Home | History | Annotate | Line # | Download | only in fdt
cpufreq_dt.c revision 1.17.2.1
      1  1.17.2.1   thorpej /* $NetBSD: cpufreq_dt.c,v 1.17.2.1 2021/04/03 22:28:44 thorpej Exp $ */
      2       1.1  jmcneill 
      3       1.1  jmcneill /*-
      4       1.1  jmcneill  * Copyright (c) 2015-2017 Jared McNeill <jmcneill (at) invisible.ca>
      5       1.1  jmcneill  * All rights reserved.
      6       1.1  jmcneill  *
      7       1.1  jmcneill  * Redistribution and use in source and binary forms, with or without
      8       1.1  jmcneill  * modification, are permitted provided that the following conditions
      9       1.1  jmcneill  * are met:
     10       1.1  jmcneill  * 1. Redistributions of source code must retain the above copyright
     11       1.1  jmcneill  *    notice, this list of conditions and the following disclaimer.
     12       1.1  jmcneill  * 2. Redistributions in binary form must reproduce the above copyright
     13       1.1  jmcneill  *    notice, this list of conditions and the following disclaimer in the
     14       1.1  jmcneill  *    documentation and/or other materials provided with the distribution.
     15       1.1  jmcneill  *
     16       1.1  jmcneill  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17       1.1  jmcneill  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18       1.1  jmcneill  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19       1.1  jmcneill  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20       1.1  jmcneill  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21       1.1  jmcneill  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22       1.1  jmcneill  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23       1.1  jmcneill  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24       1.1  jmcneill  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25       1.1  jmcneill  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26       1.1  jmcneill  * SUCH DAMAGE.
     27       1.1  jmcneill  */
     28       1.1  jmcneill 
     29       1.1  jmcneill #include <sys/cdefs.h>
     30  1.17.2.1   thorpej __KERNEL_RCSID(0, "$NetBSD: cpufreq_dt.c,v 1.17.2.1 2021/04/03 22:28:44 thorpej Exp $");
     31       1.1  jmcneill 
     32       1.1  jmcneill #include <sys/param.h>
     33       1.1  jmcneill #include <sys/systm.h>
     34       1.1  jmcneill #include <sys/device.h>
     35       1.1  jmcneill #include <sys/kmem.h>
     36       1.1  jmcneill #include <sys/bus.h>
     37       1.1  jmcneill #include <sys/atomic.h>
     38       1.1  jmcneill #include <sys/xcall.h>
     39       1.1  jmcneill #include <sys/sysctl.h>
     40       1.4  jmcneill #include <sys/queue.h>
     41       1.4  jmcneill #include <sys/once.h>
     42       1.9  jmcneill #include <sys/cpu.h>
     43       1.1  jmcneill 
     44       1.1  jmcneill #include <dev/fdt/fdtvar.h>
     45       1.1  jmcneill 
     46       1.4  jmcneill struct cpufreq_dt_table {
     47       1.4  jmcneill 	int			phandle;
     48       1.4  jmcneill 	TAILQ_ENTRY(cpufreq_dt_table) next;
     49       1.4  jmcneill };
     50       1.4  jmcneill 
     51       1.4  jmcneill static TAILQ_HEAD(, cpufreq_dt_table) cpufreq_dt_tables =
     52       1.4  jmcneill     TAILQ_HEAD_INITIALIZER(cpufreq_dt_tables);
     53       1.4  jmcneill static kmutex_t cpufreq_dt_tables_lock;
     54       1.4  jmcneill 
     55       1.1  jmcneill struct cpufreq_dt_opp {
     56       1.4  jmcneill 	u_int			freq_khz;
     57       1.4  jmcneill 	u_int			voltage_uv;
     58       1.4  jmcneill 	u_int			latency_ns;
     59       1.1  jmcneill };
     60       1.1  jmcneill 
     61       1.1  jmcneill struct cpufreq_dt_softc {
     62       1.1  jmcneill 	device_t		sc_dev;
     63       1.1  jmcneill 	int			sc_phandle;
