Home | History | Annotate | Line # | Download | only in fdt
cpufreq_dt.c revision 1.3
      1 /* $NetBSD: cpufreq_dt.c,v 1.3 2017/12/16 16:41:18 jmcneill Exp $ */
      2 
      3 /*-
      4  * Copyright (c) 2015-2017 Jared McNeill <jmcneill (at) invisible.ca>
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  */
     28 
     29 #include <sys/cdefs.h>
     30 __KERNEL_RCSID(0, "$NetBSD: cpufreq_dt.c,v 1.3 2017/12/16 16:41:18 jmcneill Exp $");
     31 
     32 #include <sys/param.h>
     33 #include <sys/systm.h>
     34 #include <sys/device.h>
     35 #include <sys/kmem.h>
     36 #include <sys/bus.h>
     37 #include <sys/atomic.h>
     38 #include <sys/xcall.h>
     39 #include <sys/sysctl.h>
     40 
     41 #include <dev/fdt/fdtvar.h>
     42 
     43 struct cpufreq_dt_opp {
     44 	u_int		freq_khz;
     45 	u_int		voltage_uv;
     46 };
     47 
     48 struct cpufreq_dt_softc {
     49 	device_t		sc_dev;
     50 	int			sc_phandle;
     51 	struct clk		*sc_clk;
     52 	struct fdtbus_regulator	*sc_supply;
     53 
     54 	struct cpufreq_dt_opp	*sc_opp;
     55 	ssize_t			sc_nopp;
     56 	int			sc_latency;
     57 
     58 	u_int			sc_freq_target;
     59 	bool			sc_freq_throttle;
     60 
     61 	u_int			sc_busy;
     62 
     63 	char			*sc_freq_available;
     64 	int			sc_node_target;
     65 	int			sc_node_current;
     66 	int			sc_node_available;
     67 };
     68 
     69 static void
     70 cpufreq_dt_change_cb(void *arg1, void *arg2)
     71 {
     72 #if notyet
     73 	struct cpu_info *ci = curcpu();
     74 	ci->ci_data.cpu_cc_freq = cpufreq_get_rate() * 1000000;
     75 #endif
     76 }
     77 
     78 static int
     79 cpufreq_dt_set_rate(struct cpufreq_dt_softc *sc, u_int freq_khz)
     80 {
     81 	struct cpufreq_dt_opp *opp = NULL;
     82 	u_int old_rate, new_rate, old_uv, new_uv;
     83 	uint64_t xc;
     84 	int error;
     85 	ssize_t n;
     86 
     87 	for (n = 0; n < sc->sc_nopp; n++)
     88 		if (sc->sc_opp[n].freq_khz == freq_khz) {
     89 			opp = &sc->sc_opp[n];
     90 			break;
     91 		}
     92 	if (opp == NULL)
     93 		return EINVAL;
     94 
     95 	old_rate = clk_get_rate(sc->sc_clk);
     96 	new_rate = freq_khz * 1000;
     97 	new_uv = opp->voltage_uv;
     98 
     99 	if (old_rate == new_rate)
    100 		return 0;
    101 
    102 	if (sc->sc_supply != NULL) {
    103 		error = fdtbus_regulator_get_voltage(sc->sc_supply, &old_uv);
    104 		if (error != 0)
    105 			return error;
    106 
    107 		if (new_uv > old_uv) {
    108 			error = fdtbus_regulator_set_voltage(sc->sc_supply,
    109 			    new_uv, new_uv);
    110 			if (error != 0)
    111 				return error;
    112 		}
    113 	}
    114 
    115 	error = clk_set_rate(sc->sc_clk, new_rate);
    116 	if (error != 0)
    117 		return error;
    118 
    119 	if (sc->sc_supply != NULL) {
    120 		if (new_uv < old_uv) {
    121 			error = fdtbus_regulator_set_voltage(sc->sc_supply,
    122 			    new_uv, new_uv);
