Home | History | Annotate | Line # | Download | only in ic
aic79xx_inline.h revision 1.2
      1  1.2   wiz /*	$NetBSD: aic79xx_inline.h,v 1.2 2003/05/03 18:11:13 wiz Exp $	*/
      2  1.1  fvdl 
      3  1.1  fvdl /*
      4  1.1  fvdl  * Inline routines shareable across OS platforms.
      5  1.1  fvdl  *
      6  1.1  fvdl  * Copyright (c) 1994-2001 Justin T. Gibbs.
      7  1.1  fvdl  * Copyright (c) 2000-2003 Adaptec Inc.
      8  1.1  fvdl  * All rights reserved.
      9  1.1  fvdl  *
     10  1.1  fvdl  * Redistribution and use in source and binary forms, with or without
     11  1.1  fvdl  * modification, are permitted provided that the following conditions
     12  1.1  fvdl  * are met:
     13  1.1  fvdl  * 1. Redistributions of source code must retain the above copyright
     14  1.1  fvdl  *    notice, this list of conditions, and the following disclaimer,
     15  1.1  fvdl  *    without modification.
     16  1.1  fvdl  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     17  1.1  fvdl  *    substantially similar to the "NO WARRANTY" disclaimer below
     18  1.1  fvdl  *    ("Disclaimer") and any redistribution must be conditioned upon
     19  1.1  fvdl  *    including a substantially similar Disclaimer requirement for further
     20  1.1  fvdl  *    binary redistribution.
     21  1.1  fvdl  * 3. Neither the names of the above-listed copyright holders nor the names
     22  1.1  fvdl  *    of any contributors may be used to endorse or promote products derived
     23  1.1  fvdl  *    from this software without specific prior written permission.
     24  1.1  fvdl  *
     25  1.1  fvdl  * Alternatively, this software may be distributed under the terms of the
     26  1.1  fvdl  * GNU General Public License ("GPL") version 2 as published by the Free
     27  1.1  fvdl  * Software Foundation.
     28  1.1  fvdl  *
     29  1.1  fvdl  * NO WARRANTY
     30  1.1  fvdl  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     31  1.1  fvdl  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     32  1.1  fvdl  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
     33  1.1  fvdl  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     34  1.1  fvdl  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     35  1.1  fvdl  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     36  1.1  fvdl  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     37  1.1  fvdl  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     38  1.1  fvdl  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
     39  1.1  fvdl  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     40  1.1  fvdl  * POSSIBILITY OF SUCH DAMAGES.
     41  1.1  fvdl  *
     42  1.1  fvdl  * //depot/aic7xxx/aic7xxx/aic79xx_inline.h#44 $
     43  1.1  fvdl  *
     44  1.1  fvdl  * $FreeBSD: src/sys/dev/aic7xxx/aic79xx_inline.h,v 1.8 2003/03/06 23:58:34 gibbs Exp $
     45  1.1  fvdl  */
     46  1.1  fvdl /*
     47  1.1  fvdl  * Ported from FreeBSD by Pascal Renauld, Network Storage Solutions, Inc. - April 2003
     48  1.1  fvdl  */
     49  1.1  fvdl 
     50  1.1  fvdl #ifndef _AIC79XX_INLINE_H_
     51  1.1  fvdl #define _AIC79XX_INLINE_H_
     52  1.1  fvdl 
     53  1.1  fvdl /******************************** Debugging ***********************************/
     54  1.1  fvdl static __inline char *ahd_name(struct ahd_softc *ahd);
     55  1.1  fvdl 
     56  1.1  fvdl static __inline char *
     57  1.1  fvdl ahd_name(struct ahd_softc *ahd)
     58  1.1  fvdl {
     59  1.1  fvdl 	return (ahd->name);
     60  1.1  fvdl }
     61  1.1  fvdl 
     62  1.1  fvdl /************************ Sequencer Execution Control *************************/
     63  1.1  fvdl static __inline void ahd_known_modes(struct ahd_softc *ahd,
     64  1.1  fvdl 				     ahd_mode src, ahd_mode dst);
     65  1.1  fvdl static __inline ahd_mode_state ahd_build_mode_state(struct ahd_softc *ahd,
     66  1.1  fvdl 						    ahd_mode src,
     67  1.1  fvdl 						    ahd_mode dst);
     68  1.1  fvdl static __inline void ahd_extract_mode_state(struct ahd_softc *ahd,
     69  1.1  fvdl 					    ahd_mode_state state,
     70  1.1  fvdl 					    ahd_mode *src, ahd_mode *dst);
     71  1.1  fvdl static __inline void ahd_set_modes(struct ahd_softc *ahd, ahd_mode src,
     72  1.1  fvdl 				   ahd_mode dst);
     73  1.1  fvdl static __inline void ahd_update_modes(struct ahd_softc *ahd);
     74  1.1  fvdl static __inline void ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
     75  1.1  fvdl 				      ahd_mode dstmode, const char *file,
     76  1.1  fvdl 				      int line);
     77  1.1  fvdl static __inline ahd_mode_state ahd_save_modes(struct ahd_softc *ahd);
     78  1.1  fvdl static __inline void ahd_restore_modes(struct ahd_softc *ahd,
     79  1.1  fvdl 				       ahd_mode_state state);
     80  1.1  fvdl static __inline int  ahd_is_paused(struct ahd_softc *ahd);
     81  1.1  fvdl static __inline void ahd_pause(struct ahd_softc *ahd);
     82  1.1  fvdl static __inline void ahd_unpause(struct ahd_softc *ahd);
     83  1.1  fvdl 
     84  1.1  fvdl static __inline void
     85  1.1  fvdl ahd_known_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
     86  1.1  fvdl {
     87  1.1  fvdl 	ahd->src_mode = src;
     88  1.1  fvdl 	ahd->dst_mode = dst;
     89  1.1  fvdl 	ahd->saved_src_mode = src;
     90  1.1  fvdl 	ahd->saved_dst_mode = dst;
     91  1.1  fvdl }
     92  1.1  fvdl 
     93  1.1  fvdl static __inline ahd_mode_state
     94  1.1  fvdl ahd_build_mode_state(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
     95  1.1  fvdl {
     96  1.1  fvdl 	return ((src << SRC_MODE_SHIFT) | (dst << DST_MODE_SHIFT));
     97  1.1  fvdl }
     98  1.1  fvdl 
     99  1.1  fvdl static __inline void
    100  1.1  fvdl ahd_extract_mode_state(struct ahd_softc *ahd, ahd_mode_state state,
    101  1.1  fvdl 		       ahd_mode *src, ahd_mode *dst)
    102  1.1  fvdl {
    103  1.1  fvdl 	*src = (state & SRC_MODE) >> SRC_MODE_SHIFT;
    104  1.1  fvdl 	*dst = (state & DST_MODE) >> DST_MODE_SHIFT;
    105  1.1  fvdl }
    106  1.1  fvdl 
    107  1.1  fvdl static __inline void
    108  1.1  fvdl ahd_set_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
    109  1.1  fvdl {
    110  1.1  fvdl 	if (ahd->src_mode == src && ahd->dst_mode == dst)
    111  1.1  fvdl 		return;
    112  1.1  fvdl #ifdef AHD_DEBUG
    113  1.1  fvdl 	if (ahd->src_mode == AHD_MODE_UNKNOWN
    114  1.1  fvdl 	 || ahd->dst_mode == AHD_MODE_UNKNOWN)
    115  1.1  fvdl 		panic("Setting mode prior to saving it.\n");
    116  1.1  fvdl 	if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
    117  1.1  fvdl 		printf("%s: Setting mode 0x%x\n", ahd_name(ahd),
    118  1.1  fvdl 		       ahd_build_mode_state(ahd, src, dst));
    119  1.1  fvdl #endif
    120  1.1  fvdl 	ahd_outb(ahd, MODE_PTR, ahd_build_mode_state(ahd, src, dst));
    121  1.1  fvdl 	ahd->src_mode = src;
    122  1.1  fvdl 	ahd->dst_mode = dst;
    123  1.1  fvdl }
    124  1.1  fvdl 
    125  1.1  fvdl static __inline void
    126  1.1  fvdl ahd_update_modes(struct ahd_softc *ahd)
    127  1.1  fvdl {
    128  1.1  fvdl 	ahd_mode_state mode_ptr;
    129  1.1  fvdl 	ahd_mode src;
    130  1.1  fvdl 	ahd_mode dst;
    131  1.1  fvdl 