     64       1.1  jmcneill 	struct clk		*sc_clk;
     65       1.1  jmcneill 	struct fdtbus_regulator	*sc_supply;
     66       1.1  jmcneill 
     67       1.1  jmcneill 	struct cpufreq_dt_opp	*sc_opp;
     68       1.1  jmcneill 	ssize_t			sc_nopp;
     69       1.1  jmcneill 
     70       1.2  jmcneill 	u_int			sc_freq_target;
     71       1.2  jmcneill 	bool			sc_freq_throttle;
     72       1.2  jmcneill 
     73       1.1  jmcneill 	u_int			sc_busy;
     74       1.1  jmcneill 
     75       1.1  jmcneill 	char			*sc_freq_available;
     76       1.1  jmcneill 	int			sc_node_target;
     77       1.1  jmcneill 	int			sc_node_current;
     78       1.1  jmcneill 	int			sc_node_available;
     79       1.4  jmcneill 
     80       1.4  jmcneill 	struct cpufreq_dt_table	sc_table;
     81       1.1  jmcneill };
     82       1.1  jmcneill 
     83       1.1  jmcneill static void
     84       1.1  jmcneill cpufreq_dt_change_cb(void *arg1, void *arg2)
     85       1.1  jmcneill {
     86      1.14  jmcneill 	struct cpufreq_dt_softc * const sc = arg1;
     87       1.1  jmcneill 	struct cpu_info *ci = curcpu();
     88      1.14  jmcneill 
     89  1.17.2.1   thorpej 	ci->ci_data.cpu_cc_freq = clk_get_rate(sc->sc_clk);
     90       1.1  jmcneill }
     91       1.1  jmcneill 
     92       1.1  jmcneill static int
     93       1.1  jmcneill cpufreq_dt_set_rate(struct cpufreq_dt_softc *sc, u_int freq_khz)
     94       1.1  jmcneill {
     95       1.1  jmcneill 	struct cpufreq_dt_opp *opp = NULL;
     96       1.1  jmcneill 	u_int old_rate, new_rate, old_uv, new_uv;
     97       1.2  jmcneill 	uint64_t xc;
     98       1.1  jmcneill 	int error;
     99       1.1  jmcneill 	ssize_t n;
    100       1.1  jmcneill 
    101       1.1  jmcneill 	for (n = 0; n < sc->sc_nopp; n++)
    102       1.1  jmcneill 		if (sc->sc_opp[n].freq_khz == freq_khz) {
    103       1.1  jmcneill 			opp = &sc->sc_opp[n];
    104       1.1  jmcneill 			break;
    105       1.1  jmcneill 		}
    106       1.1  jmcneill 	if (opp == NULL)
    107       1.1  jmcneill 		return EINVAL;
    108       1.1  jmcneill 
    109       1.1  jmcneill 	old_rate = clk_get_rate(sc->sc_clk);
    110       1.1  jmcneill 	new_rate = freq_khz * 1000;
    111       1.3  jmcneill 	new_uv = opp->voltage_uv;
    112       1.1  jmcneill 
    113       1.1  jmcneill 	if (old_rate == new_rate)
    114       1.1  jmcneill 		return 0;
    115       1.1  jmcneill 
    116       1.3  jmcneill 	if (sc->sc_supply != NULL) {
    117       1.3  jmcneill 		error = fdtbus_regulator_get_voltage(sc->sc_supply, &old_uv);
    118       1.1  jmcneill 		if (error != 0)
    119       1.1  jmcneill 			return error;
    120       1.3  jmcneill 
    121       1.3  jmcneill 		if (new_uv > old_uv) {
    122       1.3  jmcneill 			error = fdtbus_regulator_set_voltage(sc->sc_supply,
    123       1.3  jmcneill 			    new_uv, new_uv);
    124       1.3  jmcneill 			if (error != 0)
    125       1.3  jmcneill 				return error;
    126       1.3  jmcneill 		}
    127       1.1  jmcneill 	}
    128       1.1  jmcneill 
    129       1.1  jmcneill 	error = clk_set_rate(sc->sc_clk, new_rate);
    130       1.1  jmcneill 	if (error != 0)
    131       1.1  jmcneill 		return error;
    132       1.1  jmcneill 
    133       1.4  jmcneill 	const u_int latency_us = howmany(opp->latency_ns, 1000);
    134       1.4  jmcneill 	if (latency_us > 0)
    135       1.4  jmcneill 		delay(latency_us);
    136       1.4  jmcneill 
    137       1.3  jmcneill 	if (sc->sc_supply != NULL) {
    138       1.3  jmcneill 		if (new_uv < old_uv) {
    139       1.3  jmcneill 			error = fdtbus_regulator_set_voltage(sc->sc_supply,
    140       1.3  jmcneill 			    new_uv, new_uv);
    141       1.3  jmcneill 			if (error != 0)
