aic79xx_inline.h revision 1.1 1 /* $NetBSD: aic79xx_inline.h,v 1.1 2003/04/21 16:53:59 fvdl Exp $ */
2
3 /*
4 * Inline routines shareable across OS platforms.
5 *
6 * Copyright (c) 1994-2001 Justin T. Gibbs.
7 * Copyright (c) 2000-2003 Adaptec Inc.
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions, and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * substantially similar to the "NO WARRANTY" disclaimer below
18 * ("Disclaimer") and any redistribution must be conditioned upon
19 * including a substantially similar Disclaimer requirement for further
20 * binary redistribution.
21 * 3. Neither the names of the above-listed copyright holders nor the names
22 * of any contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * Alternatively, this software may be distributed under the terms of the
26 * GNU General Public License ("GPL") version 2 as published by the Free
27 * Software Foundation.
28 *
29 * NO WARRANTY
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
38 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
39 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
40 * POSSIBILITY OF SUCH DAMAGES.
41 *
42 * //depot/aic7xxx/aic7xxx/aic79xx_inline.h#44 $
43 *
44 * $FreeBSD: src/sys/dev/aic7xxx/aic79xx_inline.h,v 1.8 2003/03/06 23:58:34 gibbs Exp $
45 */
46 /*
47 * Ported from FreeBSD by Pascal Renauld, Network Storage Solutions, Inc. - April 2003
48 */
49
50 #ifndef _AIC79XX_INLINE_H_
51 #define _AIC79XX_INLINE_H_
52
53 /******************************** Debugging ***********************************/
54 static __inline char *ahd_name(struct ahd_softc *ahd);
55
56 static __inline char *
57 ahd_name(struct ahd_softc *ahd)
58 {
59 return (ahd->name);
60 }
61
62 /************************ Sequencer Execution Control *************************/
63 static __inline void ahd_known_modes(struct ahd_softc *ahd,
64 ahd_mode src, ahd_mode dst);
65 static __inline ahd_mode_state ahd_build_mode_state(struct ahd_softc *ahd,
66 ahd_mode src,
67 ahd_mode dst);
68 static __inline void ahd_extract_mode_state(struct ahd_softc *ahd,
69 ahd_mode_state state,
70 ahd_mode *src, ahd_mode *dst);
71 static __inline void ahd_set_modes(struct ahd_softc *ahd, ahd_mode src,
72 ahd_mode dst);
73 static __inline void ahd_update_modes(struct ahd_softc *ahd);
74 static __inline void ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
75 ahd_mode dstmode, const char *file,
76 int line);
77 static __inline ahd_mode_state ahd_save_modes(struct ahd_softc *ahd);
78 static __inline void ahd_restore_modes(struct ahd_softc *ahd,
79 ahd_mode_state state);
80 static __inline int ahd_is_paused(struct ahd_softc *ahd);
81 static __inline void ahd_pause(struct ahd_softc *ahd);
82 static __inline void ahd_unpause(struct ahd_softc *ahd);
83
84 static __inline void
85 ahd_known_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
86 {
87 ahd->src_mode = src;
88 ahd->dst_mode = dst;
89 ahd->saved_src_mode = src;
90 ahd->saved_dst_mode = dst;
91 }
92
93 static __inline ahd_mode_state
94 ahd_build_mode_state(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
95 {
96 return ((src << SRC_MODE_SHIFT) | (dst << DST_MODE_SHIFT));
97 }
98
99 static __inline void
100 ahd_extract_mode_state(struct ahd_softc *ahd, ahd_mode_state state,
101 ahd_mode *src, ahd_mode *dst)
102 {
103 *src = (state & SRC_MODE) >> SRC_MODE_SHIFT;
104 *dst = (state & DST_MODE) >> DST_MODE_SHIFT;
105 }
106
107 static __inline void
108 ahd_set_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
109 {
110 if (ahd->src_mode == src && ahd->dst_mode == dst)
111 return;
112 #ifdef AHD_DEBUG
113 if (ahd->src_mode == AHD_MODE_UNKNOWN
114 || ahd->dst_mode == AHD_MODE_UNKNOWN)
115 panic("Setting mode prior to saving it.\n");
116 if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
117 printf("%s: Setting mode 0x%x\n", ahd_name(ahd),
118 ahd_build_mode_state(ahd, src, dst));
119 #endif
120 ahd_outb(ahd, MODE_PTR, ahd_build_mode_state(ahd, src, dst));
121 ahd->src_mode = src;
122 ahd->dst_mode = dst;
123 }
124
125 static __inline void
126 ahd_update_modes(struct ahd_softc *ahd)
127 {
128 ahd_mode_state mode_ptr;
129 ahd_mode src;
130 ahd_mode dst;
131
132 mode_ptr = ahd_inb(ahd, MODE_PTR);
133 #ifdef AHD_DEBUG
134 if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
135 printf("Reading mode 0x%x\n", mode_ptr);
136 #endif
137 ahd_extract_mode_state(ahd, mode_ptr, &src, &dst);
138 ahd_known_modes(ahd, src, dst);
139 }
140
141 static __inline void
142 ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
