Home | History | Annotate | Line # | Download | only in fdt
cpufreq_dt.c revision 1.13
      1  1.13  jmcneill /* $NetBSD: cpufreq_dt.c,v 1.13 2019/10/29 10:52:22 jmcneill Exp $ */
      2   1.1  jmcneill 
      3   1.1  jmcneill /*-
      4   1.1  jmcneill  * Copyright (c) 2015-2017 Jared McNeill <jmcneill (at) invisible.ca>
      5   1.1  jmcneill  * All rights reserved.
      6   1.1  jmcneill  *
      7   1.1  jmcneill  * Redistribution and use in source and binary forms, with or without
      8   1.1  jmcneill  * modification, are permitted provided that the following conditions
      9   1.1  jmcneill  * are met:
     10   1.1  jmcneill  * 1. Redistributions of source code must retain the above copyright
     11   1.1  jmcneill  *    notice, this list of conditions and the following disclaimer.
     12   1.1  jmcneill  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1  jmcneill  *    notice, this list of conditions and the following disclaimer in the
     14   1.1  jmcneill  *    documentation and/or other materials provided with the distribution.
     15   1.1  jmcneill  *
     16   1.1  jmcneill  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17   1.1  jmcneill  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18   1.1  jmcneill  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19   1.1  jmcneill  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20   1.1  jmcneill  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21   1.1  jmcneill  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22   1.1  jmcneill  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23   1.1  jmcneill  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24   1.1  jmcneill  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25   1.1  jmcneill  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26   1.1  jmcneill  * SUCH DAMAGE.
     27   1.1  jmcneill  */
     28   1.1  jmcneill 
     29   1.1  jmcneill #include <sys/cdefs.h>
     30  1.13  jmcneill __KERNEL_RCSID(0, "$NetBSD: cpufreq_dt.c,v 1.13 2019/10/29 10:52:22 jmcneill Exp $");
     31   1.1  jmcneill 
     32   1.1  jmcneill #include <sys/param.h>
     33   1.1  jmcneill #include <sys/systm.h>
     34   1.1  jmcneill #include <sys/device.h>
     35   1.1  jmcneill #include <sys/kmem.h>
     36   1.1  jmcneill #include <sys/bus.h>
     37   1.1  jmcneill #include <sys/atomic.h>
     38   1.1  jmcneill #include <sys/xcall.h>
     39   1.1  jmcneill #include <sys/sysctl.h>
     40   1.4  jmcneill #include <sys/queue.h>
     41   1.4  jmcneill #include <sys/once.h>
     42   1.9  jmcneill #include <sys/cpu.h>
     43   1.1  jmcneill 
     44   1.1  jmcneill #include <dev/fdt/fdtvar.h>
     45   1.1  jmcneill 
     46   1.4  jmcneill struct cpufreq_dt_table {
     47   1.4  jmcneill 	int			phandle;
     48   1.4  jmcneill 	TAILQ_ENTRY(cpufreq_dt_table) next;
     49   1.4  jmcneill };
     50   1.4  jmcneill 
     51   1.4  jmcneill static TAILQ_HEAD(, cpufreq_dt_table) cpufreq_dt_tables =
     52   1.4  jmcneill     TAILQ_HEAD_INITIALIZER(cpufreq_dt_tables);
     53   1.4  jmcneill static kmutex_t cpufreq_dt_tables_lock;
     54   1.4  jmcneill 
     55   1.1  jmcneill struct cpufreq_dt_opp {
     56   1.4  jmcneill 	u_int			freq_khz;
     57   1.4  jmcneill 	u_int			voltage_uv;
     58   1.4  jmcneill 	u_int			latency_ns;
     59   1.1  jmcneill };
     60   1.1  jmcneill 
     61   1.1  jmcneill struct cpufreq_dt_softc {
