Home | History | Annotate | Line # | Download | only in fdt
cpufreq_dt.c revision 1.6
      1  1.6  jmcneill /* $NetBSD: cpufreq_dt.c,v 1.6 2018/09/20 09:19:56 jmcneill Exp $ */
      2  1.1  jmcneill 
      3  1.1  jmcneill /*-
      4  1.1  jmcneill  * Copyright (c) 2015-2017 Jared McNeill <jmcneill (at) invisible.ca>
      5  1.1  jmcneill  * All rights reserved.
      6  1.1  jmcneill  *
      7  1.1  jmcneill  * Redistribution and use in source and binary forms, with or without
      8  1.1  jmcneill  * modification, are permitted provided that the following conditions
      9  1.1  jmcneill  * are met:
     10  1.1  jmcneill  * 1. Redistributions of source code must retain the above copyright
     11  1.1  jmcneill  *    notice, this list of conditions and the following disclaimer.
     12  1.1  jmcneill  * 2. Redistributions in binary form must reproduce the above copyright
     13  1.1  jmcneill  *    notice, this list of conditions and the following disclaimer in the
     14  1.1  jmcneill  *    documentation and/or other materials provided with the distribution.
     15  1.1  jmcneill  *
     16  1.1  jmcneill  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  1.1  jmcneill  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  1.1  jmcneill  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  1.1  jmcneill  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  1.1  jmcneill  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21  1.1  jmcneill  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22  1.1  jmcneill  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23  1.1  jmcneill  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24  1.1  jmcneill  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  1.1  jmcneill  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  1.1  jmcneill  * SUCH DAMAGE.
     27  1.1  jmcneill  */
     28  1.1  jmcneill 
     29  1.1  jmcneill #include <sys/cdefs.h>
     30  1.6  jmcneill __KERNEL_RCSID(0, "$NetBSD: cpufreq_dt.c,v 1.6 2018/09/20 09:19:56 jmcneill Exp $");
     31  1.1  jmcneill 
     32  1.1  jmcneill #include <sys/param.h>
     33  1.1  jmcneill #include <sys/systm.h>
     34  1.1  jmcneill #include <sys/device.h>
     35  1.1  jmcneill #include <sys/kmem.h>
     36  1.1  jmcneill #include <sys/bus.h>
     37  1.1  jmcneill #include <sys/atomic.h>
     38  1.1  jmcneill #include <sys/xcall.h>
     39  1.1  jmcneill #include <sys/sysctl.h>
     40  1.4  jmcneill #include <sys/queue.h>
     41  1.4  jmcneill #include <sys/once.h>
     42  1.1  jmcneill 
     43  1.1  jmcneill #include <dev/fdt/fdtvar.h>
     44  1.1  jmcneill 
     45  1.4  jmcneill struct cpufreq_dt_table {
     46  1.4  jmcneill 	int			phandle;
     47  1.4  jmcneill 	TAILQ_ENTRY(cpufreq_dt_table) next;
     48  1.4  jmcneill };
     49  1.4  jmcneill 
     50  1.4  jmcneill static TAILQ_HEAD(, cpufreq_dt_table) cpufreq_dt_tables =
     51  1.4  jmcneill     TAILQ_HEAD_INITIALIZER(cpufreq_dt_tables);