    123 			if (error != 0)
    124 				return error;
    125 		}
    126 	}
    127 
    128 	if (error == 0) {
    129 		xc = xc_broadcast(0, cpufreq_dt_change_cb, sc, NULL);
    130 		xc_wait(xc);
    131 
    132 		pmf_event_inject(NULL, PMFE_SPEED_CHANGED);
    133 	}
    134 
    135 	return 0;
    136 }
    137 
    138 static void
    139 cpufreq_dt_throttle_enable(device_t dev)
    140 {
    141 	struct cpufreq_dt_softc * const sc = device_private(dev);
    142 
    143 	if (sc->sc_freq_throttle)
    144 		return;
    145 
    146 	const u_int freq_khz = sc->sc_opp[sc->sc_nopp - 1].freq_khz;
    147 
    148 	while (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0)
    149 		kpause("throttle", false, 1, NULL);
    150 
    151 	if (cpufreq_dt_set_rate(sc, freq_khz) == 0) {
    152 		aprint_debug_dev(sc->sc_dev, "throttle enabled (%u.%03u MHz)\n",
    153 		    freq_khz / 1000, freq_khz % 1000);
    154 		sc->sc_freq_throttle = true;
    155 		if (sc->sc_freq_target == 0)
    156 			sc->sc_freq_target = clk_get_rate(sc->sc_clk) / 1000000;
    157 	}
    158 
    159 	atomic_dec_uint(&sc->sc_busy);
    160 }
    161 
    162 static void
    163 cpufreq_dt_throttle_disable(device_t dev)
    164 {
    165 	struct cpufreq_dt_softc * const sc = device_private(dev);
    166 
    167 	if (!sc->sc_freq_throttle)
    168 		return;
    169 
    170 	while (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0)
    171 		kpause("throttle", false, 1, NULL);
    172 
    173 	const u_int freq_khz = sc->sc_freq_target * 1000;
    174 
    175 	if (cpufreq_dt_set_rate(sc, freq_khz) == 0) {
    176 		aprint_debug_dev(sc->sc_dev, "throttle disabled (%u.%03u MHz)\n",
    177 		    freq_khz / 1000, freq_khz % 1000);
    178 		sc->sc_freq_throttle = false;
    179 	}
    180 
    181 	atomic_dec_uint(&sc->sc_busy);
    182 }
    183 
    184 static int
    185 cpufreq_dt_sysctl_helper(SYSCTLFN_ARGS)
    186 {
    187 	struct cpufreq_dt_softc * const sc = rnode->sysctl_data;
    188 	struct sysctlnode node;
    189 	u_int fq, oldfq = 0;
    190 	int error, n;
    191 
    192 	node = *rnode;
    193 	node.sysctl_data = &fq;
    194 
    195 	if (rnode->sysctl_num == sc->sc_node_target) {
    196 		if (sc->sc_freq_target == 0)
    197 			sc->sc_freq_target = clk_get_rate(sc->sc_clk) / 1000000;
    198 		fq = sc->sc_freq_target;
    199 	} else
    200 		fq = clk_get_rate(sc->sc_clk) / 1000000;
    201 
    202 	if (rnode->sysctl_num == sc->sc_node_target)
    203 		oldfq = fq;
    204 
    205 	if (sc->sc_freq_target == 0)
    206 		sc->sc_freq_target = fq;
    207 
    208 	error = sysctl_lookup(SYSCTLFN_CALL(&node));
    209 	if (error || newp == NULL)
    210 		return error;
    211 
    212 	if (fq == oldfq || rnode->sysctl_num != sc->sc_node_target)
    213 		return 0;
    214 
    215 	for (n = 0; n < sc->sc_nopp; n++)
    216 		if (sc->sc_opp[n].freq_khz / 1000 == fq)
    217 			break;
    218 	if (n == sc->sc_nopp)
