Home | History | Annotate | Line # | Download | only in fdt
      1  1.20   thorpej /* $NetBSD: cpufreq_dt.c,v 1.20 2025/09/06 21:24:05 thorpej Exp $ */
      2   1.1  jmcneill 
      3   1.1  jmcneill /*-
      4   1.1  jmcneill  * Copyright (c) 2015-2017 Jared McNeill <jmcneill (at) invisible.ca>
      5   1.1  jmcneill  * All rights reserved.
      6   1.1  jmcneill  *
      7   1.1  jmcneill  * Redistribution and use in source and binary forms, with or without
      8   1.1  jmcneill  * modification, are permitted provided that the following conditions
      9   1.1  jmcneill  * are met:
     10   1.1  jmcneill  * 1. Redistributions of source code must retain the above copyright
     11   1.1  jmcneill  *    notice, this list of conditions and the following disclaimer.
     12   1.1  jmcneill  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1  jmcneill  *    notice, this list of conditions and the following disclaimer in the
     14   1.1  jmcneill  *    documentation and/or other materials provided with the distribution.
     15   1.1  jmcneill  *
     16   1.1  jmcneill  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17   1.1  jmcneill  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18   1.1  jmcneill  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19   1.1  jmcneill  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20   1.1  jmcneill  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21   1.1  jmcneill  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22   1.1  jmcneill  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23   1.1  jmcneill  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24   1.1  jmcneill  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25   1.1  jmcneill  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26   1.1  jmcneill  * SUCH DAMAGE.
     27   1.1  jmcneill  */
     28   1.1  jmcneill 
     29   1.1  jmcneill #include <sys/cdefs.h>
     30  1.20   thorpej __KERNEL_RCSID(0, "$NetBSD: cpufreq_dt.c,v 1.20 2025/09/06 21:24:05 thorpej Exp $");
     31   1.1  jmcneill 
     32   1.1  jmcneill #include <sys/param.h>
     33   1.1  jmcneill #include <sys/systm.h>
     34   1.1  jmcneill #include <sys/device.h>
     35   1.1  jmcneill #include <sys/kmem.h>
     36   1.1  jmcneill #include <sys/bus.h>
     37   1.1  jmcneill #include <sys/atomic.h>
     38   1.1  jmcneill #include <sys/xcall.h>
     39   1.1  jmcneill #include <sys/sysctl.h>
     40   1.4  jmcneill #include <sys/queue.h>
     41   1.4  jmcneill #include <sys/once.h>
     42   1.9  jmcneill #include <sys/cpu.h>
     43   1.1  jmcneill 
     44   1.1  jmcneill #include <dev/fdt/fdtvar.h>
     45  1.20   thorpej #include <dev/fdt/fdt_opp.h>
     46   1.1  jmcneill 
     47   1.4  jmcneill struct cpufreq_dt_table {
     48   1.4  jmcneill 	int			phandle;
     49   1.4  jmcneill 	TAILQ_ENTRY(cpufreq_dt_table) next;
     50   1.4  jmcneill };
     51   1.4  jmcneill 
     52   1.4  jmcneill static TAILQ_HEAD(, cpufreq_dt_table) cpufreq_dt_tables =
     53   1.4  jmcneill     TAILQ_HEAD_INITIALIZER(cpufreq_dt_tables);
     54   1.4  jmcneill static kmutex_t cpufreq_dt_tables_lock;
     55   1.4  jmcneill 
     56   1.1  jmcneill struct cpufreq_dt_opp {
     57   1.4  jmcneill 	u_int			freq_khz;
     58   1.4  jmcneill 	u_int			voltage_uv;
     59   1.4  jmcneill 	u_int			latency_ns;
     60   1.1  jmcneill };
     61   1.1  jmcneill 
     62   1.1  jmcneill struct cpufreq_dt_softc {
     63   1.1  jmcneill 	device_t		sc_dev;
