Home | History | Annotate | Line # | Download | only in ic
aic79xx_inline.h revision 1.9.8.1
      1  1.9.8.1     kent /*	$NetBSD: aic79xx_inline.h,v 1.9.8.1 2005/04/29 11:28:48 kent Exp $	*/
      2      1.1     fvdl 
      3      1.1     fvdl /*
      4      1.1     fvdl  * Inline routines shareable across OS platforms.
      5      1.1     fvdl  *
      6      1.1     fvdl  * Copyright (c) 1994-2001 Justin T. Gibbs.
      7      1.1     fvdl  * Copyright (c) 2000-2003 Adaptec Inc.
      8      1.1     fvdl  * All rights reserved.
      9      1.1     fvdl  *
     10      1.1     fvdl  * Redistribution and use in source and binary forms, with or without
     11      1.1     fvdl  * modification, are permitted provided that the following conditions
     12      1.1     fvdl  * are met:
     13      1.1     fvdl  * 1. Redistributions of source code must retain the above copyright
     14      1.1     fvdl  *    notice, this list of conditions, and the following disclaimer,
     15      1.1     fvdl  *    without modification.
     16      1.1     fvdl  * 2. Redistributions in binary form must reproduce at minimum a disclaimer
     17      1.1     fvdl  *    substantially similar to the "NO WARRANTY" disclaimer below
     18      1.1     fvdl  *    ("Disclaimer") and any redistribution must be conditioned upon
     19      1.1     fvdl  *    including a substantially similar Disclaimer requirement for further
     20      1.1     fvdl  *    binary redistribution.
     21      1.1     fvdl  * 3. Neither the names of the above-listed copyright holders nor the names
     22      1.1     fvdl  *    of any contributors may be used to endorse or promote products derived
     23      1.1     fvdl  *    from this software without specific prior written permission.
     24      1.1     fvdl  *
     25      1.1     fvdl  * Alternatively, this software may be distributed under the terms of the
     26      1.1     fvdl  * GNU General Public License ("GPL") version 2 as published by the Free
     27      1.1     fvdl  * Software Foundation.
     28      1.1     fvdl  *
     29      1.1     fvdl  * NO WARRANTY
     30      1.1     fvdl  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     31      1.1     fvdl  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     32      1.1     fvdl  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
     33      1.1     fvdl  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
     34      1.1     fvdl  * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     35      1.1     fvdl  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     36      1.1     fvdl  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     37      1.1     fvdl  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
     38      1.1     fvdl  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
     39      1.1     fvdl  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
     40      1.1     fvdl  * POSSIBILITY OF SUCH DAMAGES.
     41      1.1     fvdl  *
     42      1.8  thorpej  * Id: //depot/aic7xxx/aic7xxx/aic79xx_inline.h#51 $
     43      1.1     fvdl  *
     44      1.8  thorpej  * $FreeBSD: src/sys/dev/aic7xxx/aic79xx_inline.h,v 1.12 2003/06/28 04:43:19 gibbs Exp $
     45      1.1     fvdl  */
     46      1.1     fvdl /*
     47      1.1     fvdl  * Ported from FreeBSD by Pascal Renauld, Network Storage Solutions, Inc. - April 2003
     48      1.1     fvdl  */
     49      1.1     fvdl 
     50      1.1     fvdl #ifndef _AIC79XX_INLINE_H_
     51      1.1     fvdl #define _AIC79XX_INLINE_H_
     52      1.1     fvdl 
     53      1.1     fvdl /******************************** Debugging ***********************************/
     54      1.3   itojun static __inline char *ahd_name(struct ahd_softc *);
     55      1.1     fvdl 
     56      1.1     fvdl static __inline char *
     57      1.1     fvdl ahd_name(struct ahd_softc *ahd)
     58      1.1     fvdl {
     59      1.1     fvdl 	return (ahd->name);
     60      1.1     fvdl }
     61      1.1     fvdl 
     62      1.1     fvdl /************************ Sequencer Execution Control *************************/
     63      1.3   itojun static __inline void ahd_known_modes(struct ahd_softc *, ahd_mode, ahd_mode);
     64      1.3   itojun static __inline ahd_mode_state ahd_build_mode_state(struct ahd_softc *,
     65      1.3   itojun     ahd_mode, ahd_mode);
     66      1.3   itojun static __inline void ahd_extract_mode_state(struct ahd_softc *,
     67      1.3   itojun     ahd_mode_state, ahd_mode *, ahd_mode *);
     68      1.3   itojun static __inline void ahd_set_modes(struct ahd_softc *, ahd_mode, ahd_mode);
     69      1.3   itojun static __inline void ahd_update_modes(struct ahd_softc *);
     70      1.3   itojun static __inline void ahd_assert_modes(struct ahd_softc *, ahd_mode,
     71      1.3   itojun     ahd_mode, const char *, int);
     72      1.3   itojun static __inline ahd_mode_state ahd_save_modes(struct ahd_softc *);
     73      1.3   itojun static __inline void ahd_restore_modes(struct ahd_softc *, ahd_mode_state);
     74      1.3   itojun static __inline int  ahd_is_paused(struct ahd_softc *);
     75      1.3   itojun static __inline void ahd_pause(struct ahd_softc *);
     76      1.3   itojun static __inline void ahd_unpause(struct ahd_softc *);
     77      1.1     fvdl 
     78      1.1     fvdl static __inline void
     79      1.1     fvdl ahd_known_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
     80      1.1     fvdl {
     81      1.1     fvdl 	ahd->src_mode = src;
     82      1.1     fvdl 	ahd->dst_mode = dst;
     83      1.1     fvdl 	ahd->saved_src_mode = src;
     84      1.1     fvdl 	ahd->saved_dst_mode = dst;
     85      1.1     fvdl }
     86      1.1     fvdl 
     87      1.1     fvdl static __inline ahd_mode_state
     88      1.1     fvdl ahd_build_mode_state(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
     89      1.1     fvdl {
     90      1.1     fvdl 	return ((src << SRC_MODE_SHIFT) | (dst << DST_MODE_SHIFT));
     91      1.1     fvdl }
     92      1.1     fvdl 
     93      1.1     fvdl static __inline void
     94      1.1     fvdl ahd_extract_mode_state(struct ahd_softc *ahd, ahd_mode_state state,
     95      1.1     fvdl 		       ahd_mode *src, ahd_mode *dst)
     96      1.1     fvdl {
     97      1.1     fvdl 	*src = (state & SRC_MODE) >> SRC_MODE_SHIFT;
     98      1.1     fvdl 	*dst = (state & DST_MODE) >> DST_MODE_SHIFT;
     99      1.1     fvdl }
    100      1.1     fvdl 
    101      1.1     fvdl static __inline void
    102      1.1     fvdl ahd_set_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
    103      1.1     fvdl {
    104      1.1     fvdl 	if (ahd->src_mode == src && ahd->dst_mode == dst)
    105      1.1     fvdl 		return;
    106      1.1     fvdl #ifdef AHD_DEBUG
    107      1.1     fvdl 	if (ahd->src_mode == AHD_MODE_UNKNOWN
    108      1.1     fvdl 	 || ahd->dst_mode == AHD_MODE_UNKNOWN)