     52  1.4  jmcneill static kmutex_t cpufreq_dt_tables_lock;
     53  1.4  jmcneill 
     54  1.1  jmcneill struct cpufreq_dt_opp {
     55  1.4  jmcneill 	u_int			freq_khz;
     56  1.4  jmcneill 	u_int			voltage_uv;
     57  1.4  jmcneill 	u_int			latency_ns;
     58  1.1  jmcneill };
     59  1.1  jmcneill 
     60  1.1  jmcneill struct cpufreq_dt_softc {
     61  1.1  jmcneill 	device_t		sc_dev;
     62  1.1  jmcneill 	int			sc_phandle;
     63  1.1  jmcneill 	struct clk		*sc_clk;
     64  1.1  jmcneill 	struct fdtbus_regulator	*sc_supply;
     65  1.1  jmcneill 
     66  1.1  jmcneill 	struct cpufreq_dt_opp	*sc_opp;
     67  1.1  jmcneill 	ssize_t			sc_nopp;
     68  1.1  jmcneill 
     69  1.2  jmcneill 	u_int			sc_freq_target;
     70  1.2  jmcneill 	bool			sc_freq_throttle;
     71  1.2  jmcneill 
     72  1.1  jmcneill 	u_int			sc_busy;
     73  1.1  jmcneill 
     74  1.1  jmcneill 	char			*sc_freq_available;
     75  1.1  jmcneill 	int			sc_node_target;
     76  1.1  jmcneill 	int			sc_node_current;
     77  1.1  jmcneill 	int			sc_node_available;
     78  1.4  jmcneill 
     79  1.4  jmcneill 	struct cpufreq_dt_table	sc_table;
     80  1.1  jmcneill };
     81  1.1  jmcneill 
     82  1.1  jmcneill static void
     83  1.1  jmcneill cpufreq_dt_change_cb(void *arg1, void *arg2)
     84  1.1  jmcneill {
     85  1.1  jmcneill #if notyet
     86  1.1  jmcneill 	struct cpu_info *ci = curcpu();
     87  1.1  jmcneill 	ci->ci_data.cpu_cc_freq = cpufreq_get_rate() * 1000000;
     88  1.1  jmcneill #endif
     89  1.1  jmcneill }
     90  1.1  jmcneill 
     91  1.1  jmcneill static int
     92  1.1  jmcneill cpufreq_dt_set_rate(struct cpufreq_dt_softc *sc, u_int freq_khz)
     93  1.1  jmcneill {
     94  1.1  jmcneill 	struct cpufreq_dt_opp *opp = NULL;
     95  1.1  jmcneill 	u_int old_rate, new_rate, old_uv, new_uv;
     96  1.2  jmcneill 	uint64_t xc;
     97  1.1  jmcneill 	int error;
     98  1.1  jmcneill 	ssize_t n;
     99  1.1  jmcneill 
    100  1.1  jmcneill 	for (n = 0; n < sc->sc_nopp; n++)
    101  1.1  jmcneill 		if (sc->sc_opp[n].freq_khz == freq_khz) {
    102  1.1  jmcneill 			opp = &sc->sc_opp[n];
    103  1.1  jmcneill 			break;
    104  1.1  jmcneill 		}
    105  1.1  jmcneill 	if (opp == NULL)
    106  1.1  jmcneill 		return EINVAL;
    107  1.1  jmcneill 
    108  1.1  jmcneill 	old_rate = clk_get_rate(sc->sc_clk);
    109  1.1  jmcneill 	new_rate = freq_khz * 1000;
    110  1.3  jmcneill 	new_uv = opp->voltage_uv;
    111  1.1  jmcneill 
    112  1.1  jmcneill 	if (old_rate == new_rate)
    113  1.1  jmcneill 		return 0;
    114  1.1  jmcneill 
    115  1.3  jmcneill 	if (sc->sc_supply != NULL) {
    116  1.3  jmcneill 		error = fdtbus_regulator_get_voltage(sc->sc_supply, &old_uv);
    117  1.1  jmcneill 		if (error != 0)
    118  1.1  jmcneill 			return error;
    119  1.3  jmcneill 
    120  1.3  jmcneill 		if (new_uv > old_uv) {
    121  1.3  jmcneill 			error = fdtbus_regulator_set_voltage(sc->sc_supply,