    132  1.1  fvdl 	mode_ptr = ahd_inb(ahd, MODE_PTR);
    133  1.1  fvdl #ifdef AHD_DEBUG
    134  1.1  fvdl 	if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
    135  1.1  fvdl 		printf("Reading mode 0x%x\n", mode_ptr);
    136  1.1  fvdl #endif
    137  1.1  fvdl 	ahd_extract_mode_state(ahd, mode_ptr, &src, &dst);
    138  1.1  fvdl 	ahd_known_modes(ahd, src, dst);
    139  1.1  fvdl }
    140  1.1  fvdl 
    141  1.1  fvdl static __inline void
    142  1.1  fvdl ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
    143  1.1  fvdl 		 ahd_mode dstmode, const char *file, int line)
    144  1.1  fvdl {
    145  1.1  fvdl #ifdef AHD_DEBUG
    146  1.1  fvdl 	if ((srcmode & AHD_MK_MSK(ahd->src_mode)) == 0
    147  1.1  fvdl 	 || (dstmode & AHD_MK_MSK(ahd->dst_mode)) == 0) {
    148  1.1  fvdl 		panic("%s:%s:%d: Mode assertion failed.\n",
    149  1.1  fvdl 		       ahd_name(ahd), file, line);
    150  1.1  fvdl 	}
    151  1.1  fvdl #endif
    152  1.1  fvdl }
    153  1.1  fvdl 
    154  1.1  fvdl static __inline ahd_mode_state
    155  1.1  fvdl ahd_save_modes(struct ahd_softc *ahd)
    156  1.1  fvdl {
    157  1.1  fvdl 	if (ahd->src_mode == AHD_MODE_UNKNOWN
    158  1.1  fvdl 	 || ahd->dst_mode == AHD_MODE_UNKNOWN)
    159  1.1  fvdl 		ahd_update_modes(ahd);
    160  1.1  fvdl 
    161  1.1  fvdl 	return (ahd_build_mode_state(ahd, ahd->src_mode, ahd->dst_mode));
    162  1.1  fvdl }
    163  1.1  fvdl 
    164  1.1  fvdl static __inline void
    165  1.1  fvdl ahd_restore_modes(struct ahd_softc *ahd, ahd_mode_state state)
    166  1.1  fvdl {
    167  1.1  fvdl 	ahd_mode src;
    168  1.1  fvdl 	ahd_mode dst;
    169  1.1  fvdl 
    170  1.1  fvdl 	ahd_extract_mode_state(ahd, state, &src, &dst);
    171  1.1  fvdl 	ahd_set_modes(ahd, src, dst);
    172  1.1  fvdl }
    173  1.1  fvdl 
    174  1.1  fvdl #define AHD_ASSERT_MODES(ahd, source, dest) \
    175  1.1  fvdl 	ahd_assert_modes(ahd, source, dest, __FILE__, __LINE__);
    176  1.1  fvdl 
    177  1.1  fvdl /*
    178  1.1  fvdl  * Determine whether the sequencer has halted code execution.
    179  1.1  fvdl  * Returns non-zero status if the sequencer is stopped.
    180  1.1  fvdl  */
    181  1.1  fvdl static __inline int
    182  1.1  fvdl ahd_is_paused(struct ahd_softc *ahd)
    183  1.1  fvdl {
    184  1.1  fvdl 	return ((ahd_inb(ahd, HCNTRL) & PAUSE) != 0);
    185  1.1  fvdl }
    186  1.1  fvdl 
    187  1.1  fvdl /*
    188  1.1  fvdl  * Request that the sequencer stop and wait, indefinitely, for it
    189  1.1  fvdl  * to stop.  The sequencer will only acknowledge that it is paused
    190  1.1  fvdl  * once it has reached an instruction boundary and PAUSEDIS is
    191  1.1  fvdl  * cleared in the SEQCTL register.  The sequencer may use PAUSEDIS
    192  1.1  fvdl  * for critical sections.
    193  1.1  fvdl  */
    194  1.1  fvdl static __inline void
    195  1.1  fvdl ahd_pause(struct ahd_softc *ahd)
    196  1.1  fvdl {
    197  1.1  fvdl 	ahd_outb(ahd, HCNTRL, ahd->pause);
    198  1.1  fvdl 
    199  1.1  fvdl 	/*
    200  1.1  fvdl 	 * Since the sequencer can disable pausing in a critical section, we
    201  1.1  fvdl 	 * must loop until it actually stops.
    202  1.1  fvdl 	 */
    203  1.1  fvdl 	while (ahd_is_paused(ahd) == 0)
    204  1.1  fvdl 		;
    205  1.1  fvdl }
    206  1.1  fvdl 
    207  1.1  fvdl /*
    208  1.1  fvdl  * Allow the sequencer to continue program execution.
    209  1.1  fvdl  * We check here to ensure that no additional interrupt
    210  1.1  fvdl  * sources that would cause the sequencer to halt have been
    211  1.1  fvdl  * asserted.  If, for example, a SCSI bus reset is detected
    212  1.1  fvdl  * while we are fielding a different, pausing, interrupt type,
    213  1.1  fvdl  * we don't want to release the sequencer before going back
    214  1.1  fvdl  * into our interrupt handler and dealing with this new
    215  1.1  fvdl  * condition.
    216  1.1  fvdl  */
    217  1.1  fvdl static __inline void
    218  1.1  fvdl ahd_unpause(struct ahd_softc *ahd)
    219  1.1  fvdl {
    220  1.1  fvdl 	/*
    221  1.1  fvdl 	 * Automatically restore our modes to those saved
    222  1.1  fvdl 	 * prior to the first change of the mode.
    223  1.1  fvdl 	 */
    224  1.1  fvdl 	if (ahd->saved_src_mode != AHD_MODE_UNKNOWN
    225  1.1  fvdl 	 && ahd->saved_dst_mode != AHD_MODE_UNKNOWN) {
    226  1.1  fvdl 		if ((ahd->flags & AHD_UPDATE_PEND_CMDS) != 0)
    227  1.1  fvdl 			ahd_reset_cmds_pending(ahd);
    228  1.1  fvdl 		ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
    229  1.1  fvdl 	}
    230  1.1  fvdl 
    231  1.1  fvdl 	if ((ahd_inb(ahd, INTSTAT) & ~(SWTMINT | CMDCMPLT)) == 0)
    232  1.1  fvdl 		ahd_outb(ahd, HCNTRL, ahd->unpause);
    233  1.1  fvdl 
    234  1.1  fvdl 	ahd_known_modes(ahd, AHD_MODE_UNKNOWN, AHD_MODE_UNKNOWN);
    235  1.1  fvdl }
    236  1.1  fvdl 
    237  1.1  fvdl /*********************** Scatter Gather List Handling *************************/
    238  1.1  fvdl static __inline void	*ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
    239  1.1  fvdl 				      void *sgptr, bus_addr_t addr,
    240  1.1  fvdl 				      bus_size_t len, int last);
    241  1.1  fvdl static __inline void	 ahd_setup_scb_common(struct ahd_softc *ahd,
    242  1.1  fvdl 					      struct scb *scb);
    243  1.1  fvdl static __inline void	 ahd_setup_data_scb(struct ahd_softc *ahd,
    244  1.1  fvdl 					    struct scb *scb);
    245  1.1  fvdl static __inline void	 ahd_setup_noxfer_scb(struct ahd_softc *ahd,
    246  1.1  fvdl 					      struct scb *scb);
    247  1.1  fvdl 
    248  1.1  fvdl static __inline void *
    249  1.1  fvdl ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
    250  1.1  fvdl 	     void *sgptr, bus_addr_t addr, bus_size_t len, int last)
    251  1.1  fvdl {
    252  1.1  fvdl 	scb->sg_count++;
    253  1.1  fvdl 	if (sizeof(bus_addr_t) > 4
    254  1.1  fvdl 	 && (ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
    255  1.1  fvdl 		struct ahd_dma64_seg *sg;
    256  1.1  fvdl 
    257  1.1  fvdl 		sg = (struct ahd_dma64_seg *)sgptr;
    258  1.1  fvdl 		sg->addr = ahd_htole64(addr);
    259  1.1  fvdl 		sg->len = ahd_htole32(len | (last ? AHD_DMA_LAST_SEG : 0));
    260  1.1  fvdl 		return (sg + 1);
    261  1.1  fvdl 	} else {
    262  1.1  fvdl 		struct ahd_dma_seg *sg;
    263  1.1  fvdl 
    264  1.1  fvdl 		sg = (struct ahd_dma_seg *)sgptr;
    265  1.1  fvdl 		sg->addr = ahd_htole32(addr & 0xFFFFFFFF);
    266  1.1  fvdl 		sg->len = ahd_htole32(len | ((addr >> 8) & 0x7F000000)
    267  1.1  fvdl 				    | (last ? AHD_DMA_LAST_SEG : 0));
    268  1.1  fvdl 		return (sg + 1);
    269  1.1  fvdl 	}
    270  1.1  fvdl }
    271  1.1  fvdl 
    272  1.1  fvdl static __inline void
    273  1.1  fvdl ahd_setup_scb_common(struct ahd_softc *ahd, struct scb *scb)
    274  1.1  fvdl {
    275  1.1  fvdl 	/* XXX Handle target mode SCBs. */
    276  1.1  fvdl 	scb->crc_retry_count = 0;
    277  1.1  fvdl 	if ((scb->flags & SCB_PACKETIZED) != 0) {
    278  1.1  fvdl 		/* XXX what about ACA??  It is type 4, but TAG_TYPE == 0x3. */
    279  1.1  fvdl 		scb->hscb->task_attribute= scb->hscb->control & SCB_TAG_TYPE;
    280  1.1  fvdl 		/*
    281  1.1  fvdl 		 * For Rev A short lun workaround.