     62   1.1  jmcneill 	device_t		sc_dev;
     63   1.1  jmcneill 	int			sc_phandle;
     64   1.1  jmcneill 	struct clk		*sc_clk;
     65   1.1  jmcneill 	struct fdtbus_regulator	*sc_supply;
     66   1.1  jmcneill 
     67   1.1  jmcneill 	struct cpufreq_dt_opp	*sc_opp;
     68   1.1  jmcneill 	ssize_t			sc_nopp;
     69   1.1  jmcneill 
     70   1.2  jmcneill 	u_int			sc_freq_target;
     71   1.2  jmcneill 	bool			sc_freq_throttle;
     72   1.2  jmcneill 
     73   1.1  jmcneill 	u_int			sc_busy;
     74   1.1  jmcneill 
     75   1.1  jmcneill 	char			*sc_freq_available;
     76   1.1  jmcneill 	int			sc_node_target;
     77   1.1  jmcneill 	int			sc_node_current;
     78   1.1  jmcneill 	int			sc_node_available;
     79   1.4  jmcneill 
     80   1.4  jmcneill 	struct cpufreq_dt_table	sc_table;
     81   1.1  jmcneill };
     82   1.1  jmcneill 
     83   1.1  jmcneill static void
     84   1.1  jmcneill cpufreq_dt_change_cb(void *arg1, void *arg2)
     85   1.1  jmcneill {
     86   1.1  jmcneill #if notyet
     87   1.1  jmcneill 	struct cpu_info *ci = curcpu();
     88   1.1  jmcneill 	ci->ci_data.cpu_cc_freq = cpufreq_get_rate() * 1000000;
     89   1.1  jmcneill #endif
     90   1.1  jmcneill }
     91   1.1  jmcneill 
     92   1.1  jmcneill static int
     93   1.1  jmcneill cpufreq_dt_set_rate(struct cpufreq_dt_softc *sc, u_int freq_khz)
     94   1.1  jmcneill {
     95   1.1  jmcneill 	struct cpufreq_dt_opp *opp = NULL;
     96   1.1  jmcneill 	u_int old_rate, new_rate, old_uv, new_uv;
     97   1.2  jmcneill 	uint64_t xc;
     98   1.1  jmcneill 	int error;
     99   1.1  jmcneill 	ssize_t n;
    100   1.1  jmcneill 
    101   1.1  jmcneill 	for (n = 0; n < sc->sc_nopp; n++)
    102   1.1  jmcneill 		if (sc->sc_opp[n].freq_khz == freq_khz) {
    103   1.1  jmcneill 			opp = &sc->sc_opp[n];
    104   1.1  jmcneill 			break;
    105   1.1  jmcneill 		}
    106   1.1  jmcneill 	if (opp == NULL)
    107   1.1  jmcneill 		return EINVAL;
    108   1.1  jmcneill 
    109   1.1  jmcneill 	old_rate = clk_get_rate(sc->sc_clk);
    110   1.1  jmcneill 	new_rate = freq_khz * 1000;
    111   1.3  jmcneill 	new_uv = opp->voltage_uv;
    112   1.1  jmcneill 
    113   1.1  jmcneill 	if (old_rate == new_rate)
    114   1.1  jmcneill 		return 0;
    115   1.1  jmcneill 
    116   1.3  jmcneill 	if (sc->sc_supply != NULL) {
    117   1.3  jmcneill 		error = fdtbus_regulator_get_voltage(sc->sc_supply, &old_uv);
    118   1.1  jmcneill 		if (error != 0)
    119   1.1  jmcneill 			return error;
    120   1.3  jmcneill 
    121   1.3  jmcneill 		if (new_uv > old_uv) {
    122   1.3  jmcneill 			error = fdtbus_regulator_set_voltage(sc->sc_supply,
    123   1.3  jmcneill 			    new_uv, new_uv);
    124   1.3  jmcneill 			if (error != 0)
    125   1.3  jmcneill 				return error;
    126   1.3  jmcneill 		}
    127   1.1  jmcneill 	}
    128   1.1  jmcneill 
    129   1.1  jmcneill 	error = clk_set_rate(sc->sc_clk, new_rate);
    130   1.1  jmcneill 	if (error != 0)
    131   1.1  jmcneill 		return error;
    132   1.1  jmcneill 
    133   1.4  jmcneill 	const u_int latency_us = howmany(opp->latency_ns, 1000);
    134   1.4  jmcneill 	if (latency_us > 0)
    135   1.4  jmcneill 		delay(latency_us);
    136   1.4  jmcneill 
    137   1.3  jmcneill 	if (sc->sc_supply != NULL) {
    138   1.3  jmcneill 		if (new_uv < old_uv) {
    139   1.3  jmcneill 			error = fdtbus_regulator_set_voltage(sc->sc_supply,