    109      1.1     fvdl 		panic("Setting mode prior to saving it.\n");
    110      1.1     fvdl 	if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
    111      1.1     fvdl 		printf("%s: Setting mode 0x%x\n", ahd_name(ahd),
    112      1.1     fvdl 		       ahd_build_mode_state(ahd, src, dst));
    113      1.1     fvdl #endif
    114      1.1     fvdl 	ahd_outb(ahd, MODE_PTR, ahd_build_mode_state(ahd, src, dst));
    115      1.1     fvdl 	ahd->src_mode = src;
    116      1.1     fvdl 	ahd->dst_mode = dst;
    117      1.1     fvdl }
    118      1.1     fvdl 
    119      1.1     fvdl static __inline void
    120      1.1     fvdl ahd_update_modes(struct ahd_softc *ahd)
    121      1.1     fvdl {
    122      1.1     fvdl 	ahd_mode_state mode_ptr;
    123      1.1     fvdl 	ahd_mode src;
    124      1.1     fvdl 	ahd_mode dst;
    125      1.1     fvdl 
    126      1.1     fvdl 	mode_ptr = ahd_inb(ahd, MODE_PTR);
    127      1.1     fvdl #ifdef AHD_DEBUG
    128      1.1     fvdl 	if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
    129      1.1     fvdl 		printf("Reading mode 0x%x\n", mode_ptr);
    130      1.1     fvdl #endif
    131      1.1     fvdl 	ahd_extract_mode_state(ahd, mode_ptr, &src, &dst);
    132      1.1     fvdl 	ahd_known_modes(ahd, src, dst);
    133      1.1     fvdl }
    134      1.1     fvdl 
    135      1.1     fvdl static __inline void
    136      1.1     fvdl ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
    137      1.1     fvdl 		 ahd_mode dstmode, const char *file, int line)
    138      1.1     fvdl {
    139      1.1     fvdl #ifdef AHD_DEBUG
    140      1.1     fvdl 	if ((srcmode & AHD_MK_MSK(ahd->src_mode)) == 0
    141      1.1     fvdl 	 || (dstmode & AHD_MK_MSK(ahd->dst_mode)) == 0) {
    142      1.1     fvdl 		panic("%s:%s:%d: Mode assertion failed.\n",
    143      1.1     fvdl 		       ahd_name(ahd), file, line);
    144      1.1     fvdl 	}
    145      1.1     fvdl #endif
    146      1.1     fvdl }
    147      1.1     fvdl 
    148      1.1     fvdl static __inline ahd_mode_state
    149      1.1     fvdl ahd_save_modes(struct ahd_softc *ahd)
    150      1.1     fvdl {
    151      1.1     fvdl 	if (ahd->src_mode == AHD_MODE_UNKNOWN
    152      1.1     fvdl 	 || ahd->dst_mode == AHD_MODE_UNKNOWN)
    153      1.1     fvdl 		ahd_update_modes(ahd);
    154      1.1     fvdl 
    155      1.1     fvdl 	return (ahd_build_mode_state(ahd, ahd->src_mode, ahd->dst_mode));
    156      1.1     fvdl }
    157      1.1     fvdl 
    158      1.1     fvdl static __inline void
    159      1.1     fvdl ahd_restore_modes(struct ahd_softc *ahd, ahd_mode_state state)
    160      1.1     fvdl {
    161      1.1     fvdl 	ahd_mode src;
    162      1.1     fvdl 	ahd_mode dst;
    163      1.1     fvdl 
    164      1.1     fvdl 	ahd_extract_mode_state(ahd, state, &src, &dst);
    165      1.1     fvdl 	ahd_set_modes(ahd, src, dst);
    166      1.1     fvdl }
    167      1.1     fvdl 
    168      1.1     fvdl #define AHD_ASSERT_MODES(ahd, source, dest) \
    169      1.1     fvdl 	ahd_assert_modes(ahd, source, dest, __FILE__, __LINE__);
    170      1.1     fvdl 
    171      1.1     fvdl /*
    172      1.1     fvdl  * Determine whether the sequencer has halted code execution.
    173      1.1     fvdl  * Returns non-zero status if the sequencer is stopped.
    174      1.1     fvdl  */
    175      1.1     fvdl static __inline int
    176      1.1     fvdl ahd_is_paused(struct ahd_softc *ahd)
    177      1.1     fvdl {
    178      1.1     fvdl 	return ((ahd_inb(ahd, HCNTRL) & PAUSE) != 0);
    179      1.1     fvdl }
    180      1.1     fvdl 
    181      1.1     fvdl /*
    182      1.1     fvdl  * Request that the sequencer stop and wait, indefinitely, for it
    183      1.1     fvdl  * to stop.  The sequencer will only acknowledge that it is paused
    184      1.1     fvdl  * once it has reached an instruction boundary and PAUSEDIS is
    185      1.1     fvdl  * cleared in the SEQCTL register.  The sequencer may use PAUSEDIS
    186      1.1     fvdl  * for critical sections.
    187      1.1     fvdl  */
    188      1.1     fvdl static __inline void
    189      1.1     fvdl ahd_pause(struct ahd_softc *ahd)
    190      1.1     fvdl {
    191      1.1     fvdl 	ahd_outb(ahd, HCNTRL, ahd->pause);
    192      1.1     fvdl 
    193      1.1     fvdl 	/*
    194      1.1     fvdl 	 * Since the sequencer can disable pausing in a critical section, we
    195      1.1     fvdl 	 * must loop until it actually stops.
    196      1.1     fvdl 	 */
    197      1.1     fvdl 	while (ahd_is_paused(ahd) == 0)
    198      1.1     fvdl 		;
    199      1.1     fvdl }
    200      1.1     fvdl 
    201      1.1     fvdl /*
    202      1.1     fvdl  * Allow the sequencer to continue program execution.
    203      1.1     fvdl  * We check here to ensure that no additional interrupt
    204      1.1     fvdl  * sources that would cause the sequencer to halt have been
    205      1.1     fvdl  * asserted.  If, for example, a SCSI bus reset is detected
    206      1.1     fvdl  * while we are fielding a different, pausing, interrupt type,
    207      1.1     fvdl  * we don't want to release the sequencer before going back
    208      1.1     fvdl  * into our interrupt handler and dealing with this new
    209      1.1     fvdl  * condition.
    210      1.1     fvdl  */
    211      1.1     fvdl static __inline void
    212      1.1     fvdl ahd_unpause(struct ahd_softc *ahd)
    213      1.1     fvdl {
    214      1.1     fvdl 	/*
    215      1.1     fvdl 	 * Automatically restore our modes to those saved
    216      1.1     fvdl 	 * prior to the first change of the mode.
    217      1.1     fvdl 	 */
    218      1.1     fvdl 	if (ahd->saved_src_mode != AHD_MODE_UNKNOWN
    219      1.1     fvdl 	 && ahd->saved_dst_mode != AHD_MODE_UNKNOWN) {
    220      1.1     fvdl 		if ((ahd->flags & AHD_UPDATE_PEND_CMDS) != 0)
    221      1.1     fvdl 			ahd_reset_cmds_pending(ahd);
    222      1.1     fvdl 		ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
    223      1.1     fvdl 	}
    224      1.1     fvdl 
    225      1.5  thorpej 	if ((ahd_inb(ahd, INTSTAT) & ~CMDCMPLT) == 0)
    226      1.1     fvdl 		ahd_outb(ahd, HCNTRL, ahd->unpause);
    227      1.1     fvdl 
    228      1.1     fvdl 	ahd_known_modes(ahd, AHD_MODE_UNKNOWN, AHD_MODE_UNKNOWN);
    229      1.1     fvdl }
    230      1.1     fvdl 
    231      1.1     fvdl /*********************** Scatter Gather List Handling *************************/
    232      1.3   itojun static __inline void	*ahd_sg_setup(struct ahd_softc *, struct scb *,
    233      1.3   itojun 			    void *, bus_addr_t, bus_size_t, int);
    234      1.3   itojun static __inline void	 ahd_setup_scb_common(struct ahd_softc *, struct scb *);
    235      1.3   itojun static __inline void	 ahd_setup_data_scb(struct ahd_softc *, struct scb *);
