cpufreq_dt.c revision 1.2 1 1.2 jmcneill /* $NetBSD: cpufreq_dt.c,v 1.2 2017/10/05 01:28:01 jmcneill Exp $ */
2 1.1 jmcneill
3 1.1 jmcneill /*-
4 1.1 jmcneill * Copyright (c) 2015-2017 Jared McNeill <jmcneill (at) invisible.ca>
5 1.1 jmcneill * All rights reserved.
6 1.1 jmcneill *
7 1.1 jmcneill * Redistribution and use in source and binary forms, with or without
8 1.1 jmcneill * modification, are permitted provided that the following conditions
9 1.1 jmcneill * are met:
10 1.1 jmcneill * 1. Redistributions of source code must retain the above copyright
11 1.1 jmcneill * notice, this list of conditions and the following disclaimer.
12 1.1 jmcneill * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 jmcneill * notice, this list of conditions and the following disclaimer in the
14 1.1 jmcneill * documentation and/or other materials provided with the distribution.
15 1.1 jmcneill *
16 1.1 jmcneill * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 1.1 jmcneill * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 1.1 jmcneill * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 1.1 jmcneill * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 1.1 jmcneill * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 1.1 jmcneill * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 1.1 jmcneill * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 1.1 jmcneill * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 1.1 jmcneill * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 jmcneill * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 jmcneill * SUCH DAMAGE.
27 1.1 jmcneill */
28 1.1 jmcneill
29 1.1 jmcneill #include <sys/cdefs.h>
30 1.2 jmcneill __KERNEL_RCSID(0, "$NetBSD: cpufreq_dt.c,v 1.2 2017/10/05 01:28:01 jmcneill Exp $");
31 1.1 jmcneill
32 1.1 jmcneill #include <sys/param.h>
33 1.1 jmcneill #include <sys/systm.h>
34 1.1 jmcneill #include <sys/device.h>
35 1.1 jmcneill #include <sys/kmem.h>
36 1.1 jmcneill #include <sys/bus.h>
37 1.1 jmcneill #include <sys/atomic.h>
38 1.1 jmcneill #include <sys/xcall.h>
39 1.1 jmcneill #include <sys/sysctl.h>
40 1.1 jmcneill
41 1.1 jmcneill #include <dev/fdt/fdtvar.h>
42 1.1 jmcneill
43 1.1 jmcneill struct cpufreq_dt_opp {
44 1.1 jmcneill u_int freq_khz;
45 1.1 jmcneill u_int voltage_uv;
46 1.1 jmcneill };
47 1.1 jmcneill
48 1.1 jmcneill struct cpufreq_dt_softc {
49 1.1 jmcneill device_t sc_dev;
50 1.1 jmcneill int sc_phandle;
51 1.1 jmcneill struct clk *sc_clk;
52 1.1 jmcneill struct fdtbus_regulator *sc_supply;
53 1.1 jmcneill
54 1.1 jmcneill struct cpufreq_dt_opp *sc_opp;
55 1.1 jmcneill ssize_t sc_nopp;
56 1.1 jmcneill int sc_latency;
57 1.1 jmcneill
58 1.2 jmcneill u_int sc_freq_target;
59 1.2 jmcneill bool sc_freq_throttle;
60 1.2 jmcneill
61 1.1 jmcneill u_int sc_busy;
62 1.1 jmcneill
63 1.1 jmcneill char *sc_freq_available;
64 1.1 jmcneill int sc_node_target;
65 1.1 jmcneill int sc_node_current;
66 1.1 jmcneill int sc_node_available;
67 1.1 jmcneill };
68 1.1 jmcneill
69 1.1 jmcneill static void
70 1.1 jmcneill cpufreq_dt_change_cb(void *arg1, void *arg2)
71 1.1 jmcneill {
72 1.1 jmcneill #if notyet
73 1.1 jmcneill struct cpu_info *ci = curcpu();