    282  1.1  fvdl 		 */
    283  1.1  fvdl 		memset(scb->hscb->pkt_long_lun, 0, sizeof(scb->hscb->pkt_long_lun));
    284  1.1  fvdl 		scb->hscb->pkt_long_lun[6] = scb->hscb->lun;
    285  1.1  fvdl 	}
    286  1.1  fvdl 
    287  1.1  fvdl 	if (scb->hscb->cdb_len <= MAX_CDB_LEN_WITH_SENSE_ADDR
    288  1.1  fvdl 	 || (scb->hscb->cdb_len & SCB_CDB_LEN_PTR) != 0)
    289  1.1  fvdl 		scb->hscb->shared_data.idata.cdb_plus_saddr.sense_addr =
    290  1.1  fvdl 		    ahd_htole32(scb->sense_busaddr);
    291  1.1  fvdl }
    292  1.1  fvdl 
    293  1.1  fvdl static __inline void
    294  1.1  fvdl ahd_setup_data_scb(struct ahd_softc *ahd, struct scb *scb)
    295  1.1  fvdl {
    296  1.1  fvdl 	/*
    297  1.1  fvdl 	 * Copy the first SG into the "current" data ponter area.
    298  1.1  fvdl 	 */
    299  1.1  fvdl 	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
    300  1.1  fvdl 		struct ahd_dma64_seg *sg;
    301  1.1  fvdl 
    302  1.1  fvdl 		sg = (struct ahd_dma64_seg *)scb->sg_list;
    303  1.1  fvdl 		scb->hscb->dataptr = sg->addr;
    304  1.1  fvdl 		scb->hscb->datacnt = sg->len;
    305  1.1  fvdl 	} else {
    306  1.1  fvdl 		struct ahd_dma_seg *sg;
    307  1.1  fvdl 
    308  1.1  fvdl 		sg = (struct ahd_dma_seg *)scb->sg_list;
    309  1.1  fvdl 		scb->hscb->dataptr = sg->addr;
    310  1.1  fvdl 		if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
    311  1.1  fvdl 			uint64_t high_addr;
    312  1.1  fvdl 
    313  1.1  fvdl 			high_addr = ahd_le32toh(sg->len) & 0x7F000000;
    314  1.1  fvdl 			scb->hscb->dataptr |= ahd_htole64(high_addr << 8);
    315  1.1  fvdl 		}
    316  1.1  fvdl 		scb->hscb->datacnt = sg->len;
    317  1.1  fvdl 	}
    318  1.1  fvdl 	/*
    319  1.1  fvdl 	 * Note where to find the SG entries in bus space.
    320  1.1  fvdl 	 * We also set the full residual flag which the
    321  1.1  fvdl 	 * sequencer will clear as soon as a data transfer
    322  1.1  fvdl 	 * occurs.
    323  1.1  fvdl 	 */
    324  1.1  fvdl 	scb->hscb->sgptr = ahd_htole32(scb->sg_list_busaddr|SG_FULL_RESID);
    325  1.1  fvdl }
    326  1.1  fvdl 
    327  1.1  fvdl static __inline void
    328  1.1  fvdl ahd_setup_noxfer_scb(struct ahd_softc *ahd, struct scb *scb)
    329  1.1  fvdl {
    330  1.1  fvdl 	scb->hscb->sgptr = ahd_htole32(SG_LIST_NULL);
    331  1.1  fvdl 	scb->hscb->dataptr = 0;
    332  1.1  fvdl 	scb->hscb->datacnt = 0;
    333  1.1  fvdl }
    334  1.1  fvdl 
    335  1.1  fvdl /************************** Memory mapping routines ***************************/
    336  1.1  fvdl static __inline size_t	ahd_sg_size(struct ahd_softc *ahd);
    337  1.1  fvdl static __inline void *
    338  1.1  fvdl 			ahd_sg_bus_to_virt(struct ahd_softc *ahd,
    339  1.1  fvdl 					   struct scb *scb,
    340  1.1  fvdl 					   uint32_t sg_busaddr);
    341  1.1  fvdl static __inline uint32_t
    342  1.1  fvdl 			ahd_sg_virt_to_bus(struct ahd_softc *ahd,
    343  1.1  fvdl 					   struct scb *scb,
    344  1.1  fvdl 					   void *sg);
    345  1.1  fvdl static __inline void	ahd_sync_scb(struct ahd_softc *ahd,
    346  1.1  fvdl 				     struct scb *scb, int op);
    347  1.1  fvdl static __inline void	ahd_sync_sglist(struct ahd_softc *ahd,
    348  1.1  fvdl 					struct scb *scb, int op);
    349  1.1  fvdl static __inline void	ahd_sync_sense(struct ahd_softc *ahd,
    350  1.1  fvdl 				       struct scb *scb, int op);
    351  1.1  fvdl static __inline uint32_t
    352  1.1  fvdl 			ahd_targetcmd_offset(struct ahd_softc *ahd,
    353  1.1  fvdl 					     u_int index);
    354  1.1  fvdl 
    355  1.1  fvdl static __inline size_t
    356  1.1  fvdl ahd_sg_size(struct ahd_softc *ahd)
    357  1.1  fvdl {
    358  1.1  fvdl 	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
    359  1.1  fvdl 		return (sizeof(struct ahd_dma64_seg));
    360  1.1  fvdl 	return (sizeof(struct ahd_dma_seg));
    361  1.1  fvdl }
    362  1.1  fvdl 
    363  1.1  fvdl static __inline void *
    364  1.1  fvdl ahd_sg_bus_to_virt(struct ahd_softc *ahd, struct scb *scb, uint32_t sg_busaddr)
    365  1.1  fvdl {
    366  1.1  fvdl 	bus_addr_t sg_offset;
    367  1.1  fvdl 
    368  1.1  fvdl 	/* sg_list_phys points to entry 1, not 0 */
    369  1.1  fvdl 	sg_offset = sg_busaddr - (scb->sg_list_busaddr - ahd_sg_size(ahd));
    370  1.1  fvdl 	return ((uint8_t *)scb->sg_list + sg_offset);
    371  1.1  fvdl }
    372  1.1  fvdl 
    373  1.1  fvdl static __inline uint32_t
    374  1.1  fvdl ahd_sg_virt_to_bus(struct ahd_softc *ahd, struct scb *scb, void *sg)
    375  1.1  fvdl {
    376  1.1  fvdl 	bus_addr_t sg_offset;
    377  1.1  fvdl 
    378  1.1  fvdl 	/* sg_list_phys points to entry 1, not 0 */
    379  1.1  fvdl 	sg_offset = ((uint8_t *)sg - (uint8_t *)scb->sg_list)
    380  1.1  fvdl 		  - ahd_sg_size(ahd);
    381  1.1  fvdl 
    382  1.1  fvdl 	return (scb->sg_list_busaddr + sg_offset);
    383  1.1  fvdl }
    384  1.1  fvdl 
    385  1.1  fvdl static __inline void
    386  1.1  fvdl ahd_sync_scb(struct ahd_softc *ahd, struct scb *scb, int op)
    387  1.1  fvdl {
    388  1.1  fvdl 	ahd_dmamap_sync(ahd, ahd->parent_dmat, scb->hscb_map->dmamap,
    389  1.1  fvdl 			/*offset*/(uint8_t*)scb->hscb - scb->hscb_map->vaddr,
    390  1.1  fvdl 			/*len*/sizeof(*scb->hscb), op);
    391  1.1  fvdl }
    392  1.1  fvdl 
    393  1.1  fvdl static __inline void
    394  1.1  fvdl ahd_sync_sglist(struct ahd_softc *ahd, struct scb *scb, int op)
    395  1.1  fvdl {
    396  1.1  fvdl 	if (scb->sg_count == 0)