143 ahd_mode dstmode, const char *file, int line)
144 {
145 #ifdef AHD_DEBUG
146 if ((srcmode & AHD_MK_MSK(ahd->src_mode)) == 0
147 || (dstmode & AHD_MK_MSK(ahd->dst_mode)) == 0) {
148 panic("%s:%s:%d: Mode assertion failed.\n",
149 ahd_name(ahd), file, line);
150 }
151 #endif
152 }
153
154 static __inline ahd_mode_state
155 ahd_save_modes(struct ahd_softc *ahd)
156 {
157 if (ahd->src_mode == AHD_MODE_UNKNOWN
158 || ahd->dst_mode == AHD_MODE_UNKNOWN)
159 ahd_update_modes(ahd);
160
161 return (ahd_build_mode_state(ahd, ahd->src_mode, ahd->dst_mode));
162 }
163
164 static __inline void
165 ahd_restore_modes(struct ahd_softc *ahd, ahd_mode_state state)
166 {
167 ahd_mode src;
168 ahd_mode dst;
169
170 ahd_extract_mode_state(ahd, state, &src, &dst);
171 ahd_set_modes(ahd, src, dst);
172 }
173
174 #define AHD_ASSERT_MODES(ahd, source, dest) \
175 ahd_assert_modes(ahd, source, dest, __FILE__, __LINE__);
176
177 /*
178 * Determine whether the sequencer has halted code execution.
179 * Returns non-zero status if the sequencer is stopped.
180 */
181 static __inline int
182 ahd_is_paused(struct ahd_softc *ahd)
183 {
184 return ((ahd_inb(ahd, HCNTRL) & PAUSE) != 0);
185 }
186
187 /*
188 * Request that the sequencer stop and wait, indefinitely, for it
189 * to stop. The sequencer will only acknowledge that it is paused
190 * once it has reached an instruction boundary and PAUSEDIS is
191 * cleared in the SEQCTL register. The sequencer may use PAUSEDIS
192 * for critical sections.
193 */
194 static __inline void
195 ahd_pause(struct ahd_softc *ahd)
196 {
197 ahd_outb(ahd, HCNTRL, ahd->pause);
198
199 /*
200 * Since the sequencer can disable pausing in a critical section, we
201 * must loop until it actually stops.
202 */
203 while (ahd_is_paused(ahd) == 0)
204 ;
205 }
206
207 /*
208 * Allow the sequencer to continue program execution.
209 * We check here to ensure that no additional interrupt
210 * sources that would cause the sequencer to halt have been
211 * asserted. If, for example, a SCSI bus reset is detected
212 * while we are fielding a different, pausing, interrupt type,
213 * we don't want to release the sequencer before going back
214 * into our interrupt handler and dealing with this new
215 * condition.
216 */
217 static __inline void
218 ahd_unpause(struct ahd_softc *ahd)
219 {
220 /*
221 * Automatically restore our modes to those saved
222 * prior to the first change of the mode.
223 */
224 if (ahd->saved_src_mode != AHD_MODE_UNKNOWN
225 && ahd->saved_dst_mode != AHD_MODE_UNKNOWN) {
226 if ((ahd->flags & AHD_UPDATE_PEND_CMDS) != 0)
227 ahd_reset_cmds_pending(ahd);
228 ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
229 }
230
231 if ((ahd_inb(ahd, INTSTAT) & ~(SWTMINT | CMDCMPLT)) == 0)
232 ahd_outb(ahd, HCNTRL, ahd->unpause);
233
234 ahd_known_modes(ahd, AHD_MODE_UNKNOWN, AHD_MODE_UNKNOWN);
235 }
236
237 /*********************** Scatter Gather List Handling *************************/
238 static __inline void *ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
239 void *sgptr, bus_addr_t addr,
240 bus_size_t len, int last);
241 static __inline void ahd_setup_scb_common(struct ahd_softc *ahd,
242 struct scb *scb);
243 static __inline void ahd_setup_data_scb(struct ahd_softc *ahd,
244 struct scb *scb);
245 static __inline void ahd_setup_noxfer_scb(struct ahd_softc *ahd,
246 struct scb *scb);
247
248 static __inline void *
249 ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
250 void *sgptr, bus_addr_t addr, bus_size_t len, int last)
251 {
252 scb->sg_count++;
253 if (sizeof(bus_addr_t) > 4
254 && (ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
255 struct ahd_dma64_seg *sg;
256
257 sg = (struct ahd_dma64_seg *)sgptr;
258 sg->addr = ahd_htole64(addr);
259 sg->len = ahd_htole32(len | (last ? AHD_DMA_LAST_SEG : 0));
260 return (sg + 1);
261 } else {
262 struct ahd_dma_seg *sg;
263
264 sg = (struct ahd_dma_seg *)sgptr;
265 sg->addr = ahd_htole32(addr & 0xFFFFFFFF);
266 sg->len = ahd_htole32(len | ((addr >> 8) & 0x7F000000)
267 | (last ? AHD_DMA_LAST_SEG : 0));
268 return (sg + 1);
269 }
270 }
271
272 static __inline void
273 ahd_setup_scb_common(struct ahd_softc *ahd, struct scb *scb)
274 {
275 /* XXX Handle target mode SCBs. */
276 scb->crc_retry_count = 0;
277 if ((scb->flags & SCB_PACKETIZED) != 0) {
278 /* XXX what about ACA?? It is type 4, but TAG_TYPE == 0x3. */
279 scb->hscb->task_attribute= scb->hscb->control & SCB_TAG_TYPE;
280 /*
281 * For Rev A short lun workaround.