    122  1.3  jmcneill 			    new_uv, new_uv);
    123  1.3  jmcneill 			if (error != 0)
    124  1.3  jmcneill 				return error;
    125  1.3  jmcneill 		}
    126  1.1  jmcneill 	}
    127  1.1  jmcneill 
    128  1.1  jmcneill 	error = clk_set_rate(sc->sc_clk, new_rate);
    129  1.1  jmcneill 	if (error != 0)
    130  1.1  jmcneill 		return error;
    131  1.1  jmcneill 
    132  1.4  jmcneill 	const u_int latency_us = howmany(opp->latency_ns, 1000);
    133  1.4  jmcneill 	if (latency_us > 0)
    134  1.4  jmcneill 		delay(latency_us);
    135  1.4  jmcneill 
    136  1.3  jmcneill 	if (sc->sc_supply != NULL) {
    137  1.3  jmcneill 		if (new_uv < old_uv) {
    138  1.3  jmcneill 			error = fdtbus_regulator_set_voltage(sc->sc_supply,
    139  1.3  jmcneill 			    new_uv, new_uv);
    140  1.3  jmcneill 			if (error != 0)
    141  1.3  jmcneill 				return error;
    142  1.3  jmcneill 		}
    143  1.1  jmcneill 	}
    144  1.1  jmcneill 
    145  1.2  jmcneill 	if (error == 0) {
    146  1.2  jmcneill 		xc = xc_broadcast(0, cpufreq_dt_change_cb, sc, NULL);
    147  1.2  jmcneill 		xc_wait(xc);
    148  1.2  jmcneill 
    149  1.2  jmcneill 		pmf_event_inject(NULL, PMFE_SPEED_CHANGED);
    150  1.2  jmcneill 	}
    151  1.2  jmcneill 
    152  1.1  jmcneill 	return 0;
    153  1.1  jmcneill }
    154  1.1  jmcneill 
    155  1.2  jmcneill static void
    156  1.2  jmcneill cpufreq_dt_throttle_enable(device_t dev)
    157  1.2  jmcneill {
    158  1.2  jmcneill 	struct cpufreq_dt_softc * const sc = device_private(dev);
    159  1.2  jmcneill 
    160  1.2  jmcneill 	if (sc->sc_freq_throttle)
    161  1.2  jmcneill 		return;
    162  1.2  jmcneill 
    163  1.2  jmcneill 	const u_int freq_khz = sc->sc_opp[sc->sc_nopp - 1].freq_khz;
    164  1.2  jmcneill 
    165  1.2  jmcneill 	while (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0)
    166  1.2  jmcneill 		kpause("throttle", false, 1, NULL);
    167  1.2  jmcneill 
    168  1.2  jmcneill 	if (cpufreq_dt_set_rate(sc, freq_khz) == 0) {
    169  1.2  jmcneill 		aprint_debug_dev(sc->sc_dev, "throttle enabled (%u.%03u MHz)\n",
    170  1.2  jmcneill 		    freq_khz / 1000, freq_khz % 1000);
    171  1.2  jmcneill 		sc->sc_freq_throttle = true;
    172  1.2  jmcneill 		if (sc->sc_freq_target == 0)
    173  1.2  jmcneill 			sc->sc_freq_target = clk_get_rate(sc->sc_clk) / 1000000;
    174  1.2  jmcneill 	}
    175  1.2  jmcneill 
    176  1.2  jmcneill 	atomic_dec_uint(&sc->sc_busy);
    177  1.2  jmcneill }
    178  1.2  jmcneill 
    179  1.2  jmcneill static void
    180  1.2  jmcneill cpufreq_dt_throttle_disable(device_t dev)
    181  1.2  jmcneill {
    182  1.2  jmcneill 	struct cpufreq_dt_softc * const sc = device_private(dev);
    183  1.2  jmcneill 
    184  1.2  jmcneill 	if (!sc->sc_freq_throttle)
    185  1.2  jmcneill 		return;
    186  1.2  jmcneill 
    187  1.2  jmcneill 	while (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0)
