept all multicasts, rather than
1125 * trying to set only those filter bits needed to match
1126 * the range. (At this time, the only use of address
1127 * ranges is for IP multicast routing, for which the
1128 * range is big enough to require all bits set.)
1129 */
1130 cfg |= ETH_CFG_MTI;
1131 hashes[0] = 0xffffffffUL;
1132 hashes[1] = 0xffffffffUL;
1133 nma = 0;
1134 ec->ec_flags |= ETHER_F_ALLMULTI;
1135 break;
1136 }
1137
1138 if (nma < 3) {
1139 /* We can program 3 perfect address filters for mcast */
1140 memcpy(ias[nma], enm->enm_addrlo, ETHER_ADDR_LEN);
1141 } else {
1142 /*
1143 * XXX: Datasheet is not very clear here, I'm not sure
1144 * if I'm doing this right. --joff
1145 */
1146 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN);
1147
1148 /* Just want the 6 most-significant bits. */
1149 h = h >> 26;
1150 #if 0
1151 hashes[h / 32] |= (1 << (h % 32));
1152 #else
1153 hashes[0] = 0xffffffffUL;
1154 hashes[1] = 0xffffffffUL;
1155 #endif
1156 cfg |= ETH_CFG_MTI;
1157 }
1158 ETHER_NEXT_MULTI(step, enm);
1159 nma++;
1160 }
1161 ETHER_UNLOCK(ec);
1162
1163 // program...
1164 DPRINTFN(1,("%s: en0 %02x:%02x:%02x:%02x:%02x:%02x\n", __FUNCTION__,
1165 sc->sc_enaddr[0], sc->sc_enaddr[1], sc->sc_enaddr[2],
1166 sc->sc_enaddr[3], sc->sc_enaddr[4], sc->sc_enaddr[5]));
1167 CEMAC_GEM_WRITE(SA1L, (sc->sc_enaddr[3] << 24)
1168 | (sc->sc_enaddr[2] << 16) | (sc->sc_enaddr[1] << 8)
1169 | (sc->sc_enaddr[0]));
1170 CEMAC_GEM_WRITE(SA1H, (sc->sc_enaddr[5] << 8)
1171 | (sc->sc_enaddr[4]));
1172 if (nma > 0) {
1173 DPRINTFN(1,("%s: en1 %02x:%02x:%02x:%02x:%02x:%02x\n",
1174 __FUNCTION__,
1175 ias[0][0], ias[0][1], ias[0][2],
1176 ias[0][3], ias[0][4], ias[0][5]));
1177 CEMAC_WRITE(ETH_SA2L, (ias[0][3] << 24)
1178 | (ias[0][2] << 16) | (ias[0][1] << 8)
1179 | (ias[0][0]));
1180 CEMAC_WRITE(ETH_SA2H, (ias[0][4] << 8)
1181 | (ias[0][5]));
1182 }
1183 if (nma > 1) {
1184 DPRINTFN(1,("%s: en2 %02x:%02x:%02x:%02x:%02x:%02x\n",
1185 __FUNCTION__,
1186 ias[1][0], ias[1][1], ias[1][2],
1187 ias[1][3], ias[1][4], ias[1][5]));
1188 CEMAC_WRITE(ETH_SA3L, (ias[1][3] << 24)
1189 | (ias[1][2] << 16) | (ias[1][1] << 8)
1190 | (ias[1][0]));
1191 CEMAC_WRITE(ETH_SA3H, (ias[1][4] << 8)
1192 | (ias[1][5]));
1193 }
1194 if (nma > 2) {
1195 DPRINTFN(1,("%s: en3 %02x:%02x:%02x:%02x:%02x:%02x\n",
1196 __FUNCTION__,
1197 ias[2][0], ias[2][1], ias[2][2],
1198 ias[2][3], ias[2][4], ias[2][5]));
1199 CEMAC_WRITE(ETH_SA4L, (ias[2][3] << 24)
1200 | (ias[2][2] << 16) | (ias[2][1] << 8)
1201 | (ias[2][0]));
1202 CEMAC_WRITE(ETH_SA4H, (ias[2][4] << 8)
1203 | (ias[2][5]));
1204 }
1205 CEMAC_GEM_WRITE(HSH, hashes[0]);
1206 CEMAC_GEM_WRITE(HSL, hashes[1]);
1207 CEMAC_WRITE(ETH_CFG, cfg);
1208 CEMAC_WRITE(ETH_CTL, ctl | ETH_CTL_RE);
1209 }
1210