282 */
283 memset(scb->hscb->pkt_long_lun, 0, sizeof(scb->hscb->pkt_long_lun));
284 scb->hscb->pkt_long_lun[6] = scb->hscb->lun;
285 }
286
287 if (scb->hscb->cdb_len <= MAX_CDB_LEN_WITH_SENSE_ADDR
288 || (scb->hscb->cdb_len & SCB_CDB_LEN_PTR) != 0)
289 scb->hscb->shared_data.idata.cdb_plus_saddr.sense_addr =
290 ahd_htole32(scb->sense_busaddr);
291 }
292
293 static __inline void
294 ahd_setup_data_scb(struct ahd_softc *ahd, struct scb *scb)
295 {
296 /*
297 * Copy the first SG into the "current" data ponter area.
298 */
299 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
300 struct ahd_dma64_seg *sg;
301
302 sg = (struct ahd_dma64_seg *)scb->sg_list;
303 scb->hscb->dataptr = sg->addr;
304 scb->hscb->datacnt = sg->len;
305 } else {
306 struct ahd_dma_seg *sg;
307
308 sg = (struct ahd_dma_seg *)scb->sg_list;
309 scb->hscb->dataptr = sg->addr;
310 if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
311 uint64_t high_addr;
312
313 high_addr = ahd_le32toh(sg->len) & 0x7F000000;
314 scb->hscb->dataptr |= ahd_htole64(high_addr << 8);
315 }
316 scb->hscb->datacnt = sg->len;
317 }
318 /*
319 * Note where to find the SG entries in bus space.
320 * We also set the full residual flag which the
321 * sequencer will clear as soon as a data transfer
322 * occurs.
323 */
324 scb->hscb->sgptr = ahd_htole32(scb->sg_list_busaddr|SG_FULL_RESID);
325 }
326
327 static __inline void
328 ahd_setup_noxfer_scb(struct ahd_softc *ahd, struct scb *scb)
329 {
330 scb->hscb->sgptr = ahd_htole32(SG_LIST_NULL);
331 scb->hscb->dataptr = 0;
332 scb->hscb->datacnt = 0;
333 }
334
335 /************************** Memory mapping routines ***************************/
336 static __inline size_t ahd_sg_size(struct ahd_softc *ahd);
337 static __inline void *
338 ahd_sg_bus_to_virt(struct ahd_softc *ahd,
339 struct scb *scb,
340 uint32_t sg_busaddr);
341 static __inline uint32_t
342 ahd_sg_virt_to_bus(struct ahd_softc *ahd,
343 struct scb *scb,
344 void *sg);
345 static __inline void ahd_sync_scb(struct ahd_softc *ahd,
346 struct scb *scb, int op);
347 static __inline void ahd_sync_sglist(struct ahd_softc *ahd,
348 struct scb *scb, int op);
349 static __inline void ahd_sync_sense(struct ahd_softc *ahd,
350 struct scb *scb, int op);
351 static __inline uint32_t
352 ahd_targetcmd_offset(struct ahd_softc *ahd,
353 u_int index);
354
355 static __inline size_t
356 ahd_sg_size(struct ahd_softc *ahd)
357 {
358 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
359 return (sizeof(struct ahd_dma64_seg));
360 return (sizeof(struct ahd_dma_seg));
361 }
362
363 static __inline void *
364 ahd_sg_bus_to_virt(struct ahd_softc *ahd, struct scb *scb, uint32_t sg_busaddr)
365 {
366 bus_addr_t sg_offset;
367
368 /* sg_list_phys points to entry 1, not 0 */
369 sg_offset = sg_busaddr - (scb->sg_list_busaddr - ahd_sg_size(ahd));
370 return ((uint8_t *)scb->sg_list + sg_offset);
371 }
372
373 static __inline uint32_t
374 ahd_sg_virt_to_bus(struct ahd_softc *ahd, struct scb *scb, void *sg)
375 {
376 bus_addr_t sg_offset;
377
378 /* sg_list_phys points to entry 1, not 0 */
379 sg_offset = ((uint8_t *)sg - (uint8_t *)scb->sg_list)
380 - ahd_sg_size(ahd);
381
382 return (scb->sg_list_busaddr + sg_offset);
383 }
384
385 static __inline void
386 ahd_sync_scb(struct ahd_softc *ahd, struct scb *scb, int op)
387 {
388 ahd_dmamap_sync(ahd, ahd->parent_dmat, scb->hscb_map->dmamap,
389 /*offset*/(uint8_t*)scb->hscb - scb->hscb_map->vaddr,
390 /*len*/sizeof(*scb->hscb), op);
391 }
392
393 static __inline void
394 ahd_sync_sglist(struct ahd_softc *ahd, struct scb *scb, int op)
395 {
396 if (scb->sg_count == 0)
397 return;
398
399 ahd_dmamap_sync(ahd, ahd->parent_dmat, scb->sg_map->dmamap,
400 /*offset*/scb->sg_list_busaddr - ahd_sg_size(ahd),
