Home | History | Annotate | Line # | Download | only in fdt
cpufreq_dt.c revision 1.9
      1  1.9  jmcneill /* $NetBSD: cpufreq_dt.c,v 1.9 2019/10/06 11:28:24 jmcneill Exp $ */
      2  1.1  jmcneill 
      3  1.1  jmcneill /*-
      4  1.1  jmcneill  * Copyright (c) 2015-2017 Jared McNeill <jmcneill (at) invisible.ca>
      5  1.1  jmcneill  * All rights reserved.
      6  1.1  jmcneill  *
      7  1.1  jmcneill  * Redistribution and use in source and binary forms, with or without
      8  1.1  jmcneill  * modification, are permitted provided that the following conditions
      9  1.1  jmcneill  * are met:
     10  1.1  jmcneill  * 1. Redistributions of source code must retain the above copyright
     11  1.1  jmcneill  *    notice, this list of conditions and the following disclaimer.
     12  1.1  jmcneill  * 2. Redistributions in binary form must reproduce the above copyright
     13  1.1  jmcneill  *    notice, this list of conditions and the following disclaimer in the
     14  1.1  jmcneill  *    documentation and/or other materials provided with the distribution.
     15  1.1  jmcneill  *
     16  1.1  jmcneill  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  1.1  jmcneill  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  1.1  jmcneill  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  1.1  jmcneill  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  1.1  jmcneill  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21  1.1  jmcneill  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22  1.1  jmcneill  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23  1.1  jmcneill  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24  1.1  jmcneill  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  1.1  jmcneill  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  1.1  jmcneill  * SUCH DAMAGE.
     27  1.1  jmcneill  */
     28  1.1  jmcneill 
     29  1.1  jmcneill #include <sys/cdefs.h>
     30  1.9  jmcneill __KERNEL_RCSID(0, "$NetBSD: cpufreq_dt.c,v 1.9 2019/10/06 11:28:24 jmcneill Exp $");
     31  1.1  jmcneill 
     32  1.1  jmcneill #include <sys/param.h>
     33  1.1  jmcneill #include <sys/systm.h>
     34  1.1  jmcneill #include <sys/device.h>
     35  1.1  jmcneill #include <sys/kmem.h>
     36  1.1  jmcneill #include <sys/bus.h>
     37  1.1  jmcneill #include <sys/atomic.h>
     38  1.1  jmcneill #include <sys/xcall.h>
     39  1.1  jmcneill #include <sys/sysctl.h>
     40  1.4  jmcneill #include <sys/queue.h>
     41  1.4  jmcneill #include <sys/once.h>
     42  1.9  jmcneill #include <sys/cpu.h>
     43  1.1  jmcneill 
     44  1.1  jmcneill #include <dev/fdt/fdtvar.h>
     45  1.1  jmcneill 
     46  1.4  jmcneill struct cpufreq_dt_table {
     47  1.4  jmcneill 	int			phandle;
     48  1.4  jmcneill 	TAILQ_ENTRY(cpufreq_dt_table) next;
     49  1.4  jmcneill };
     50  1.4  jmcneill 
     51  1.4  jmcneill static TAILQ_HEAD(, cpufreq_dt_table) cpufreq_dt_tables =
     52  1.4  jmcneill     TAILQ_HEAD_INITIALIZER(cpufreq_dt_tables);
     53  1.4  jmcneill static kmutex_t cpufreq_dt_tables_lock;