     64   1.1  jmcneill 	int			sc_phandle;
     65   1.1  jmcneill 	struct clk		*sc_clk;
     66   1.1  jmcneill 	struct fdtbus_regulator	*sc_supply;
     67   1.1  jmcneill 
     68   1.1  jmcneill 	struct cpufreq_dt_opp	*sc_opp;
     69   1.1  jmcneill 	ssize_t			sc_nopp;
     70   1.1  jmcneill 
     71   1.2  jmcneill 	u_int			sc_freq_target;
     72   1.2  jmcneill 	bool			sc_freq_throttle;
     73   1.2  jmcneill 
     74   1.1  jmcneill 	u_int			sc_busy;
     75   1.1  jmcneill 
     76   1.1  jmcneill 	char			*sc_freq_available;
     77   1.1  jmcneill 	int			sc_node_target;
     78   1.1  jmcneill 	int			sc_node_current;
     79   1.1  jmcneill 	int			sc_node_available;
     80   1.4  jmcneill 
     81   1.4  jmcneill 	struct cpufreq_dt_table	sc_table;
     82   1.1  jmcneill };
     83   1.1  jmcneill 
     84   1.1  jmcneill static void
     85   1.1  jmcneill cpufreq_dt_change_cb(void *arg1, void *arg2)
     86   1.1  jmcneill {
     87  1.14  jmcneill 	struct cpufreq_dt_softc * const sc = arg1;
     88   1.1  jmcneill 	struct cpu_info *ci = curcpu();
     89  1.14  jmcneill 
     90  1.19       ryo 	ci->ci_data.cpu_cc_freq = clk_get_rate(sc->sc_clk);
     91   1.1  jmcneill }
     92   1.1  jmcneill 
     93   1.1  jmcneill static int
     94   1.1  jmcneill cpufreq_dt_set_rate(struct cpufreq_dt_softc *sc, u_int freq_khz)
     95   1.1  jmcneill {
     96   1.1  jmcneill 	struct cpufreq_dt_opp *opp = NULL;
     97   1.1  jmcneill 	u_int old_rate, new_rate, old_uv, new_uv;
     98   1.2  jmcneill 	uint64_t xc;
     99   1.1  jmcneill 	int error;
    100   1.1  jmcneill 	ssize_t n;
    101   1.1  jmcneill 
    102   1.1  jmcneill 	for (n = 0; n < sc->sc_nopp; n++)
    103   1.1  jmcneill 		if (sc->sc_opp[n].freq_khz == freq_khz) {
    104   1.1  jmcneill 			opp = &sc->sc_opp[n];
    105   1.1  jmcneill 			break;
    106   1.1  jmcneill 		}
    107   1.1  jmcneill 	if (opp == NULL)
    108   1.1  jmcneill 		return EINVAL;
    109   1.1  jmcneill 
    110   1.1  jmcneill 	old_rate = clk_get_rate(sc->sc_clk);
    111   1.1  jmcneill 	new_rate = freq_khz * 1000;
    112   1.3  jmcneill 	new_uv = opp->voltage_uv;
    113   1.1  jmcneill 
    114   1.1  jmcneill 	if (old_rate == new_rate)
    115   1.1  jmcneill 		return 0;
    116   1.1  jmcneill 
    117   1.3  jmcneill 	if (sc->sc_supply != NULL) {
    118   1.3  jmcneill 		error = fdtbus_regulator_get_voltage(sc->sc_supply, &old_uv);
    119   1.1  jmcneill 		if (error != 0)
    120   1.1  jmcneill 			return error;
    121   1.3  jmcneill 
    122   1.3  jmcneill 		if (new_uv > old_uv) {
    123   1.3  jmcneill 			error = fdtbus_regulator_set_voltage(sc->sc_supply,
    124   1.3  jmcneill 			    new_uv, new_uv);
    125   1.3  jmcneill 			if (error != 0)
    126   1.3  jmcneill 				return error;
    127   1.3  jmcneill 		}
    128   1.1  jmcneill 	}
    129   1.1  jmcneill 
    130   1.1  jmcneill 	error = clk_set_rate(sc->sc_clk, new_rate);
    131   1.1  jmcneill 	if (error != 0)
    132   1.1  jmcneill 		return error;
    133   1.1  jmcneill 
    134   1.4  jmcneill 	const u_int latency_us = howmany(opp->latency_ns, 1000);
    135   1.4  jmcneill 	if (latency_us > 0)
    136   1.4  jmcneill 		delay(latency_us);
    137   1.4  jmcneill 
    138   1.3  jmcneill 	if (sc->sc_supply != NULL) {
    139   1.3  jmcneill 		if (new_uv < old_uv) {
    140   1.3  jmcneill 			error = fdtbus_regulator_set_voltage(sc->sc_supply,
    141   1.3  jmcneill 			    new_uv, new_uv);
    142   1.3  jmcneill 			if (error != 0)