401 /*len*/ahd_sg_size(ahd) * scb->sg_count, op);
402 }
403
404 static __inline void
405 ahd_sync_sense(struct ahd_softc *ahd, struct scb *scb, int op)
406 {
407 ahd_dmamap_sync(ahd, ahd->parent_dmat,
408 scb->sense_map->dmamap,
409 /*offset*/scb->sense_busaddr,
410 /*len*/AHD_SENSE_BUFSIZE, op);
411 }
412
413 static __inline uint32_t
414 ahd_targetcmd_offset(struct ahd_softc *ahd, u_int index)
415 {
416 return (((uint8_t *)&ahd->targetcmds[index])
417 - (uint8_t *)ahd->qoutfifo);
418 }
419
420 /*********************** Miscelaneous Support Functions ***********************/
421 static __inline void ahd_complete_scb(struct ahd_softc *ahd,
422 struct scb *scb);
423 static __inline void ahd_update_residual(struct ahd_softc *ahd,
424 struct scb *scb);
425 static __inline struct ahd_initiator_tinfo *
426 ahd_fetch_transinfo(struct ahd_softc *ahd,
427 char channel, u_int our_id,
428 u_int remote_id,
429 struct ahd_tmode_tstate **tstate);
430 static __inline uint16_t
431 ahd_inw(struct ahd_softc *ahd, u_int port);
432 static __inline void ahd_outw(struct ahd_softc *ahd, u_int port,
433 u_int value);
434 static __inline uint32_t
435 ahd_inl(struct ahd_softc *ahd, u_int port);
436 static __inline void ahd_outl(struct ahd_softc *ahd, u_int port,
437 uint32_t value);
438 static __inline uint64_t
439 ahd_inq(struct ahd_softc *ahd, u_int port);
440 static __inline void ahd_outq(struct ahd_softc *ahd, u_int port,
441 uint64_t value);
442 static __inline u_int ahd_get_scbptr(struct ahd_softc *ahd);
443 static __inline void ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr);
444 static __inline u_int ahd_get_hnscb_qoff(struct ahd_softc *ahd);
445 static __inline void ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value);
446 static __inline u_int ahd_get_hescb_qoff(struct ahd_softc *ahd);
447 static __inline void ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value);
448 static __inline u_int ahd_get_snscb_qoff(struct ahd_softc *ahd);
449 static __inline void ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value);
450 static __inline u_int ahd_get_sescb_qoff(struct ahd_softc *ahd);
451 static __inline void ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value);
452 static __inline u_int ahd_get_sdscb_qoff(struct ahd_softc *ahd);
453 static __inline void ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value);
454 static __inline u_int ahd_inb_scbram(struct ahd_softc *ahd, u_int offset);
455 static __inline u_int ahd_inw_scbram(struct ahd_softc *ahd, u_int offset);
456 static __inline uint32_t
457 ahd_inl_scbram(struct ahd_softc *ahd, u_int offset);
458 static __inline void ahd_swap_with_next_hscb(struct ahd_softc *ahd,
459 struct scb *scb);
460 static __inline void ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb);
461 static __inline uint8_t *
462 ahd_get_sense_buf(struct ahd_softc *ahd,
463 struct scb *scb);
464 static __inline uint32_t
465 ahd_get_sense_bufaddr(struct ahd_softc *ahd,
466 struct scb *scb);
467 static __inline void ahd_post_scb(struct ahd_softc *ahd,
468 struct scb *scb);
469
470
471 static __inline void
472 ahd_post_scb(struct ahd_softc *ahd, struct scb *scb)
473 {
474 uint32_t sgptr;
475
476 sgptr = ahd_le32toh(scb->hscb->sgptr);
477 if ((sgptr & SG_STATUS_VALID) != 0)
478 ahd_handle_scb_status(ahd, scb);
479 else
480 ahd_done(ahd, scb);
481 }
482
483 static __inline void
484 ahd_complete_scb(struct ahd_softc *ahd, struct scb *scb)
485 {
486 uint32_t sgptr;
487
488 sgptr = ahd_le32toh(scb->hscb->sgptr);
489 if ((sgptr & SG_STATUS_VALID) != 0)
490 ahd_handle_scb_status(ahd, scb);
491 else
492 ahd_done(ahd, scb);
493 }
494
495 /*
496 * Determine whether the sequencer reported a residual
497 * for this SCB/transaction.