74 1.1 jmcneill ci->ci_data.cpu_cc_freq = cpufreq_get_rate() * 1000000;
75 1.1 jmcneill #endif
76 1.1 jmcneill }
77 1.1 jmcneill
78 1.1 jmcneill static int
79 1.1 jmcneill cpufreq_dt_set_rate(struct cpufreq_dt_softc *sc, u_int freq_khz)
80 1.1 jmcneill {
81 1.1 jmcneill struct cpufreq_dt_opp *opp = NULL;
82 1.1 jmcneill u_int old_rate, new_rate, old_uv, new_uv;
83 1.2 jmcneill uint64_t xc;
84 1.1 jmcneill int error;
85 1.1 jmcneill ssize_t n;
86 1.1 jmcneill
87 1.1 jmcneill for (n = 0; n < sc->sc_nopp; n++)
88 1.1 jmcneill if (sc->sc_opp[n].freq_khz == freq_khz) {
89 1.1 jmcneill opp = &sc->sc_opp[n];
90 1.1 jmcneill break;
91 1.1 jmcneill }
92 1.1 jmcneill if (opp == NULL)
93 1.1 jmcneill return EINVAL;
94 1.1 jmcneill
95 1.1 jmcneill old_rate = clk_get_rate(sc->sc_clk);
96 1.1 jmcneill new_rate = freq_khz * 1000;
97 1.1 jmcneill
98 1.1 jmcneill if (old_rate == new_rate)
99 1.1 jmcneill return 0;
100 1.1 jmcneill
101 1.1 jmcneill error = fdtbus_regulator_get_voltage(sc->sc_supply, &old_uv);
102 1.1 jmcneill if (error != 0)
103 1.1 jmcneill return error;
104 1.1 jmcneill new_uv = opp->voltage_uv;
105 1.1 jmcneill
106 1.1 jmcneill if (new_uv > old_uv) {
107 1.1 jmcneill error = fdtbus_regulator_set_voltage(sc->sc_supply,
108 1.1 jmcneill new_uv, new_uv);
109 1.1 jmcneill if (error != 0)
110 1.1 jmcneill return error;
111 1.1 jmcneill }
112 1.1 jmcneill
113 1.1 jmcneill error = clk_set_rate(sc->sc_clk, new_rate);
114 1.1 jmcneill if (error != 0)
115 1.1 jmcneill return error;
116 1.1 jmcneill
117 1.1 jmcneill if (new_uv < old_uv) {
118 1.1 jmcneill error = fdtbus_regulator_set_voltage(sc->sc_supply,
119 1.1 jmcneill new_uv, new_uv);
120 1.1 jmcneill if (error != 0)
121 1.1 jmcneill return error;
122 1.1 jmcneill }
123 1.1 jmcneill
124 1.2 jmcneill if (error == 0) {
125 1.2 jmcneill xc = xc_broadcast(0, cpufreq_dt_change_cb, sc, NULL);
126 1.2 jmcneill xc_wait(xc);
127 1.2 jmcneill
128 1.2 jmcneill pmf_event_inject(NULL, PMFE_SPEED_CHANGED);
129 1.2 jmcneill }
130 1.2 jmcneill
131 1.1 jmcneill return 0;
132 1.1 jmcneill }
133 1.1 jmcneill
134 1.2 jmcneill static void
135 1.2 jmcneill cpufreq_dt_throttle_enable(device_t dev)
136 1.2 jmcneill {
137 1.2 jmcneill struct cpufreq_dt_softc * const sc = device_private(dev);
138 1.2 jmcneill
139 1.2 jmcneill if (sc->sc_freq_throttle)
140 1.2 jmcneill return;
141 1.2 jmcneill
142 1.2 jmcneill const u_int freq_khz = sc->sc_opp[sc->sc_nopp - 1].freq_khz;
143 1.2 jmcneill
144 1.2 jmcneill while (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0)
145 1.2 jmcneill kpause("throttle", false, 1, NULL);
146 1.2 jmcneill
147 1.2 jmcneill if (cpufreq_dt_set_rate(sc, freq_khz) == 0) {
148 1.2 jmcneill aprint_debug_dev(sc->sc_dev, "throttle enabled (%u.%03u MHz)\n",
149 1.2 jmcneill freq_khz / 1000, freq_khz % 1000);
150 1.2 jmcneill sc->sc_freq_throttle = true;
151 1.2 jmcneill if (sc->sc_freq_target == 0)
152 1.2 jmcneill sc->sc_freq_target = clk_get_rate(sc->sc_clk) / 1000000;
153 1.2 jmcneill }
154 1.2 jmcneill
155 1.2 jmcneill atomic_dec_uint(&sc->sc_busy);
156 1.2 jmcneill }
157 1.2 jmcneill
158 1.2 jmcneill static void
159 1.2 jmcneill cpufreq_dt_throttle_disable(device_t dev)