     54  1.4  jmcneill 
     55  1.1  jmcneill struct cpufreq_dt_opp {
     56  1.4  jmcneill 	u_int			freq_khz;
     57  1.4  jmcneill 	u_int			voltage_uv;
     58  1.4  jmcneill 	u_int			latency_ns;
     59  1.1  jmcneill };
     60  1.1  jmcneill 
     61  1.1  jmcneill struct cpufreq_dt_softc {
     62  1.1  jmcneill 	device_t		sc_dev;
     63  1.1  jmcneill 	int			sc_phandle;
     64  1.1  jmcneill 	struct clk		*sc_clk;
     65  1.1  jmcneill 	struct fdtbus_regulator	*sc_supply;
     66  1.1  jmcneill 
     67  1.1  jmcneill 	struct cpufreq_dt_opp	*sc_opp;
     68  1.1  jmcneill 	ssize_t			sc_nopp;
     69  1.1  jmcneill 
     70  1.2  jmcneill 	u_int			sc_freq_target;
     71  1.2  jmcneill 	bool			sc_freq_throttle;
     72  1.2  jmcneill 
     73  1.1  jmcneill 	u_int			sc_busy;
     74  1.1  jmcneill 
     75  1.1  jmcneill 	char			*sc_freq_available;
     76  1.1  jmcneill 	int			sc_node_target;
     77  1.1  jmcneill 	int			sc_node_current;
     78  1.1  jmcneill 	int			sc_node_available;
     79  1.4  jmcneill 
     80  1.4  jmcneill 	struct cpufreq_dt_table	sc_table;
     81  1.1  jmcneill };
     82  1.1  jmcneill 
     83  1.1  jmcneill static void
     84  1.1  jmcneill cpufreq_dt_change_cb(void *arg1, void *arg2)
     85  1.1  jmcneill {
     86  1.1  jmcneill #if notyet
     87  1.1  jmcneill 	struct cpu_info *ci = curcpu();
     88  1.1  jmcneill 	ci->ci_data.cpu_cc_freq = cpufreq_get_rate() * 1000000;
     89  1.1  jmcneill #endif
     90  1.1  jmcneill }
     91  1.1  jmcneill 
     92  1.1  jmcneill static int
     93  1.1  jmcneill cpufreq_dt_set_rate(struct cpufreq_dt_softc *sc, u_int freq_khz)
     94  1.1  jmcneill {
     95  1.1  jmcneill 	struct cpufreq_dt_opp *opp = NULL;
     96  1.1  jmcneill 	u_int old_rate, new_rate, old_uv, new_uv;
     97  1.2  jmcneill 	uint64_t xc;
     98  1.1  jmcneill 	int error;
     99  1.1  jmcneill 	ssize_t n;
    100  1.1  jmcneill 
    101  1.1  jmcneill 	for (n = 0; n < sc->sc_nopp; n++)
    102  1.1  jmcneill 		if (sc->sc_opp[n].freq_khz == freq_khz) {
    103  1.1  jmcneill 			opp = &sc->sc_opp[n];
    104  1.1  jmcneill 			break;
    105  1.1  jmcneill 		}
    106  1.1  jmcneill 	if (opp == NULL)
    107  1.1  jmcneill 		return EINVAL;
    108  1.1  jmcneill 
    109  1.1  jmcneill 	old_rate = clk_get_rate(sc->sc_clk);
    110  1.1  jmcneill 	new_rate = freq_khz * 1000;
    111  1.3  jmcneill 	new_uv = opp->voltage_uv;
    112  1.1  jmcneill 
    113  1.1  jmcneill 	if (old_rate == new_rate)
    114  1.1  jmcneill 		return 0;
    115  1.1  jmcneill 
    116  1.3  jmcneill 	if (sc->sc_supply != NULL) {
    117  1.3  jmcneill 		error = fdtbus_regulator_get_voltage(sc->sc_supply, &old_uv);
    118  1.1  jmcneill 		if (error != 0)
    119  1.1  jmcneill 			return error;
    120  1.3  jmcneill 
    121  1.3  jmcneill 		if (new_uv > old_uv) {
    122  1.3  jmcneill 			error = fdtbus_regulator_set_voltage(sc->sc_supply,
    123  1.3  jmcneill 			    new_uv, new_uv);
    124  1.3  jmcneill 			if (error != 0)
    125  1.3  jmcneill 				return error;
    126  1.3  jmcneill 		}