498 */
499 static __inline void
500 ahd_update_residual(struct ahd_softc *ahd, struct scb *scb)
501 {
502 uint32_t sgptr;
503
504 sgptr = ahd_le32toh(scb->hscb->sgptr);
505 if ((sgptr & SG_STATUS_VALID) != 0)
506 ahd_calc_residual(ahd, scb);
507 }
508
509 /*
510 * Return pointers to the transfer negotiation information
511 * for the specified our_id/remote_id pair.
512 */
513 static __inline struct ahd_initiator_tinfo *
514 ahd_fetch_transinfo(struct ahd_softc *ahd, char channel, u_int our_id,
515 u_int remote_id, struct ahd_tmode_tstate **tstate)
516 {
517 /*
518 * Transfer data structures are stored from the perspective
519 * of the target role. Since the parameters for a connection
520 * in the initiator role to a given target are the same as
521 * when the roles are reversed, we pretend we are the target.
522 */
523 if (channel == 'B')
524 our_id += 8;
525 *tstate = ahd->enabled_targets[our_id];
526 return (&(*tstate)->transinfo[remote_id]);
527 }
528
529 #define AHD_COPY_COL_IDX(dst, src) \
530 do { \
531 dst->hscb->scsiid = src->hscb->scsiid; \
532 dst->hscb->lun = src->hscb->lun; \
533 } while (0)
534
535 static __inline uint16_t
536 ahd_inw(struct ahd_softc *ahd, u_int port)
537 {
538 return ((ahd_inb(ahd, port+1) << 8) | ahd_inb(ahd, port));
539 }
540
541 static __inline void
542 ahd_outw(struct ahd_softc *ahd, u_int port, u_int value)
543 {
544 ahd_outb(ahd, port, value & 0xFF);
545 ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
546 }
547
548 static __inline uint32_t
549 ahd_inl(struct ahd_softc *ahd, u_int port)
550 {
551 return ((ahd_inb(ahd, port))
552 | (ahd_inb(ahd, port+1) << 8)
553 | (ahd_inb(ahd, port+2) << 16)
554 | (ahd_inb(ahd, port+3) << 24));
555 }
556
557 static __inline void
558 ahd_outl(struct ahd_softc *ahd, u_int port, uint32_t value)
559 {
560 ahd_outb(ahd, port, (value) & 0xFF);
561 ahd_outb(ahd, port+1, ((value) >> 8) & 0xFF);
562 ahd_outb(ahd, port+2, ((value) >> 16) & 0xFF);
563 ahd_outb(ahd, port+3, ((value) >> 24) & 0xFF);
564 }
565
566 static __inline uint64_t
567 ahd_inq(struct ahd_softc *ahd, u_int port)
568 {
569 return ((ahd_inb(ahd, port))
570 | (ahd_inb(ahd, port+1) << 8)
571 | (ahd_inb(ahd, port+2) << 16)
572 | (ahd_inb(ahd, port+3) << 24)
573 | (((uint64_t)ahd_inb(ahd, port+4)) << 32)
574 | (((uint64_t)ahd_inb(ahd, port+5)) << 40)
575 | (((uint64_t)ahd_inb(ahd, port+6)) << 48)
576 | (((uint64_t)ahd_inb(ahd, port+7)) << 56));
577 }
578
579 static __inline void
580 ahd_outq(struct ahd_softc *ahd, u_int port, uint64_t value)
581 {
582 ahd_outb(ahd, port, value & 0xFF);
583 ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
584 ahd_outb(ahd, port+2, (value >> 16) & 0xFF);
585 ahd_outb(ahd, port+3, (value >> 24) & 0xFF);
586 ahd_outb(ahd, port+4, (value >> 32) & 0xFF);
587 ahd_outb(ahd, port+5, (value >> 40) & 0xFF);
588 ahd_outb(ahd, port+6, (value >> 48) & 0xFF);
589 ahd_outb(ahd, port+7, (value >> 56) & 0xFF);
590 }
591
592 static __inline u_int
593 ahd_get_scbptr(struct ahd_softc *ahd)
594 {
595 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
596 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
597 return (ahd_inb(ahd, SCBPTR) | (ahd_inb(ahd, SCBPTR + 1) << 8));
598 }
599
600 static __inline void
601 ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr)
602 {
603 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
604 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
605 ahd_outb(ahd, SCBPTR, scbptr & 0xFF);
606 ahd_outb(ahd, SCBPTR+1, (scbptr >> 8) & 0xFF);
607 }
608
609 static __inline u_int
610 ahd_get_hnscb_qoff(struct ahd_softc *ahd)
611 {
612 return (ahd_inw_atomic(ahd, HNSCB_QOFF));
613 }
614
615 static __inline void