160 1.2 jmcneill {
161 1.2 jmcneill struct cpufreq_dt_softc * const sc = device_private(dev);
162 1.2 jmcneill
163 1.2 jmcneill if (!sc->sc_freq_throttle)
164 1.2 jmcneill return;
165 1.2 jmcneill
166 1.2 jmcneill while (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0)
167 1.2 jmcneill kpause("throttle", false, 1, NULL);
168 1.2 jmcneill
169 1.2 jmcneill const u_int freq_khz = sc->sc_freq_target * 1000;
170 1.2 jmcneill
171 1.2 jmcneill if (cpufreq_dt_set_rate(sc, freq_khz) == 0) {
172 1.2 jmcneill aprint_debug_dev(sc->sc_dev, "throttle disabled (%u.%03u MHz)\n",
173 1.2 jmcneill freq_khz / 1000, freq_khz % 1000);
174 1.2 jmcneill sc->sc_freq_throttle = false;
175 1.2 jmcneill }
176 1.2 jmcneill
177 1.2 jmcneill atomic_dec_uint(&sc->sc_busy);
178 1.2 jmcneill }
179 1.2 jmcneill
180 1.1 jmcneill static int
181 1.1 jmcneill cpufreq_dt_sysctl_helper(SYSCTLFN_ARGS)
182 1.1 jmcneill {
183 1.1 jmcneill struct cpufreq_dt_softc * const sc = rnode->sysctl_data;
184 1.1 jmcneill struct sysctlnode node;
185 1.1 jmcneill u_int fq, oldfq = 0;
186 1.2 jmcneill int error, n;
187 1.1 jmcneill
188 1.1 jmcneill node = *rnode;
189 1.1 jmcneill node.sysctl_data = &fq;
190 1.1 jmcneill
191 1.2 jmcneill if (rnode->sysctl_num == sc->sc_node_target) {
192 1.2 jmcneill if (sc->sc_freq_target == 0)
193 1.2 jmcneill sc->sc_freq_target = clk_get_rate(sc->sc_clk) / 1000000;
194 1.2 jmcneill fq = sc->sc_freq_target;
195 1.2 jmcneill } else
196 1.2 jmcneill fq = clk_get_rate(sc->sc_clk) / 1000000;
197 1.2 jmcneill
198 1.1 jmcneill if (rnode->sysctl_num == sc->sc_node_target)
199 1.1 jmcneill oldfq = fq;
200 1.1 jmcneill
201 1.2 jmcneill if (sc->sc_freq_target == 0)
202 1.2 jmcneill sc->sc_freq_target = fq;
203 1.2 jmcneill
204 1.1 jmcneill error = sysctl_lookup(SYSCTLFN_CALL(&node));
205 1.1 jmcneill if (error || newp == NULL)
206 1.1 jmcneill return error;
207 1.1 jmcneill
208 1.1 jmcneill if (fq == oldfq || rnode->sysctl_num != sc->sc_node_target)
209 1.1 jmcneill return 0;
210 1.1 jmcneill
211 1.2 jmcneill for (n = 0; n < sc->sc_nopp; n++)
212 1.2 jmcneill if (sc->sc_opp[n].freq_khz / 1000 == fq)
213 1.2 jmcneill break;
214 1.2 jmcneill if (n == sc->sc_nopp)
215 1.2 jmcneill return EINVAL;
216 1.2 jmcneill
217 1.1 jmcneill if (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0)
218 1.1 jmcneill return EBUSY;
219 1.1 jmcneill
220 1.2 jmcneill sc->sc_freq_target = fq;
221 1.1 jmcneill
222 1.2 jmcneill if (sc->sc_freq_throttle)
223 1.2 jmcneill error = 0;
224 1.2 jmcneill else
225 1.2 jmcneill error = cpufreq_dt_set_rate(sc, fq * 1000);
226 1.1 jmcneill
227 1.1 jmcneill atomic_dec_uint(&sc->sc_busy);
228 1.1 jmcneill
229 1.1 jmcneill return error;
230 1.1 jmcneill }
231 1.1 jmcneill
232 1.1 jmcneill static void
233 1.1 jmcneill cpufreq_dt_init_sysctl(struct cpufreq_dt_softc *sc)
234 1.1 jmcneill {
235 1.1 jmcneill const struct sysctlnode *node, *cpunode, *freqnode;
236 1.1 jmcneill struct sysctllog *cpufreq_log = NULL;
237 1.1 jmcneill int error, i;
238 1.1 jmcneill
239 1.1 jmcneill sc->sc_freq_available = kmem_zalloc(strlen("XXXX ") * sc->sc_nopp, KM_SLEEP);
240 1.1 jmcneill for (i = 0; i < sc->sc_nopp; i++) {