    188  1.2  jmcneill 		kpause("throttle", false, 1, NULL);
    189  1.2  jmcneill 
    190  1.2  jmcneill 	const u_int freq_khz = sc->sc_freq_target * 1000;
    191  1.2  jmcneill 
    192  1.2  jmcneill 	if (cpufreq_dt_set_rate(sc, freq_khz) == 0) {
    193  1.2  jmcneill 		aprint_debug_dev(sc->sc_dev, "throttle disabled (%u.%03u MHz)\n",
    194  1.2  jmcneill 		    freq_khz / 1000, freq_khz % 1000);
    195  1.2  jmcneill 		sc->sc_freq_throttle = false;
    196  1.2  jmcneill 	}
    197  1.2  jmcneill 
    198  1.2  jmcneill 	atomic_dec_uint(&sc->sc_busy);
    199  1.2  jmcneill }
    200  1.2  jmcneill 
    201  1.1  jmcneill static int
    202  1.1  jmcneill cpufreq_dt_sysctl_helper(SYSCTLFN_ARGS)
    203  1.1  jmcneill {
    204  1.1  jmcneill 	struct cpufreq_dt_softc * const sc = rnode->sysctl_data;
    205  1.1  jmcneill 	struct sysctlnode node;
    206  1.1  jmcneill 	u_int fq, oldfq = 0;
    207  1.2  jmcneill 	int error, n;
    208  1.1  jmcneill 
    209  1.1  jmcneill 	node = *rnode;
    210  1.1  jmcneill 	node.sysctl_data = &fq;
    211  1.1  jmcneill 
    212  1.2  jmcneill 	if (rnode->sysctl_num == sc->sc_node_target) {
    213  1.2  jmcneill 		if (sc->sc_freq_target == 0)
    214  1.2  jmcneill 			sc->sc_freq_target = clk_get_rate(sc->sc_clk) / 1000000;
    215  1.2  jmcneill 		fq = sc->sc_freq_target;
    216  1.2  jmcneill 	} else
    217  1.2  jmcneill 		fq = clk_get_rate(sc->sc_clk) / 1000000;
    218  1.2  jmcneill 
    219  1.1  jmcneill 	if (rnode->sysctl_num == sc->sc_node_target)
    220  1.1  jmcneill 		oldfq = fq;
    221  1.1  jmcneill 
    222  1.2  jmcneill 	if (sc->sc_freq_target == 0)
    223  1.2  jmcneill 		sc->sc_freq_target = fq;
    224  1.2  jmcneill 
    225  1.1  jmcneill 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    226  1.1  jmcneill 	if (error || newp == NULL)
    227  1.1  jmcneill 		return error;
    228  1.1  jmcneill 
    229  1.1  jmcneill 	if (fq == oldfq || rnode->sysctl_num != sc->sc_node_target)
    230  1.1  jmcneill 		return 0;
    231  1.1  jmcneill 
    232  1.2  jmcneill 	for (n = 0; n < sc->sc_nopp; n++)
    233  1.2  jmcneill 		if (sc->sc_opp[n].freq_khz / 1000 == fq)
    234  1.2  jmcneill 			break;
    235  1.2  jmcneill 	if (n == sc->sc_nopp)
    236  1.2  jmcneill 		return EINVAL;
    237  1.2  jmcneill 
    238  1.1  jmcneill 	if (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0)
    239  1.1  jmcneill 		return EBUSY;
    240  1.1  jmcneill 
    241  1.2  jmcneill 	sc->sc_freq_target = fq;
    242  1.1  jmcneill 
    243  1.2  jmcneill 	if (sc->sc_freq_throttle)
    244  1.2  jmcneill 		error = 0;
    245  1.2  jmcneill 	else
    246  1.2  jmcneill 		error = cpufreq_dt_set_rate(sc, fq * 1000);
    247  1.1  jmcneill 
    248  1.1  jmcneill 	atomic_dec_uint(&sc->sc_busy);
    249  1.1  jmcneill 
    250  1.1  jmcneill 	return error;
    251  1.1  jmcneill }
    252  1.1  jmcneill 
    253  1.1  jmcneill static void
    254  1.1  jmcneill cpufreq_dt_init_sysctl(struct cpufreq_dt_softc *sc)