616 ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value)
617 {
618 ahd_outw_atomic(ahd, HNSCB_QOFF, value);
619 }
620
621 static __inline u_int
622 ahd_get_hescb_qoff(struct ahd_softc *ahd)
623 {
624 return (ahd_inb(ahd, HESCB_QOFF));
625 }
626
627 static __inline void
628 ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value)
629 {
630 ahd_outb(ahd, HESCB_QOFF, value);
631 }
632
633 static __inline u_int
634 ahd_get_snscb_qoff(struct ahd_softc *ahd)
635 {
636 u_int oldvalue;
637
638 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
639 oldvalue = ahd_inw(ahd, SNSCB_QOFF);
640 ahd_outw(ahd, SNSCB_QOFF, oldvalue);
641 return (oldvalue);
642 }
643
644 static __inline void
645 ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value)
646 {
647 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
648 ahd_outw(ahd, SNSCB_QOFF, value);
649 }
650
651 static __inline u_int
652 ahd_get_sescb_qoff(struct ahd_softc *ahd)
653 {
654 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
655 return (ahd_inb(ahd, SESCB_QOFF));
656 }
657
658 static __inline void
659 ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value)
660 {
661 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
662 ahd_outb(ahd, SESCB_QOFF, value);
663 }
664
665 static __inline u_int
666 ahd_get_sdscb_qoff(struct ahd_softc *ahd)
667 {
668 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
669 return (ahd_inb(ahd, SDSCB_QOFF) | (ahd_inb(ahd, SDSCB_QOFF + 1) << 8));
670 }
671
672 static __inline void
673 ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value)
674 {
675 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
676 ahd_outb(ahd, SDSCB_QOFF, value & 0xFF);
677 ahd_outb(ahd, SDSCB_QOFF+1, (value >> 8) & 0xFF);
678 }
679
680 static __inline u_int
681 ahd_inb_scbram(struct ahd_softc *ahd, u_int offset)
682 {
683 u_int value;
684
685 /*
686 * Workaround PCI-X Rev A. hardware bug.
687 * After a host read of SCB memory, the chip
688 * may become confused into thinking prefetch
689 * was required. This starts the discard timer
690 * running and can cause an unexpected discard
691 * timer interrupt. The work around is to read
692 * a normal register prior to the exhaustion of
693 * the discard timer. The mode pointer register
694 * has no side effects and so serves well for
695 * this purpose.
696 *
697 * Razor #528
698 */
699 value = ahd_inb(ahd, offset);
700 if ((ahd->flags & AHD_PCIX_SCBRAM_RD_BUG) != 0)
701 ahd_inb(ahd, MODE_PTR);
702 return (value);
703 }
704
705 static __inline u_int
706 ahd_inw_scbram(struct ahd_softc *ahd, u_int offset)
707 {
708 return (ahd_inb_scbram(ahd, offset)
709 | (ahd_inb_scbram(ahd, offset+1) << 8));
710 }
711
712 static __inline uint32_t
713 ahd_inl_scbram(struct ahd_softc *ahd, u_int offset)
714 {
715 return (ahd_inb_scbram(ahd, offset)
716 | (ahd_inb_scbram(ahd, offset+1) << 8)
717 | (ahd_inb_scbram(ahd, offset+2) << 16)
718 | (ahd_inb_scbram(ahd, offset+3) << 24));
719 }
720
721 static __inline struct scb *
722 ahd_lookup_scb(struct ahd_softc *ahd, u_int tag)
723 {
724 struct scb* scb;
725
726 if (tag >= AHD_SCB_MAX)
727 return (NULL);
728 scb = ahd->scb_data.scbindex[tag];
729 if (scb != NULL)
730 ahd_sync_scb(ahd, scb,
731 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
732 return (scb);
733 }
734
735 static __inline void
736 ahd_swap_with_next_hscb(struct ahd_softc *ahd, struct scb *scb)
737 {
738 struct hardware_scb *q_hscb;
739 uint32_t saved_hscb_busaddr;
740
741 /*
742 * Our queuing method is a bit tricky. The card
743 * knows in advance which HSCB (by address) to download,
744 * and we can't disappoint it. To achieve this, the next
745 * HSCB to download is saved off in ahd->next_queued_hscb.