    142       1.3  jmcneill 				return error;
    143       1.3  jmcneill 		}
    144       1.1  jmcneill 	}
    145       1.1  jmcneill 
    146       1.2  jmcneill 	if (error == 0) {
    147       1.2  jmcneill 		xc = xc_broadcast(0, cpufreq_dt_change_cb, sc, NULL);
    148       1.2  jmcneill 		xc_wait(xc);
    149       1.2  jmcneill 
    150       1.2  jmcneill 		pmf_event_inject(NULL, PMFE_SPEED_CHANGED);
    151       1.2  jmcneill 	}
    152       1.2  jmcneill 
    153       1.1  jmcneill 	return 0;
    154       1.1  jmcneill }
    155       1.1  jmcneill 
    156       1.2  jmcneill static void
    157       1.2  jmcneill cpufreq_dt_throttle_enable(device_t dev)
    158       1.2  jmcneill {
    159       1.2  jmcneill 	struct cpufreq_dt_softc * const sc = device_private(dev);
    160       1.2  jmcneill 
    161       1.2  jmcneill 	if (sc->sc_freq_throttle)
    162       1.2  jmcneill 		return;
    163       1.2  jmcneill 
    164       1.2  jmcneill 	const u_int freq_khz = sc->sc_opp[sc->sc_nopp - 1].freq_khz;
    165       1.2  jmcneill 
    166       1.2  jmcneill 	while (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0)
    167       1.2  jmcneill 		kpause("throttle", false, 1, NULL);
    168       1.2  jmcneill 
    169       1.2  jmcneill 	if (cpufreq_dt_set_rate(sc, freq_khz) == 0) {
    170       1.2  jmcneill 		aprint_debug_dev(sc->sc_dev, "throttle enabled (%u.%03u MHz)\n",
    171       1.2  jmcneill 		    freq_khz / 1000, freq_khz % 1000);
    172       1.2  jmcneill 		sc->sc_freq_throttle = true;
    173       1.2  jmcneill 		if (sc->sc_freq_target == 0)
    174       1.2  jmcneill 			sc->sc_freq_target = clk_get_rate(sc->sc_clk) / 1000000;
    175       1.2  jmcneill 	}
    176       1.2  jmcneill 
    177       1.2  jmcneill 	atomic_dec_uint(&sc->sc_busy);
    178       1.2  jmcneill }
    179       1.2  jmcneill 
    180       1.2  jmcneill static void
    181       1.2  jmcneill cpufreq_dt_throttle_disable(device_t dev)
    182       1.2  jmcneill {
    183       1.2  jmcneill 	struct cpufreq_dt_softc * const sc = device_private(dev);
    184       1.2  jmcneill 
    185       1.2  jmcneill 	if (!sc->sc_freq_throttle)
    186       1.2  jmcneill 		return;
    187       1.2  jmcneill 
    188       1.2  jmcneill 	while (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0)
    189       1.2  jmcneill 		kpause("throttle", false, 1, NULL);
    190       1.2  jmcneill 
    191       1.2  jmcneill 	const u_int freq_khz = sc->sc_freq_target * 1000;
    192       1.2  jmcneill 
    193       1.2  jmcneill 	if (cpufreq_dt_set_rate(sc, freq_khz) == 0) {
    194       1.2  jmcneill 		aprint_debug_dev(sc->sc_dev, "throttle disabled (%u.%03u MHz)\n",
    195       1.2  jmcneill 		    freq_khz / 1000, freq_khz % 1000);
    196       1.2  jmcneill 		sc->sc_freq_throttle = false;
    197       1.2  jmcneill 	}
    198       1.2  jmcneill 
    199       1.2  jmcneill 	atomic_dec_uint(&sc->sc_busy);
    200       1.2  jmcneill }
    201       1.2  jmcneill 
    202       1.1  jmcneill static int
    203       1.1  jmcneill cpufreq_dt_sysctl_helper(SYSCTLFN_ARGS)
    204       1.1  jmcneill {
    205       1.1  jmcneill 	struct cpufreq_dt_softc * const sc = rnode->sysctl_data;
    206       1.1  jmcneill 	struct sysctlnode node;
    207       1.1  jmcneill 	u_int fq, oldfq = 0;
    208       1.2  jmcneill 	int error, n;
    209       1.1  jmcneill 
    210       1.1  jmcneill 	node = *rnode;
    211       1.1  jmcneill 	node.sysctl_data = &fq;
    212       1.1  jmcneill 
    213       1.2  jmcneill 	if (rnode->sysctl_num == sc->sc_node_target) {
    214       1.2  jmcneill 		if (sc->sc_freq_target == 0)
    215       1.2  jmcneill 			sc->sc_freq_target = clk_get_rate(sc->sc_clk) / 1000000;
    216       1.2  jmcneill 		fq = sc->sc_freq_target;