    397  1.1  fvdl 		return;
    398  1.1  fvdl 
    399  1.1  fvdl 	ahd_dmamap_sync(ahd, ahd->parent_dmat, scb->sg_map->dmamap,
    400  1.1  fvdl 			/*offset*/scb->sg_list_busaddr - ahd_sg_size(ahd),
    401  1.1  fvdl 			/*len*/ahd_sg_size(ahd) * scb->sg_count, op);
    402  1.1  fvdl }
    403  1.1  fvdl 
    404  1.1  fvdl static __inline void
    405  1.1  fvdl ahd_sync_sense(struct ahd_softc *ahd, struct scb *scb, int op)
    406  1.1  fvdl {
    407  1.1  fvdl 	ahd_dmamap_sync(ahd, ahd->parent_dmat,
    408  1.1  fvdl 			scb->sense_map->dmamap,
    409  1.1  fvdl 			/*offset*/scb->sense_busaddr,
    410  1.1  fvdl 			/*len*/AHD_SENSE_BUFSIZE, op);
    411  1.1  fvdl }
    412  1.1  fvdl 
    413  1.1  fvdl static __inline uint32_t
    414  1.1  fvdl ahd_targetcmd_offset(struct ahd_softc *ahd, u_int index)
    415  1.1  fvdl {
    416  1.1  fvdl 	return (((uint8_t *)&ahd->targetcmds[index])
    417  1.1  fvdl 	       - (uint8_t *)ahd->qoutfifo);
    418  1.1  fvdl }
    419  1.1  fvdl 
    420  1.1  fvdl /*********************** Miscelaneous Support Functions ***********************/
    421  1.1  fvdl static __inline void	ahd_complete_scb(struct ahd_softc *ahd,
    422  1.1  fvdl 					 struct scb *scb);
    423  1.1  fvdl static __inline void	ahd_update_residual(struct ahd_softc *ahd,
    424  1.1  fvdl 					    struct scb *scb);
    425  1.1  fvdl static __inline struct ahd_initiator_tinfo *
    426  1.1  fvdl 			ahd_fetch_transinfo(struct ahd_softc *ahd,
    427  1.1  fvdl 					    char channel, u_int our_id,
    428  1.1  fvdl 					    u_int remote_id,
    429  1.1  fvdl 					    struct ahd_tmode_tstate **tstate);
    430  1.1  fvdl static __inline uint16_t
    431  1.1  fvdl 			ahd_inw(struct ahd_softc *ahd, u_int port);
    432  1.1  fvdl static __inline void	ahd_outw(struct ahd_softc *ahd, u_int port,
    433  1.1  fvdl 				 u_int value);
    434  1.1  fvdl static __inline uint32_t
    435  1.1  fvdl 			ahd_inl(struct ahd_softc *ahd, u_int port);
    436  1.1  fvdl static __inline void	ahd_outl(struct ahd_softc *ahd, u_int port,
    437  1.1  fvdl 				 uint32_t value);
    438  1.1  fvdl static __inline uint64_t
    439  1.1  fvdl 			ahd_inq(struct ahd_softc *ahd, u_int port);
    440  1.1  fvdl static __inline void	ahd_outq(struct ahd_softc *ahd, u_int port,
    441  1.1  fvdl 				 uint64_t value);
    442  1.1  fvdl static __inline u_int	ahd_get_scbptr(struct ahd_softc *ahd);
    443  1.1  fvdl static __inline void	ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr);
    444  1.1  fvdl static __inline u_int	ahd_get_hnscb_qoff(struct ahd_softc *ahd);
    445  1.1  fvdl static __inline void	ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value);
    446  1.1  fvdl static __inline u_int	ahd_get_hescb_qoff(struct ahd_softc *ahd);
    447  1.1  fvdl static __inline void	ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value);
    448  1.1  fvdl static __inline u_int	ahd_get_snscb_qoff(struct ahd_softc *ahd);
    449  1.1  fvdl static __inline void	ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value);
    450  1.1  fvdl static __inline u_int	ahd_get_sescb_qoff(struct ahd_softc *ahd);
    451  1.1  fvdl static __inline void	ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value);
    452  1.1  fvdl static __inline u_int	ahd_get_sdscb_qoff(struct ahd_softc *ahd);
    453  1.1  fvdl static __inline void	ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value);
    454  1.1  fvdl static __inline u_int	ahd_inb_scbram(struct ahd_softc *ahd, u_int offset);
    455  1.1  fvdl static __inline u_int	ahd_inw_scbram(struct ahd_softc *ahd, u_int offset);
    456  1.1  fvdl static __inline uint32_t
    457  1.1  fvdl 			ahd_inl_scbram(struct ahd_softc *ahd, u_int offset);
    458  1.1  fvdl static __inline void	ahd_swap_with_next_hscb(struct ahd_softc *ahd,
    459  1.1  fvdl 						struct scb *scb);
    460  1.1  fvdl static __inline void	ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb);
    461  1.1  fvdl static __inline uint8_t *
    462  1.1  fvdl 			ahd_get_sense_buf(struct ahd_softc *ahd,
    463  1.1  fvdl 					  struct scb *scb);
    464  1.1  fvdl static __inline uint32_t
    465  1.1  fvdl 			ahd_get_sense_bufaddr(struct ahd_softc *ahd,
    466  1.1  fvdl 					      struct scb *scb);
    467  1.1  fvdl static __inline void	ahd_post_scb(struct ahd_softc *ahd,
    468  1.1  fvdl 					 struct scb *scb);
    469  1.1  fvdl 
    470  1.1  fvdl 
    471  1.1  fvdl static __inline void
    472  1.1  fvdl ahd_post_scb(struct ahd_softc *ahd, struct scb *scb)
    473  1.1  fvdl {
    474  1.1  fvdl 	uint32_t sgptr;
    475  1.1  fvdl 
    476  1.1  fvdl 	sgptr = ahd_le32toh(scb->hscb->sgptr);
    477  1.1  fvdl 	if ((sgptr & SG_STATUS_VALID) != 0)
    478  1.1  fvdl 		ahd_handle_scb_status(ahd, scb);
    479  1.1  fvdl 	else
    480  1.1  fvdl         	ahd_done(ahd, scb);
    481  1.1  fvdl }
    482  1.1  fvdl 
    483  1.1  fvdl static __inline void
    484  1.1  fvdl ahd_complete_scb(struct ahd_softc *ahd, struct scb *scb)
    485  1.1  fvdl {
    486  1.1  fvdl 	uint32_t sgptr;
    487  1.1  fvdl 
    488  1.1  fvdl 	sgptr = ahd_le32toh(scb->hscb->sgptr);
    489  1.1  fvdl 	if ((sgptr & SG_STATUS_VALID) != 0)
    490  1.1  fvdl 		ahd_handle_scb_status(ahd, scb);
    491  1.1  fvdl 	else
    492  1.1  fvdl 		ahd_done(ahd, scb);
    493  1.1  fvdl }
    494  1.1  fvdl 
    495  1.1  fvdl /*
    496  1.1  fvdl  * Determine whether the sequencer reported a residual
    497  1.1  fvdl  * for this SCB/transaction.