    219 		return EINVAL;
    220 
    221 	if (atomic_cas_uint(&sc->sc_busy, 0, 1) != 0)
    222 		return EBUSY;
    223 
    224 	sc->sc_freq_target = fq;
    225 
    226 	if (sc->sc_freq_throttle)
    227 		error = 0;
    228 	else
    229 		error = cpufreq_dt_set_rate(sc, fq * 1000);
    230 
    231 	atomic_dec_uint(&sc->sc_busy);
    232 
    233 	return error;
    234 }
    235 
    236 static void
    237 cpufreq_dt_init_sysctl(struct cpufreq_dt_softc *sc)
    238 {
    239 	const struct sysctlnode *node, *cpunode, *freqnode;
    240 	struct sysctllog *cpufreq_log = NULL;
    241 	int error, i;
    242 
    243 	sc->sc_freq_available = kmem_zalloc(strlen("XXXX ") * sc->sc_nopp, KM_SLEEP);
    244 	for (i = 0; i < sc->sc_nopp; i++) {
    245 		char buf[6];
    246 		snprintf(buf, sizeof(buf), i ? " %u" : "%u", sc->sc_opp[i].freq_khz / 1000);
    247 		strcat(sc->sc_freq_available, buf);
    248 	}
    249 
    250 	error = sysctl_createv(&cpufreq_log, 0, NULL, &node,
    251 	    CTLFLAG_PERMANENT, CTLTYPE_NODE, "machdep", NULL,
    252 	    NULL, 0, NULL, 0, CTL_MACHDEP, CTL_EOL);
    253 	if (error)
    254 		goto sysctl_failed;
    255 	error = sysctl_createv(&cpufreq_log, 0, &node, &cpunode,
    256 	    0, CTLTYPE_NODE, "cpu", NULL,
    257 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    258 	if (error)
    259 		goto sysctl_failed;
    260 	error = sysctl_createv(&cpufreq_log, 0, &cpunode, &freqnode,
    261 	    0, CTLTYPE_NODE, "frequency", NULL,
    262 	    NULL, 0, NULL, 0, CTL_CREATE, CTL_EOL);
    263 	if (error)
    264 		goto sysctl_failed;
    265 
    266 	error = sysctl_createv(&cpufreq_log, 0, &freqnode, &node,
    267 	    CTLFLAG_READWRITE, CTLTYPE_INT, "target", NULL,
    268 	    cpufreq_dt_sysctl_helper, 0, (void *)sc, 0,
    269 	    CTL_CREATE, CTL_EOL);
    270 	if (error)
    271 		goto sysctl_failed;
    272 	sc->sc_node_target = node->sysctl_num;
    273 
    274 	error = sysctl_createv(&cpufreq_log, 0, &freqnode, &node,
    275 	    CTLFLAG_READWRITE, CTLTYPE_INT, "current", NULL,
    276 	    cpufreq_dt_sysctl_helper, 0, (void *)sc, 0,
    277 	    CTL_CREATE, CTL_EOL);
    278 	if (error)
    279 		goto sysctl_failed;
    280 	sc->sc_node_current = node->sysctl_num;
    281 
    282 	error = sysctl_createv(&cpufreq_log, 0, &freqnode, &node,
    283 	    0, CTLTYPE_STRING, "available", NULL,
    284 	    NULL, 0, sc->sc_freq_available, 0,
    285 	    CTL_CREATE, CTL_EOL);
    286 	if (error)
    287 		goto sysctl_failed;
    288 	sc->sc_node_available = node->sysctl_num;
    289 
    290 	return;
    291 
    292 sysctl_failed:
    293 	aprint_error_dev(sc->sc_dev, "couldn't create sysctl nodes: %d\n", error);
    294 	sysctl_teardown(&cpufreq_log);
    295 }
    296 
    297 static int
    298 cpufreq_dt_parse(struct cpufreq_dt_softc *sc)
    299 {
    300 	const int phandle = sc->sc_phandle;
    301 	const u_int *opp;
    302 	int len, i;
    303 	u_int lat;
    304 
    305 	if (of_hasprop(phandle, "cpu-supply")) {