    127  1.1  jmcneill 	}
    128  1.1  jmcneill 
    129  1.1  jmcneill 	error = clk_set_rate(sc->sc_clk, new_rate);
    130  1.1  jmcneill 	if (error != 0)
    131  1.1  jmcneill 		return error;
    132  1.1  jmcneill 
    133  1.4  jmcneill 	const u_int latency_us = howmany(opp->latency_ns, 1000);
    134  1.4  jmcneill 	if (latency_us > 0)
    135  1.4  jmcneill 		delay(latency_us);
    136  1.4  jmcneill 
    137  1.3  jmcneill 	if (sc->sc_supply != NULL) {
    138  1.3  jmcneill 		if (new_uv < old_uv) {
    139  1.3  jmcneill 			error = fdtbus_regulator_set_voltage(sc->sc_supply,
    140  1.3  jmcneill 			    new_uv, new_uv);
    141  1.3  jmcneill 			if (error != 0)
    142  1.3  jmcneill 				return error;
    143  1.3  jmcneill 		}
    144  1.1  jmcneill 	}
    145  1.1  jmcneill 
    146  1.2  jmcneill 	if (error == 0) {
    147  1.2  jmcneill 		xc = xc_broadcast(0, cpufreq_dt_change_cb, sc, NULL);
    148  1.2  jmcneill 		xc_wait(xc);
    149  1.2  jmcneill 
    150  1.2  jmcneill 		pmf_event_inject(NULL, PMFE_SPEED_CHANGED);
    151  1.2  jmcneill 	}
    152  1.2  jmcneill 
    153  1.1  jmcneill 	return 0;
    154  1.1  jmcneill }
    155  1.1  jmcneill 
    156  1.2  jmcneill static void
    157  1.2  jmcneill cpufreq_dt_throttle_enable(device_t dev)
    158  1.2  jmcneill {
    159  1.2  jmcneill 	struct cpufreq_dt_softc * const sc = device_private(dev);
    160  1.2  jmcneill 
    161  1.2  jmcneill 	if (sc->sc_freq_throttle)
    162  1.2  jmcneill 		return;
    163  1.2  jmcneill 
    164  1.2  jmcneill 	const u_int freq_khz = sc->sc_opp[sc->sc_nopp - 1].freq_khz;
    165  1.2  jmcneill 
    166  1.2  jmcneill 	while (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0)
    167  1.2  jmcneill 		kpause("throttle", false, 1, NULL);
    168  1.2  jmcneill 
    169  1.2  jmcneill 	if (cpufreq_dt_set_rate(sc, freq_khz) == 0) {
    170  1.2  jmcneill 		aprint_debug_dev(sc->sc_dev, "throttle enabled (%u.%03u MHz)\n",
    171  1.2  jmcneill 		    freq_khz / 1000, freq_khz % 1000);
    172  1.2  jmcneill 		sc->sc_freq_throttle = true;
    173  1.2  jmcneill 		if (sc->sc_freq_target == 0)
    174  1.2  jmcneill 			sc->sc_freq_target = clk_get_rate(sc->sc_clk) / 1000000;
    175  1.2  jmcneill 	}
    176  1.2  jmcneill 
    177  1.2  jmcneill 	atomic_dec_uint(&sc->sc_busy);
    178  1.2  jmcneill }
    179  1.2  jmcneill 
    180  1.2  jmcneill static void
    181  1.2  jmcneill cpufreq_dt_throttle_disable(device_t dev)
    182  1.2  jmcneill {
    183  1.2  jmcneill 	struct cpufreq_dt_softc * const sc = device_private(dev);
    184  1.2  jmcneill 
    185  1.2  jmcneill 	if (!sc->sc_freq_throttle)
    186  1.2  jmcneill 		return;
    187  1.2  jmcneill 
    188  1.2  jmcneill 	while (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0)
    189  1.2  jmcneill 		kpause("throttle", false, 1, NULL);
    190  1.2  jmcneill 
    191  1.2  jmcneill 	const u_int freq_khz = sc->sc_freq_target * 1000;
    192  1.2  jmcneill 
    193  1.2  jmcneill 	if (cpufreq_dt_set_rate(sc, freq_khz) == 0) {