    255  1.1  jmcneill {
    256  1.1  jmcneill 	const struct sysctlnode *node, *cpunode, *freqnode;
    257  1.1  jmcneill 	struct sysctllog *cpufreq_log = NULL;
    258  1.4  jmcneill 	const char *cpunodename;
    259  1.1  jmcneill 	int error, i;
    260  1.1  jmcneill 
    261  1.1  jmcneill 	sc->sc_freq_available = kmem_zalloc(strlen("XXXX ") * sc->sc_nopp, KM_SLEEP);
    262  1.1  jmcneill 	for (i = 0; i < sc->sc_nopp; i++) {
    263  1.1  jmcneill 		char buf[6];
    264  1.1  jmcneill 		snprintf(buf, sizeof(buf), i ? " %u" : "%u", sc->sc_opp[i].freq_khz / 1000);
    265  1.1  jmcneill 		strcat(sc->sc_freq_available, buf);
    266  1.1  jmcneill 	}
    267  1.1  jmcneill 
    268  1.6  jmcneill 	if (device_unit(sc->sc_dev) == 0)
    269  1.6  jmcneill 		cpunodename = "cpu";
    270  1.6  jmcneill 	else
    271  1.4  jmcneill 		cpunodename = device_xname(sc->sc_dev);
    272  1.4  jmcneill 
    273  1.1  jmcneill 	error = sysctl_createv(&cpufreq_log, 0, NULL, &node,
    274  1.1  jmcneill 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
    275  1.1  jmcneill 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
    276  1.1  jmcneill 	if (error)
    277  1.1  jmcneill 		goto sysctl_failed;
    278  1.1  jmcneill 	error = sysctl_createv(&cpufreq_log, 0, &node, &cpunode,
    279  1.4  jmcneill 	    0, CTLTYPE_NODE, cpunodename, NULL,
    280  1.1  jmcneill 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    281  1.1  jmcneill 	if (error)
    282  1.1  jmcneill 		goto sysctl_failed;
    283  1.1  jmcneill 	error = sysctl_createv(&cpufreq_log, 0, &cpunode, &freqnode,
    284  1.1  jmcneill 	    0, CTLTYPE_NODE, "frequency", NULL,
    285  1.1  jmcneill 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    286  1.1  jmcneill 	if (error)
    287  1.1  jmcneill 		goto sysctl_failed;
    288  1.1  jmcneill 
    289  1.1  jmcneill 	error = sysctl_createv(&cpufreq_log, 0, &freqnode, &node,
    290  1.1  jmcneill 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
    291  1.1  jmcneill 	    cpufreq_dt_sysctl_helper, 0, (void *)sc, 0,
    292  1.1  jmcneill 	    CTL_CREATE, CTL_EOL);
    293  1.1  jmcneill 	if (error)
    294  1.1  jmcneill 		goto sysctl_failed;
    295  1.1  jmcneill 	sc->sc_node_target = node->sysctl_num;
    296  1.1  jmcneill 
    297  1.1  jmcneill 	error = sysctl_createv(&cpufreq_log, 0, &freqnode, &node,
    298  1.1  jmcneill 	    CTLFLAG_READWRITE, CTLTYPE_INT, "current", NULL,
    299  1.1  jmcneill 	    cpufreq_dt_sysctl_helper, 0, (void *)sc, 0,
    300  1.1  jmcneill 	    CTL_CREATE, CTL_EOL);
    301  1.1  jmcneill 	if (error)
    302  1.1  jmcneill 		goto sysctl_failed;
    303  1.1  jmcneill 	sc->sc_node_current = node->sysctl_num;
    304  1.1  jmcneill 
    305  1.1  jmcneill 	error = sysctl_createv(&cpufreq_log, 0, &freqnode, &node,
    306  1.1  jmcneill 	    0, CTLTYPE_STRING, "available", NULL,
    307  1.1  jmcneill 	    NULL, 0, sc->sc_freq_available, 0,