    140   1.3  jmcneill 			    new_uv, new_uv);
    141   1.3  jmcneill 			if (error != 0)
    142   1.3  jmcneill 				return error;
    143   1.3  jmcneill 		}
    144   1.1  jmcneill 	}
    145   1.1  jmcneill 
    146   1.2  jmcneill 	if (error == 0) {
    147   1.2  jmcneill 		xc = xc_broadcast(0, cpufreq_dt_change_cb, sc, NULL);
    148   1.2  jmcneill 		xc_wait(xc);
    149   1.2  jmcneill 
    150   1.2  jmcneill 		pmf_event_inject(NULL, PMFE_SPEED_CHANGED);
    151   1.2  jmcneill 	}
    152   1.2  jmcneill 
    153   1.1  jmcneill 	return 0;
    154   1.1  jmcneill }
    155   1.1  jmcneill 
    156   1.2  jmcneill static void
    157   1.2  jmcneill cpufreq_dt_throttle_enable(device_t dev)
    158   1.2  jmcneill {
    159   1.2  jmcneill 	struct cpufreq_dt_softc * const sc = device_private(dev);
    160   1.2  jmcneill 
    161   1.2  jmcneill 	if (sc->sc_freq_throttle)
    162   1.2  jmcneill 		return;
    163   1.2  jmcneill 
    164   1.2  jmcneill 	const u_int freq_khz = sc->sc_opp[sc->sc_nopp - 1].freq_khz;
    165   1.2  jmcneill 
    166   1.2  jmcneill 	while (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0)
    167   1.2  jmcneill 		kpause("throttle", false, 1, NULL);
    168   1.2  jmcneill 
    169   1.2  jmcneill 	if (cpufreq_dt_set_rate(sc, freq_khz) == 0) {
    170   1.2  jmcneill 		aprint_debug_dev(sc->sc_dev, "throttle enabled (%u.%03u MHz)\n",
    171   1.2  jmcneill 		    freq_khz / 1000, freq_khz % 1000);
    172   1.2  jmcneill 		sc->sc_freq_throttle = true;
    173   1.2  jmcneill 		if (sc->sc_freq_target == 0)
    174   1.2  jmcneill 			sc->sc_freq_target = clk_get_rate(sc->sc_clk) / 1000000;
    175   1.2  jmcneill 	}
    176   1.2  jmcneill 
    177   1.2  jmcneill 	atomic_dec_uint(&sc->sc_busy);
    178   1.2  jmcneill }
    179   1.2  jmcneill 
    180   1.2  jmcneill static void
    181   1.2  jmcneill cpufreq_dt_throttle_disable(device_t dev)
    182   1.2  jmcneill {
    183   1.2  jmcneill 	struct cpufreq_dt_softc * const sc = device_private(dev);
    184   1.2  jmcneill 
    185   1.2  jmcneill 	if (!sc->sc_freq_throttle)
    186   1.2  jmcneill 		return;
    187   1.2  jmcneill 
    188   1.2  jmcneill 	while (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0)
    189   1.2  jmcneill 		kpause("throttle", false, 1, NULL);
    190   1.2  jmcneill 
    191   1.2  jmcneill 	const u_int freq_khz = sc->sc_freq_target * 1000;
    192   1.2  jmcneill 
    193   1.2  jmcneill 	if (cpufreq_dt_set_rate(sc, freq_khz) == 0) {
    194   1.2  jmcneill 		aprint_debug_dev(sc->sc_dev, "throttle disabled (%u.%03u MHz)\n",
    195   1.2  jmcneill 		    freq_khz / 1000, freq_khz % 1000);
    196   1.2  jmcneill 		sc->sc_freq_throttle = false;
    197   1.2  jmcneill 	}
    198   1.2  jmcneill 
    199   1.2  jmcneill 	atomic_dec_uint(&sc->sc_busy);
    200   1.2  jmcneill }
    201   1.2  jmcneill 
    202   1.1  jmcneill static int
    203   1.1  jmcneill cpufreq_dt_sysctl_helper(SYSCTLFN_ARGS)
    204   1.1  jmcneill {
    205   1.1  jmcneill 	struct cpufreq_dt_softc * const sc = rnode->sysctl_data;
    206   1.1  jmcneill 	struct sysctlnode node;
    207   1.1  jmcneill 	u_int fq, oldfq = 0;
    208   1.2  jmcneill 	int error, n;
    209   1.1  jmcneill 
    210   1.1  jmcneill 	node = *rnode;
    211   1.1  jmcneill 	node.sysctl_data = &fq;
    212   1.1  jmcneill 
    213   1.2  jmcneill 	if (rnode->sysctl_num == sc->sc_node_target) {