746 * When we are called to queue "an arbitrary scb",
747 * we copy the contents of the incoming HSCB to the one
748 * the sequencer knows about, swap HSCB pointers and
749 * finally assign the SCB to the tag indexed location
750 * in the scb_array. This makes sure that we can still
751 * locate the correct SCB by SCB_TAG.
752 */
753 q_hscb = ahd->next_queued_hscb;
754 saved_hscb_busaddr = q_hscb->hscb_busaddr;
755 memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
756 q_hscb->hscb_busaddr = saved_hscb_busaddr;
757 q_hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
758
759 /* Now swap HSCB pointers. */
760 ahd->next_queued_hscb = scb->hscb;
761 scb->hscb = q_hscb;
762
763 /* Now define the mapping from tag to SCB in the scbindex */
764 ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = scb;
765 }
766
767 /*
768 * Tell the sequencer about a new transaction to execute.
769 */
770 static __inline void
771 ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb)
772 {
773 ahd_swap_with_next_hscb(ahd, scb);
774
775 if (SCBID_IS_NULL(SCB_GET_TAG(scb)))
776 panic("Attempt to queue invalid SCB tag %x\n",
777 SCB_GET_TAG(scb));
778
779 /*
780 * Keep a history of SCBs we've downloaded in the qinfifo.
781 */
782 ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
783 ahd->qinfifonext++;
784
785 if (scb->sg_count != 0)
786 ahd_setup_data_scb(ahd, scb);
787 else
788 ahd_setup_noxfer_scb(ahd, scb);
789 ahd_setup_scb_common(ahd, scb);
790
791 /*
792 * Make sure our data is consistent from the
793 * perspective of the adapter.
794 */
795 ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
796
797 #ifdef AHD_DEBUG
798 if ((ahd_debug & AHD_SHOW_QUEUE) != 0) {
799 printf("%s: Queueing SCB 0x%x bus addr 0x%x - 0x%x%x/0x%x\n",
800 ahd_name(ahd),
801 SCB_GET_TAG(scb), scb->hscb->hscb_busaddr,
802 (u_int)((scb->hscb->dataptr >> 32) & 0xFFFFFFFF),
803 (u_int)(scb->hscb->dataptr & 0xFFFFFFFF),
804 scb->hscb->datacnt);
805 }
806 #endif
807 /* Tell the adapter about the newly queued SCB */
808 ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
809 }
810
811 static __inline uint8_t *
812 ahd_get_sense_buf(struct ahd_softc *ahd, struct scb *scb)
813 {
814 return (scb->sense_data);
815 }
816
817 static __inline uint32_t
818 ahd_get_sense_bufaddr(struct ahd_softc *ahd, struct scb *scb)
819 {
820 return (scb->sense_busaddr);
821 }
822
823 /************************** Interrupt Processing ******************************/
824 static __inline void ahd_sync_qoutfifo(struct ahd_softc *ahd, int op);
825 static __inline void ahd_sync_tqinfifo(struct ahd_softc *ahd, int op);
826 static __inline u_int ahd_check_cmdcmpltqueues(struct ahd_softc *ahd);
827 static __inline int ahd_intr(void *arg);
828 static __inline void ahd_minphys(struct buf *bp);
829
830 static __inline void
831 ahd_sync_qoutfifo(struct ahd_softc *ahd, int op)
832 {
833 ahd_dmamap_sync(ahd, ahd->parent_dmat, ahd->shared_data_dmamap,
834 /*offset*/0, /*len*/AHD_SCB_MAX * sizeof(uint16_t), op);
835 }
836
837 static __inline void
838 ahd_sync_tqinfifo(struct ahd_softc *ahd, int op)
839 {
840 #ifdef AHD_TARGET_MODE
841 if ((ahd->flags & AHD_TARGETROLE) != 0) {
842 ahd_dmamap_sync(ahd, ahd->parent_dmat /*shared_data_dmat*/,
843 ahd->shared_data_dmamap,
844 ahd_targetcmd_offset(ahd, 0),
845 sizeof(struct target_cmd) * AHD_TMODE_CMDS,
846 op);
847 }
848 #endif
849 }
850
851 /*
852 * See if the firmware has posted any completed commands
853 * into our in-core command complete fifos.