    143   1.3  jmcneill 				return error;
    144   1.3  jmcneill 		}
    145   1.1  jmcneill 	}
    146   1.1  jmcneill 
    147   1.2  jmcneill 	if (error == 0) {
    148   1.2  jmcneill 		xc = xc_broadcast(0, cpufreq_dt_change_cb, sc, NULL);
    149   1.2  jmcneill 		xc_wait(xc);
    150   1.2  jmcneill 
    151   1.2  jmcneill 		pmf_event_inject(NULL, PMFE_SPEED_CHANGED);
    152   1.2  jmcneill 	}
    153   1.2  jmcneill 
    154   1.1  jmcneill 	return 0;
    155   1.1  jmcneill }
    156   1.1  jmcneill 
    157   1.2  jmcneill static void
    158   1.2  jmcneill cpufreq_dt_throttle_enable(device_t dev)
    159   1.2  jmcneill {
    160   1.2  jmcneill 	struct cpufreq_dt_softc * const sc = device_private(dev);
    161   1.2  jmcneill 
    162   1.2  jmcneill 	if (sc->sc_freq_throttle)
    163   1.2  jmcneill 		return;
    164   1.2  jmcneill 
    165   1.2  jmcneill 	const u_int freq_khz = sc->sc_opp[sc->sc_nopp - 1].freq_khz;
    166   1.2  jmcneill 
    167   1.2  jmcneill 	while (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0)
    168   1.2  jmcneill 		kpause("throttle", false, 1, NULL);
    169   1.2  jmcneill 
    170   1.2  jmcneill 	if (cpufreq_dt_set_rate(sc, freq_khz) == 0) {
    171   1.2  jmcneill 		aprint_debug_dev(sc->sc_dev, "throttle enabled (%u.%03u MHz)\n",
    172   1.2  jmcneill 		    freq_khz / 1000, freq_khz % 1000);
    173   1.2  jmcneill 		sc->sc_freq_throttle = true;
    174   1.2  jmcneill 		if (sc->sc_freq_target == 0)
    175   1.2  jmcneill 			sc->sc_freq_target = clk_get_rate(sc->sc_clk) / 1000000;
    176   1.2  jmcneill 	}
    177   1.2  jmcneill 
    178   1.2  jmcneill 	atomic_dec_uint(&sc->sc_busy);
    179   1.2  jmcneill }
    180   1.2  jmcneill 
    181   1.2  jmcneill static void
    182   1.2  jmcneill cpufreq_dt_throttle_disable(device_t dev)
    183   1.2  jmcneill {
    184   1.2  jmcneill 	struct cpufreq_dt_softc * const sc = device_private(dev);
    185   1.2  jmcneill 
    186   1.2  jmcneill 	if (!sc->sc_freq_throttle)
    187   1.2  jmcneill 		return;
    188   1.2  jmcneill 
    189   1.2  jmcneill 	while (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0)
    190   1.2  jmcneill 		kpause("throttle", false, 1, NULL);
    191   1.2  jmcneill 
    192   1.2  jmcneill 	const u_int freq_khz = sc->sc_freq_target * 1000;
    193   1.2  jmcneill 
    194   1.2  jmcneill 	if (cpufreq_dt_set_rate(sc, freq_khz) == 0) {
    195   1.2  jmcneill 		aprint_debug_dev(sc->sc_dev, "throttle disabled (%u.%03u MHz)\n",
    196   1.2  jmcneill 		    freq_khz / 1000, freq_khz % 1000);
    197   1.2  jmcneill 		sc->sc_freq_throttle = false;
    198   1.2  jmcneill 	}
    199   1.2  jmcneill 
    200   1.2  jmcneill 	atomic_dec_uint(&sc->sc_busy);
    201   1.2  jmcneill }
    202   1.2  jmcneill 
    203   1.1  jmcneill static int
    204   1.1  jmcneill cpufreq_dt_sysctl_helper(SYSCTLFN_ARGS)
    205   1.1  jmcneill {
    206   1.1  jmcneill 	struct cpufreq_dt_softc * const sc = rnode->sysctl_data;
    207   1.1  jmcneill 	struct sysctlnode node;
    208   1.1  jmcneill 	u_int fq, oldfq = 0;
    209   1.2  jmcneill 	int error, n;
    210   1.1  jmcneill 
    211   1.1  jmcneill 	node = *rnode;
    212   1.1  jmcneill 	node.sysctl_data = &fq;
    213   1.1  jmcneill 
    214   1.2  jmcneill 	if (rnode->sysctl_num == sc->sc_node_target) {
    215   1.2  jmcneill 		if (sc->sc_freq_target == 0)
    216   1.2  jmcneill 			sc->sc_freq_target = clk_get_rate(sc->sc_clk) / 1000000;
    217   1.2  jmcneill 		fq = sc->sc_freq_target;