    214   1.2  jmcneill 		if (sc->sc_freq_target == 0)
    215   1.2  jmcneill 			sc->sc_freq_target = clk_get_rate(sc->sc_clk) / 1000000;
    216   1.2  jmcneill 		fq = sc->sc_freq_target;
    217   1.2  jmcneill 	} else
    218   1.2  jmcneill 		fq = clk_get_rate(sc->sc_clk) / 1000000;
    219   1.2  jmcneill 
    220   1.1  jmcneill 	if (rnode->sysctl_num == sc->sc_node_target)
    221   1.1  jmcneill 		oldfq = fq;
    222   1.1  jmcneill 
    223   1.2  jmcneill 	if (sc->sc_freq_target == 0)
    224   1.2  jmcneill 		sc->sc_freq_target = fq;
    225   1.2  jmcneill 
    226   1.1  jmcneill 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    227   1.1  jmcneill 	if (error || newp == NULL)
    228   1.1  jmcneill 		return error;
    229   1.1  jmcneill 
    230   1.1  jmcneill 	if (fq == oldfq || rnode->sysctl_num != sc->sc_node_target)
    231   1.1  jmcneill 		return 0;
    232   1.1  jmcneill 
    233   1.2  jmcneill 	for (n = 0; n < sc->sc_nopp; n++)
    234   1.2  jmcneill 		if (sc->sc_opp[n].freq_khz / 1000 == fq)
    235   1.2  jmcneill 			break;
    236   1.2  jmcneill 	if (n == sc->sc_nopp)
    237   1.2  jmcneill 		return EINVAL;
    238   1.2  jmcneill 
    239   1.1  jmcneill 	if (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0)
    240   1.1  jmcneill 		return EBUSY;
    241   1.1  jmcneill 
    242   1.2  jmcneill 	sc->sc_freq_target = fq;
    243   1.1  jmcneill 
    244   1.2  jmcneill 	if (sc->sc_freq_throttle)
    245   1.2  jmcneill 		error = 0;
    246   1.2  jmcneill 	else
    247   1.2  jmcneill 		error = cpufreq_dt_set_rate(sc, fq * 1000);
    248   1.1  jmcneill 
    249   1.1  jmcneill 	atomic_dec_uint(&sc->sc_busy);
    250   1.1  jmcneill 
    251   1.1  jmcneill 	return error;
    252   1.1  jmcneill }
    253   1.1  jmcneill 
    254   1.9  jmcneill static struct cpu_info *
    255   1.9  jmcneill cpufreq_dt_cpu_lookup(cpuid_t mpidr)
    256   1.9  jmcneill {
    257   1.9  jmcneill 	CPU_INFO_ITERATOR cii;
    258   1.9  jmcneill 	struct cpu_info *ci;
    259   1.9  jmcneill 
    260   1.9  jmcneill 	for (CPU_INFO_FOREACH(cii, ci)) {
    261   1.9  jmcneill 		if (ci->ci_cpuid == mpidr)
    262   1.9  jmcneill 			return ci;
    263   1.9  jmcneill 	}
    264   1.9  jmcneill 
    265   1.9  jmcneill 	return NULL;
    266   1.9  jmcneill }
    267   1.9  jmcneill 
    268   1.1  jmcneill static void
    269   1.1  jmcneill cpufreq_dt_init_sysctl(struct cpufreq_dt_softc *sc)
    270   1.1  jmcneill {
    271   1.9  jmcneill 	const struct sysctlnode *node, *cpunode;
    272   1.1  jmcneill 	struct sysctllog *cpufreq_log = NULL;
    273   1.9  jmcneill 	struct cpu_info *ci;
    274  1.10    martin 	bus_addr_t mpidr;
    275   1.1  jmcneill 	int error, i;
    276   1.1  jmcneill 
    277   1.9  jmcneill 	if (fdtbus_get_reg(sc->sc_phandle, 0, &mpidr, 0) != 0)
    278   1.9  jmcneill 		return;
    279   1.9  jmcneill 
    280   1.9  jmcneill 	ci = cpufreq_dt_cpu_lookup(mpidr);
    281   1.9  jmcneill 	if (ci == NULL)
    282   1.9  jmcneill 		return;
    283   1.9  jmcneill 
    284   1.1  jmcneill 	sc->sc_freq_available = kmem_zalloc(strlen("XXXX ") * sc->sc_nopp, KM_SLEEP);
    285   1.1  jmcneill 	for (i = 0; i < sc->sc_nopp; i++) {
    286   1.1  jmcneill 		char buf[6];
    287   1.1  jmcneill 		snprintf(buf, sizeof(buf), i ? " %u" : "%u", sc->sc_opp[i].freq_khz / 1000);
    288   1.1  jmcneill 		strcat(sc->sc_freq_available, buf);