    498  1.1  fvdl  */
    499  1.1  fvdl static __inline void
    500  1.1  fvdl ahd_update_residual(struct ahd_softc *ahd, struct scb *scb)
    501  1.1  fvdl {
    502  1.1  fvdl 	uint32_t sgptr;
    503  1.1  fvdl 
    504  1.1  fvdl 	sgptr = ahd_le32toh(scb->hscb->sgptr);
    505  1.1  fvdl 	if ((sgptr & SG_STATUS_VALID) != 0)
    506  1.1  fvdl 		ahd_calc_residual(ahd, scb);
    507  1.1  fvdl }
    508  1.1  fvdl 
    509  1.1  fvdl /*
    510  1.1  fvdl  * Return pointers to the transfer negotiation information
    511  1.1  fvdl  * for the specified our_id/remote_id pair.
    512  1.1  fvdl  */
    513  1.1  fvdl static __inline struct ahd_initiator_tinfo *
    514  1.1  fvdl ahd_fetch_transinfo(struct ahd_softc *ahd, char channel, u_int our_id,
    515  1.1  fvdl 		    u_int remote_id, struct ahd_tmode_tstate **tstate)
    516  1.1  fvdl {
    517  1.1  fvdl 	/*
    518  1.1  fvdl 	 * Transfer data structures are stored from the perspective
    519  1.1  fvdl 	 * of the target role.  Since the parameters for a connection
    520  1.1  fvdl 	 * in the initiator role to a given target are the same as
    521  1.1  fvdl 	 * when the roles are reversed, we pretend we are the target.
    522  1.1  fvdl 	 */
    523  1.1  fvdl 	if (channel == 'B')
    524  1.1  fvdl 		our_id += 8;
    525  1.1  fvdl 	*tstate = ahd->enabled_targets[our_id];
    526  1.1  fvdl 	return (&(*tstate)->transinfo[remote_id]);
    527  1.1  fvdl }
    528  1.1  fvdl 
    529  1.1  fvdl #define AHD_COPY_COL_IDX(dst, src)				\
    530  1.1  fvdl do {								\
    531  1.1  fvdl 	dst->hscb->scsiid = src->hscb->scsiid;			\
    532  1.1  fvdl 	dst->hscb->lun = src->hscb->lun;			\
    533  1.1  fvdl } while (0)
    534  1.1  fvdl 
    535  1.1  fvdl static __inline uint16_t
    536  1.1  fvdl ahd_inw(struct ahd_softc *ahd, u_int port)
    537  1.1  fvdl {
    538  1.1  fvdl 	return ((ahd_inb(ahd, port+1) << 8) | ahd_inb(ahd, port));
    539  1.1  fvdl }
    540  1.1  fvdl 
    541  1.1  fvdl static __inline void
    542  1.1  fvdl ahd_outw(struct ahd_softc *ahd, u_int port, u_int value)
    543  1.1  fvdl {
    544  1.1  fvdl 	ahd_outb(ahd, port, value & 0xFF);
    545  1.1  fvdl 	ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
    546  1.1  fvdl }
    547  1.1  fvdl 
    548  1.1  fvdl static __inline uint32_t
    549  1.1  fvdl ahd_inl(struct ahd_softc *ahd, u_int port)
    550  1.1  fvdl {
    551  1.1  fvdl 	return ((ahd_inb(ahd, port))
    552  1.1  fvdl 	      | (ahd_inb(ahd, port+1) << 8)
    553  1.1  fvdl 	      | (ahd_inb(ahd, port+2) << 16)
    554  1.1  fvdl 	      | (ahd_inb(ahd, port+3) << 24));
    555  1.1  fvdl }
    556  1.1  fvdl 
    557  1.1  fvdl static __inline void
    558  1.1  fvdl ahd_outl(struct ahd_softc *ahd, u_int port, uint32_t value)
    559  1.1  fvdl {
    560  1.1  fvdl 	ahd_outb(ahd, port, (value) & 0xFF);
    561  1.1  fvdl 	ahd_outb(ahd, port+1, ((value) >> 8) & 0xFF);
    562  1.1  fvdl 	ahd_outb(ahd, port+2, ((value) >> 16) & 0xFF);
    563  1.1  fvdl 	ahd_outb(ahd, port+3, ((value) >> 24) & 0xFF);
    564  1.1  fvdl }
    565  1.1  fvdl 
    566  1.1  fvdl static __inline uint64_t
    567  1.1  fvdl ahd_inq(struct ahd_softc *ahd, u_int port)
    568  1.1  fvdl {
    569  1.1  fvdl 	return ((ahd_inb(ahd, port))
    570  1.1  fvdl 	      | (ahd_inb(ahd, port+1) << 8)
    571  1.1  fvdl 	      | (ahd_inb(ahd, port+2) << 16)
    572  1.1  fvdl 	      | (ahd_inb(ahd, port+3) << 24)
    573  1.1  fvdl 	      | (((uint64_t)ahd_inb(ahd, port+4)) << 32)
    574  1.1  fvdl 	      | (((uint64_t)ahd_inb(ahd, port+5)) << 40)
    575  1.1  fvdl 	      | (((uint64_t)ahd_inb(ahd, port+6)) << 48)
    576  1.1  fvdl 	      | (((uint64_t)ahd_inb(ahd, port+7)) << 56));
    577  1.1  fvdl }
    578  1.1  fvdl 
    579  1.1  fvdl static __inline void
    580  1.1  fvdl ahd_outq(struct ahd_softc *ahd, u_int port, uint64_t value)
    581  1.1  fvdl {
    582  1.1  fvdl 	ahd_outb(ahd, port, value & 0xFF);
    583  1.1  fvdl 	ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
    584  1.1  fvdl 	ahd_outb(ahd, port+2, (value >> 16) & 0xFF);
    585  1.1  fvdl 	ahd_outb(ahd, port+3, (value >> 24) & 0xFF);
    586  1.1  fvdl 	ahd_outb(ahd, port+4, (value >> 32) & 0xFF);
    587  1.1  fvdl 	ahd_outb(ahd, port+5, (value >> 40) & 0xFF);
    588  1.1  fvdl 	ahd_outb(ahd, port+6, (value >> 48) & 0xFF);
    589  1.1  fvdl 	ahd_outb(ahd, port+7, (value >> 56) & 0xFF);
    590  1.1  fvdl }
    591  1.1  fvdl 
    592  1.1  fvdl static __inline u_int
    593  1.1  fvdl ahd_get_scbptr(struct ahd_softc *ahd)
    594  1.1  fvdl {
    595  1.1  fvdl 	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
    596  1.1  fvdl 			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
    597  1.1  fvdl 	return (ahd_inb(ahd, SCBPTR) | (ahd_inb(ahd, SCBPTR + 1) << 8));
    598  1.1  fvdl }
    599  1.1  fvdl 
    600  1.1  fvdl static __inline void
    601  1.1  fvdl ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr)
    602  1.1  fvdl {
    603  1.1  fvdl 	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
    604  1.1  fvdl 			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
    605  1.1  fvdl 	ahd_outb(ahd, SCBPTR, scbptr & 0xFF);
    606  1.1  fvdl 	ahd_outb(ahd, SCBPTR+1, (scbptr >> 8) & 0xFF);
    607  1.1  fvdl }
    608  1.1  fvdl 
    609  1.1  fvdl static __inline u_int
    610  1.1  fvdl ahd_get_hnscb_qoff(struct ahd_softc *ahd)
    611  1.1  fvdl {
    612  1.1  fvdl 	return (ahd_inw_atomic(ahd, HNSCB_QOFF));
    613  1.1  fvdl }
    614  1.1  fvdl 
    615  1.1  fvdl static __inline void
    616  1.1  fvdl ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value)
    617  1.1  fvdl {
    618  1.1  fvdl 	ahd_outw_atomic(ahd, HNSCB_QOFF, value);
    619  1.1  fvdl }
    620  1.1  fvdl 
    621  1.1  fvdl static __inline u_int
    622  1.1  fvdl ahd_get_hescb_qoff(struct ahd_softc *ahd)