241 1.1 jmcneill char buf[6];
242 1.1 jmcneill snprintf(buf, sizeof(buf), i ? " %u" : "%u", sc->sc_opp[i].freq_khz / 1000);
243 1.1 jmcneill strcat(sc->sc_freq_available, buf);
244 1.1 jmcneill }
245 1.1 jmcneill
246 1.1 jmcneill error = sysctl_createv(&cpufreq_log, 0, NULL, &node,
247 1.1 jmcneill CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
248 1.1 jmcneill NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
249 1.1 jmcneill if (error)
250 1.1 jmcneill goto sysctl_failed;
251 1.1 jmcneill error = sysctl_createv(&cpufreq_log, 0, &node, &cpunode,
252 1.1 jmcneill 0, CTLTYPE_NODE, "cpu", NULL,
253 1.1 jmcneill NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
254 1.1 jmcneill if (error)
255 1.1 jmcneill goto sysctl_failed;
256 1.1 jmcneill error = sysctl_createv(&cpufreq_log, 0, &cpunode, &freqnode,
257 1.1 jmcneill 0, CTLTYPE_NODE, "frequency", NULL,
258 1.1 jmcneill NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
259 1.1 jmcneill if (error)
260 1.1 jmcneill goto sysctl_failed;
261 1.1 jmcneill
262 1.1 jmcneill error = sysctl_createv(&cpufreq_log, 0, &freqnode, &node,
263 1.1 jmcneill CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
264 1.1 jmcneill cpufreq_dt_sysctl_helper, 0, (void *)sc, 0,
265 1.1 jmcneill CTL_CREATE, CTL_EOL);
266 1.1 jmcneill if (error)
267 1.1 jmcneill goto sysctl_failed;
268 1.1 jmcneill sc->sc_node_target = node->sysctl_num;
269 1.1 jmcneill
270 1.1 jmcneill error = sysctl_createv(&cpufreq_log, 0, &freqnode, &node,
271 1.1 jmcneill CTLFLAG_READWRITE, CTLTYPE_INT, "current", NULL,
272 1.1 jmcneill cpufreq_dt_sysctl_helper, 0, (void *)sc, 0,
273 1.1 jmcneill CTL_CREATE, CTL_EOL);
274 1.1 jmcneill if (error)
275 1.1 jmcneill goto sysctl_failed;
276 1.1 jmcneill sc->sc_node_current = node->sysctl_num;
277 1.1 jmcneill
278 1.1 jmcneill error = sysctl_createv(&cpufreq_log, 0, &freqnode, &node,
279 1.1 jmcneill 0, CTLTYPE_STRING, "available", NULL,
280 1.1 jmcneill NULL, 0, sc->sc_freq_available, 0,
281 1.1 jmcneill CTL_CREATE, CTL_EOL);
282 1.1 jmcneill if (error)
283 1.1 jmcneill goto sysctl_failed;
284 1.1 jmcneill sc->sc_node_available = node->sysctl_num;
285 1.1 jmcneill
286 1.1 jmcneill return;
287 1.1 jmcneill
288 1.1 jmcneill sysctl_failed:
289 1.1 jmcneill aprint_error_dev(sc->sc_dev, "couldn't create sysctl nodes: %d\n", error);
290 1.1 jmcneill sysctl_teardown(&cpufreq_log);
291 1.1 jmcneill }
292 1.1 jmcneill
293 1.1 jmcneill static int
294 1.1 jmcneill cpufreq_dt_parse(struct cpufreq_dt_softc *sc)
295 1.1 jmcneill {
296 1.1 jmcneill const int phandle = sc->sc_phandle;
297 1.1 jmcneill const u_int *opp;
298 1.1 jmcneill int len, i;
299 1.1 jmcneill u_int lat;
300 1.1 jmcneill
301 1.1 jmcneill sc->sc_supply = fdtbus_regulator_acquire(phandle, "cpu-supply");
302 1.1 jmcneill if (sc->sc_supply == NULL) {
303 1.1 jmcneill aprint_error_dev(sc->sc_dev, "couldn't acquire cpu-supply\n");
304 1.1 jmcneill return ENXIO;
305 1.1 jmcneill }
306 1.1 jmcneill sc->sc_clk = fdtbus_clock_get_index(phandle, 0);
307 1.1 jmcneill if (sc->sc_clk == NULL) {
308 1.1 jmcneill aprint_error_dev(sc->sc_dev, "couldn't acquire clock\n");
309 1.1 jmcneill return ENXIO;
310 1.1 jmcneill }