    289   1.1  jmcneill 	}
    290   1.1  jmcneill 
    291   1.1  jmcneill 	error = sysctl_createv(&cpufreq_log, 0, NULL, &node,
    292   1.1  jmcneill 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
    293   1.1  jmcneill 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
    294   1.1  jmcneill 	if (error)
    295   1.1  jmcneill 		goto sysctl_failed;
    296   1.9  jmcneill 	error = sysctl_createv(&cpufreq_log, 0, &node, &node,
    297   1.9  jmcneill 	    0, CTLTYPE_NODE, "cpufreq", NULL,
    298   1.1  jmcneill 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    299   1.1  jmcneill 	if (error)
    300   1.1  jmcneill 		goto sysctl_failed;
    301   1.9  jmcneill 	error = sysctl_createv(&cpufreq_log, 0, &node, &cpunode,
    302   1.9  jmcneill 	    0, CTLTYPE_NODE, cpu_name(ci), NULL,
    303   1.1  jmcneill 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    304   1.1  jmcneill 	if (error)
    305   1.1  jmcneill 		goto sysctl_failed;
    306   1.1  jmcneill 
    307   1.9  jmcneill 	error = sysctl_createv(&cpufreq_log, 0, &cpunode, &node,
    308   1.1  jmcneill 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
    309   1.1  jmcneill 	    cpufreq_dt_sysctl_helper, 0, (void *)sc, 0,
    310   1.1  jmcneill 	    CTL_CREATE, CTL_EOL);
    311   1.1  jmcneill 	if (error)
    312   1.1  jmcneill 		goto sysctl_failed;
    313   1.1  jmcneill 	sc->sc_node_target = node->sysctl_num;
    314   1.1  jmcneill 
    315   1.9  jmcneill 	error = sysctl_createv(&cpufreq_log, 0, &cpunode, &node,
    316   1.1  jmcneill 	    CTLFLAG_READWRITE, CTLTYPE_INT, "current", NULL,
    317   1.1  jmcneill 	    cpufreq_dt_sysctl_helper, 0, (void *)sc, 0,
    318   1.1  jmcneill 	    CTL_CREATE, CTL_EOL);
    319   1.1  jmcneill 	if (error)
    320   1.1  jmcneill 		goto sysctl_failed;
    321   1.1  jmcneill 	sc->sc_node_current = node->sysctl_num;
    322   1.1  jmcneill 
    323   1.9  jmcneill 	error = sysctl_createv(&cpufreq_log, 0, &cpunode, &node,
    324   1.1  jmcneill 	    0, CTLTYPE_STRING, "available", NULL,
    325   1.1  jmcneill 	    NULL, 0, sc->sc_freq_available, 0,
    326   1.1  jmcneill 	    CTL_CREATE, CTL_EOL);
    327   1.1  jmcneill 	if (error)
    328   1.1  jmcneill 		goto sysctl_failed;
    329   1.1  jmcneill 	sc->sc_node_available = node->sysctl_num;
    330   1.1  jmcneill 
    331   1.1  jmcneill 	return;
    332   1.1  jmcneill 
    333   1.1  jmcneill sysctl_failed:
    334   1.1  jmcneill 	aprint_error_dev(sc->sc_dev, "couldn't create sysctl nodes: %d\n", error);
    335   1.1  jmcneill 	sysctl_teardown(&cpufreq_log);
    336   1.1  jmcneill }
    337   1.1  jmcneill 
    338   1.1  jmcneill static int
    339   1.4  jmcneill cpufreq_dt_parse_opp(struct cpufreq_dt_softc *sc)
    340   1.1  jmcneill {
    341   1.1  jmcneill 	const int phandle = sc->sc_phandle;
    342   1.1  jmcneill 	const u_int *opp;
    343   1.1  jmcneill 	int len, i;
    344   1.4  jmcneill 
    345   1.4  jmcneill 	opp = fdtbus_get_prop(phandle, "operating-points", &len);
    346   1.4  jmcneill 	if (len < 8)
    347   1.4  jmcneill 		return ENXIO;
    348   1.4  jmcneill 
    349   1.4  jmcneill 	sc->sc_nopp = len / 8;
    350   1.4  jmcneill 	sc->sc_opp = kmem_zalloc(sizeof(*sc->sc_opp) * sc->sc_nopp, KM_SLEEP);
    351   1.4  jmcneill 	for (i = 0; i < sc->sc_nopp; i++, opp += 2) {
    352   1.4  jmcneill 		sc->sc_opp[i].freq_khz = be32toh(opp[0]);