    236      1.3   itojun static __inline void	 ahd_setup_noxfer_scb(struct ahd_softc *, struct scb *);
    237      1.1     fvdl 
    238      1.1     fvdl static __inline void *
    239      1.1     fvdl ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
    240      1.1     fvdl 	     void *sgptr, bus_addr_t addr, bus_size_t len, int last)
    241      1.1     fvdl {
    242      1.1     fvdl 	scb->sg_count++;
    243      1.1     fvdl 	if (sizeof(bus_addr_t) > 4
    244      1.1     fvdl 	 && (ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
    245      1.1     fvdl 		struct ahd_dma64_seg *sg;
    246      1.1     fvdl 
    247      1.1     fvdl 		sg = (struct ahd_dma64_seg *)sgptr;
    248      1.1     fvdl 		sg->addr = ahd_htole64(addr);
    249      1.1     fvdl 		sg->len = ahd_htole32(len | (last ? AHD_DMA_LAST_SEG : 0));
    250      1.1     fvdl 		return (sg + 1);
    251      1.1     fvdl 	} else {
    252      1.1     fvdl 		struct ahd_dma_seg *sg;
    253      1.1     fvdl 
    254      1.1     fvdl 		sg = (struct ahd_dma_seg *)sgptr;
    255      1.1     fvdl 		sg->addr = ahd_htole32(addr & 0xFFFFFFFF);
    256      1.1     fvdl 		sg->len = ahd_htole32(len | ((addr >> 8) & 0x7F000000)
    257      1.1     fvdl 				    | (last ? AHD_DMA_LAST_SEG : 0));
    258      1.1     fvdl 		return (sg + 1);
    259      1.1     fvdl 	}
    260      1.1     fvdl }
    261      1.1     fvdl 
    262      1.1     fvdl static __inline void
    263      1.1     fvdl ahd_setup_scb_common(struct ahd_softc *ahd, struct scb *scb)
    264      1.1     fvdl {
    265      1.1     fvdl 	/* XXX Handle target mode SCBs. */
    266      1.1     fvdl 	scb->crc_retry_count = 0;
    267      1.1     fvdl 	if ((scb->flags & SCB_PACKETIZED) != 0) {
    268      1.1     fvdl 		/* XXX what about ACA??  It is type 4, but TAG_TYPE == 0x3. */
    269      1.7  thorpej 		scb->hscb->task_attribute = scb->hscb->control & SCB_TAG_TYPE;
    270      1.7  thorpej 	} else {
    271      1.7  thorpej 		if (ahd_get_transfer_length(scb) & 0x01)
    272      1.7  thorpej 			scb->hscb->task_attribute = SCB_XFERLEN_ODD;
    273      1.7  thorpej 		else
    274      1.7  thorpej 			scb->hscb->task_attribute = 0;
    275      1.1     fvdl 	}
    276      1.1     fvdl 
    277      1.1     fvdl 	if (scb->hscb->cdb_len <= MAX_CDB_LEN_WITH_SENSE_ADDR
    278      1.1     fvdl 	 || (scb->hscb->cdb_len & SCB_CDB_LEN_PTR) != 0)
    279      1.1     fvdl 		scb->hscb->shared_data.idata.cdb_plus_saddr.sense_addr =
    280      1.1     fvdl 		    ahd_htole32(scb->sense_busaddr);
    281      1.1     fvdl }
    282      1.1     fvdl 
    283      1.1     fvdl static __inline void
    284      1.1     fvdl ahd_setup_data_scb(struct ahd_softc *ahd, struct scb *scb)
    285      1.1     fvdl {
    286      1.1     fvdl 	/*
    287      1.1     fvdl 	 * Copy the first SG into the "current" data ponter area.
    288      1.1     fvdl 	 */
    289      1.1     fvdl 	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
    290      1.1     fvdl 		struct ahd_dma64_seg *sg;
    291      1.1     fvdl 
    292      1.1     fvdl 		sg = (struct ahd_dma64_seg *)scb->sg_list;
    293      1.1     fvdl 		scb->hscb->dataptr = sg->addr;
    294      1.1     fvdl 		scb->hscb->datacnt = sg->len;
    295      1.1     fvdl 	} else {
    296      1.1     fvdl 		struct ahd_dma_seg *sg;
    297      1.5  thorpej 		uint32_t *dataptr_words;
    298      1.1     fvdl 
    299      1.1     fvdl 		sg = (struct ahd_dma_seg *)scb->sg_list;
    300      1.5  thorpej 		dataptr_words = (uint32_t*)&scb->hscb->dataptr;
    301      1.5  thorpej 		dataptr_words[0] = sg->addr;
    302      1.5  thorpej 		dataptr_words[1] = 0;
    303      1.1     fvdl 		if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
    304      1.1     fvdl 			uint64_t high_addr;
    305      1.1     fvdl 
    306      1.1     fvdl 			high_addr = ahd_le32toh(sg->len) & 0x7F000000;
    307      1.1     fvdl 			scb->hscb->dataptr |= ahd_htole64(high_addr << 8);
    308      1.1     fvdl 		}
    309      1.1     fvdl 		scb->hscb->datacnt = sg->len;
    310      1.1     fvdl 	}
    311      1.1     fvdl 	/*
    312      1.1     fvdl 	 * Note where to find the SG entries in bus space.
    313  1.9.8.1     kent 	 * We also set the full residual flag which the
    314      1.1     fvdl 	 * sequencer will clear as soon as a data transfer
    315      1.1     fvdl 	 * occurs.
    316      1.1     fvdl 	 */
    317      1.1     fvdl 	scb->hscb->sgptr = ahd_htole32(scb->sg_list_busaddr|SG_FULL_RESID);
    318      1.1     fvdl }
    319      1.1     fvdl 
    320      1.1     fvdl static __inline void
    321      1.1     fvdl ahd_setup_noxfer_scb(struct ahd_softc *ahd, struct scb *scb)
    322      1.1     fvdl {
    323      1.1     fvdl 	scb->hscb->sgptr = ahd_htole32(SG_LIST_NULL);
    324      1.1     fvdl 	scb->hscb->dataptr = 0;
    325      1.1     fvdl 	scb->hscb->datacnt = 0;
    326      1.1     fvdl }
    327      1.1     fvdl 
    328      1.1     fvdl /************************** Memory mapping routines ***************************/
    329      1.3   itojun static __inline size_t	ahd_sg_size(struct ahd_softc *);
    330      1.1     fvdl static __inline void *
    331      1.3   itojun 			ahd_sg_bus_to_virt(struct ahd_softc *, struct scb *,
    332      1.3   itojun 			    uint32_t);
    333      1.1     fvdl static __inline uint32_t
    334      1.3   itojun 			ahd_sg_virt_to_bus(struct ahd_softc *, struct scb *,
    335      1.3   itojun 			    void *);
    336      1.3   itojun static __inline void	ahd_sync_scb(struct ahd_softc *, struct scb *, int);
    337      1.3   itojun static __inline void	ahd_sync_sglist(struct ahd_softc *, struct scb *, int);
    338      1.3   itojun static __inline void	ahd_sync_sense(struct ahd_softc *, struct scb *, int);
    339      1.1     fvdl static __inline uint32_t
    340      1.3   itojun 			ahd_targetcmd_offset(struct ahd_softc *, u_int);
    341      1.1     fvdl 
    342      1.1     fvdl static __inline size_t
    343      1.1     fvdl ahd_sg_size(struct ahd_softc *ahd)
    344      1.1     fvdl {
    345      1.1     fvdl 	if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
    346      1.1     fvdl 		return (sizeof(struct ahd_dma64_seg));
    347      1.1     fvdl 	return (sizeof(struct ahd_dma_seg));
    348      1.1     fvdl }
    349      1.1     fvdl 
    350      1.1     fvdl static __inline void *
    351      1.1     fvdl ahd_sg_bus_to_virt(struct ahd_softc *ahd, struct scb *scb, uint32_t sg_busaddr)
    352      1.1     fvdl {
    353      1.1     fvdl 	bus_addr_t sg_offset;
    354      1.1     fvdl 
    355      1.1     fvdl 	/* sg_list_phys points to entry 1, not 0 */
    356      1.1     fvdl 	sg_offset = sg_busaddr - (scb->sg_list_busaddr - ahd_sg_size(ahd));
    357      1.1     fvdl 	return ((uint8_t *)scb->sg_list + sg_offset);
    358      1.1     fvdl }
    359      1.1     fvdl 
    360      1.1     fvdl static __inline uint32_t