    308  1.1  jmcneill 	    CTL_CREATE, CTL_EOL);
    309  1.1  jmcneill 	if (error)
    310  1.1  jmcneill 		goto sysctl_failed;
    311  1.1  jmcneill 	sc->sc_node_available = node->sysctl_num;
    312  1.1  jmcneill 
    313  1.1  jmcneill 	return;
    314  1.1  jmcneill 
    315  1.1  jmcneill sysctl_failed:
    316  1.1  jmcneill 	aprint_error_dev(sc->sc_dev, "couldn't create sysctl nodes: %d\n", error);
    317  1.1  jmcneill 	sysctl_teardown(&cpufreq_log);
    318  1.1  jmcneill }
    319  1.1  jmcneill 
    320  1.1  jmcneill static int
    321  1.4  jmcneill cpufreq_dt_parse_opp(struct cpufreq_dt_softc *sc)
    322  1.1  jmcneill {
    323  1.1  jmcneill 	const int phandle = sc->sc_phandle;
    324  1.1  jmcneill 	const u_int *opp;
    325  1.1  jmcneill 	int len, i;
    326  1.4  jmcneill 
    327  1.4  jmcneill 	opp = fdtbus_get_prop(phandle, "operating-points", &len);
    328  1.4  jmcneill 	if (len < 8)
    329  1.4  jmcneill 		return ENXIO;
    330  1.4  jmcneill 
    331  1.4  jmcneill 	sc->sc_nopp = len / 8;
    332  1.4  jmcneill 	sc->sc_opp = kmem_zalloc(sizeof(*sc->sc_opp) * sc->sc_nopp, KM_SLEEP);
    333  1.4  jmcneill 	for (i = 0; i < sc->sc_nopp; i++, opp += 2) {
    334  1.4  jmcneill 		sc->sc_opp[i].freq_khz = be32toh(opp[0]);
    335  1.4  jmcneill 		sc->sc_opp[i].voltage_uv = be32toh(opp[1]);
    336  1.4  jmcneill 	}
    337  1.4  jmcneill 
    338  1.4  jmcneill 	return 0;
    339  1.4  jmcneill }
    340  1.4  jmcneill 
    341  1.4  jmcneill static int
    342  1.4  jmcneill cpufreq_dt_parse_opp_v2(struct cpufreq_dt_softc *sc)
    343  1.4  jmcneill {
    344  1.4  jmcneill 	const int phandle = sc->sc_phandle;
    345  1.4  jmcneill 	struct cpufreq_dt_table *table;
    346  1.4  jmcneill 	uint64_t opp_hz;
    347  1.4  jmcneill 	uint32_t opp_uv;
    348  1.4  jmcneill 	int opp_node, i;
    349  1.4  jmcneill 
    350  1.4  jmcneill 	const int opp_table = fdtbus_get_phandle(phandle, "operating-points-v2");
    351  1.4  jmcneill 	if (opp_table < 0)
    352  1.4  jmcneill 		return ENOENT;
    353  1.4  jmcneill 
    354  1.4  jmcneill 	/* If the table is shared, only setup a single instance */
    355  1.4  jmcneill 	if (of_hasprop(opp_table, "opp-shared")) {
    356  1.4  jmcneill 		TAILQ_FOREACH(table, &cpufreq_dt_tables, next)
    357  1.4  jmcneill 			if (table->phandle == opp_table)
    358  1.4  jmcneill 				return EEXIST;
    359  1.4  jmcneill 		sc->sc_table.phandle = opp_table;
    360  1.4  jmcneill 		TAILQ_INSERT_TAIL(&cpufreq_dt_tables, &sc->sc_table, next);
    361  1.4  jmcneill 	}
    362  1.4  jmcneill 
    363  1.4  jmcneill 	for (opp_node = OF_child(opp_table); opp_node; opp_node = OF_peer(opp_node)) {
    364  1.4  jmcneill 		if (fdtbus_status_okay(opp_node))
    365  1.4  jmcneill 			sc->sc_nopp++;
    366  1.4  jmcneill 	}
    367  1.4  jmcneill 
    368  1.4  jmcneill 	if (sc->sc_nopp == 0)
    369  1.4  jmcneill 		return EINVAL;
    370  1.4  jmcneill 