    217       1.2  jmcneill 	} else
    218       1.2  jmcneill 		fq = clk_get_rate(sc->sc_clk) / 1000000;
    219       1.2  jmcneill 
    220       1.1  jmcneill 	if (rnode->sysctl_num == sc->sc_node_target)
    221       1.1  jmcneill 		oldfq = fq;
    222       1.1  jmcneill 
    223       1.2  jmcneill 	if (sc->sc_freq_target == 0)
    224       1.2  jmcneill 		sc->sc_freq_target = fq;
    225       1.2  jmcneill 
    226       1.1  jmcneill 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    227       1.1  jmcneill 	if (error || newp == NULL)
    228       1.1  jmcneill 		return error;
    229       1.1  jmcneill 
    230       1.1  jmcneill 	if (fq == oldfq || rnode->sysctl_num != sc->sc_node_target)
    231       1.1  jmcneill 		return 0;
    232       1.1  jmcneill 
    233       1.2  jmcneill 	for (n = 0; n < sc->sc_nopp; n++)
    234       1.2  jmcneill 		if (sc->sc_opp[n].freq_khz / 1000 == fq)
    235       1.2  jmcneill 			break;
    236       1.2  jmcneill 	if (n == sc->sc_nopp)
    237       1.2  jmcneill 		return EINVAL;
    238       1.2  jmcneill 
    239       1.1  jmcneill 	if (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0)
    240       1.1  jmcneill 		return EBUSY;
    241       1.1  jmcneill 
    242       1.2  jmcneill 	sc->sc_freq_target = fq;
    243       1.1  jmcneill 
    244       1.2  jmcneill 	if (sc->sc_freq_throttle)
    245       1.2  jmcneill 		error = 0;
    246       1.2  jmcneill 	else
    247       1.2  jmcneill 		error = cpufreq_dt_set_rate(sc, fq * 1000);
    248       1.1  jmcneill 
    249       1.1  jmcneill 	atomic_dec_uint(&sc->sc_busy);
    250       1.1  jmcneill 
    251       1.1  jmcneill 	return error;
    252       1.1  jmcneill }
    253       1.1  jmcneill 
    254       1.9  jmcneill static struct cpu_info *
    255       1.9  jmcneill cpufreq_dt_cpu_lookup(cpuid_t mpidr)
    256       1.9  jmcneill {
    257       1.9  jmcneill 	CPU_INFO_ITERATOR cii;
    258       1.9  jmcneill 	struct cpu_info *ci;
    259       1.9  jmcneill 
    260       1.9  jmcneill 	for (CPU_INFO_FOREACH(cii, ci)) {
    261       1.9  jmcneill 		if (ci->ci_cpuid == mpidr)
    262       1.9  jmcneill 			return ci;
    263       1.9  jmcneill 	}
    264       1.9  jmcneill 
    265       1.9  jmcneill 	return NULL;
    266       1.9  jmcneill }
    267       1.9  jmcneill 
    268       1.1  jmcneill static void
    269       1.1  jmcneill cpufreq_dt_init_sysctl(struct cpufreq_dt_softc *sc)
    270       1.1  jmcneill {
    271       1.9  jmcneill 	const struct sysctlnode *node, *cpunode;
    272       1.1  jmcneill 	struct sysctllog *cpufreq_log = NULL;
    273       1.9  jmcneill 	struct cpu_info *ci;
    274      1.10    martin 	bus_addr_t mpidr;
    275       1.1  jmcneill 	int error, i;
    276       1.1  jmcneill 
    277       1.9  jmcneill 	if (fdtbus_get_reg(sc->sc_phandle, 0, &mpidr, 0) != 0)
    278       1.9  jmcneill 		return;
    279       1.9  jmcneill 
    280       1.9  jmcneill 	ci = cpufreq_dt_cpu_lookup(mpidr);
    281       1.9  jmcneill 	if (ci == NULL)
    282       1.9  jmcneill 		return;
    283       1.9  jmcneill 
    284       1.1  jmcneill 	sc->sc_freq_available = kmem_zalloc(strlen("XXXX ") * sc->sc_nopp, KM_SLEEP);
    285       1.1  jmcneill 	for (i = 0; i < sc->sc_nopp; i++) {
    286       1.1  jmcneill 		char buf[6];
    287       1.1  jmcneill 		snprintf(buf, sizeof(buf), i ? " %u" : "%u", sc->sc_opp[i].freq_khz / 1000);
    288       1.1  jmcneill 		strcat(sc->sc_freq_available, buf);
    289       1.1  jmcneill 	}
    290       1.1  jmcneill 
    291       1.1  jmcneill 	error = sysctl_createv(&cpufreq_log, 0, NULL, &node,
    292       1.1  jmcneill 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