    194  1.2  jmcneill 		aprint_debug_dev(sc->sc_dev, "throttle disabled (%u.%03u MHz)\n",
    195  1.2  jmcneill 		    freq_khz / 1000, freq_khz % 1000);
    196  1.2  jmcneill 		sc->sc_freq_throttle = false;
    197  1.2  jmcneill 	}
    198  1.2  jmcneill 
    199  1.2  jmcneill 	atomic_dec_uint(&sc->sc_busy);
    200  1.2  jmcneill }
    201  1.2  jmcneill 
    202  1.1  jmcneill static int
    203  1.1  jmcneill cpufreq_dt_sysctl_helper(SYSCTLFN_ARGS)
    204  1.1  jmcneill {
    205  1.1  jmcneill 	struct cpufreq_dt_softc * const sc = rnode->sysctl_data;
    206  1.1  jmcneill 	struct sysctlnode node;
    207  1.1  jmcneill 	u_int fq, oldfq = 0;
    208  1.2  jmcneill 	int error, n;
    209  1.1  jmcneill 
    210  1.1  jmcneill 	node = *rnode;
    211  1.1  jmcneill 	node.sysctl_data = &fq;
    212  1.1  jmcneill 
    213  1.2  jmcneill 	if (rnode->sysctl_num == sc->sc_node_target) {
    214  1.2  jmcneill 		if (sc->sc_freq_target == 0)
    215  1.2  jmcneill 			sc->sc_freq_target = clk_get_rate(sc->sc_clk) / 1000000;
    216  1.2  jmcneill 		fq = sc->sc_freq_target;
    217  1.2  jmcneill 	} else
    218  1.2  jmcneill 		fq = clk_get_rate(sc->sc_clk) / 1000000;
    219  1.2  jmcneill 
    220  1.1  jmcneill 	if (rnode->sysctl_num == sc->sc_node_target)
    221  1.1  jmcneill 		oldfq = fq;
    222  1.1  jmcneill 
    223  1.2  jmcneill 	if (sc->sc_freq_target == 0)
    224  1.2  jmcneill 		sc->sc_freq_target = fq;
    225  1.2  jmcneill 
    226  1.1  jmcneill 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    227  1.1  jmcneill 	if (error || newp == NULL)
    228  1.1  jmcneill 		return error;
    229  1.1  jmcneill 
    230  1.1  jmcneill 	if (fq == oldfq || rnode->sysctl_num != sc->sc_node_target)
    231  1.1  jmcneill 		return 0;
    232  1.1  jmcneill 
    233  1.2  jmcneill 	for (n = 0; n < sc->sc_nopp; n++)
    234  1.2  jmcneill 		if (sc->sc_opp[n].freq_khz / 1000 == fq)
    235  1.2  jmcneill 			break;
    236  1.2  jmcneill 	if (n == sc->sc_nopp)
    237  1.2  jmcneill 		return EINVAL;
    238  1.2  jmcneill 
    239  1.1  jmcneill 	if (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0)
    240  1.1  jmcneill 		return EBUSY;
    241  1.1  jmcneill 
    242  1.2  jmcneill 	sc->sc_freq_target = fq;
    243  1.1  jmcneill 
    244  1.2  jmcneill 	if (sc->sc_freq_throttle)
    245  1.2  jmcneill 		error = 0;
    246  1.2  jmcneill 	else
    247  1.2  jmcneill 		error = cpufreq_dt_set_rate(sc, fq * 1000);
    248  1.1  jmcneill 
    249  1.1  jmcneill 	atomic_dec_uint(&sc->sc_busy);
    250  1.1  jmcneill 
    251  1.1  jmcneill 	return error;
    252  1.1  jmcneill }
    253  1.1  jmcneill 
    254  1.9  jmcneill static struct cpu_info *
    255  1.9  jmcneill cpufreq_dt_cpu_lookup(cpuid_t mpidr)
    256  1.9  jmcneill {
    257  1.9  jmcneill 	CPU_INFO_ITERATOR cii;
    258  1.9  jmcneill 	struct cpu_info *ci;
    259  1.9  jmcneill 
    260  1.9  jmcneill 	for (CPU_INFO_FOREACH(cii, ci)) {
    261  1.9  jmcneill 		if (ci->ci_cpuid == mpidr)
    262  1.9  jmcneill 			return ci;
    263  1.9  jmcneill 	}
    264  1.9  jmcneill 