    623  1.1  fvdl {
    624  1.1  fvdl 	return (ahd_inb(ahd, HESCB_QOFF));
    625  1.1  fvdl }
    626  1.1  fvdl 
    627  1.1  fvdl static __inline void
    628  1.1  fvdl ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value)
    629  1.1  fvdl {
    630  1.1  fvdl 	ahd_outb(ahd, HESCB_QOFF, value);
    631  1.1  fvdl }
    632  1.1  fvdl 
    633  1.1  fvdl static __inline u_int
    634  1.1  fvdl ahd_get_snscb_qoff(struct ahd_softc *ahd)
    635  1.1  fvdl {
    636  1.1  fvdl 	u_int oldvalue;
    637  1.1  fvdl 
    638  1.1  fvdl 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
    639  1.1  fvdl 	oldvalue = ahd_inw(ahd, SNSCB_QOFF);
    640  1.1  fvdl 	ahd_outw(ahd, SNSCB_QOFF, oldvalue);
    641  1.1  fvdl 	return (oldvalue);
    642  1.1  fvdl }
    643  1.1  fvdl 
    644  1.1  fvdl static __inline void
    645  1.1  fvdl ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value)
    646  1.1  fvdl {
    647  1.1  fvdl 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
    648  1.1  fvdl 	ahd_outw(ahd, SNSCB_QOFF, value);
    649  1.1  fvdl }
    650  1.1  fvdl 
    651  1.1  fvdl static __inline u_int
    652  1.1  fvdl ahd_get_sescb_qoff(struct ahd_softc *ahd)
    653  1.1  fvdl {
    654  1.1  fvdl 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
    655  1.1  fvdl 	return (ahd_inb(ahd, SESCB_QOFF));
    656  1.1  fvdl }
    657  1.1  fvdl 
    658  1.1  fvdl static __inline void
    659  1.1  fvdl ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value)
    660  1.1  fvdl {
    661  1.1  fvdl 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
    662  1.1  fvdl 	ahd_outb(ahd, SESCB_QOFF, value);
    663  1.1  fvdl }
    664  1.1  fvdl 
    665  1.1  fvdl static __inline u_int
    666  1.1  fvdl ahd_get_sdscb_qoff(struct ahd_softc *ahd)
    667  1.1  fvdl {
    668  1.1  fvdl 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
    669  1.1  fvdl 	return (ahd_inb(ahd, SDSCB_QOFF) | (ahd_inb(ahd, SDSCB_QOFF + 1) << 8));
    670  1.1  fvdl }
    671  1.1  fvdl 
    672  1.1  fvdl static __inline void
    673  1.1  fvdl ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value)
    674  1.1  fvdl {
    675  1.1  fvdl 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
    676  1.1  fvdl 	ahd_outb(ahd, SDSCB_QOFF, value & 0xFF);
    677  1.1  fvdl 	ahd_outb(ahd, SDSCB_QOFF+1, (value >> 8) & 0xFF);
    678  1.1  fvdl }
    679  1.1  fvdl 
    680  1.1  fvdl static __inline u_int
    681  1.1  fvdl ahd_inb_scbram(struct ahd_softc *ahd, u_int offset)
    682  1.1  fvdl {
    683  1.1  fvdl 	u_int value;
    684  1.1  fvdl 
    685  1.1  fvdl 	/*
    686  1.1  fvdl 	 * Workaround PCI-X Rev A. hardware bug.
    687  1.1  fvdl 	 * After a host read of SCB memory, the chip
    688  1.1  fvdl 	 * may become confused into thinking prefetch
    689  1.1  fvdl 	 * was required.  This starts the discard timer
    690  1.1  fvdl 	 * running and can cause an unexpected discard
    691  1.1  fvdl 	 * timer interrupt.  The work around is to read
    692  1.1  fvdl 	 * a normal register prior to the exhaustion of
    693  1.1  fvdl 	 * the discard timer.  The mode pointer register
    694  1.1  fvdl 	 * has no side effects and so serves well for
    695  1.1  fvdl 	 * this purpose.
    696  1.1  fvdl 	 *
    697  1.1  fvdl 	 * Razor #528
    698  1.1  fvdl 	 */
    699  1.1  fvdl 	value = ahd_inb(ahd, offset);
    700  1.1  fvdl 	if ((ahd->flags & AHD_PCIX_SCBRAM_RD_BUG) != 0)
    701  1.1  fvdl 		ahd_inb(ahd, MODE_PTR);
    702  1.1  fvdl 	return (value);
    703  1.1  fvdl }
    704  1.1  fvdl 
    705  1.1  fvdl static __inline u_int
    706  1.1  fvdl ahd_inw_scbram(struct ahd_softc *ahd, u_int offset)
    707  1.1  fvdl {
    708  1.1  fvdl 	return (ahd_inb_scbram(ahd, offset)
    709  1.1  fvdl 	      | (ahd_inb_scbram(ahd, offset+1) << 8));
    710  1.1  fvdl }
    711  1.1  fvdl 
    712  1.1  fvdl static __inline uint32_t
    713  1.1  fvdl ahd_inl_scbram(struct ahd_softc *ahd, u_int offset)
    714  1.1  fvdl {
    715  1.1  fvdl 	return (ahd_inb_scbram(ahd, offset)
    716  1.1  fvdl 	      | (ahd_inb_scbram(ahd, offset+1) << 8)
    717  1.1  fvdl 	      | (ahd_inb_scbram(ahd, offset+2) << 16)
    718  1.1  fvdl 	      | (ahd_inb_scbram(ahd, offset+3) << 24));
    719  1.1  fvdl }
    720  1.1  fvdl 
    721  1.1  fvdl static __inline struct scb *
    722  1.1  fvdl ahd_lookup_scb(struct ahd_softc *ahd, u_int tag)
    723  1.1  fvdl {
    724  1.1  fvdl 	struct scb* scb;
    725  1.1  fvdl 
    726  1.1  fvdl 	if (tag >= AHD_SCB_MAX)
    727  1.1  fvdl 		return (NULL);
    728  1.1  fvdl 	scb = ahd->scb_data.scbindex[tag];
    729  1.1  fvdl 	if (scb != NULL)
    730  1.1  fvdl 		ahd_sync_scb(ahd, scb,
    731  1.1  fvdl 			     BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    732  1.1  fvdl 	return (scb);
    733  1.1  fvdl }
    734  1.1  fvdl 
    735  1.1  fvdl static __inline void
    736  1.1  fvdl ahd_swap_with_next_hscb(struct ahd_softc *ahd, struct scb *scb)
    737  1.1  fvdl {
    738  1.1  fvdl 	struct hardware_scb *q_hscb;
    739  1.1  fvdl 	uint32_t saved_hscb_busaddr;
    740  1.1  fvdl 
    741  1.1  fvdl 	/*
    742  1.1  fvdl 	 * Our queuing method is a bit tricky.  The card
    743  1.1  fvdl 	 * knows in advance which HSCB (by address) to download,
    744  1.1  fvdl 	 * and we can't disappoint it.  To achieve this, the next
    745  1.1  fvdl 	 * HSCB to download is saved off in ahd->next_queued_hscb.
    746  1.1  fvdl 	 * When we are called to queue "an arbitrary scb",
    747  1.1  fvdl 	 * we copy the contents of the incoming HSCB to the one
    748  1.1  fvdl 	 * the sequencer knows about, swap HSCB pointers and
    749  1.1  fvdl 	 * finally assign the SCB to the tag indexed location
    750  1.1  fvdl 	 * in the scb_array.  This makes sure that we can still
    751  1.1  fvdl 	 * locate the correct SCB by SCB_TAG.