    293       1.1  jmcneill 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
    294       1.1  jmcneill 	if (error)
    295       1.1  jmcneill 		goto sysctl_failed;
    296       1.9  jmcneill 	error = sysctl_createv(&cpufreq_log, 0, &node, &node,
    297       1.9  jmcneill 	    0, CTLTYPE_NODE, "cpufreq", NULL,
    298       1.1  jmcneill 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    299       1.1  jmcneill 	if (error)
    300       1.1  jmcneill 		goto sysctl_failed;
    301       1.9  jmcneill 	error = sysctl_createv(&cpufreq_log, 0, &node, &cpunode,
    302       1.9  jmcneill 	    0, CTLTYPE_NODE, cpu_name(ci), NULL,
    303       1.1  jmcneill 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    304       1.1  jmcneill 	if (error)
    305       1.1  jmcneill 		goto sysctl_failed;
    306       1.1  jmcneill 
    307       1.9  jmcneill 	error = sysctl_createv(&cpufreq_log, 0, &cpunode, &node,
    308       1.1  jmcneill 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
    309       1.1  jmcneill 	    cpufreq_dt_sysctl_helper, 0, (void *)sc, 0,
    310       1.1  jmcneill 	    CTL_CREATE, CTL_EOL);
    311       1.1  jmcneill 	if (error)
    312       1.1  jmcneill 		goto sysctl_failed;
    313       1.1  jmcneill 	sc->sc_node_target = node->sysctl_num;
    314       1.1  jmcneill 
    315       1.9  jmcneill 	error = sysctl_createv(&cpufreq_log, 0, &cpunode, &node,
    316       1.1  jmcneill 	    CTLFLAG_READWRITE, CTLTYPE_INT, "current", NULL,
    317       1.1  jmcneill 	    cpufreq_dt_sysctl_helper, 0, (void *)sc, 0,
    318       1.1  jmcneill 	    CTL_CREATE, CTL_EOL);
    319       1.1  jmcneill 	if (error)
    320       1.1  jmcneill 		goto sysctl_failed;
    321       1.1  jmcneill 	sc->sc_node_current = node->sysctl_num;
    322       1.1  jmcneill 
    323       1.9  jmcneill 	error = sysctl_createv(&cpufreq_log, 0, &cpunode, &node,
    324       1.1  jmcneill 	    0, CTLTYPE_STRING, "available", NULL,
    325       1.1  jmcneill 	    NULL, 0, sc->sc_freq_available, 0,
    326       1.1  jmcneill 	    CTL_CREATE, CTL_EOL);
    327       1.1  jmcneill 	if (error)
    328       1.1  jmcneill 		goto sysctl_failed;
    329       1.1  jmcneill 	sc->sc_node_available = node->sysctl_num;
    330       1.1  jmcneill 
    331       1.1  jmcneill 	return;
    332       1.1  jmcneill 
    333       1.1  jmcneill sysctl_failed:
    334       1.1  jmcneill 	aprint_error_dev(sc->sc_dev, "couldn't create sysctl nodes: %d\n", error);
    335       1.1  jmcneill 	sysctl_teardown(&cpufreq_log);
    336       1.1  jmcneill }
    337       1.1  jmcneill 
    338       1.1  jmcneill static int
    339       1.4  jmcneill cpufreq_dt_parse_opp(struct cpufreq_dt_softc *sc)
    340       1.1  jmcneill {
    341       1.1  jmcneill 	const int phandle = sc->sc_phandle;
    342       1.1  jmcneill 	const u_int *opp;
    343       1.1  jmcneill 	int len, i;
    344       1.4  jmcneill 
    345       1.4  jmcneill 	opp = fdtbus_get_prop(phandle, "operating-points", &len);
    346       1.4  jmcneill 	if (len < 8)
    347       1.4  jmcneill 		return ENXIO;
    348       1.4  jmcneill 
    349       1.4  jmcneill 	sc->sc_nopp = len / 8;
    350       1.4  jmcneill 	sc->sc_opp = kmem_zalloc(sizeof(*sc->sc_opp) * sc->sc_nopp, KM_SLEEP);
    351       1.4  jmcneill 	for (i = 0; i < sc->sc_nopp; i++, opp += 2) {
    352       1.4  jmcneill 		sc->sc_opp[i].freq_khz = be32toh(opp[0]);
    353       1.4  jmcneill 		sc->sc_opp[i].voltage_uv = be32toh(opp[1]);
    354       1.4  jmcneill 	}
    355       1.4  jmcneill 
    356       1.4  jmcneill 	return 0;
    357       1.4  jmcneill }
    358       1.4  jmcneill 
    359      1.12  jmcneill static const struct fdt_opp_info *
    360      1.12  jmcneill cpufreq_dt_lookup_opp_info(const int opp_table)
    361      1.12  jmcneill {