    265  1.9  jmcneill 	return NULL;
    266  1.9  jmcneill }
    267  1.9  jmcneill 
    268  1.1  jmcneill static void
    269  1.1  jmcneill cpufreq_dt_init_sysctl(struct cpufreq_dt_softc *sc)
    270  1.1  jmcneill {
    271  1.9  jmcneill 	const struct sysctlnode *node, *cpunode;
    272  1.1  jmcneill 	struct sysctllog *cpufreq_log = NULL;
    273  1.9  jmcneill 	struct cpu_info *ci;
    274  1.9  jmcneill 	uint64_t mpidr;
    275  1.1  jmcneill 	int error, i;
    276  1.1  jmcneill 
    277  1.9  jmcneill 	if (fdtbus_get_reg(sc->sc_phandle, 0, &mpidr, 0) != 0)
    278  1.9  jmcneill 		return;
    279  1.9  jmcneill 
    280  1.9  jmcneill 	ci = cpufreq_dt_cpu_lookup(mpidr);
    281  1.9  jmcneill 	if (ci == NULL)
    282  1.9  jmcneill 		return;
    283  1.9  jmcneill 
    284  1.1  jmcneill 	sc->sc_freq_available = kmem_zalloc(strlen("XXXX ") * sc->sc_nopp, KM_SLEEP);
    285  1.1  jmcneill 	for (i = 0; i < sc->sc_nopp; i++) {
    286  1.1  jmcneill 		char buf[6];
    287  1.1  jmcneill 		snprintf(buf, sizeof(buf), i ? " %u" : "%u", sc->sc_opp[i].freq_khz / 1000);
    288  1.1  jmcneill 		strcat(sc->sc_freq_available, buf);
    289  1.1  jmcneill 	}
    290  1.1  jmcneill 
    291  1.1  jmcneill 	error = sysctl_createv(&cpufreq_log, 0, NULL, &node,
    292  1.1  jmcneill 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
    293  1.1  jmcneill 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
    294  1.1  jmcneill 	if (error)
    295  1.1  jmcneill 		goto sysctl_failed;
    296  1.9  jmcneill 	error = sysctl_createv(&cpufreq_log, 0, &node, &node,
    297  1.9  jmcneill 	    0, CTLTYPE_NODE, "cpufreq", NULL,
    298  1.1  jmcneill 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    299  1.1  jmcneill 	if (error)
    300  1.1  jmcneill 		goto sysctl_failed;
    301  1.9  jmcneill 	error = sysctl_createv(&cpufreq_log, 0, &node, &cpunode,
    302  1.9  jmcneill 	    0, CTLTYPE_NODE, cpu_name(ci), NULL,
    303  1.1  jmcneill 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    304  1.1  jmcneill 	if (error)
    305  1.1  jmcneill 		goto sysctl_failed;
    306  1.1  jmcneill 
    307  1.9  jmcneill 	error = sysctl_createv(&cpufreq_log, 0, &cpunode, &node,
    308  1.1  jmcneill 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
    309  1.1  jmcneill 	    cpufreq_dt_sysctl_helper, 0, (void *)sc, 0,
    310  1.1  jmcneill 	    CTL_CREATE, CTL_EOL);
    311  1.1  jmcneill 	if (error)
    312  1.1  jmcneill 		goto sysctl_failed;
    313  1.1  jmcneill 	sc->sc_node_target = node->sysctl_num;
    314  1.1  jmcneill 
    315  1.9  jmcneill 	error = sysctl_createv(&cpufreq_log, 0, &cpunode, &node,
    316  1.1  jmcneill 	    CTLFLAG_READWRITE, CTLTYPE_INT, "current", NULL,
    317  1.1  jmcneill 	    cpufreq_dt_sysctl_helper, 0, (void *)sc, 0,
    318  1.1  jmcneill 	    CTL_CREATE, CTL_EOL);
    319  1.1  jmcneill 	if (error)
    320  1.1  jmcneill 		goto sysctl_failed;
    321  1.1  jmcneill 	sc->sc_node_current = node->sysctl_num;
    322  1.1  jmcneill 
    323  1.9  jmcneill 	error = sysctl_createv(&cpufreq_log, 0, &cpunode, &node,