    361      1.1     fvdl ahd_sg_virt_to_bus(struct ahd_softc *ahd, struct scb *scb, void *sg)
    362      1.1     fvdl {
    363      1.1     fvdl 	bus_addr_t sg_offset;
    364      1.1     fvdl 
    365      1.1     fvdl 	/* sg_list_phys points to entry 1, not 0 */
    366      1.1     fvdl 	sg_offset = ((uint8_t *)sg - (uint8_t *)scb->sg_list)
    367      1.1     fvdl 		  - ahd_sg_size(ahd);
    368      1.1     fvdl 
    369      1.1     fvdl 	return (scb->sg_list_busaddr + sg_offset);
    370      1.1     fvdl }
    371      1.1     fvdl 
    372      1.1     fvdl static __inline void
    373      1.1     fvdl ahd_sync_scb(struct ahd_softc *ahd, struct scb *scb, int op)
    374      1.1     fvdl {
    375  1.9.8.1     kent 	ahd_dmamap_sync(ahd, ahd->parent_dmat, scb->hscb_map->dmamap,
    376      1.1     fvdl 			/*offset*/(uint8_t*)scb->hscb - scb->hscb_map->vaddr,
    377      1.1     fvdl 			/*len*/sizeof(*scb->hscb), op);
    378      1.1     fvdl }
    379      1.1     fvdl 
    380      1.1     fvdl static __inline void
    381      1.1     fvdl ahd_sync_sglist(struct ahd_softc *ahd, struct scb *scb, int op)
    382      1.1     fvdl {
    383      1.1     fvdl 	if (scb->sg_count == 0)
    384      1.1     fvdl 		return;
    385      1.1     fvdl 
    386      1.1     fvdl 	ahd_dmamap_sync(ahd, ahd->parent_dmat, scb->sg_map->dmamap,
    387      1.1     fvdl 			/*offset*/scb->sg_list_busaddr - ahd_sg_size(ahd),
    388      1.1     fvdl 			/*len*/ahd_sg_size(ahd) * scb->sg_count, op);
    389      1.1     fvdl }
    390      1.1     fvdl 
    391      1.1     fvdl static __inline void
    392      1.1     fvdl ahd_sync_sense(struct ahd_softc *ahd, struct scb *scb, int op)
    393      1.1     fvdl {
    394  1.9.8.1     kent 	ahd_dmamap_sync(ahd, ahd->parent_dmat,
    395      1.1     fvdl 			scb->sense_map->dmamap,
    396      1.1     fvdl 			/*offset*/scb->sense_busaddr,
    397      1.1     fvdl 			/*len*/AHD_SENSE_BUFSIZE, op);
    398      1.1     fvdl }
    399      1.1     fvdl 
    400      1.1     fvdl static __inline uint32_t
    401      1.1     fvdl ahd_targetcmd_offset(struct ahd_softc *ahd, u_int index)
    402      1.1     fvdl {
    403      1.1     fvdl 	return (((uint8_t *)&ahd->targetcmds[index])
    404      1.1     fvdl 	       - (uint8_t *)ahd->qoutfifo);
    405      1.1     fvdl }
    406      1.1     fvdl 
    407      1.9      wiz /*********************** Miscellaneous Support Functions ***********************/
    408      1.3   itojun static __inline void	ahd_complete_scb(struct ahd_softc *, struct scb *);
    409      1.3   itojun static __inline void	ahd_update_residual(struct ahd_softc *, struct scb *);
    410      1.1     fvdl static __inline struct ahd_initiator_tinfo *
    411      1.3   itojun 			ahd_fetch_transinfo(struct ahd_softc *, char, u_int,
    412      1.3   itojun 			    u_int, struct ahd_tmode_tstate **);
    413      1.1     fvdl static __inline uint16_t
    414      1.3   itojun 			ahd_inw(struct ahd_softc *, u_int);
    415      1.3   itojun static __inline void	ahd_outw(struct ahd_softc *, u_int, u_int);
    416      1.1     fvdl static __inline uint32_t
    417      1.3   itojun 			ahd_inl(struct ahd_softc *, u_int);
    418      1.3   itojun static __inline void	ahd_outl(struct ahd_softc *, u_int, uint32_t);
    419      1.1     fvdl static __inline uint64_t
    420      1.3   itojun 			ahd_inq(struct ahd_softc *, u_int);
    421      1.3   itojun static __inline void	ahd_outq(struct ahd_softc *, u_int, uint64_t);
    422      1.3   itojun static __inline u_int	ahd_get_scbptr(struct ahd_softc *);
    423      1.3   itojun static __inline void	ahd_set_scbptr(struct ahd_softc *, u_int);
    424      1.3   itojun static __inline u_int	ahd_get_hnscb_qoff(struct ahd_softc *);
    425      1.3   itojun static __inline void	ahd_set_hnscb_qoff(struct ahd_softc *, u_int);
    426      1.3   itojun static __inline u_int	ahd_get_hescb_qoff(struct ahd_softc *);
    427      1.3   itojun static __inline void	ahd_set_hescb_qoff(struct ahd_softc *, u_int);
    428      1.3   itojun static __inline u_int	ahd_get_snscb_qoff(struct ahd_softc *);
    429      1.3   itojun static __inline void	ahd_set_snscb_qoff(struct ahd_softc *, u_int);
    430      1.3   itojun static __inline u_int	ahd_get_sescb_qoff(struct ahd_softc *);
    431      1.3   itojun static __inline void	ahd_set_sescb_qoff(struct ahd_softc *, u_int);
    432      1.3   itojun static __inline u_int	ahd_get_sdscb_qoff(struct ahd_softc *);
    433      1.3   itojun static __inline void	ahd_set_sdscb_qoff(struct ahd_softc *, u_int);
    434      1.3   itojun static __inline u_int	ahd_inb_scbram(struct ahd_softc *, u_int);
    435      1.3   itojun static __inline u_int	ahd_inw_scbram(struct ahd_softc *, u_int);
    436      1.1     fvdl static __inline uint32_t
    437      1.3   itojun 			ahd_inl_scbram(struct ahd_softc *, u_int);
    438      1.8  thorpej static __inline uint64_t
    439      1.8  thorpej 			ahd_inq_scbram(struct ahd_softc *ahd, u_int offset);
    440      1.3   itojun static __inline void	ahd_swap_with_next_hscb(struct ahd_softc *,
    441      1.3   itojun 	struct scb *);
    442      1.3   itojun static __inline void	ahd_queue_scb(struct ahd_softc *, struct scb *);
    443      1.1     fvdl static __inline uint8_t *
    444      1.3   itojun 			ahd_get_sense_buf(struct ahd_softc *, struct scb *);
    445      1.1     fvdl static __inline uint32_t
    446      1.3   itojun 			ahd_get_sense_bufaddr(struct ahd_softc *, struct scb *);
    447      1.3   itojun static __inline void	ahd_post_scb(struct ahd_softc *, struct scb *);
    448      1.1     fvdl 
    449      1.1     fvdl 
    450      1.1     fvdl static __inline void
    451      1.1     fvdl ahd_post_scb(struct ahd_softc *ahd, struct scb *scb)
    452      1.1     fvdl {
    453      1.1     fvdl 	uint32_t sgptr;
    454      1.1     fvdl 
    455      1.1     fvdl 	sgptr = ahd_le32toh(scb->hscb->sgptr);
    456      1.1     fvdl 	if ((sgptr & SG_STATUS_VALID) != 0)
    457      1.1     fvdl 		ahd_handle_scb_status(ahd, scb);
    458  1.9.8.1     kent 	else
    459      1.1     fvdl         	ahd_done(ahd, scb);
    460      1.1     fvdl }
    461      1.1     fvdl 
    462      1.1     fvdl static __inline void
    463      1.1     fvdl ahd_complete_scb(struct ahd_softc *ahd, struct scb *scb)
    464      1.1     fvdl {
    465      1.1     fvdl 	uint32_t sgptr;
    466      1.1     fvdl 
    467      1.1     fvdl 	sgptr = ahd_le32toh(scb->hscb->sgptr);
    468      1.1     fvdl 	if ((sgptr & SG_STATUS_VALID) != 0)
    469      1.1     fvdl 		ahd_handle_scb_status(ahd, scb);
    470  1.9.8.1     kent 	else
    471      1.1     fvdl 		ahd_done(ahd, scb);
    472      1.1     fvdl }
    473      1.1     fvdl 
    474      1.1     fvdl /*
    475      1.1     fvdl  * Determine whether the sequencer reported a residual
    476      1.1     fvdl  * for this SCB/transaction.