    218   1.2  jmcneill 	} else
    219   1.2  jmcneill 		fq = clk_get_rate(sc->sc_clk) / 1000000;
    220   1.2  jmcneill 
    221   1.1  jmcneill 	if (rnode->sysctl_num == sc->sc_node_target)
    222   1.1  jmcneill 		oldfq = fq;
    223   1.1  jmcneill 
    224   1.2  jmcneill 	if (sc->sc_freq_target == 0)
    225   1.2  jmcneill 		sc->sc_freq_target = fq;
    226   1.2  jmcneill 
    227   1.1  jmcneill 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    228   1.1  jmcneill 	if (error || newp == NULL)
    229   1.1  jmcneill 		return error;
    230   1.1  jmcneill 
    231   1.1  jmcneill 	if (fq == oldfq || rnode->sysctl_num != sc->sc_node_target)
    232   1.1  jmcneill 		return 0;
    233   1.1  jmcneill 
    234   1.2  jmcneill 	for (n = 0; n < sc->sc_nopp; n++)
    235   1.2  jmcneill 		if (sc->sc_opp[n].freq_khz / 1000 == fq)
    236   1.2  jmcneill 			break;
    237   1.2  jmcneill 	if (n == sc->sc_nopp)
    238   1.2  jmcneill 		return EINVAL;
    239   1.2  jmcneill 
    240   1.1  jmcneill 	if (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0)
    241   1.1  jmcneill 		return EBUSY;
    242   1.1  jmcneill 
    243   1.2  jmcneill 	sc->sc_freq_target = fq;
    244   1.1  jmcneill 
    245   1.2  jmcneill 	if (sc->sc_freq_throttle)
    246   1.2  jmcneill 		error = 0;
    247   1.2  jmcneill 	else
    248   1.2  jmcneill 		error = cpufreq_dt_set_rate(sc, fq * 1000);
    249   1.1  jmcneill 
    250   1.1  jmcneill 	atomic_dec_uint(&sc->sc_busy);
    251   1.1  jmcneill 
    252   1.1  jmcneill 	return error;
    253   1.1  jmcneill }
    254   1.1  jmcneill 
    255   1.9  jmcneill static struct cpu_info *
    256   1.9  jmcneill cpufreq_dt_cpu_lookup(cpuid_t mpidr)
    257   1.9  jmcneill {
    258   1.9  jmcneill 	CPU_INFO_ITERATOR cii;
    259   1.9  jmcneill 	struct cpu_info *ci;
    260   1.9  jmcneill 
    261   1.9  jmcneill 	for (CPU_INFO_FOREACH(cii, ci)) {
    262   1.9  jmcneill 		if (ci->ci_cpuid == mpidr)
    263   1.9  jmcneill 			return ci;
    264   1.9  jmcneill 	}
    265   1.9  jmcneill 
    266   1.9  jmcneill 	return NULL;
    267   1.9  jmcneill }
    268   1.9  jmcneill 
    269   1.1  jmcneill static void
    270   1.1  jmcneill cpufreq_dt_init_sysctl(struct cpufreq_dt_softc *sc)
    271   1.1  jmcneill {
    272   1.9  jmcneill 	const struct sysctlnode *node, *cpunode;
    273   1.1  jmcneill 	struct sysctllog *cpufreq_log = NULL;
    274   1.9  jmcneill 	struct cpu_info *ci;
    275  1.10    martin 	bus_addr_t mpidr;
    276   1.1  jmcneill 	int error, i;
    277   1.1  jmcneill 
    278   1.9  jmcneill 	if (fdtbus_get_reg(sc->sc_phandle, 0, &mpidr, 0) != 0)
    279   1.9  jmcneill 		return;
    280   1.9  jmcneill 
    281   1.9  jmcneill 	ci = cpufreq_dt_cpu_lookup(mpidr);
    282   1.9  jmcneill 	if (ci == NULL)
    283   1.9  jmcneill 		return;
    284   1.9  jmcneill 
    285   1.1  jmcneill 	sc->sc_freq_available = kmem_zalloc(strlen("XXXX ") * sc->sc_nopp, KM_SLEEP);
    286   1.1  jmcneill 	for (i = 0; i < sc->sc_nopp; i++) {
    287   1.1  jmcneill 		char buf[6];
    288   1.1  jmcneill 		snprintf(buf, sizeof(buf), i ? " %u" : "%u", sc->sc_opp[i].freq_khz / 1000);
    289   1.1  jmcneill 		strcat(sc->sc_freq_available, buf);
    290   1.1  jmcneill 	}
    291   1.1  jmcneill 
    292   1.1  jmcneill 	error = sysctl_createv(&cpufreq_log, 0, NULL, &node,
    293   1.1  jmcneill 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
    294   1.1  jmcneill 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