    353   1.4  jmcneill 		sc->sc_opp[i].voltage_uv = be32toh(opp[1]);
    354   1.4  jmcneill 	}
    355   1.4  jmcneill 
    356   1.4  jmcneill 	return 0;
    357   1.4  jmcneill }
    358   1.4  jmcneill 
    359  1.12  jmcneill static const struct fdt_opp_info *
    360  1.12  jmcneill cpufreq_dt_lookup_opp_info(const int opp_table)
    361  1.12  jmcneill {
    362  1.12  jmcneill 	__link_set_decl(fdt_opps, struct fdt_opp_info);
    363  1.12  jmcneill 	struct fdt_opp_info * const *opp;
    364  1.12  jmcneill 	const struct fdt_opp_info *best_opp = NULL;
    365  1.12  jmcneill 	int match, best_match = 0;
    366  1.12  jmcneill 
    367  1.12  jmcneill 	__link_set_foreach(opp, fdt_opps) {
    368  1.12  jmcneill 		const char * const compat[] = { (*opp)->opp_compat, NULL };
    369  1.12  jmcneill 		match = of_match_compatible(opp_table, compat);
    370  1.12  jmcneill 		if (match > best_match) {
    371  1.12  jmcneill 			best_match = match;
    372  1.12  jmcneill 			best_opp = *opp;
    373  1.12  jmcneill 		}
    374  1.12  jmcneill 	}
    375  1.12  jmcneill 
    376  1.12  jmcneill 	return best_opp;
    377  1.12  jmcneill }
    378  1.12  jmcneill 
    379  1.12  jmcneill static bool
    380  1.13  jmcneill cpufreq_dt_opp_v2_supported(const int opp_table, const int opp_node)
    381  1.13  jmcneill {
    382  1.13  jmcneill 	return true;
    383  1.13  jmcneill }
    384  1.13  jmcneill 
    385  1.13  jmcneill FDT_OPP(opp_v2, "operating-points-v2", cpufreq_dt_opp_v2_supported);
    386  1.13  jmcneill 
    387  1.13  jmcneill static bool
    388  1.12  jmcneill cpufreq_dt_node_supported(const struct fdt_opp_info *opp_info, const int opp_table, const int opp_node)
    389  1.12  jmcneill {
    390  1.12  jmcneill 	if (!fdtbus_status_okay(opp_node))
    391  1.12  jmcneill 		return false;
    392  1.12  jmcneill 	if (of_hasprop(opp_node, "opp-suspend"))
    393  1.12  jmcneill 		return false;
    394  1.12  jmcneill 
    395  1.12  jmcneill 	if (opp_info != NULL)
    396  1.12  jmcneill 		return opp_info->opp_supported(opp_table, opp_node);
    397  1.12  jmcneill 
    398  1.13  jmcneill 	return false;
    399  1.12  jmcneill }
    400  1.12  jmcneill 
    401   1.4  jmcneill static int
    402   1.4  jmcneill cpufreq_dt_parse_opp_v2(struct cpufreq_dt_softc *sc)
    403   1.4  jmcneill {
    404   1.4  jmcneill 	const int phandle = sc->sc_phandle;
    405   1.4  jmcneill 	struct cpufreq_dt_table *table;
    406  1.12  jmcneill 	const struct fdt_opp_info *opp_info;
    407   1.7  jmcneill 	const u_int *opp_uv;
    408   1.4  jmcneill 	uint64_t opp_hz;
    409  1.11  jmcneill 	int opp_node, len, i, index;
    410   1.4  jmcneill 
    411   1.4  jmcneill 	const int opp_table = fdtbus_get_phandle(phandle, "operating-points-v2");
    412   1.4  jmcneill 	if (opp_table < 0)
    413   1.4  jmcneill 		return ENOENT;
    414   1.4  jmcneill 
    415   1.4  jmcneill 	/* If the table is shared, only setup a single instance */
    416   1.4  jmcneill 	if (of_hasprop(opp_table, "opp-shared")) {
    417   1.4  jmcneill 		TAILQ_FOREACH(table, &cpufreq_dt_tables, next)
    418   1.4  jmcneill 			if (table->phandle == opp_table)
    419   1.4  jmcneill 				return EEXIST;
    420   1.4  jmcneill 		sc->sc_table.phandle = opp_table;
    421   1.4  jmcneill 		TAILQ_INSERT_TAIL(&cpufreq_dt_tables, &sc->sc_table, next);
    422   1.4  jmcneill 	}
    423   1.4  jmcneill 