    477      1.1     fvdl  */
    478      1.1     fvdl static __inline void
    479      1.1     fvdl ahd_update_residual(struct ahd_softc *ahd, struct scb *scb)
    480      1.1     fvdl {
    481      1.1     fvdl 	uint32_t sgptr;
    482      1.1     fvdl 
    483      1.1     fvdl 	sgptr = ahd_le32toh(scb->hscb->sgptr);
    484      1.1     fvdl 	if ((sgptr & SG_STATUS_VALID) != 0)
    485      1.1     fvdl 		ahd_calc_residual(ahd, scb);
    486      1.1     fvdl }
    487      1.1     fvdl 
    488      1.1     fvdl /*
    489      1.1     fvdl  * Return pointers to the transfer negotiation information
    490      1.1     fvdl  * for the specified our_id/remote_id pair.
    491      1.1     fvdl  */
    492      1.1     fvdl static __inline struct ahd_initiator_tinfo *
    493      1.1     fvdl ahd_fetch_transinfo(struct ahd_softc *ahd, char channel, u_int our_id,
    494      1.1     fvdl 		    u_int remote_id, struct ahd_tmode_tstate **tstate)
    495      1.1     fvdl {
    496      1.1     fvdl 	/*
    497      1.1     fvdl 	 * Transfer data structures are stored from the perspective
    498      1.1     fvdl 	 * of the target role.  Since the parameters for a connection
    499      1.1     fvdl 	 * in the initiator role to a given target are the same as
    500      1.1     fvdl 	 * when the roles are reversed, we pretend we are the target.
    501      1.1     fvdl 	 */
    502      1.1     fvdl 	if (channel == 'B')
    503      1.1     fvdl 		our_id += 8;
    504      1.1     fvdl 	*tstate = ahd->enabled_targets[our_id];
    505      1.1     fvdl 	return (&(*tstate)->transinfo[remote_id]);
    506      1.1     fvdl }
    507      1.1     fvdl 
    508      1.1     fvdl #define AHD_COPY_COL_IDX(dst, src)				\
    509      1.1     fvdl do {								\
    510      1.1     fvdl 	dst->hscb->scsiid = src->hscb->scsiid;			\
    511      1.1     fvdl 	dst->hscb->lun = src->hscb->lun;			\
    512      1.1     fvdl } while (0)
    513      1.1     fvdl 
    514      1.1     fvdl static __inline uint16_t
    515      1.1     fvdl ahd_inw(struct ahd_softc *ahd, u_int port)
    516      1.1     fvdl {
    517      1.1     fvdl 	return ((ahd_inb(ahd, port+1) << 8) | ahd_inb(ahd, port));
    518      1.1     fvdl }
    519      1.1     fvdl 
    520      1.1     fvdl static __inline void
    521      1.1     fvdl ahd_outw(struct ahd_softc *ahd, u_int port, u_int value)
    522      1.1     fvdl {
    523      1.1     fvdl 	ahd_outb(ahd, port, value & 0xFF);
    524      1.1     fvdl 	ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
    525      1.1     fvdl }
    526      1.1     fvdl 
    527      1.1     fvdl static __inline uint32_t
    528      1.1     fvdl ahd_inl(struct ahd_softc *ahd, u_int port)
    529      1.1     fvdl {
    530      1.1     fvdl 	return ((ahd_inb(ahd, port))
    531      1.1     fvdl 	      | (ahd_inb(ahd, port+1) << 8)
    532      1.1     fvdl 	      | (ahd_inb(ahd, port+2) << 16)
    533      1.1     fvdl 	      | (ahd_inb(ahd, port+3) << 24));
    534      1.1     fvdl }
    535      1.1     fvdl 
    536      1.1     fvdl static __inline void
    537      1.1     fvdl ahd_outl(struct ahd_softc *ahd, u_int port, uint32_t value)
    538      1.1     fvdl {
    539      1.1     fvdl 	ahd_outb(ahd, port, (value) & 0xFF);
    540      1.1     fvdl 	ahd_outb(ahd, port+1, ((value) >> 8) & 0xFF);
    541      1.1     fvdl 	ahd_outb(ahd, port+2, ((value) >> 16) & 0xFF);
    542      1.1     fvdl 	ahd_outb(ahd, port+3, ((value) >> 24) & 0xFF);
    543      1.1     fvdl }
    544      1.1     fvdl 
    545      1.1     fvdl static __inline uint64_t
    546      1.1     fvdl ahd_inq(struct ahd_softc *ahd, u_int port)
    547      1.1     fvdl {
    548      1.1     fvdl 	return ((ahd_inb(ahd, port))
    549      1.1     fvdl 	      | (ahd_inb(ahd, port+1) << 8)
    550      1.1     fvdl 	      | (ahd_inb(ahd, port+2) << 16)
    551      1.1     fvdl 	      | (ahd_inb(ahd, port+3) << 24)
    552      1.1     fvdl 	      | (((uint64_t)ahd_inb(ahd, port+4)) << 32)
    553      1.1     fvdl 	      | (((uint64_t)ahd_inb(ahd, port+5)) << 40)
    554      1.1     fvdl 	      | (((uint64_t)ahd_inb(ahd, port+6)) << 48)
    555      1.1     fvdl 	      | (((uint64_t)ahd_inb(ahd, port+7)) << 56));
    556      1.1     fvdl }
    557      1.1     fvdl 
    558      1.1     fvdl static __inline void
    559      1.1     fvdl ahd_outq(struct ahd_softc *ahd, u_int port, uint64_t value)
    560      1.1     fvdl {
    561      1.1     fvdl 	ahd_outb(ahd, port, value & 0xFF);
    562      1.1     fvdl 	ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
    563      1.1     fvdl 	ahd_outb(ahd, port+2, (value >> 16) & 0xFF);
    564      1.1     fvdl 	ahd_outb(ahd, port+3, (value >> 24) & 0xFF);
    565      1.1     fvdl 	ahd_outb(ahd, port+4, (value >> 32) & 0xFF);
    566      1.1     fvdl 	ahd_outb(ahd, port+5, (value >> 40) & 0xFF);
    567      1.1     fvdl 	ahd_outb(ahd, port+6, (value >> 48) & 0xFF);
    568      1.1     fvdl 	ahd_outb(ahd, port+7, (value >> 56) & 0xFF);
    569      1.1     fvdl }
    570      1.1     fvdl 
    571      1.1     fvdl static __inline u_int
    572      1.1     fvdl ahd_get_scbptr(struct ahd_softc *ahd)
    573      1.1     fvdl {
    574      1.1     fvdl 	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
    575      1.1     fvdl 			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
    576      1.1     fvdl 	return (ahd_inb(ahd, SCBPTR) | (ahd_inb(ahd, SCBPTR + 1) << 8));
    577      1.1     fvdl }
    578      1.1     fvdl 
    579      1.1     fvdl static __inline void
    580      1.1     fvdl ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr)
    581      1.1     fvdl {
    582      1.1     fvdl 	AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
    583      1.1     fvdl 			 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
    584      1.1     fvdl 	ahd_outb(ahd, SCBPTR, scbptr & 0xFF);
    585      1.1     fvdl 	ahd_outb(ahd, SCBPTR+1, (scbptr >> 8) & 0xFF);
    586      1.1     fvdl }
    587      1.1     fvdl 
    588      1.1     fvdl static __inline u_int
    589      1.1     fvdl ahd_get_hnscb_qoff(struct ahd_softc *ahd)
    590      1.1     fvdl {
    591      1.1     fvdl 	return (ahd_inw_atomic(ahd, HNSCB_QOFF));
    592      1.1     fvdl }
    593      1.1     fvdl 
    594      1.1     fvdl static __inline void
    595      1.1     fvdl ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value)
    596      1.1     fvdl {
    597      1.1     fvdl 	ahd_outw_atomic(ahd, HNSCB_QOFF, value);
    598      1.1     fvdl }
    599      1.1     fvdl 
    600      1.1     fvdl static __inline u_int
    601      1.1     fvdl ahd_get_hescb_qoff(struct ahd_softc *ahd)
    602      1.1     fvdl {
    603      1.1     fvdl 	return (ahd_inb(ahd, HESCB_QOFF));
    604      1.1     fvdl }
    605      1.1     fvdl 