    371  1.4  jmcneill 	sc->sc_opp = kmem_zalloc(sizeof(*sc->sc_opp) * sc->sc_nopp, KM_SLEEP);
    372  1.4  jmcneill 	for (opp_node = OF_child(opp_table), i = 0; opp_node; opp_node = OF_peer(opp_node), i++) {
    373  1.4  jmcneill 		if (!fdtbus_status_okay(opp_node))
    374  1.4  jmcneill 			continue;
    375  1.4  jmcneill 		if (of_getprop_uint64(opp_node, "opp-hz", &opp_hz) != 0)
    376  1.4  jmcneill 			return EINVAL;
    377  1.4  jmcneill 		if (of_getprop_uint32(opp_node, "opp-microvolt", &opp_uv) != 0)
    378  1.4  jmcneill 			return EINVAL;
    379  1.4  jmcneill 		sc->sc_opp[i].freq_khz = (u_int)(opp_hz / 1000);
    380  1.4  jmcneill 		sc->sc_opp[i].voltage_uv = opp_uv;
    381  1.4  jmcneill 		of_getprop_uint32(opp_node, "clock-latency-ns", &sc->sc_opp[i].latency_ns);
    382  1.4  jmcneill 	}
    383  1.4  jmcneill 
    384  1.4  jmcneill 	return 0;
    385  1.4  jmcneill }
    386  1.4  jmcneill 
    387  1.4  jmcneill static int
    388  1.4  jmcneill cpufreq_dt_parse(struct cpufreq_dt_softc *sc)
    389  1.4  jmcneill {
    390  1.4  jmcneill 	const int phandle = sc->sc_phandle;
    391  1.4  jmcneill 	int error, i;
    392  1.1  jmcneill 
    393  1.3  jmcneill 	if (of_hasprop(phandle, "cpu-supply")) {
    394  1.3  jmcneill 		sc->sc_supply = fdtbus_regulator_acquire(phandle, "cpu-supply");
    395  1.3  jmcneill 		if (sc->sc_supply == NULL) {
    396  1.3  jmcneill 			aprint_error_dev(sc->sc_dev,
    397  1.3  jmcneill 			    "couldn't acquire cpu-supply\n");
    398  1.3  jmcneill 			return ENXIO;
    399  1.3  jmcneill 		}
    400  1.1  jmcneill 	}
    401  1.1  jmcneill 	sc->sc_clk = fdtbus_clock_get_index(phandle, 0);
    402  1.1  jmcneill 	if (sc->sc_clk == NULL) {
    403  1.1  jmcneill 		aprint_error_dev(sc->sc_dev, "couldn't acquire clock\n");
    404  1.1  jmcneill 		return ENXIO;
    405  1.1  jmcneill 	}
    406  1.1  jmcneill 
    407  1.4  jmcneill 	mutex_enter(&cpufreq_dt_tables_lock);
    408  1.4  jmcneill 	if (of_hasprop(phandle, "operating-points"))
    409  1.4  jmcneill 		error = cpufreq_dt_parse_opp(sc);
    410  1.4  jmcneill 	else if (of_hasprop(phandle, "operating-points-v2"))
    411  1.4  jmcneill 		error = cpufreq_dt_parse_opp_v2(sc);
    412  1.4  jmcneill 	else
    413  1.4  jmcneill 		error = EINVAL;
    414  1.4  jmcneill 	mutex_exit(&cpufreq_dt_tables_lock);
    415  1.1  jmcneill 
    416  1.4  jmcneill 	if (error) {
    417  1.5  jmcneill 		if (error != EEXIST)
    418  1.5  jmcneill 			aprint_error_dev(sc->sc_dev,
    419  1.5  jmcneill 			    "couldn't parse operating points: %d\n", error);
    420  1.4  jmcneill 		return error;
    421  1.4  jmcneill 	}
    422  1.1  jmcneill 
    423  1.4  jmcneill 	for (i = 0; i < sc->sc_nopp; i++) {
    424  1.1  jmcneill 		aprint_verbose_dev(sc->sc_dev, "%u.%03u MHz, %u uV\n",
    425  1.1  jmcneill 		    sc->sc_opp[i].freq_khz / 1000,
    426  1.1  jmcneill 		    sc->sc_opp[i].freq_khz % 1000,
    427  1.1  jmcneill 		    sc->sc_opp[i].voltage_uv);