    324  1.1  jmcneill 	    0, CTLTYPE_STRING, "available", NULL,
    325  1.1  jmcneill 	    NULL, 0, sc->sc_freq_available, 0,
    326  1.1  jmcneill 	    CTL_CREATE, CTL_EOL);
    327  1.1  jmcneill 	if (error)
    328  1.1  jmcneill 		goto sysctl_failed;
    329  1.1  jmcneill 	sc->sc_node_available = node->sysctl_num;
    330  1.1  jmcneill 
    331  1.1  jmcneill 	return;
    332  1.1  jmcneill 
    333  1.1  jmcneill sysctl_failed:
    334  1.1  jmcneill 	aprint_error_dev(sc->sc_dev, "couldn't create sysctl nodes: %d\n", error);
    335  1.1  jmcneill 	sysctl_teardown(&cpufreq_log);
    336  1.1  jmcneill }
    337  1.1  jmcneill 
    338  1.1  jmcneill static int
    339  1.4  jmcneill cpufreq_dt_parse_opp(struct cpufreq_dt_softc *sc)
    340  1.1  jmcneill {
    341  1.1  jmcneill 	const int phandle = sc->sc_phandle;
    342  1.1  jmcneill 	const u_int *opp;
    343  1.1  jmcneill 	int len, i;
    344  1.4  jmcneill 
    345  1.4  jmcneill 	opp = fdtbus_get_prop(phandle, "operating-points", &len);
    346  1.4  jmcneill 	if (len < 8)
    347  1.4  jmcneill 		return ENXIO;
    348  1.4  jmcneill 
    349  1.4  jmcneill 	sc->sc_nopp = len / 8;
    350  1.4  jmcneill 	sc->sc_opp = kmem_zalloc(sizeof(*sc->sc_opp) * sc->sc_nopp, KM_SLEEP);
    351  1.4  jmcneill 	for (i = 0; i < sc->sc_nopp; i++, opp += 2) {
    352  1.4  jmcneill 		sc->sc_opp[i].freq_khz = be32toh(opp[0]);
    353  1.4  jmcneill 		sc->sc_opp[i].voltage_uv = be32toh(opp[1]);
    354  1.4  jmcneill 	}
    355  1.4  jmcneill 
    356  1.4  jmcneill 	return 0;
    357  1.4  jmcneill }
    358  1.4  jmcneill 
    359  1.4  jmcneill static int
    360  1.4  jmcneill cpufreq_dt_parse_opp_v2(struct cpufreq_dt_softc *sc)
    361  1.4  jmcneill {
    362  1.4  jmcneill 	const int phandle = sc->sc_phandle;
    363  1.4  jmcneill 	struct cpufreq_dt_table *table;
    364  1.7  jmcneill 	const u_int *opp_uv;
    365  1.4  jmcneill 	uint64_t opp_hz;
    366  1.7  jmcneill 	int opp_node, len, i;
    367  1.4  jmcneill 
    368  1.4  jmcneill 	const int opp_table = fdtbus_get_phandle(phandle, "operating-points-v2");
    369  1.4  jmcneill 	if (opp_table < 0)
    370  1.4  jmcneill 		return ENOENT;
    371  1.4  jmcneill 
    372  1.4  jmcneill 	/* If the table is shared, only setup a single instance */
    373  1.4  jmcneill 	if (of_hasprop(opp_table, "opp-shared")) {
    374  1.4  jmcneill 		TAILQ_FOREACH(table, &cpufreq_dt_tables, next)
    375  1.4  jmcneill 			if (table->phandle == opp_table)
    376  1.4  jmcneill 				return EEXIST;
    377  1.4  jmcneill 		sc->sc_table.phandle = opp_table;
    378  1.4  jmcneill 		TAILQ_INSERT_TAIL(&cpufreq_dt_tables, &sc->sc_table, next);
    379  1.4  jmcneill 	}
    380  1.4  jmcneill 
    381  1.4  jmcneill 	for (opp_node = OF_child(opp_table); opp_node; opp_node = OF_peer(opp_node)) {
    382  1.4  jmcneill 		if (fdtbus_status_okay(opp_node))
    383  1.4  jmcneill 			sc->sc_nopp++;
    384  1.4  jmcneill 	}
    385  1.4  jmcneill 
    386  1.4  jmcneill 	if (sc->sc_nopp == 0)
    387  1.4  jmcneill 		return EINVAL;
    388  1.4  jmcneill 