    606      1.1     fvdl static __inline void
    607      1.1     fvdl ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value)
    608      1.1     fvdl {
    609      1.1     fvdl 	ahd_outb(ahd, HESCB_QOFF, value);
    610      1.1     fvdl }
    611      1.1     fvdl 
    612      1.1     fvdl static __inline u_int
    613      1.1     fvdl ahd_get_snscb_qoff(struct ahd_softc *ahd)
    614      1.1     fvdl {
    615      1.1     fvdl 	u_int oldvalue;
    616      1.1     fvdl 
    617      1.1     fvdl 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
    618      1.1     fvdl 	oldvalue = ahd_inw(ahd, SNSCB_QOFF);
    619      1.1     fvdl 	ahd_outw(ahd, SNSCB_QOFF, oldvalue);
    620      1.1     fvdl 	return (oldvalue);
    621      1.1     fvdl }
    622      1.1     fvdl 
    623      1.1     fvdl static __inline void
    624      1.1     fvdl ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value)
    625      1.1     fvdl {
    626      1.1     fvdl 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
    627      1.1     fvdl 	ahd_outw(ahd, SNSCB_QOFF, value);
    628      1.1     fvdl }
    629      1.1     fvdl 
    630      1.1     fvdl static __inline u_int
    631      1.1     fvdl ahd_get_sescb_qoff(struct ahd_softc *ahd)
    632      1.1     fvdl {
    633      1.1     fvdl 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
    634      1.1     fvdl 	return (ahd_inb(ahd, SESCB_QOFF));
    635      1.1     fvdl }
    636      1.1     fvdl 
    637      1.1     fvdl static __inline void
    638      1.1     fvdl ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value)
    639      1.1     fvdl {
    640      1.1     fvdl 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
    641      1.1     fvdl 	ahd_outb(ahd, SESCB_QOFF, value);
    642      1.1     fvdl }
    643      1.1     fvdl 
    644      1.1     fvdl static __inline u_int
    645      1.1     fvdl ahd_get_sdscb_qoff(struct ahd_softc *ahd)
    646      1.1     fvdl {
    647      1.1     fvdl 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
    648      1.1     fvdl 	return (ahd_inb(ahd, SDSCB_QOFF) | (ahd_inb(ahd, SDSCB_QOFF + 1) << 8));
    649      1.1     fvdl }
    650      1.1     fvdl 
    651      1.1     fvdl static __inline void
    652      1.1     fvdl ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value)
    653      1.1     fvdl {
    654      1.1     fvdl 	AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
    655      1.1     fvdl 	ahd_outb(ahd, SDSCB_QOFF, value & 0xFF);
    656      1.1     fvdl 	ahd_outb(ahd, SDSCB_QOFF+1, (value >> 8) & 0xFF);
    657      1.1     fvdl }
    658      1.1     fvdl 
    659      1.1     fvdl static __inline u_int
    660      1.1     fvdl ahd_inb_scbram(struct ahd_softc *ahd, u_int offset)
    661      1.1     fvdl {
    662      1.1     fvdl 	u_int value;
    663      1.1     fvdl 
    664      1.1     fvdl 	/*
    665      1.1     fvdl 	 * Workaround PCI-X Rev A. hardware bug.
    666      1.1     fvdl 	 * After a host read of SCB memory, the chip
    667      1.1     fvdl 	 * may become confused into thinking prefetch
    668      1.1     fvdl 	 * was required.  This starts the discard timer
    669      1.1     fvdl 	 * running and can cause an unexpected discard
    670      1.1     fvdl 	 * timer interrupt.  The work around is to read
    671      1.1     fvdl 	 * a normal register prior to the exhaustion of
    672      1.1     fvdl 	 * the discard timer.  The mode pointer register
    673      1.1     fvdl 	 * has no side effects and so serves well for
    674      1.1     fvdl 	 * this purpose.
    675      1.1     fvdl 	 *
    676      1.1     fvdl 	 * Razor #528
    677      1.1     fvdl 	 */
    678      1.1     fvdl 	value = ahd_inb(ahd, offset);
    679      1.1     fvdl 	if ((ahd->flags & AHD_PCIX_SCBRAM_RD_BUG) != 0)
    680      1.1     fvdl 		ahd_inb(ahd, MODE_PTR);
    681      1.1     fvdl 	return (value);
    682      1.1     fvdl }
    683      1.1     fvdl 
    684      1.1     fvdl static __inline u_int
    685      1.1     fvdl ahd_inw_scbram(struct ahd_softc *ahd, u_int offset)
    686      1.1     fvdl {
    687      1.1     fvdl 	return (ahd_inb_scbram(ahd, offset)
    688      1.1     fvdl 	      | (ahd_inb_scbram(ahd, offset+1) << 8));
    689      1.1     fvdl }
    690      1.1     fvdl 
    691      1.1     fvdl static __inline uint32_t
    692      1.1     fvdl ahd_inl_scbram(struct ahd_softc *ahd, u_int offset)
    693      1.1     fvdl {
    694      1.8  thorpej 	return (ahd_inw_scbram(ahd, offset)
    695      1.8  thorpej 	      | (ahd_inw_scbram(ahd, offset+2) << 16));
    696      1.8  thorpej }
    697      1.8  thorpej 
    698      1.8  thorpej static __inline uint64_t
    699      1.8  thorpej ahd_inq_scbram(struct ahd_softc *ahd, u_int offset)
    700      1.8  thorpej {
    701      1.8  thorpej 	return (ahd_inl_scbram(ahd, offset)
    702      1.8  thorpej 	      | ((uint64_t)ahd_inl_scbram(ahd, offset+4)) << 32);
    703      1.1     fvdl }
    704      1.1     fvdl 
    705      1.1     fvdl static __inline struct scb *
    706      1.1     fvdl ahd_lookup_scb(struct ahd_softc *ahd, u_int tag)
    707      1.1     fvdl {
    708      1.1     fvdl 	struct scb* scb;
    709      1.1     fvdl 
    710      1.1     fvdl 	if (tag >= AHD_SCB_MAX)
    711      1.1     fvdl 		return (NULL);
    712      1.1     fvdl 	scb = ahd->scb_data.scbindex[tag];
    713      1.1     fvdl 	if (scb != NULL)
    714      1.1     fvdl 		ahd_sync_scb(ahd, scb,
    715      1.1     fvdl 			     BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
    716      1.1     fvdl 	return (scb);
    717      1.1     fvdl }
    718      1.1     fvdl 
    719      1.1     fvdl static __inline void
    720      1.1     fvdl ahd_swap_with_next_hscb(struct ahd_softc *ahd, struct scb *scb)
    721      1.1     fvdl {
    722      1.1     fvdl 	struct hardware_scb *q_hscb;
    723      1.4  thorpej 	struct map_node *q_hscb_map;
    724      1.1     fvdl 	uint32_t saved_hscb_busaddr;
    725      1.1     fvdl 
    726      1.1     fvdl 	/*
    727      1.1     fvdl 	 * Our queuing method is a bit tricky.  The card
    728      1.1     fvdl 	 * knows in advance which HSCB (by address) to download,
    729      1.1     fvdl 	 * and we can't disappoint it.  To achieve this, the next
    730      1.1     fvdl 	 * HSCB to download is saved off in ahd->next_queued_hscb.
    731      1.1     fvdl 	 * When we are called to queue "an arbitrary scb",
    732      1.1     fvdl 	 * we copy the contents of the incoming HSCB to the one
    733      1.1     fvdl 	 * the sequencer knows about, swap HSCB pointers and
    734      1.1     fvdl 	 * finally assign the SCB to the tag indexed location
    735      1.1     fvdl 	 * in the scb_array.  This makes sure that we can still
    736      1.1     fvdl 	 * locate the correct SCB by SCB_TAG.