    295   1.1  jmcneill 	if (error)
    296   1.1  jmcneill 		goto sysctl_failed;
    297   1.9  jmcneill 	error = sysctl_createv(&cpufreq_log, 0, &node, &node,
    298   1.9  jmcneill 	    0, CTLTYPE_NODE, "cpufreq", NULL,
    299   1.1  jmcneill 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    300   1.1  jmcneill 	if (error)
    301   1.1  jmcneill 		goto sysctl_failed;
    302   1.9  jmcneill 	error = sysctl_createv(&cpufreq_log, 0, &node, &cpunode,
    303   1.9  jmcneill 	    0, CTLTYPE_NODE, cpu_name(ci), NULL,
    304   1.1  jmcneill 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    305   1.1  jmcneill 	if (error)
    306   1.1  jmcneill 		goto sysctl_failed;
    307   1.1  jmcneill 
    308   1.9  jmcneill 	error = sysctl_createv(&cpufreq_log, 0, &cpunode, &node,
    309   1.1  jmcneill 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
    310   1.1  jmcneill 	    cpufreq_dt_sysctl_helper, 0, (void *)sc, 0,
    311   1.1  jmcneill 	    CTL_CREATE, CTL_EOL);
    312   1.1  jmcneill 	if (error)
    313   1.1  jmcneill 		goto sysctl_failed;
    314   1.1  jmcneill 	sc->sc_node_target = node->sysctl_num;
    315   1.1  jmcneill 
    316   1.9  jmcneill 	error = sysctl_createv(&cpufreq_log, 0, &cpunode, &node,
    317   1.1  jmcneill 	    CTLFLAG_READWRITE, CTLTYPE_INT, "current", NULL,
    318   1.1  jmcneill 	    cpufreq_dt_sysctl_helper, 0, (void *)sc, 0,
    319   1.1  jmcneill 	    CTL_CREATE, CTL_EOL);
    320   1.1  jmcneill 	if (error)
    321   1.1  jmcneill 		goto sysctl_failed;
    322   1.1  jmcneill 	sc->sc_node_current = node->sysctl_num;
    323   1.1  jmcneill 
    324   1.9  jmcneill 	error = sysctl_createv(&cpufreq_log, 0, &cpunode, &node,
    325   1.1  jmcneill 	    0, CTLTYPE_STRING, "available", NULL,
    326   1.1  jmcneill 	    NULL, 0, sc->sc_freq_available, 0,
    327   1.1  jmcneill 	    CTL_CREATE, CTL_EOL);
    328   1.1  jmcneill 	if (error)
    329   1.1  jmcneill 		goto sysctl_failed;
    330   1.1  jmcneill 	sc->sc_node_available = node->sysctl_num;
    331   1.1  jmcneill 
    332   1.1  jmcneill 	return;
    333   1.1  jmcneill 
    334   1.1  jmcneill sysctl_failed:
    335   1.1  jmcneill 	aprint_error_dev(sc->sc_dev, "couldn't create sysctl nodes: %d\n", error);
    336   1.1  jmcneill 	sysctl_teardown(&cpufreq_log);
    337   1.1  jmcneill }
    338   1.1  jmcneill 
    339   1.1  jmcneill static int
    340   1.4  jmcneill cpufreq_dt_parse_opp(struct cpufreq_dt_softc *sc)
    341   1.1  jmcneill {
    342   1.1  jmcneill 	const int phandle = sc->sc_phandle;
    343   1.1  jmcneill 	const u_int *opp;
    344   1.1  jmcneill 	int len, i;
    345   1.4  jmcneill 
    346   1.4  jmcneill 	opp = fdtbus_get_prop(phandle, "operating-points", &len);
    347   1.4  jmcneill 	if (len < 8)
    348   1.4  jmcneill 		return ENXIO;
    349   1.4  jmcneill 
    350   1.4  jmcneill 	sc->sc_nopp = len / 8;
    351   1.4  jmcneill 	sc->sc_opp = kmem_zalloc(sizeof(*sc->sc_opp) * sc->sc_nopp, KM_SLEEP);
    352   1.4  jmcneill 	for (i = 0; i < sc->sc_nopp; i++, opp += 2) {
    353   1.4  jmcneill 		sc->sc_opp[i].freq_khz = be32toh(opp[0]);
    354   1.4  jmcneill 		sc->sc_opp[i].voltage_uv = be32toh(opp[1]);
    355   1.4  jmcneill 	}
    356   1.4  jmcneill 
    357   1.4  jmcneill 	return 0;
    358   1.4  jmcneill }
    359   1.4  jmcneill 
    360  1.12  jmcneill static const struct fdt_opp_info *
    361  1.12  jmcneill cpufreq_dt_lookup_opp_info(const int opp_table)
    362  1.12  jmcneill {