    389  1.4  jmcneill 	sc->sc_opp = kmem_zalloc(sizeof(*sc->sc_opp) * sc->sc_nopp, KM_SLEEP);
    390  1.4  jmcneill 	for (opp_node = OF_child(opp_table), i = 0; opp_node; opp_node = OF_peer(opp_node), i++) {
    391  1.4  jmcneill 		if (!fdtbus_status_okay(opp_node))
    392  1.4  jmcneill 			continue;
    393  1.4  jmcneill 		if (of_getprop_uint64(opp_node, "opp-hz", &opp_hz) != 0)
    394  1.4  jmcneill 			return EINVAL;
    395  1.7  jmcneill 		opp_uv = fdtbus_get_prop(opp_node, "opp-microvolt", &len);
    396  1.7  jmcneill 		if (opp_uv == NULL || len < 1)
    397  1.4  jmcneill 			return EINVAL;
    398  1.8  jmcneill 		/* Table is in reverse order */
    399  1.8  jmcneill 		const int index = sc->sc_nopp - i - 1;
    400  1.8  jmcneill 		sc->sc_opp[index].freq_khz = (u_int)(opp_hz / 1000);
    401  1.8  jmcneill 		sc->sc_opp[index].voltage_uv = be32toh(opp_uv[0]);
    402  1.8  jmcneill 		of_getprop_uint32(opp_node, "clock-latency-ns", &sc->sc_opp[index].latency_ns);
    403  1.4  jmcneill 	}
    404  1.4  jmcneill 
    405  1.4  jmcneill 	return 0;
    406  1.4  jmcneill }
    407  1.4  jmcneill 
    408  1.4  jmcneill static int
    409  1.4  jmcneill cpufreq_dt_parse(struct cpufreq_dt_softc *sc)
    410  1.4  jmcneill {
    411  1.4  jmcneill 	const int phandle = sc->sc_phandle;
    412  1.4  jmcneill 	int error, i;
    413  1.1  jmcneill 
    414  1.3  jmcneill 	if (of_hasprop(phandle, "cpu-supply")) {
    415  1.3  jmcneill 		sc->sc_supply = fdtbus_regulator_acquire(phandle, "cpu-supply");
    416  1.3  jmcneill 		if (sc->sc_supply == NULL) {
    417  1.3  jmcneill 			aprint_error_dev(sc->sc_dev,
    418  1.3  jmcneill 			    "couldn't acquire cpu-supply\n");
    419  1.3  jmcneill 			return ENXIO;
    420  1.3  jmcneill 		}
    421  1.1  jmcneill 	}
    422  1.1  jmcneill 	sc->sc_clk = fdtbus_clock_get_index(phandle, 0);
    423  1.1  jmcneill 	if (sc->sc_clk == NULL) {
    424  1.1  jmcneill 		aprint_error_dev(sc->sc_dev, "couldn't acquire clock\n");
    425  1.1  jmcneill 		return ENXIO;
    426  1.1  jmcneill 	}
    427  1.1  jmcneill 
    428  1.4  jmcneill 	mutex_enter(&cpufreq_dt_tables_lock);
    429  1.4  jmcneill 	if (of_hasprop(phandle, "operating-points"))
    430  1.4  jmcneill 		error = cpufreq_dt_parse_opp(sc);
    431  1.4  jmcneill 	else if (of_hasprop(phandle, "operating-points-v2"))
    432  1.4  jmcneill 		error = cpufreq_dt_parse_opp_v2(sc);
    433  1.4  jmcneill 	else
    434  1.4  jmcneill 		error = EINVAL;
    435  1.4  jmcneill 	mutex_exit(&cpufreq_dt_tables_lock);
    436  1.1  jmcneill 
    437  1.4  jmcneill 	if (error) {
    438  1.5  jmcneill 		if (error != EEXIST)
    439  1.5  jmcneill 			aprint_error_dev(sc->sc_dev,
    440  1.5  jmcneill 			    "couldn't parse operating points: %d\n", error);
    441  1.4  jmcneill 		return error;
    442  1.4  jmcneill 	}
    443  1.1  jmcneill 
    444  1.4  jmcneill 	for (i = 0; i < sc->sc_nopp; i++) {
    445  1.1  jmcneill 		aprint_verbose_dev(sc->sc_dev, "%u.%03u MHz, %u uV\n",
    446  1.1  jmcneill 		    sc->sc_opp[i].freq_khz / 1000,