    362      1.12  jmcneill 	__link_set_decl(fdt_opps, struct fdt_opp_info);
    363      1.12  jmcneill 	struct fdt_opp_info * const *opp;
    364      1.12  jmcneill 	const struct fdt_opp_info *best_opp = NULL;
    365      1.12  jmcneill 	int match, best_match = 0;
    366      1.12  jmcneill 
    367      1.12  jmcneill 	__link_set_foreach(opp, fdt_opps) {
    368  1.17.2.1   thorpej 		const struct device_compatible_entry compat_data[] = {
    369  1.17.2.1   thorpej 			{ .compat = (*opp)->opp_compat },
    370  1.17.2.1   thorpej 			DEVICE_COMPAT_EOL
    371  1.17.2.1   thorpej 		};
    372  1.17.2.1   thorpej 
    373  1.17.2.1   thorpej 		match = of_compatible_match(opp_table, compat_data);
    374      1.12  jmcneill 		if (match > best_match) {
    375      1.12  jmcneill 			best_match = match;
    376      1.12  jmcneill 			best_opp = *opp;
    377      1.12  jmcneill 		}
    378      1.12  jmcneill 	}
    379      1.12  jmcneill 
    380      1.12  jmcneill 	return best_opp;
    381      1.12  jmcneill }
    382      1.12  jmcneill 
    383      1.12  jmcneill static bool
    384      1.13  jmcneill cpufreq_dt_opp_v2_supported(const int opp_table, const int opp_node)
    385      1.13  jmcneill {
    386      1.13  jmcneill 	return true;
    387      1.13  jmcneill }
    388      1.13  jmcneill 
    389      1.13  jmcneill FDT_OPP(opp_v2, "operating-points-v2", cpufreq_dt_opp_v2_supported);
    390      1.13  jmcneill 
    391      1.13  jmcneill static bool
    392      1.12  jmcneill cpufreq_dt_node_supported(const struct fdt_opp_info *opp_info, const int opp_table, const int opp_node)
    393      1.12  jmcneill {
    394      1.12  jmcneill 	if (!fdtbus_status_okay(opp_node))
    395      1.12  jmcneill 		return false;
    396      1.12  jmcneill 	if (of_hasprop(opp_node, "opp-suspend"))
    397      1.12  jmcneill 		return false;
    398      1.12  jmcneill 
    399      1.12  jmcneill 	if (opp_info != NULL)
    400      1.12  jmcneill 		return opp_info->opp_supported(opp_table, opp_node);
    401      1.12  jmcneill 
    402      1.13  jmcneill 	return false;
    403      1.12  jmcneill }
    404      1.12  jmcneill 
    405       1.4  jmcneill static int
    406       1.4  jmcneill cpufreq_dt_parse_opp_v2(struct cpufreq_dt_softc *sc)
    407       1.4  jmcneill {
    408       1.4  jmcneill 	const int phandle = sc->sc_phandle;
    409       1.4  jmcneill 	struct cpufreq_dt_table *table;
    410      1.12  jmcneill 	const struct fdt_opp_info *opp_info;
    411       1.7  jmcneill 	const u_int *opp_uv;
    412       1.4  jmcneill 	uint64_t opp_hz;
    413      1.11  jmcneill 	int opp_node, len, i, index;
    414       1.4  jmcneill 
    415       1.4  jmcneill 	const int opp_table = fdtbus_get_phandle(phandle, "operating-points-v2");
    416       1.4  jmcneill 	if (opp_table < 0)
    417       1.4  jmcneill 		return ENOENT;
    418       1.4  jmcneill 
    419       1.4  jmcneill 	/* If the table is shared, only setup a single instance */
    420       1.4  jmcneill 	if (of_hasprop(opp_table, "opp-shared")) {
    421       1.4  jmcneill 		TAILQ_FOREACH(table, &cpufreq_dt_tables, next)
    422       1.4  jmcneill 			if (table->phandle == opp_table)
    423       1.4  jmcneill 				return EEXIST;
    424       1.4  jmcneill 		sc->sc_table.phandle = opp_table;
    425       1.4  jmcneill 		TAILQ_INSERT_TAIL(&cpufreq_dt_tables, &sc->sc_table, next);
    426       1.4  jmcneill 	}
    427       1.4  jmcneill 
    428      1.12  jmcneill 	opp_info = cpufreq_dt_lookup_opp_info(opp_table);
    429      1.12  jmcneill 
    430       1.4  jmcneill 	for (opp_node = OF_child(opp_table); opp_node; opp_node = OF_peer(opp_node)) {
    431      1.12  jmcneill 		if (!cpufreq_dt_node_supported(opp_info, opp_table, opp_node))