    428  1.1  jmcneill 	}
    429  1.1  jmcneill 
    430  1.1  jmcneill 	return 0;
    431  1.1  jmcneill }
    432  1.1  jmcneill 
    433  1.1  jmcneill static int
    434  1.1  jmcneill cpufreq_dt_match(device_t parent, cfdata_t cf, void *aux)
    435  1.1  jmcneill {
    436  1.1  jmcneill 	struct fdt_attach_args * const faa = aux;
    437  1.1  jmcneill 	const int phandle = faa->faa_phandle;
    438  1.1  jmcneill 	bus_addr_t addr;
    439  1.1  jmcneill 
    440  1.1  jmcneill 	if (fdtbus_get_reg(phandle, 0, &addr, NULL) != 0)
    441  1.1  jmcneill 		return 0;
    442  1.4  jmcneill 
    443  1.4  jmcneill 	if (!of_hasprop(phandle, "clocks"))
    444  1.1  jmcneill 		return 0;
    445  1.1  jmcneill 
    446  1.4  jmcneill 	if (!of_hasprop(phandle, "operating-points") &&
    447  1.4  jmcneill 	    !of_hasprop(phandle, "operating-points-v2"))
    448  1.1  jmcneill 		return 0;
    449  1.1  jmcneill 
    450  1.1  jmcneill 	return 1;
    451  1.1  jmcneill }
    452  1.1  jmcneill 
    453  1.1  jmcneill static void
    454  1.1  jmcneill cpufreq_dt_init(device_t self)
    455  1.1  jmcneill {
    456  1.1  jmcneill 	struct cpufreq_dt_softc * const sc = device_private(self);
    457  1.1  jmcneill 	int error;
    458  1.1  jmcneill 
    459  1.1  jmcneill 	if ((error = cpufreq_dt_parse(sc)) != 0)
    460  1.1  jmcneill 		return;
    461  1.1  jmcneill 
    462  1.4  jmcneill 	pmf_event_register(sc->sc_dev, PMFE_THROTTLE_ENABLE, cpufreq_dt_throttle_enable, true);
    463  1.4  jmcneill 	pmf_event_register(sc->sc_dev, PMFE_THROTTLE_DISABLE, cpufreq_dt_throttle_disable, true);
    464  1.4  jmcneill 
    465  1.1  jmcneill 	cpufreq_dt_init_sysctl(sc);
    466  1.1  jmcneill }
    467  1.1  jmcneill 
    468  1.4  jmcneill static int
    469  1.4  jmcneill cpufreq_dt_lock_init(void)
    470  1.4  jmcneill {
    471  1.4  jmcneill 	mutex_init(&cpufreq_dt_tables_lock, MUTEX_DEFAULT, IPL_NONE);
    472  1.4  jmcneill 	return 0;
    473  1.4  jmcneill }
    474  1.4  jmcneill 
    475  1.1  jmcneill static void
    476  1.1  jmcneill cpufreq_dt_attach(device_t parent, device_t self, void *aux)
    477  1.1  jmcneill {
    478  1.4  jmcneill 	static ONCE_DECL(locks);
    479  1.1  jmcneill 	struct cpufreq_dt_softc * const sc = device_private(self);
    480  1.1  jmcneill 	struct fdt_attach_args * const faa = aux;
    481  1.1  jmcneill 
    482  1.4  jmcneill 	RUN_ONCE(&locks, cpufreq_dt_lock_init);
    483  1.4  jmcneill 
    484  1.1  jmcneill 	sc->sc_dev = self;
    485  1.1  jmcneill 	sc->sc_phandle = faa->faa_phandle;
    486  1.1  jmcneill 
    487  1.1  jmcneill 	aprint_naive("\n");
    488  1.1  jmcneill 	aprint_normal("\n");
    489  1.1  jmcneill 
    490  1.1  jmcneill 	config_interrupts(self, cpufreq_dt_init);
    491  1.1  jmcneill }
    492  1.1  jmcneill 
    493  1.1  jmcneill CFATTACH_DECL_NEW(cpufreq_dt, sizeof(struct cpufreq_dt_softc),
    494  1.1  jmcneill     cpufreq_dt_match, cpufreq_dt_attach, NULL, NULL);
    495