    737      1.1     fvdl 	 */
    738      1.1     fvdl 	q_hscb = ahd->next_queued_hscb;
    739      1.4  thorpej 	q_hscb_map = ahd->next_queued_hscb_map;
    740      1.1     fvdl 	saved_hscb_busaddr = q_hscb->hscb_busaddr;
    741      1.1     fvdl 	memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
    742      1.1     fvdl 	q_hscb->hscb_busaddr = saved_hscb_busaddr;
    743      1.1     fvdl 	q_hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
    744      1.1     fvdl 
    745      1.1     fvdl 	/* Now swap HSCB pointers. */
    746      1.1     fvdl 	ahd->next_queued_hscb = scb->hscb;
    747      1.4  thorpej 	ahd->next_queued_hscb_map = scb->hscb_map;
    748      1.1     fvdl 	scb->hscb = q_hscb;
    749      1.4  thorpej 	scb->hscb_map = q_hscb_map;
    750      1.4  thorpej 
    751      1.4  thorpej 	KASSERT((vaddr_t)scb->hscb >= (vaddr_t)scb->hscb_map->vaddr &&
    752      1.4  thorpej 		(vaddr_t)scb->hscb < (vaddr_t)scb->hscb_map->vaddr + PAGE_SIZE);
    753      1.1     fvdl 
    754      1.1     fvdl 	/* Now define the mapping from tag to SCB in the scbindex */
    755      1.1     fvdl 	ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = scb;
    756      1.1     fvdl }
    757      1.1     fvdl 
    758      1.1     fvdl /*
    759      1.1     fvdl  * Tell the sequencer about a new transaction to execute.
    760      1.1     fvdl  */
    761      1.1     fvdl static __inline void
    762      1.1     fvdl ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb)
    763      1.1     fvdl {
    764      1.1     fvdl 	ahd_swap_with_next_hscb(ahd, scb);
    765      1.1     fvdl 
    766      1.1     fvdl 	if (SCBID_IS_NULL(SCB_GET_TAG(scb)))
    767      1.1     fvdl 		panic("Attempt to queue invalid SCB tag %x\n",
    768      1.1     fvdl 		      SCB_GET_TAG(scb));
    769      1.1     fvdl 
    770      1.1     fvdl 	/*
    771      1.1     fvdl 	 * Keep a history of SCBs we've downloaded in the qinfifo.
    772      1.1     fvdl 	 */
    773      1.1     fvdl 	ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
    774      1.1     fvdl 	ahd->qinfifonext++;
    775      1.1     fvdl 
    776      1.1     fvdl 	if (scb->sg_count != 0)
    777      1.1     fvdl 		ahd_setup_data_scb(ahd, scb);
    778      1.1     fvdl 	else
    779      1.1     fvdl 		ahd_setup_noxfer_scb(ahd, scb);
    780      1.1     fvdl 	ahd_setup_scb_common(ahd, scb);
    781      1.1     fvdl 
    782      1.1     fvdl 	/*
    783      1.1     fvdl 	 * Make sure our data is consistent from the
    784      1.1     fvdl 	 * perspective of the adapter.
    785      1.1     fvdl 	 */
    786      1.1     fvdl 	ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
    787      1.1     fvdl 
    788      1.1     fvdl #ifdef AHD_DEBUG
    789      1.1     fvdl 	if ((ahd_debug & AHD_SHOW_QUEUE) != 0) {
    790      1.5  thorpej 		uint64_t host_dataptr;
    791      1.5  thorpej 
    792      1.5  thorpej 		host_dataptr = ahd_le64toh(scb->hscb->dataptr);
    793      1.1     fvdl 		printf("%s: Queueing SCB 0x%x bus addr 0x%x - 0x%x%x/0x%x\n",
    794      1.1     fvdl 		       ahd_name(ahd),
    795      1.5  thorpej 		       SCB_GET_TAG(scb), ahd_le32toh(scb->hscb->hscb_busaddr),
    796      1.5  thorpej 		       (u_int)((host_dataptr >> 32) & 0xFFFFFFFF),
    797      1.5  thorpej 		       (u_int)(host_dataptr & 0xFFFFFFFF),
    798      1.5  thorpej 		       ahd_le32toh(scb->hscb->datacnt));
    799      1.1     fvdl 	}
    800      1.1     fvdl #endif
    801      1.1     fvdl 	/* Tell the adapter about the newly queued SCB */
    802      1.1     fvdl 	ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
    803      1.1     fvdl }
    804      1.1     fvdl 
    805      1.1     fvdl static __inline uint8_t *
    806      1.1     fvdl ahd_get_sense_buf(struct ahd_softc *ahd, struct scb *scb)
    807      1.1     fvdl {
    808      1.1     fvdl 	return (scb->sense_data);
    809      1.1     fvdl }
    810      1.1     fvdl 
    811      1.1     fvdl static __inline uint32_t
    812      1.1     fvdl ahd_get_sense_bufaddr(struct ahd_softc *ahd, struct scb *scb)
    813      1.1     fvdl {
    814      1.1     fvdl 	return (scb->sense_busaddr);
    815      1.1     fvdl }
    816      1.1     fvdl 
    817      1.1     fvdl /************************** Interrupt Processing ******************************/
    818      1.3   itojun static __inline void	ahd_sync_qoutfifo(struct ahd_softc *, int);
    819      1.3   itojun static __inline void	ahd_sync_tqinfifo(struct ahd_softc *, int);
    820      1.3   itojun static __inline u_int	ahd_check_cmdcmpltqueues(struct ahd_softc *);
    821      1.3   itojun static __inline int	ahd_intr(void *);
    822      1.3   itojun static __inline void	ahd_minphys(struct buf *);
    823      1.1     fvdl 
    824      1.1     fvdl static __inline void
    825      1.1     fvdl ahd_sync_qoutfifo(struct ahd_softc *ahd, int op)
    826      1.1     fvdl {
    827      1.4  thorpej 	ahd_dmamap_sync(ahd, ahd->parent_dmat, ahd->shared_data_map.dmamap,
    828      1.1     fvdl 			/*offset*/0, /*len*/AHD_SCB_MAX * sizeof(uint16_t), op);
    829      1.1     fvdl }
    830      1.1     fvdl 
    831      1.1     fvdl static __inline void
    832      1.1     fvdl ahd_sync_tqinfifo(struct ahd_softc *ahd, int op)
    833      1.1     fvdl {
    834      1.1     fvdl #ifdef AHD_TARGET_MODE
    835      1.1     fvdl 	if ((ahd->flags & AHD_TARGETROLE) != 0) {
    836      1.1     fvdl 		ahd_dmamap_sync(ahd, ahd->parent_dmat /*shared_data_dmat*/,
    837      1.4  thorpej 				ahd->shared_data_map.dmamap,
    838      1.1     fvdl 				ahd_targetcmd_offset(ahd, 0),
    839      1.1     fvdl 				sizeof(struct target_cmd) * AHD_TMODE_CMDS,
    840      1.1     fvdl 				op);
    841      1.1     fvdl 	}
    842      1.1     fvdl #endif
    843      1.1     fvdl }
    844      1.1     fvdl 
    845      1.1     fvdl /*
    846      1.1     fvdl  * See if the firmware has posted any completed commands
    847      1.1     fvdl  * into our in-core command complete fifos.
    848      1.1     fvdl  */
    849      1.1     fvdl #define AHD_RUN_QOUTFIFO 0x1
    850      1.1     fvdl #define AHD_RUN_TQINFIFO 0x2
    851      1.1     fvdl static __inline u_int
    852      1.1     fvdl ahd_check_cmdcmpltqueues(struct ahd_softc *ahd)
    853      1.1     fvdl {
    854      1.1     fvdl 	u_int retval;
    855      1.1     fvdl 
    856      1.1     fvdl 	retval = 0;
    857      1.4  thorpej 	ahd_dmamap_sync(ahd, ahd->parent_dmat /*shared_data_dmat*/, ahd->shared_data_map.dmamap,
    858      1.1     fvdl 			/*offset*/ahd->qoutfifonext, /*len*/2,
    859      1.1     fvdl 			BUS_DMASYNC_POSTREAD);
    860      1.1     fvdl 	if ((ahd->qoutfifo[ahd->qoutfifonext]
    861      1.1     fvdl 	     & QOUTFIFO_ENTRY_VALID_LE) == ahd->qoutfifonext_valid_tag)
    862      1.1     fvdl 		retval |= AHD_RUN_QOUTFIFO;
    863      1.1     fvdl #ifdef AHD_TARGET_MODE
    864      1.1     fvdl 	if ((ahd->flags & AHD_TARGETROLE) != 0
    865      1.1     fvdl 	 && (ahd->flags & AHD_TQINFIFO_BLOCKED) == 0) {
    866      1.1     fvdl 		ahd_dmamap_sync(ahd, ahd->parent_dmat /*shared_data_dmat*/,
    867      1.4  thorpej 				ahd->shared_data_map.dmamap,
    868      1.1     fvdl 				ahd_targetcmd_offset(ahd, ahd->tqinfifofnext),
    869      1.1     fvdl 				/*len*/sizeof(struct target_cmd),
    870      1.1     fvdl 				BUS_DMASYNC_POSTREAD);
    871      1.1     fvdl 		if (ahd->targetcmds[ahd->tqinfifonext].cmd_valid != 0)
    872      1.1     fvdl 			retval |= AHD_RUN_TQINFIFO;
    873      1.1     fvdl 	}
    874      1.1     fvdl #endif
    875      1.1     fvdl 	return (retval);
    876      1.1     fvdl }
    877      1.1     fvdl 
    878      1.1     fvdl /*
    879      1.1     fvdl  * Catch an interrupt from the adapter
    880      1.1     fvdl  */
    881      1.1     fvdl static __inline int
    882      1.1     fvdl ahd_intr(void *arg)
    883      1.1     fvdl {
    884      1.1     fvdl 	struct ahd_softc *ahd = (struct ahd_softc*)arg;
    885      1.1     fvdl 	u_int	intstat;
    886      1.1     fvdl 
    887      1.1     fvdl 	if ((ahd->pause & INTEN) == 0) {
    888      1.1     fvdl 		/*
    889      1.1     fvdl 		 * Our interrupt is not enabled on the chip
    890      1.1     fvdl 		 * and may be disabled for re-entrancy reasons,
    891      1.1     fvdl 		 * so just return.  This is likely just a shared
    892      1.1     fvdl 		 * interrupt.