    363  1.12  jmcneill 	__link_set_decl(fdt_opps, struct fdt_opp_info);
    364  1.12  jmcneill 	struct fdt_opp_info * const *opp;
    365  1.12  jmcneill 	const struct fdt_opp_info *best_opp = NULL;
    366  1.12  jmcneill 	int match, best_match = 0;
    367  1.12  jmcneill 
    368  1.12  jmcneill 	__link_set_foreach(opp, fdt_opps) {
    369  1.18   thorpej 		const struct device_compatible_entry compat_data[] = {
    370  1.18   thorpej 			{ .compat = (*opp)->opp_compat },
    371  1.18   thorpej 			DEVICE_COMPAT_EOL
    372  1.18   thorpej 		};
    373  1.18   thorpej 
    374  1.18   thorpej 		match = of_compatible_match(opp_table, compat_data);
    375  1.12  jmcneill 		if (match > best_match) {
    376  1.12  jmcneill 			best_match = match;
    377  1.12  jmcneill 			best_opp = *opp;
    378  1.12  jmcneill 		}
    379  1.12  jmcneill 	}
    380  1.12  jmcneill 
    381  1.12  jmcneill 	return best_opp;
    382  1.12  jmcneill }
    383  1.12  jmcneill 
    384  1.12  jmcneill static bool
    385  1.13  jmcneill cpufreq_dt_opp_v2_supported(const int opp_table, const int opp_node)
    386  1.13  jmcneill {
    387  1.13  jmcneill 	return true;
    388  1.13  jmcneill }
    389  1.13  jmcneill 
    390  1.13  jmcneill FDT_OPP(opp_v2, "operating-points-v2", cpufreq_dt_opp_v2_supported);
    391  1.13  jmcneill 
    392  1.13  jmcneill static bool
    393  1.12  jmcneill cpufreq_dt_node_supported(const struct fdt_opp_info *opp_info, const int opp_table, const int opp_node)
    394  1.12  jmcneill {
    395  1.12  jmcneill 	if (!fdtbus_status_okay(opp_node))
    396  1.12  jmcneill 		return false;
    397  1.12  jmcneill 	if (of_hasprop(opp_node, "opp-suspend"))
    398  1.12  jmcneill 		return false;
    399  1.12  jmcneill 
    400  1.12  jmcneill 	if (opp_info != NULL)
    401  1.12  jmcneill 		return opp_info->opp_supported(opp_table, opp_node);
    402  1.12  jmcneill 
    403  1.13  jmcneill 	return false;
    404  1.12  jmcneill }
    405  1.12  jmcneill 
    406   1.4  jmcneill static int
    407   1.4  jmcneill cpufreq_dt_parse_opp_v2(struct cpufreq_dt_softc *sc)
    408   1.4  jmcneill {
    409   1.4  jmcneill 	const int phandle = sc->sc_phandle;
    410   1.4  jmcneill 	struct cpufreq_dt_table *table;
    411  1.12  jmcneill 	const struct fdt_opp_info *opp_info;
    412   1.7  jmcneill 	const u_int *opp_uv;
    413   1.4  jmcneill 	uint64_t opp_hz;
    414  1.11  jmcneill 	int opp_node, len, i, index;
    415   1.4  jmcneill 
    416   1.4  jmcneill 	const int opp_table = fdtbus_get_phandle(phandle, "operating-points-v2");
    417   1.4  jmcneill 	if (opp_table < 0)
    418   1.4  jmcneill 		return ENOENT;
    419   1.4  jmcneill 
    420   1.4  jmcneill 	/* If the table is shared, only setup a single instance */
    421   1.4  jmcneill 	if (of_hasprop(opp_table, "opp-shared")) {
    422   1.4  jmcneill 		TAILQ_FOREACH(table, &cpufreq_dt_tables, next)
    423   1.4  jmcneill 			if (table->phandle == opp_table)
    424   1.4  jmcneill 				return EEXIST;
    425   1.4  jmcneill 		sc->sc_table.phandle = opp_table;
    426   1.4  jmcneill 		TAILQ_INSERT_TAIL(&cpufreq_dt_tables, &sc->sc_table, next);
    427   1.4  jmcneill 	}
    428   1.4  jmcneill 
    429  1.12  jmcneill 	opp_info = cpufreq_dt_lookup_opp_info(opp_table);
    430  1.12  jmcneill 
    431   1.4  jmcneill 	for (opp_node = OF_child(opp_table); opp_node; opp_node = OF_peer(opp_node)) {
    432  1.12  jmcneill 		if (!cpufreq_dt_node_supported(opp_info, opp_table, opp_node))