    447  1.1  jmcneill 		    sc->sc_opp[i].freq_khz % 1000,
    448  1.1  jmcneill 		    sc->sc_opp[i].voltage_uv);
    449  1.1  jmcneill 	}
    450  1.1  jmcneill 
    451  1.1  jmcneill 	return 0;
    452  1.1  jmcneill }
    453  1.1  jmcneill 
    454  1.1  jmcneill static int
    455  1.1  jmcneill cpufreq_dt_match(device_t parent, cfdata_t cf, void *aux)
    456  1.1  jmcneill {
    457  1.1  jmcneill 	struct fdt_attach_args * const faa = aux;
    458  1.1  jmcneill 	const int phandle = faa->faa_phandle;
    459  1.1  jmcneill 	bus_addr_t addr;
    460  1.1  jmcneill 
    461  1.1  jmcneill 	if (fdtbus_get_reg(phandle, 0, &addr, NULL) != 0)
    462  1.1  jmcneill 		return 0;
    463  1.4  jmcneill 
    464  1.4  jmcneill 	if (!of_hasprop(phandle, "clocks"))
    465  1.1  jmcneill 		return 0;
    466  1.1  jmcneill 
    467  1.4  jmcneill 	if (!of_hasprop(phandle, "operating-points") &&
    468  1.4  jmcneill 	    !of_hasprop(phandle, "operating-points-v2"))
    469  1.1  jmcneill 		return 0;
    470  1.1  jmcneill 
    471  1.1  jmcneill 	return 1;
    472  1.1  jmcneill }
    473  1.1  jmcneill 
    474  1.1  jmcneill static void
    475  1.1  jmcneill cpufreq_dt_init(device_t self)
    476  1.1  jmcneill {
    477  1.1  jmcneill 	struct cpufreq_dt_softc * const sc = device_private(self);
    478  1.1  jmcneill 	int error;
    479  1.1  jmcneill 
    480  1.1  jmcneill 	if ((error = cpufreq_dt_parse(sc)) != 0)
    481  1.1  jmcneill 		return;
    482  1.1  jmcneill 
    483  1.4  jmcneill 	pmf_event_register(sc->sc_dev, PMFE_THROTTLE_ENABLE, cpufreq_dt_throttle_enable, true);
    484  1.4  jmcneill 	pmf_event_register(sc->sc_dev, PMFE_THROTTLE_DISABLE, cpufreq_dt_throttle_disable, true);
    485  1.4  jmcneill 
    486  1.1  jmcneill 	cpufreq_dt_init_sysctl(sc);
    487  1.1  jmcneill }
    488  1.1  jmcneill 
    489  1.4  jmcneill static int
    490  1.4  jmcneill cpufreq_dt_lock_init(void)
    491  1.4  jmcneill {
    492  1.4  jmcneill 	mutex_init(&cpufreq_dt_tables_lock, MUTEX_DEFAULT, IPL_NONE);
    493  1.4  jmcneill 	return 0;
    494  1.4  jmcneill }
    495  1.4  jmcneill 
    496  1.1  jmcneill static void
    497  1.1  jmcneill cpufreq_dt_attach(device_t parent, device_t self, void *aux)
    498  1.1  jmcneill {
    499  1.4  jmcneill 	static ONCE_DECL(locks);
    500  1.1  jmcneill 	struct cpufreq_dt_softc * const sc = device_private(self);
    501  1.1  jmcneill 	struct fdt_attach_args * const faa = aux;
    502  1.1  jmcneill 
    503  1.4  jmcneill 	RUN_ONCE(&locks, cpufreq_dt_lock_init);
    504  1.4  jmcneill 
    505  1.1  jmcneill 	sc->sc_dev = self;
    506  1.1  jmcneill 	sc->sc_phandle = faa->faa_phandle;
    507  1.1  jmcneill 
    508  1.1  jmcneill 	aprint_naive("\n");
    509  1.1  jmcneill 	aprint_normal("\n");
    510  1.1  jmcneill 
    511  1.1  jmcneill 	config_interrupts(self, cpufreq_dt_init);
    512  1.1  jmcneill }
    513  1.1  jmcneill 
    514  1.1  jmcneill CFATTACH_DECL_NEW(cpufreq_dt, sizeof(struct cpufreq_dt_softc),
    515  1.1  jmcneill     cpufreq_dt_match, cpufreq_dt_attach, NULL, NULL);
    516