    893      1.1     fvdl 		 */
    894      1.5  thorpej 		return (0);
    895      1.1     fvdl 	}
    896      1.1     fvdl 
    897      1.1     fvdl 	/*
    898      1.1     fvdl 	 * Instead of directly reading the interrupt status register,
    899      1.1     fvdl 	 * infer the cause of the interrupt by checking our in-core
    900      1.1     fvdl 	 * completion queues.  This avoids a costly PCI bus read in
    901      1.1     fvdl 	 * most cases.
    902      1.1     fvdl 	 */
    903      1.1     fvdl 	if ((ahd->flags & AHD_ALL_INTERRUPTS) == 0
    904      1.1     fvdl 	    && (ahd_check_cmdcmpltqueues(ahd) != 0))
    905      1.1     fvdl 		intstat = CMDCMPLT;
    906      1.1     fvdl 	else
    907      1.1     fvdl 		intstat = ahd_inb(ahd, INTSTAT);
    908      1.1     fvdl 
    909      1.5  thorpej 	if ((intstat & INT_PEND) == 0)
    910      1.5  thorpej 		return (0);
    911      1.5  thorpej 
    912      1.1     fvdl 	if (intstat & CMDCMPLT) {
    913      1.1     fvdl 		ahd_outb(ahd, CLRINT, CLRCMDINT);
    914      1.1     fvdl 
    915      1.1     fvdl 		/*
    916      1.1     fvdl 		 * Ensure that the chip sees that we've cleared
    917      1.1     fvdl 		 * this interrupt before we walk the output fifo.
    918      1.1     fvdl 		 * Otherwise, we may, due to posted bus writes,
    919      1.1     fvdl 		 * clear the interrupt after we finish the scan,
    920      1.1     fvdl 		 * and after the sequencer has added new entries
    921      1.1     fvdl 		 * and asserted the interrupt again.
    922      1.1     fvdl 		 */
    923      1.1     fvdl 		if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
    924      1.1     fvdl 			if (ahd_is_paused(ahd)) {
    925      1.1     fvdl 				/*
    926      1.1     fvdl 				 * Potentially lost SEQINT.
    927      1.1     fvdl 				 * If SEQINTCODE is non-zero,
    928      1.1     fvdl 				 * simulate the SEQINT.
    929      1.1     fvdl 				 */
    930      1.1     fvdl 				if (ahd_inb(ahd, SEQINTCODE) != NO_SEQINT)
    931      1.1     fvdl 					intstat |= SEQINT;
    932      1.1     fvdl 			}
    933      1.1     fvdl 		} else {
    934      1.1     fvdl 			ahd_flush_device_writes(ahd);
    935      1.1     fvdl 		}
    936      1.1     fvdl 		scsipi_channel_freeze(&ahd->sc_channel, 1);
    937      1.1     fvdl 		ahd_run_qoutfifo(ahd);
    938      1.1     fvdl 		scsipi_channel_thaw(&ahd->sc_channel, 1);
    939      1.1     fvdl 		ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket]++;
    940      1.1     fvdl 		ahd->cmdcmplt_total++;
    941      1.1     fvdl #ifdef AHD_TARGET_MODE
    942      1.1     fvdl 		if ((ahd->flags & AHD_TARGETROLE) != 0)
    943      1.1     fvdl 			ahd_run_tqinfifo(ahd, /*paused*/FALSE);
    944      1.1     fvdl #endif
    945      1.1     fvdl 		if (intstat == CMDCMPLT)
    946      1.1     fvdl 			return 1;
    947      1.1     fvdl 	}
    948      1.1     fvdl 
    949      1.5  thorpej 	/*
    950      1.5  thorpej 	 * Handle statuses that may invalidate our cached
    951      1.5  thorpej 	 * copy of INTSTAT separately.
    952      1.5  thorpej 	 */
    953      1.5  thorpej 	if (intstat == 0xFF && (ahd->features & AHD_REMOVABLE) != 0) {
    954      1.5  thorpej 		/* Hot eject.  Do nothing */
    955      1.5  thorpej 	} else if (intstat & HWERRINT) {
    956      1.1     fvdl 		ahd_handle_hwerrint(ahd);
    957      1.5  thorpej 	} else if ((intstat & (PCIINT|SPLTINT)) != 0) {
    958      1.1     fvdl 		ahd->bus_intr(ahd);
    959      1.5  thorpej 	} else {
    960      1.1     fvdl 
    961      1.5  thorpej 		if ((intstat & SEQINT) != 0)
    962      1.5  thorpej 			ahd_handle_seqint(ahd, intstat);
    963      1.1     fvdl 
    964      1.5  thorpej 		if ((intstat & SCSIINT) != 0)
    965      1.5  thorpej 			ahd_handle_scsiint(ahd, intstat);
    966      1.1     fvdl 	}
    967      1.1     fvdl 
    968      1.5  thorpej 	return (1);
    969      1.1     fvdl }
    970      1.1     fvdl 
    971      1.1     fvdl static __inline void
    972      1.1     fvdl ahd_minphys(bp)
    973      1.1     fvdl         struct buf *bp;
    974      1.1     fvdl {
    975      1.1     fvdl /*
    976      1.1     fvdl  * Even though the card can transfer up to 16megs per command
    977      1.2      wiz  * we are limited by the number of segments in the DMA segment
    978      1.1     fvdl  * list that we can hold.  The worst case is that all pages are
    979      1.9      wiz  * discontinuous physically, hence the "page per segment" limit
    980      1.1     fvdl  * enforced here.
    981      1.1     fvdl  */
    982      1.1     fvdl         if (bp->b_bcount > AHD_MAXTRANSFER_SIZE) {
    983      1.1     fvdl                 bp->b_bcount = AHD_MAXTRANSFER_SIZE;
    984      1.1     fvdl         }
    985      1.1     fvdl         minphys(bp);
    986      1.1     fvdl }
    987      1.1     fvdl 
    988      1.3   itojun static __inline u_int32_t scsi_4btoul(u_int8_t *);
    989      1.1     fvdl 
    990      1.1     fvdl static __inline u_int32_t
    991      1.1     fvdl scsi_4btoul(u_int8_t *bytes)
    992      1.1     fvdl {
    993      1.1     fvdl         u_int32_t rv;
    994      1.1     fvdl 
    995      1.1     fvdl         rv = (bytes[0] << 24) |
    996      1.1     fvdl              (bytes[1] << 16) |
    997      1.1     fvdl              (bytes[2] << 8) |
    998      1.1     fvdl              bytes[3];
    999      1.1     fvdl         return (rv);
   1000      1.1     fvdl }
   1001      1.1     fvdl 
   1002      1.1     fvdl 
   1003      1.1     fvdl #endif  /* _AIC79XX_INLINE_H_ */
   1004