    433  1.11  jmcneill 			continue;
    434  1.11  jmcneill 		sc->sc_nopp++;
    435   1.4  jmcneill 	}
    436   1.4  jmcneill 
    437   1.4  jmcneill 	if (sc->sc_nopp == 0)
    438   1.4  jmcneill 		return EINVAL;
    439   1.4  jmcneill 
    440   1.4  jmcneill 	sc->sc_opp = kmem_zalloc(sizeof(*sc->sc_opp) * sc->sc_nopp, KM_SLEEP);
    441  1.11  jmcneill 	index = sc->sc_nopp - 1;
    442   1.4  jmcneill 	for (opp_node = OF_child(opp_table), i = 0; opp_node; opp_node = OF_peer(opp_node), i++) {
    443  1.12  jmcneill 		if (!cpufreq_dt_node_supported(opp_info, opp_table, opp_node))
    444  1.11  jmcneill 			continue;
    445   1.4  jmcneill 		if (of_getprop_uint64(opp_node, "opp-hz", &opp_hz) != 0)
    446   1.4  jmcneill 			return EINVAL;
    447   1.7  jmcneill 		opp_uv = fdtbus_get_prop(opp_node, "opp-microvolt", &len);
    448   1.7  jmcneill 		if (opp_uv == NULL || len < 1)
    449   1.4  jmcneill 			return EINVAL;
    450   1.8  jmcneill 		/* Table is in reverse order */
    451   1.8  jmcneill 		sc->sc_opp[index].freq_khz = (u_int)(opp_hz / 1000);
    452   1.8  jmcneill 		sc->sc_opp[index].voltage_uv = be32toh(opp_uv[0]);
    453   1.8  jmcneill 		of_getprop_uint32(opp_node, "clock-latency-ns", &sc->sc_opp[index].latency_ns);
    454  1.11  jmcneill 		--index;
    455   1.4  jmcneill 	}
    456   1.4  jmcneill 
    457   1.4  jmcneill 	return 0;
    458   1.4  jmcneill }
    459   1.4  jmcneill 
    460   1.4  jmcneill static int
    461   1.4  jmcneill cpufreq_dt_parse(struct cpufreq_dt_softc *sc)
    462   1.4  jmcneill {
    463   1.4  jmcneill 	const int phandle = sc->sc_phandle;
    464   1.4  jmcneill 	int error, i;
    465   1.1  jmcneill 
    466   1.3  jmcneill 	if (of_hasprop(phandle, "cpu-supply")) {
    467   1.3  jmcneill 		sc->sc_supply = fdtbus_regulator_acquire(phandle, "cpu-supply");
    468   1.3  jmcneill 		if (sc->sc_supply == NULL) {
    469   1.3  jmcneill 			aprint_error_dev(sc->sc_dev,
    470   1.3  jmcneill 			    "couldn't acquire cpu-supply\n");
    471   1.3  jmcneill 			return ENXIO;
    472   1.3  jmcneill 		}
    473   1.1  jmcneill 	}
    474   1.1  jmcneill 	sc->sc_clk = fdtbus_clock_get_index(phandle, 0);
    475   1.1  jmcneill 	if (sc->sc_clk == NULL) {
    476   1.1  jmcneill 		aprint_error_dev(sc->sc_dev, "couldn't acquire clock\n");
    477   1.1  jmcneill 		return ENXIO;
    478   1.1  jmcneill 	}
    479   1.1  jmcneill 
    480   1.4  jmcneill 	mutex_enter(&cpufreq_dt_tables_lock);
    481   1.4  jmcneill 	if (of_hasprop(phandle, "operating-points"))
    482   1.4  jmcneill 		error = cpufreq_dt_parse_opp(sc);
    483   1.4  jmcneill 	else if (of_hasprop(phandle, "operating-points-v2"))
    484   1.4  jmcneill 		error = cpufreq_dt_parse_opp_v2(sc);
    485   1.4  jmcneill 	else
    486   1.4  jmcneill 		error = EINVAL;
    487   1.4  jmcneill 	mutex_exit(&cpufreq_dt_tables_lock);
    488   1.1  jmcneill 
    489   1.4  jmcneill 	if (error) {
    490   1.5  jmcneill 		if (error != EEXIST)
    491   1.5  jmcneill 			aprint_error_dev(sc->sc_dev,
    492   1.5  jmcneill 			    "couldn't parse operating points: %d\n", error);
    493   1.4  jmcneill 		return error;
    494   1.4  jmcneill 	}
    495   1.1  jmcneill 
    496   1.4  jmcneill 	for (i = 0; i < sc->sc_nopp; i++) {
    497  1.14  jmcneill 		aprint_debug_dev(sc->sc_dev, "supported rate: %u.%03u MHz, %u uV\n",
    498   1.1  jmcneill 		    sc->sc_opp[i].freq_khz / 1000,
    499   1.1  jmcneill 		    sc->sc_opp[i].freq_khz % 1000,
    500   1.1  jmcneill 		    sc->sc_opp[i].voltage_uv);