    432      1.11  jmcneill 			continue;
    433      1.11  jmcneill 		sc->sc_nopp++;
    434       1.4  jmcneill 	}
    435       1.4  jmcneill 
    436       1.4  jmcneill 	if (sc->sc_nopp == 0)
    437       1.4  jmcneill 		return EINVAL;
    438       1.4  jmcneill 
    439       1.4  jmcneill 	sc->sc_opp = kmem_zalloc(sizeof(*sc->sc_opp) * sc->sc_nopp, KM_SLEEP);
    440      1.11  jmcneill 	index = sc->sc_nopp - 1;
    441       1.4  jmcneill 	for (opp_node = OF_child(opp_table), i = 0; opp_node; opp_node = OF_peer(opp_node), i++) {
    442      1.12  jmcneill 		if (!cpufreq_dt_node_supported(opp_info, opp_table, opp_node))
    443      1.11  jmcneill 			continue;
    444       1.4  jmcneill 		if (of_getprop_uint64(opp_node, "opp-hz", &opp_hz) != 0)
    445       1.4  jmcneill 			return EINVAL;
    446       1.7  jmcneill 		opp_uv = fdtbus_get_prop(opp_node, "opp-microvolt", &len);
    447       1.7  jmcneill 		if (opp_uv == NULL || len < 1)
    448       1.4  jmcneill 			return EINVAL;
    449       1.8  jmcneill 		/* Table is in reverse order */
    450       1.8  jmcneill 		sc->sc_opp[index].freq_khz = (u_int)(opp_hz / 1000);
    451       1.8  jmcneill 		sc->sc_opp[index].voltage_uv = be32toh(opp_uv[0]);
    452       1.8  jmcneill 		of_getprop_uint32(opp_node, "clock-latency-ns", &sc->sc_opp[index].latency_ns);
    453      1.11  jmcneill 		--index;
    454       1.4  jmcneill 	}
    455       1.4  jmcneill 
    456       1.4  jmcneill 	return 0;
    457       1.4  jmcneill }
    458       1.4  jmcneill 
    459       1.4  jmcneill static int
    460       1.4  jmcneill cpufreq_dt_parse(struct cpufreq_dt_softc *sc)
    461       1.4  jmcneill {
    462       1.4  jmcneill 	const int phandle = sc->sc_phandle;
    463       1.4  jmcneill 	int error, i;
    464       1.1  jmcneill 
    465       1.3  jmcneill 	if (of_hasprop(phandle, "cpu-supply")) {
    466       1.3  jmcneill 		sc->sc_supply = fdtbus_regulator_acquire(phandle, "cpu-supply");
    467       1.3  jmcneill 		if (sc->sc_supply == NULL) {
    468       1.3  jmcneill 			aprint_error_dev(sc->sc_dev,
    469       1.3  jmcneill 			    "couldn't acquire cpu-supply\n");
    470       1.3  jmcneill 			return ENXIO;
    471       1.3  jmcneill 		}
    472       1.1  jmcneill 	}
    473       1.1  jmcneill 	sc->sc_clk = fdtbus_clock_get_index(phandle, 0);
    474       1.1  jmcneill 	if (sc->sc_clk == NULL) {
    475       1.1  jmcneill 		aprint_error_dev(sc->sc_dev, "couldn't acquire clock\n");
    476       1.1  jmcneill 		return ENXIO;
    477       1.1  jmcneill 	}
    478       1.1  jmcneill 
    479       1.4  jmcneill 	mutex_enter(&cpufreq_dt_tables_lock);
    480       1.4  jmcneill 	if (of_hasprop(phandle, "operating-points"))
    481       1.4  jmcneill 		error = cpufreq_dt_parse_opp(sc);
    482       1.4  jmcneill 	else if (of_hasprop(phandle, "operating-points-v2"))
    483       1.4  jmcneill 		error = cpufreq_dt_parse_opp_v2(sc);
    484       1.4  jmcneill 	else
    485       1.4  jmcneill 		error = EINVAL;
    486       1.4  jmcneill 	mutex_exit(&cpufreq_dt_tables_lock);
    487       1.1  jmcneill 
    488       1.4  jmcneill 	if (error) {
    489       1.5  jmcneill 		if (error != EEXIST)
    490       1.5  jmcneill 			aprint_error_dev(sc->sc_dev,
    491       1.5  jmcneill 			    "couldn't parse operating points: %d\n", error);
    492       1.4  jmcneill 		return error;
    493       1.4  jmcneill 	}
    494       1.1  jmcneill 
    495       1.4  jmcneill 	for (i = 0; i < sc->sc_nopp; i++) {
    496      1.14  jmcneill 		aprint_debug_dev(sc->sc_dev, "supported rate: %u.%03u MHz, %u uV\n",
    497       1.1  jmcneill 		    sc->sc_opp[i].freq_khz / 1000,
    498       1.1  jmcneill 		    sc->sc_opp[i].freq_khz % 1000,
    499       1.1  jmcneill 		    sc->sc_opp[i].voltage_uv);