    424  1.12  jmcneill 	opp_info = cpufreq_dt_lookup_opp_info(opp_table);
    425  1.12  jmcneill 
    426   1.4  jmcneill 	for (opp_node = OF_child(opp_table); opp_node; opp_node = OF_peer(opp_node)) {
    427  1.12  jmcneill 		if (!cpufreq_dt_node_supported(opp_info, opp_table, opp_node))
    428  1.11  jmcneill 			continue;
    429  1.11  jmcneill 		sc->sc_nopp++;
    430   1.4  jmcneill 	}
    431   1.4  jmcneill 
    432   1.4  jmcneill 	if (sc->sc_nopp == 0)
    433   1.4  jmcneill 		return EINVAL;
    434   1.4  jmcneill 
    435   1.4  jmcneill 	sc->sc_opp = kmem_zalloc(sizeof(*sc->sc_opp) * sc->sc_nopp, KM_SLEEP);
    436  1.11  jmcneill 	index = sc->sc_nopp - 1;
    437   1.4  jmcneill 	for (opp_node = OF_child(opp_table), i = 0; opp_node; opp_node = OF_peer(opp_node), i++) {
    438  1.12  jmcneill 		if (!cpufreq_dt_node_supported(opp_info, opp_table, opp_node))
    439  1.11  jmcneill 			continue;
    440   1.4  jmcneill 		if (of_getprop_uint64(opp_node, "opp-hz", &opp_hz) != 0)
    441   1.4  jmcneill 			return EINVAL;
    442   1.7  jmcneill 		opp_uv = fdtbus_get_prop(opp_node, "opp-microvolt", &len);
    443   1.7  jmcneill 		if (opp_uv == NULL || len < 1)
    444   1.4  jmcneill 			return EINVAL;
    445   1.8  jmcneill 		/* Table is in reverse order */
    446   1.8  jmcneill 		sc->sc_opp[index].freq_khz = (u_int)(opp_hz / 1000);
    447   1.8  jmcneill 		sc->sc_opp[index].voltage_uv = be32toh(opp_uv[0]);
    448   1.8  jmcneill 		of_getprop_uint32(opp_node, "clock-latency-ns", &sc->sc_opp[index].latency_ns);
    449  1.11  jmcneill 		--index;
    450   1.4  jmcneill 	}
    451   1.4  jmcneill 
    452   1.4  jmcneill 	return 0;
    453   1.4  jmcneill }
    454   1.4  jmcneill 
    455   1.4  jmcneill static int
    456   1.4  jmcneill cpufreq_dt_parse(struct cpufreq_dt_softc *sc)
    457   1.4  jmcneill {
    458   1.4  jmcneill 	const int phandle = sc->sc_phandle;
    459   1.4  jmcneill 	int error, i;
    460   1.1  jmcneill 
    461   1.3  jmcneill 	if (of_hasprop(phandle, "cpu-supply")) {
    462   1.3  jmcneill 		sc->sc_supply = fdtbus_regulator_acquire(phandle, "cpu-supply");
    463   1.3  jmcneill 		if (sc->sc_supply == NULL) {
    464   1.3  jmcneill 			aprint_error_dev(sc->sc_dev,
    465   1.3  jmcneill 			    "couldn't acquire cpu-supply\n");
    466   1.3  jmcneill 			return ENXIO;
    467   1.3  jmcneill 		}
    468   1.1  jmcneill 	}
    469   1.1  jmcneill 	sc->sc_clk = fdtbus_clock_get_index(phandle, 0);
    470   1.1  jmcneill 	if (sc->sc_clk == NULL) {
    471   1.1  jmcneill 		aprint_error_dev(sc->sc_dev, "couldn't acquire clock\n");
    472   1.1  jmcneill 		return ENXIO;
    473   1.1  jmcneill 	}
    474   1.1  jmcneill 
    475   1.4  jmcneill 	mutex_enter(&cpufreq_dt_tables_lock);
    476   1.4  jmcneill 	if (of_hasprop(phandle, "operating-points"))
    477   1.4  jmcneill 		error = cpufreq_dt_parse_opp(sc);
    478   1.4  jmcneill 	else if (of_hasprop(phandle, "operating-points-v2"))
    479   1.4  jmcneill 		error = cpufreq_dt_parse_opp_v2(sc);
    480   1.4  jmcneill 	else
    481   1.4  jmcneill 		error = EINVAL;
    482   1.4  jmcneill 	mutex_exit(&cpufreq_dt_tables_lock);
    483   1.1  jmcneill 
    484   1.4  jmcneill 	if (error) {
    485   1.5  jmcneill 		if (error != EEXIST)
    486   1.5  jmcneill 			aprint_error_dev(sc->sc_dev,
    487   1.5  jmcneill 			    "couldn't parse operating points: %d\n", error);
    488   1.4  jmcneill 		return error;