311 1.1 jmcneill
312 1.1 jmcneill opp = fdtbus_get_prop(phandle, "operating-points", &len);
313 1.1 jmcneill if (len < 8)
314 1.1 jmcneill return ENXIO;
315 1.1 jmcneill
316 1.1 jmcneill sc->sc_nopp = len / 8;
317 1.1 jmcneill sc->sc_opp = kmem_zalloc(sizeof(*sc->sc_opp) * sc->sc_nopp, KM_SLEEP);
318 1.1 jmcneill for (i = 0; i < sc->sc_nopp; i++, opp += 2) {
319 1.1 jmcneill sc->sc_opp[i].freq_khz = be32toh(opp[0]);
320 1.1 jmcneill sc->sc_opp[i].voltage_uv = be32toh(opp[1]);
321 1.1 jmcneill
322 1.1 jmcneill aprint_verbose_dev(sc->sc_dev, "%u.%03u MHz, %u uV\n",
323 1.1 jmcneill sc->sc_opp[i].freq_khz / 1000,
324 1.1 jmcneill sc->sc_opp[i].freq_khz % 1000,
325 1.1 jmcneill sc->sc_opp[i].voltage_uv);
326 1.1 jmcneill }
327 1.1 jmcneill
328 1.1 jmcneill if (of_getprop_uint32(phandle, "clock-latency", &lat) == 0)
329 1.1 jmcneill sc->sc_latency = lat;
330 1.1 jmcneill else
331 1.1 jmcneill sc->sc_latency = -1;
332 1.1 jmcneill
333 1.1 jmcneill return 0;
334 1.1 jmcneill }
335 1.1 jmcneill
336 1.1 jmcneill static int
337 1.1 jmcneill cpufreq_dt_match(device_t parent, cfdata_t cf, void *aux)
338 1.1 jmcneill {
339 1.1 jmcneill struct fdt_attach_args * const faa = aux;
340 1.1 jmcneill const int phandle = faa->faa_phandle;
341 1.1 jmcneill bus_addr_t addr;
342 1.1 jmcneill
343 1.1 jmcneill if (fdtbus_get_reg(phandle, 0, &addr, NULL) != 0)
344 1.1 jmcneill return 0;
345 1.1 jmcneill /* Generic DT cpufreq driver properties must be defined under /cpus/cpu@0 */
346 1.1 jmcneill if (addr != 0)
347 1.1 jmcneill return 0;
348 1.1 jmcneill
349 1.1 jmcneill if (!of_hasprop(phandle, "operating-points") ||
350 1.1 jmcneill !of_hasprop(phandle, "clocks") ||
351 1.1 jmcneill !of_hasprop(phandle, "cpu-supply"))
352 1.1 jmcneill return 0;
353 1.1 jmcneill
354 1.1 jmcneill return 1;
355 1.1 jmcneill }
356 1.1 jmcneill
357 1.1 jmcneill static void
358 1.1 jmcneill cpufreq_dt_init(device_t self)
359 1.1 jmcneill {
360 1.1 jmcneill struct cpufreq_dt_softc * const sc = device_private(self);
361 1.1 jmcneill int error;
362 1.1 jmcneill
363 1.1 jmcneill if ((error = cpufreq_dt_parse(sc)) != 0)
364 1.1 jmcneill return;
365 1.1 jmcneill
366 1.1 jmcneill cpufreq_dt_init_sysctl(sc);
367 1.1 jmcneill }
368 1.1 jmcneill
369 1.1 jmcneill static void
370 1.1 jmcneill cpufreq_dt_attach(device_t parent, device_t self, void *aux)
371 1.1 jmcneill {
372 1.1 jmcneill struct cpufreq_dt_softc * const sc = device_private(self);
373 1.1 jmcneill struct fdt_attach_args * const faa = aux;
374 1.1 jmcneill
375 1.1 jmcneill sc->sc_dev = self;
376 1.1 jmcneill sc->sc_phandle = faa->faa_phandle;
377 1.1 jmcneill
378 1.1 jmcneill aprint_naive("\n");
379 1.1 jmcneill aprint_normal("\n");
380 1.1 jmcneill
381 1.2 jmcneill pmf_event_register(self, PMFE_THROTTLE_ENABLE, cpufreq_dt_throttle_enable, true);
382 1.2 jmcneill pmf_event_register(self, PMFE_THROTTLE_DISABLE, cpufreq_dt_throttle_disable, true);
383 1.2 jmcneill
384 1.1 jmcneill config_interrupts(self, cpufreq_dt_init);
385 1.1 jmcneill }
386 1.1 jmcneill
387 1.1 jmcneill CFATTACH_DECL_NEW(cpufreq_dt, sizeof(struct cpufreq_dt_softc),
388 1.1 jmcneill cpufreq_dt_match, cpufreq_dt_attach, NULL, NULL);
389