    306 		sc->sc_supply = fdtbus_regulator_acquire(phandle, "cpu-supply");
    307 		if (sc->sc_supply == NULL) {
    308 			aprint_error_dev(sc->sc_dev,
    309 			    "couldn't acquire cpu-supply\n");
    310 			return ENXIO;
    311 		}
    312 	}
    313 	sc->sc_clk = fdtbus_clock_get_index(phandle, 0);
    314 	if (sc->sc_clk == NULL) {
    315 		aprint_error_dev(sc->sc_dev, "couldn't acquire clock\n");
    316 		return ENXIO;
    317 	}
    318 
    319 	opp = fdtbus_get_prop(phandle, "operating-points", &len);
    320 	if (len < 8)
    321 		return ENXIO;
    322 
    323 	sc->sc_nopp = len / 8;
    324 	sc->sc_opp = kmem_zalloc(sizeof(*sc->sc_opp) * sc->sc_nopp, KM_SLEEP);
    325 	for (i = 0; i < sc->sc_nopp; i++, opp += 2) {
    326 		sc->sc_opp[i].freq_khz = be32toh(opp[0]);
    327 		sc->sc_opp[i].voltage_uv = be32toh(opp[1]);
    328 
    329 		aprint_verbose_dev(sc->sc_dev, "%u.%03u MHz, %u uV\n",
    330 		    sc->sc_opp[i].freq_khz / 1000,
    331 		    sc->sc_opp[i].freq_khz % 1000,
    332 		    sc->sc_opp[i].voltage_uv);
    333 	}
    334 
    335 	if (of_getprop_uint32(phandle, "clock-latency", &lat) == 0)
    336 		sc->sc_latency = lat;
    337 	else
    338 		sc->sc_latency = -1;
    339 
    340 	return 0;
    341 }
    342 
    343 static int
    344 cpufreq_dt_match(device_t parent, cfdata_t cf, void *aux)
    345 {
    346 	struct fdt_attach_args * const faa = aux;
    347 	const int phandle = faa->faa_phandle;
    348 	bus_addr_t addr;
    349 
    350 	if (fdtbus_get_reg(phandle, 0, &addr, NULL) != 0)
    351 		return 0;
    352 	/* Generic DT cpufreq driver properties must be defined under /cpus/cpu@0 */
    353 	if (addr != 0)
    354 		return 0;
    355 
    356 	if (!of_hasprop(phandle, "operating-points") ||
    357 	    !of_hasprop(phandle, "clocks"))
    358 		return 0;
    359 
    360 	return 1;
    361 }
    362 
    363 static void
    364 cpufreq_dt_init(device_t self)
    365 {
    366 	struct cpufreq_dt_softc * const sc = device_private(self);
    367 	int error;
    368 
    369 	if ((error = cpufreq_dt_parse(sc)) != 0)
    370 		return;
    371 
    372 	cpufreq_dt_init_sysctl(sc);
    373 }
    374 
    375 static void
    376 cpufreq_dt_attach(device_t parent, device_t self, void *aux)
    377 {
    378 	struct cpufreq_dt_softc * const sc = device_private(self);
    379 	struct fdt_attach_args * const faa = aux;
    380 
    381 	sc->sc_dev = self;
    382 	sc->sc_phandle = faa->faa_phandle;
    383 
    384 	aprint_naive("\n");
    385 	aprint_normal("\n");
    386 
    387 	pmf_event_register(self, PMFE_THROTTLE_ENABLE, cpufreq_dt_throttle_enable, true);
    388 	pmf_event_register(self, PMFE_THROTTLE_DISABLE, cpufreq_dt_throttle_disable, true);
    389 
    390 	config_interrupts(self, cpufreq_dt_init);
    391 }
    392 
    393 CFATTACH_DECL_NEW(cpufreq_dt, sizeof(struct cpufreq_dt_softc),
    394     cpufreq_dt_match, cpufreq_dt_attach, NULL, NULL);
    395