    500       1.1  jmcneill 	}
    501       1.1  jmcneill 
    502       1.1  jmcneill 	return 0;
    503       1.1  jmcneill }
    504       1.1  jmcneill 
    505       1.1  jmcneill static int
    506       1.1  jmcneill cpufreq_dt_match(device_t parent, cfdata_t cf, void *aux)
    507       1.1  jmcneill {
    508       1.1  jmcneill 	struct fdt_attach_args * const faa = aux;
    509       1.1  jmcneill 	const int phandle = faa->faa_phandle;
    510       1.1  jmcneill 	bus_addr_t addr;
    511       1.1  jmcneill 
    512       1.1  jmcneill 	if (fdtbus_get_reg(phandle, 0, &addr, NULL) != 0)
    513       1.1  jmcneill 		return 0;
    514       1.4  jmcneill 
    515       1.4  jmcneill 	if (!of_hasprop(phandle, "clocks"))
    516       1.1  jmcneill 		return 0;
    517       1.1  jmcneill 
    518       1.4  jmcneill 	if (!of_hasprop(phandle, "operating-points") &&
    519       1.4  jmcneill 	    !of_hasprop(phandle, "operating-points-v2"))
    520       1.1  jmcneill 		return 0;
    521       1.1  jmcneill 
    522       1.1  jmcneill 	return 1;
    523       1.1  jmcneill }
    524       1.1  jmcneill 
    525       1.1  jmcneill static void
    526       1.1  jmcneill cpufreq_dt_init(device_t self)
    527       1.1  jmcneill {
    528       1.1  jmcneill 	struct cpufreq_dt_softc * const sc = device_private(self);
    529       1.1  jmcneill 	int error;
    530       1.1  jmcneill 
    531       1.1  jmcneill 	if ((error = cpufreq_dt_parse(sc)) != 0)
    532       1.1  jmcneill 		return;
    533       1.1  jmcneill 
    534       1.4  jmcneill 	pmf_event_register(sc->sc_dev, PMFE_THROTTLE_ENABLE, cpufreq_dt_throttle_enable, true);
    535       1.4  jmcneill 	pmf_event_register(sc->sc_dev, PMFE_THROTTLE_DISABLE, cpufreq_dt_throttle_disable, true);
    536       1.4  jmcneill 
    537       1.1  jmcneill 	cpufreq_dt_init_sysctl(sc);
    538      1.14  jmcneill 
    539      1.14  jmcneill 	if (sc->sc_nopp > 0) {
    540      1.15  jmcneill 		struct cpufreq_dt_opp * const opp = &sc->sc_opp[0];
    541      1.14  jmcneill 
    542      1.14  jmcneill 		aprint_normal_dev(sc->sc_dev, "rate: %u.%03u MHz, %u uV\n",
    543      1.14  jmcneill 		    opp->freq_khz / 1000, opp->freq_khz % 1000, opp->voltage_uv);
    544      1.14  jmcneill 		cpufreq_dt_set_rate(sc, opp->freq_khz);
    545      1.14  jmcneill 	}
    546       1.1  jmcneill }
    547       1.1  jmcneill 
    548       1.4  jmcneill static int
    549       1.4  jmcneill cpufreq_dt_lock_init(void)
    550       1.4  jmcneill {
    551       1.4  jmcneill 	mutex_init(&cpufreq_dt_tables_lock, MUTEX_DEFAULT, IPL_NONE);
    552       1.4  jmcneill 	return 0;
    553       1.4  jmcneill }
    554       1.4  jmcneill 
    555       1.1  jmcneill static void
    556       1.1  jmcneill cpufreq_dt_attach(device_t parent, device_t self, void *aux)
    557       1.1  jmcneill {
    558       1.4  jmcneill 	static ONCE_DECL(locks);
    559       1.1  jmcneill 	struct cpufreq_dt_softc * const sc = device_private(self);
    560       1.1  jmcneill 	struct fdt_attach_args * const faa = aux;
    561       1.1  jmcneill 
    562       1.4  jmcneill 	RUN_ONCE(&locks, cpufreq_dt_lock_init);
    563       1.4  jmcneill 
    564       1.1  jmcneill 	sc->sc_dev = self;
    565       1.1  jmcneill 	sc->sc_phandle = faa->faa_phandle;
    566       1.1  jmcneill 
    567       1.1  jmcneill 	aprint_naive("\n");
    568       1.1  jmcneill 	aprint_normal("\n");
    569       1.1  jmcneill 
    570       1.1  jmcneill 	config_interrupts(self, cpufreq_dt_init);
    571       1.1  jmcneill }
    572       1.1  jmcneill 
    573       1.1  jmcneill CFATTACH_DECL_NEW(cpufreq_dt, sizeof(struct cpufreq_dt_softc),
    574       1.1  jmcneill     cpufreq_dt_match, cpufreq_dt_attach, NULL, NULL);
    575