    489   1.4  jmcneill 	}
    490   1.1  jmcneill 
    491   1.4  jmcneill 	for (i = 0; i < sc->sc_nopp; i++) {
    492   1.1  jmcneill 		aprint_verbose_dev(sc->sc_dev, "%u.%03u MHz, %u uV\n",
    493   1.1  jmcneill 		    sc->sc_opp[i].freq_khz / 1000,
    494   1.1  jmcneill 		    sc->sc_opp[i].freq_khz % 1000,
    495   1.1  jmcneill 		    sc->sc_opp[i].voltage_uv);
    496   1.1  jmcneill 	}
    497   1.1  jmcneill 
    498   1.1  jmcneill 	return 0;
    499   1.1  jmcneill }
    500   1.1  jmcneill 
    501   1.1  jmcneill static int
    502   1.1  jmcneill cpufreq_dt_match(device_t parent, cfdata_t cf, void *aux)
    503   1.1  jmcneill {
    504   1.1  jmcneill 	struct fdt_attach_args * const faa = aux;
    505   1.1  jmcneill 	const int phandle = faa->faa_phandle;
    506   1.1  jmcneill 	bus_addr_t addr;
    507   1.1  jmcneill 
    508   1.1  jmcneill 	if (fdtbus_get_reg(phandle, 0, &addr, NULL) != 0)
    509   1.1  jmcneill 		return 0;
    510   1.4  jmcneill 
    511   1.4  jmcneill 	if (!of_hasprop(phandle, "clocks"))
    512   1.1  jmcneill 		return 0;
    513   1.1  jmcneill 
    514   1.4  jmcneill 	if (!of_hasprop(phandle, "operating-points") &&
    515   1.4  jmcneill 	    !of_hasprop(phandle, "operating-points-v2"))
    516   1.1  jmcneill 		return 0;
    517   1.1  jmcneill 
    518   1.1  jmcneill 	return 1;
    519   1.1  jmcneill }
    520   1.1  jmcneill 
    521   1.1  jmcneill static void
    522   1.1  jmcneill cpufreq_dt_init(device_t self)
    523   1.1  jmcneill {
    524   1.1  jmcneill 	struct cpufreq_dt_softc * const sc = device_private(self);
    525   1.1  jmcneill 	int error;
    526   1.1  jmcneill 
    527   1.1  jmcneill 	if ((error = cpufreq_dt_parse(sc)) != 0)
    528   1.1  jmcneill 		return;
    529   1.1  jmcneill 
    530   1.4  jmcneill 	pmf_event_register(sc->sc_dev, PMFE_THROTTLE_ENABLE, cpufreq_dt_throttle_enable, true);
    531   1.4  jmcneill 	pmf_event_register(sc->sc_dev, PMFE_THROTTLE_DISABLE, cpufreq_dt_throttle_disable, true);
    532   1.4  jmcneill 
    533   1.1  jmcneill 	cpufreq_dt_init_sysctl(sc);
    534   1.1  jmcneill }
    535   1.1  jmcneill 
    536   1.4  jmcneill static int
    537   1.4  jmcneill cpufreq_dt_lock_init(void)
    538   1.4  jmcneill {
    539   1.4  jmcneill 	mutex_init(&cpufreq_dt_tables_lock, MUTEX_DEFAULT, IPL_NONE);
    540   1.4  jmcneill 	return 0;
    541   1.4  jmcneill }
    542   1.4  jmcneill 
    543   1.1  jmcneill static void
    544   1.1  jmcneill cpufreq_dt_attach(device_t parent, device_t self, void *aux)
    545   1.1  jmcneill {
    546   1.4  jmcneill 	static ONCE_DECL(locks);
    547   1.1  jmcneill 	struct cpufreq_dt_softc * const sc = device_private(self);
    548   1.1  jmcneill 	struct fdt_attach_args * const faa = aux;
    549   1.1  jmcneill 
    550   1.4  jmcneill 	RUN_ONCE(&locks, cpufreq_dt_lock_init);
    551   1.4  jmcneill 
    552   1.1  jmcneill 	sc->sc_dev = self;
    553   1.1  jmcneill 	sc->sc_phandle = faa->faa_phandle;
    554   1.1  jmcneill 
    555   1.1  jmcneill 	aprint_naive("\n");
    556   1.1  jmcneill 	aprint_normal("\n");
    557   1.1  jmcneill 
    558   1.1  jmcneill 	config_interrupts(self, cpufreq_dt_init);
    559   1.1  jmcneill }
    560   1.1  jmcneill 
    561   1.1  jmcneill CFATTACH_DECL_NEW(cpufreq_dt, sizeof(struct cpufreq_dt_softc),
    562   1.1  jmcneill     cpufreq_dt_match, cpufreq_dt_attach, NULL, NULL);
    563