    752  1.1  fvdl 	 */
    753  1.1  fvdl 	q_hscb = ahd->next_queued_hscb;
    754  1.1  fvdl 	saved_hscb_busaddr = q_hscb->hscb_busaddr;
    755  1.1  fvdl 	memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
    756  1.1  fvdl 	q_hscb->hscb_busaddr = saved_hscb_busaddr;
    757  1.1  fvdl 	q_hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
    758  1.1  fvdl 
    759  1.1  fvdl 	/* Now swap HSCB pointers. */
    760  1.1  fvdl 	ahd->next_queued_hscb = scb->hscb;
    761  1.1  fvdl 	scb->hscb = q_hscb;
    762  1.1  fvdl 
    763  1.1  fvdl 	/* Now define the mapping from tag to SCB in the scbindex */
    764  1.1  fvdl 	ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = scb;
    765  1.1  fvdl }
    766  1.1  fvdl 
    767  1.1  fvdl /*
    768  1.1  fvdl  * Tell the sequencer about a new transaction to execute.
    769  1.1  fvdl  */
    770  1.1  fvdl static __inline void
    771  1.1  fvdl ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb)
    772  1.1  fvdl {
    773  1.1  fvdl 	ahd_swap_with_next_hscb(ahd, scb);
    774  1.1  fvdl 
    775  1.1  fvdl 	if (SCBID_IS_NULL(SCB_GET_TAG(scb)))
    776  1.1  fvdl 		panic("Attempt to queue invalid SCB tag %x\n",
    777  1.1  fvdl 		      SCB_GET_TAG(scb));
    778  1.1  fvdl 
    779  1.1  fvdl 	/*
    780  1.1  fvdl 	 * Keep a history of SCBs we've downloaded in the qinfifo.
    781  1.1  fvdl 	 */
    782  1.1  fvdl 	ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
    783  1.1  fvdl 	ahd->qinfifonext++;
    784  1.1  fvdl 
    785  1.1  fvdl 	if (scb->sg_count != 0)
    786  1.1  fvdl 		ahd_setup_data_scb(ahd, scb);
    787  1.1  fvdl 	else
    788  1.1  fvdl 		ahd_setup_noxfer_scb(ahd, scb);
    789  1.1  fvdl 	ahd_setup_scb_common(ahd, scb);
    790  1.1  fvdl 
    791  1.1  fvdl 	/*
    792  1.1  fvdl 	 * Make sure our data is consistent from the
    793  1.1  fvdl 	 * perspective of the adapter.
    794  1.1  fvdl 	 */
    795  1.1  fvdl 	ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    796  1.1  fvdl 
    797  1.1  fvdl #ifdef AHD_DEBUG
    798  1.1  fvdl 	if ((ahd_debug & AHD_SHOW_QUEUE) != 0) {
    799  1.1  fvdl 		printf("%s: Queueing SCB 0x%x bus addr 0x%x - 0x%x%x/0x%x\n",
    800  1.1  fvdl 		       ahd_name(ahd),
    801  1.1  fvdl 		       SCB_GET_TAG(scb), scb->hscb->hscb_busaddr,
    802  1.1  fvdl 		       (u_int)((scb->hscb->dataptr >> 32) & 0xFFFFFFFF),
    803  1.1  fvdl 		       (u_int)(scb->hscb->dataptr & 0xFFFFFFFF),
    804  1.1  fvdl 		       scb->hscb->datacnt);
    805  1.1  fvdl 	}
    806  1.1  fvdl #endif
    807  1.1  fvdl 	/* Tell the adapter about the newly queued SCB */
    808  1.1  fvdl 	ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
    809  1.1  fvdl }
    810  1.1  fvdl 
    811  1.1  fvdl static __inline uint8_t *
    812  1.1  fvdl ahd_get_sense_buf(struct ahd_softc *ahd, struct scb *scb)
    813  1.1  fvdl {
    814  1.1  fvdl 	return (scb->sense_data);
    815  1.1  fvdl }
    816  1.1  fvdl 
    817  1.1  fvdl static __inline uint32_t
    818  1.1  fvdl ahd_get_sense_bufaddr(struct ahd_softc *ahd, struct scb *scb)
    819  1.1  fvdl {
    820  1.1  fvdl 	return (scb->sense_busaddr);
    821  1.1  fvdl }
    822  1.1  fvdl 
    823  1.1  fvdl /************************** Interrupt Processing ******************************/
    824  1.1  fvdl static __inline void	ahd_sync_qoutfifo(struct ahd_softc *ahd, int op);
    825  1.1  fvdl static __inline void	ahd_sync_tqinfifo(struct ahd_softc *ahd, int op);
    826  1.1  fvdl static __inline u_int	ahd_check_cmdcmpltqueues(struct ahd_softc *ahd);
    827  1.1  fvdl static __inline int	ahd_intr(void *arg);
    828  1.1  fvdl static __inline void	ahd_minphys(struct buf *bp);
    829  1.1  fvdl 
    830  1.1  fvdl static __inline void
    831  1.1  fvdl ahd_sync_qoutfifo(struct ahd_softc *ahd, int op)
    832  1.1  fvdl {
    833  1.1  fvdl 	ahd_dmamap_sync(ahd, ahd->parent_dmat, ahd->shared_data_dmamap,
    834  1.1  fvdl 			/*offset*/0, /*len*/AHD_SCB_MAX * sizeof(uint16_t), op);
    835  1.1  fvdl }
    836  1.1  fvdl 
    837  1.1  fvdl static __inline void
    838  1.1  fvdl ahd_sync_tqinfifo(struct ahd_softc *ahd, int op)
    839  1.1  fvdl {
    840  1.1  fvdl #ifdef AHD_TARGET_MODE
    841  1.1  fvdl 	if ((ahd->flags & AHD_TARGETROLE) != 0) {
    842  1.1  fvdl 		ahd_dmamap_sync(ahd, ahd->parent_dmat /*shared_data_dmat*/,
    843  1.1  fvdl 				ahd->shared_data_dmamap,
    844  1.1  fvdl 				ahd_targetcmd_offset(ahd, 0),
    845  1.1  fvdl 				sizeof(struct target_cmd) * AHD_TMODE_CMDS,
    846  1.1  fvdl 				op);
    847  1.1  fvdl 	}
    848  1.1  fvdl #endif
    849  1.1  fvdl }
    850  1.1  fvdl 
    851  1.1  fvdl /*
    852  1.1  fvdl  * See if the firmware has posted any completed commands
    853  1.1  fvdl  * into our in-core command complete fifos.
    854  1.1  fvdl  */
    855  1.1  fvdl #define AHD_RUN_QOUTFIFO 0x1
    856  1.1  fvdl #define AHD_RUN_TQINFIFO 0x2
    857  1.1  fvdl static __inline u_int
    858  1.1  fvdl ahd_check_cmdcmpltqueues(struct ahd_softc *ahd)
    859  1.1  fvdl {
    860  1.1  fvdl 	u_int retval;
    861  1.1  fvdl 
    862  1.1  fvdl 	retval = 0;
    863  1.1  fvdl 	ahd_dmamap_sync(ahd, ahd->parent_dmat /*shared_data_dmat*/, ahd->shared_data_dmamap,
    864  1.1  fvdl 			/*offset*/ahd->qoutfifonext, /*len*/2,
    865  1.1  fvdl 			BUS_DMASYNC_POSTREAD);
    866  1.1  fvdl 	if ((ahd->qoutfifo[ahd->qoutfifonext]
    867  1.1  fvdl 	     & QOUTFIFO_ENTRY_VALID_LE) == ahd->qoutfifonext_valid_tag)
    868  1.1  fvdl 		retval |= AHD_RUN_QOUTFIFO;
    869  1.1  fvdl #ifdef AHD_TARGET_MODE
    870  1.1  fvdl 	if ((ahd->flags & AHD_TARGETROLE) != 0
    871  1.1  fvdl 	 && (ahd->flags & AHD_TQINFIFO_BLOCKED) == 0) {
    872  1.1  fvdl 		ahd_dmamap_sync(ahd, ahd->parent_dmat /*shared_data_dmat*/,
    873  1.1  fvdl 				ahd->shared_data_dmamap,
    874  1.1  fvdl 				ahd_targetcmd_offset(ahd, ahd->tqinfifofnext),
    875  1.1  fvdl 				/*len*/sizeof(struct target_cmd),
    876  1.1  fvdl 				BUS_DMASYNC_POSTREAD);
    877  1.1  fvdl 		if (ahd->targetcmds[ahd->tqinfifonext].cmd_valid != 0)
    878  1.1  fvdl 			retval |= AHD_RUN_TQINFIFO;
    879  1.1  fvdl 	}
    880  1.1  fvdl #endif
    881  1.1  fvdl 	return (retval);
    882  1.1  fvdl }
    883  1.1  fvdl 
    884  1.1  fvdl /*
    885  1.1  fvdl  * Catch an interrupt from the adapter
    886  1.1  fvdl  */
    887  1.1  fvdl static __inline int
    888  1.1  fvdl ahd_intr(void *arg)
    889  1.1  fvdl {
    890  1.1  fvdl 	struct ahd_softc *ahd = (struct ahd_softc*)arg;
    891  1.1  fvdl 	u_int	intstat;
    892  1.1  fvdl 
    893  1.1  fvdl 	if ((ahd->pause & INTEN) == 0) {
    894  1.1  fvdl 		/*
    895  1.1  fvdl 		 * Our interrupt is not enabled on the chip
    896  1.1  fvdl 		 * and may be disabled for re-entrancy reasons,
    897  1.1  fvdl 		 * so just return.  This is likely just a shared
    898  1.1  fvdl 		 * interrupt.