    501   1.1  jmcneill 	}
    502   1.1  jmcneill 
    503   1.1  jmcneill 	return 0;
    504   1.1  jmcneill }
    505   1.1  jmcneill 
    506   1.1  jmcneill static int
    507   1.1  jmcneill cpufreq_dt_match(device_t parent, cfdata_t cf, void *aux)
    508   1.1  jmcneill {
    509   1.1  jmcneill 	struct fdt_attach_args * const faa = aux;
    510   1.1  jmcneill 	const int phandle = faa->faa_phandle;
    511   1.1  jmcneill 	bus_addr_t addr;
    512   1.1  jmcneill 
    513   1.1  jmcneill 	if (fdtbus_get_reg(phandle, 0, &addr, NULL) != 0)
    514   1.1  jmcneill 		return 0;
    515   1.4  jmcneill 
    516   1.4  jmcneill 	if (!of_hasprop(phandle, "clocks"))
    517   1.1  jmcneill 		return 0;
    518   1.1  jmcneill 
    519   1.4  jmcneill 	if (!of_hasprop(phandle, "operating-points") &&
    520   1.4  jmcneill 	    !of_hasprop(phandle, "operating-points-v2"))
    521   1.1  jmcneill 		return 0;
    522   1.1  jmcneill 
    523   1.1  jmcneill 	return 1;
    524   1.1  jmcneill }
    525   1.1  jmcneill 
    526   1.1  jmcneill static void
    527   1.1  jmcneill cpufreq_dt_init(device_t self)
    528   1.1  jmcneill {
    529   1.1  jmcneill 	struct cpufreq_dt_softc * const sc = device_private(self);
    530   1.1  jmcneill 	int error;
    531   1.1  jmcneill 
    532   1.1  jmcneill 	if ((error = cpufreq_dt_parse(sc)) != 0)
    533   1.1  jmcneill 		return;
    534   1.1  jmcneill 
    535   1.4  jmcneill 	pmf_event_register(sc->sc_dev, PMFE_THROTTLE_ENABLE, cpufreq_dt_throttle_enable, true);
    536   1.4  jmcneill 	pmf_event_register(sc->sc_dev, PMFE_THROTTLE_DISABLE, cpufreq_dt_throttle_disable, true);
    537   1.4  jmcneill 
    538   1.1  jmcneill 	cpufreq_dt_init_sysctl(sc);
    539  1.14  jmcneill 
    540  1.14  jmcneill 	if (sc->sc_nopp > 0) {
    541  1.15  jmcneill 		struct cpufreq_dt_opp * const opp = &sc->sc_opp[0];
    542  1.14  jmcneill 
    543  1.14  jmcneill 		aprint_normal_dev(sc->sc_dev, "rate: %u.%03u MHz, %u uV\n",
    544  1.14  jmcneill 		    opp->freq_khz / 1000, opp->freq_khz % 1000, opp->voltage_uv);
    545  1.14  jmcneill 		cpufreq_dt_set_rate(sc, opp->freq_khz);
    546  1.14  jmcneill 	}
    547   1.1  jmcneill }
    548   1.1  jmcneill 
    549   1.4  jmcneill static int
    550   1.4  jmcneill cpufreq_dt_lock_init(void)
    551   1.4  jmcneill {
    552   1.4  jmcneill 	mutex_init(&cpufreq_dt_tables_lock, MUTEX_DEFAULT, IPL_NONE);
    553   1.4  jmcneill 	return 0;
    554   1.4  jmcneill }
    555   1.4  jmcneill 
    556   1.1  jmcneill static void
    557   1.1  jmcneill cpufreq_dt_attach(device_t parent, device_t self, void *aux)
    558   1.1  jmcneill {
    559   1.4  jmcneill 	static ONCE_DECL(locks);
    560   1.1  jmcneill 	struct cpufreq_dt_softc * const sc = device_private(self);
    561   1.1  jmcneill 	struct fdt_attach_args * const faa = aux;
    562   1.1  jmcneill 
    563   1.4  jmcneill 	RUN_ONCE(&locks, cpufreq_dt_lock_init);
    564   1.4  jmcneill 
    565   1.1  jmcneill 	sc->sc_dev = self;
    566   1.1  jmcneill 	sc->sc_phandle = faa->faa_phandle;
    567   1.1  jmcneill 
    568   1.1  jmcneill 	aprint_naive("\n");
    569   1.1  jmcneill 	aprint_normal("\n");
    570   1.1  jmcneill 
    571   1.1  jmcneill 	config_interrupts(self, cpufreq_dt_init);
    572   1.1  jmcneill }
    573   1.1  jmcneill 
    574   1.1  jmcneill CFATTACH_DECL_NEW(cpufreq_dt, sizeof(struct cpufreq_dt_softc),
    575   1.1  jmcneill     cpufreq_dt_match, cpufreq_dt_attach, NULL, NULL);
    576