    899  1.1  fvdl 		 */
    900  1.1  fvdl 		return 0;
    901  1.1  fvdl 	}
    902  1.1  fvdl 
    903  1.1  fvdl 	/*
    904  1.1  fvdl 	 * Instead of directly reading the interrupt status register,
    905  1.1  fvdl 	 * infer the cause of the interrupt by checking our in-core
    906  1.1  fvdl 	 * completion queues.  This avoids a costly PCI bus read in
    907  1.1  fvdl 	 * most cases.
    908  1.1  fvdl 	 */
    909  1.1  fvdl 	if ((ahd->flags & AHD_ALL_INTERRUPTS) == 0
    910  1.1  fvdl 	    && (ahd_check_cmdcmpltqueues(ahd) != 0))
    911  1.1  fvdl 		intstat = CMDCMPLT;
    912  1.1  fvdl 	else
    913  1.1  fvdl 		intstat = ahd_inb(ahd, INTSTAT);
    914  1.1  fvdl 
    915  1.1  fvdl 	if (intstat & CMDCMPLT) {
    916  1.1  fvdl 		ahd_outb(ahd, CLRINT, CLRCMDINT);
    917  1.1  fvdl 
    918  1.1  fvdl 		/*
    919  1.1  fvdl 		 * Ensure that the chip sees that we've cleared
    920  1.1  fvdl 		 * this interrupt before we walk the output fifo.
    921  1.1  fvdl 		 * Otherwise, we may, due to posted bus writes,
    922  1.1  fvdl 		 * clear the interrupt after we finish the scan,
    923  1.1  fvdl 		 * and after the sequencer has added new entries
    924  1.1  fvdl 		 * and asserted the interrupt again.
    925  1.1  fvdl 		 */
    926  1.1  fvdl 		if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
    927  1.1  fvdl 			if (ahd_is_paused(ahd)) {
    928  1.1  fvdl 				/*
    929  1.1  fvdl 				 * Potentially lost SEQINT.
    930  1.1  fvdl 				 * If SEQINTCODE is non-zero,
    931  1.1  fvdl 				 * simulate the SEQINT.
    932  1.1  fvdl 				 */
    933  1.1  fvdl 				if (ahd_inb(ahd, SEQINTCODE) != NO_SEQINT)
    934  1.1  fvdl 					intstat |= SEQINT;
    935  1.1  fvdl 			}
    936  1.1  fvdl 		} else {
    937  1.1  fvdl 			ahd_flush_device_writes(ahd);
    938  1.1  fvdl 		}
    939  1.1  fvdl 		scsipi_channel_freeze(&ahd->sc_channel, 1);
    940  1.1  fvdl 		ahd_run_qoutfifo(ahd);
    941  1.1  fvdl 		scsipi_channel_thaw(&ahd->sc_channel, 1);
    942  1.1  fvdl 		ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket]++;
    943  1.1  fvdl 		ahd->cmdcmplt_total++;
    944  1.1  fvdl #ifdef AHD_TARGET_MODE
    945  1.1  fvdl 		if ((ahd->flags & AHD_TARGETROLE) != 0)
    946  1.1  fvdl 			ahd_run_tqinfifo(ahd, /*paused*/FALSE);
    947  1.1  fvdl #endif
    948  1.1  fvdl 		if (intstat == CMDCMPLT)
    949  1.1  fvdl 			return 1;
    950  1.1  fvdl 	}
    951  1.1  fvdl 
    952  1.1  fvdl 	if (intstat == 0xFF && (ahd->features & AHD_REMOVABLE) != 0)
    953  1.1  fvdl 		/* Hot eject */
    954  1.1  fvdl 		return 1;
    955  1.1  fvdl 
    956  1.1  fvdl 	if ((intstat & INT_PEND) == 0)
    957  1.1  fvdl 		return 1;
    958  1.1  fvdl 
    959  1.1  fvdl 	if (intstat & HWERRINT) {
    960  1.1  fvdl 		ahd_handle_hwerrint(ahd);
    961  1.1  fvdl 		return 1;
    962  1.1  fvdl 	}
    963  1.1  fvdl 
    964  1.1  fvdl 	if ((intstat & (PCIINT|SPLTINT)) != 0) {
    965  1.1  fvdl 		ahd->bus_intr(ahd);
    966  1.1  fvdl 		return 1;
    967  1.1  fvdl 	}
    968  1.1  fvdl 
    969  1.1  fvdl 	if ((intstat & (SEQINT)) != 0) {
    970  1.1  fvdl 		ahd_handle_seqint(ahd, intstat);
    971  1.1  fvdl 		return 1;
    972  1.1  fvdl 	}
    973  1.1  fvdl 
    974  1.1  fvdl 	if ((intstat & SCSIINT) != 0) {
    975  1.1  fvdl 		ahd_handle_scsiint(ahd, intstat);
    976  1.1  fvdl 		return 1;
    977  1.1  fvdl 	}
    978  1.1  fvdl 
    979  1.1  fvdl 	return 1;
    980  1.1  fvdl }
    981  1.1  fvdl 
    982  1.1  fvdl static __inline void
    983  1.1  fvdl ahd_minphys(bp)
    984  1.1  fvdl         struct buf *bp;
    985  1.1  fvdl {
    986  1.1  fvdl /*
    987  1.1  fvdl  * Even though the card can transfer up to 16megs per command
    988  1.2   wiz  * we are limited by the number of segments in the DMA segment
    989  1.1  fvdl  * list that we can hold.  The worst case is that all pages are
    990  1.1  fvdl  * discontinuous physically, hense the "page per segment" limit
    991  1.1  fvdl  * enforced here.
    992  1.1  fvdl  */
    993  1.1  fvdl         if (bp->b_bcount > AHD_MAXTRANSFER_SIZE) {
    994  1.1  fvdl                 bp->b_bcount = AHD_MAXTRANSFER_SIZE;
    995  1.1  fvdl         }
    996  1.1  fvdl         minphys(bp);
    997  1.1  fvdl }
    998  1.1  fvdl 
    999  1.1  fvdl static __inline u_int32_t scsi_4btoul(u_int8_t *bytes);
   1000  1.1  fvdl 
   1001  1.1  fvdl static __inline u_int32_t
   1002  1.1  fvdl scsi_4btoul(u_int8_t *bytes)
   1003  1.1  fvdl {
   1004  1.1  fvdl         u_int32_t rv;
   1005  1.1  fvdl 
   1006  1.1  fvdl         rv = (bytes[0] << 24) |
   1007  1.1  fvdl              (bytes[1] << 16) |
   1008  1.1  fvdl              (bytes[2] << 8) |
   1009  1.1  fvdl              bytes[3];
   1010  1.1  fvdl         return (rv);
   1011  1.1  fvdl }
   1012  1.1  fvdl 
   1013  1.1  fvdl 
   1014  1.1  fvdl #endif  /* _AIC79XX_INLINE_H_ */
   1015