854 */
855 #define AHD_RUN_QOUTFIFO 0x1
856 #define AHD_RUN_TQINFIFO 0x2
857 static __inline u_int
858 ahd_check_cmdcmpltqueues(struct ahd_softc *ahd)
859 {
860 u_int retval;
861
862 retval = 0;
863 ahd_dmamap_sync(ahd, ahd->parent_dmat /*shared_data_dmat*/, ahd->shared_data_dmamap,
864 /*offset*/ahd->qoutfifonext, /*len*/2,
865 BUS_DMASYNC_POSTREAD);
866 if ((ahd->qoutfifo[ahd->qoutfifonext]
867 & QOUTFIFO_ENTRY_VALID_LE) == ahd->qoutfifonext_valid_tag)
868 retval |= AHD_RUN_QOUTFIFO;
869 #ifdef AHD_TARGET_MODE
870 if ((ahd->flags & AHD_TARGETROLE) != 0
871 && (ahd->flags & AHD_TQINFIFO_BLOCKED) == 0) {
872 ahd_dmamap_sync(ahd, ahd->parent_dmat /*shared_data_dmat*/,
873 ahd->shared_data_dmamap,
874 ahd_targetcmd_offset(ahd, ahd->tqinfifofnext),
875 /*len*/sizeof(struct target_cmd),
876 BUS_DMASYNC_POSTREAD);
877 if (ahd->targetcmds[ahd->tqinfifonext].cmd_valid != 0)
878 retval |= AHD_RUN_TQINFIFO;
879 }
880 #endif
881 return (retval);
882 }
883
884 /*
885 * Catch an interrupt from the adapter
886 */
887 static __inline int
888 ahd_intr(void *arg)
889 {
890 struct ahd_softc *ahd = (struct ahd_softc*)arg;
891 u_int intstat;
892
893 if ((ahd->pause & INTEN) == 0) {
894 /*
895 * Our interrupt is not enabled on the chip
896 * and may be disabled for re-entrancy reasons,
897 * so just return. This is likely just a shared
898 * interrupt.
899 */
900 return 0;
901 }
902
903 /*
904 * Instead of directly reading the interrupt status register,
905 * infer the cause of the interrupt by checking our in-core
906 * completion queues. This avoids a costly PCI bus read in
907 * most cases.
908 */
909 if ((ahd->flags & AHD_ALL_INTERRUPTS) == 0
910 && (ahd_check_cmdcmpltqueues(ahd) != 0))
911 intstat = CMDCMPLT;
912 else
913 intstat = ahd_inb(ahd, INTSTAT);
914
915 if (intstat & CMDCMPLT) {
916 ahd_outb(ahd, CLRINT, CLRCMDINT);
917
918 /*
919 * Ensure that the chip sees that we've cleared
920 * this interrupt before we walk the output fifo.
921 * Otherwise, we may, due to posted bus writes,
922 * clear the interrupt after we finish the scan,
923 * and after the sequencer has added new entries
924 * and asserted the interrupt again.
925 */
926 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
927 if (ahd_is_paused(ahd)) {
928 /*
929 * Potentially lost SEQINT.
930 * If SEQINTCODE is non-zero,
931 * simulate the SEQINT.
932 */
933 if (ahd_inb(ahd, SEQINTCODE) != NO_SEQINT)
934 intstat |= SEQINT;
935 }
936 } else {
937 ahd_flush_device_writes(ahd);
938 }
939 scsipi_channel_freeze(&ahd->sc_channel, 1);
940 ahd_run_qoutfifo(ahd);
941 scsipi_channel_thaw(&ahd->sc_channel, 1);
942 ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket]++;
943 ahd->cmdcmplt_total++;
944 #ifdef AHD_TARGET_MODE
945 if ((ahd->flags & AHD_TARGETROLE) != 0)
946 ahd_run_tqinfifo(ahd, /*paused*/FALSE);
947 #endif
948 if (intstat == CMDCMPLT)
949 return 1;
950 }
951
952 if (intstat == 0xFF && (ahd->features & AHD_REMOVABLE) != 0)
953 /* Hot eject */
954 return 1;
955
956 if ((intstat & INT_PEND) == 0)
957 return 1;
958
959 if (intstat & HWERRINT) {
960 ahd_handle_hwerrint(ahd);
961 return 1;
962 }
963
964 if ((intstat & (PCIINT|SPLTINT)) != 0) {
965 ahd->bus_intr(ahd);
966 return 1;
967 }
968
969 if ((intstat & (SEQINT)) != 0) {
970 ahd_handle_seqint(ahd, intstat);
971 return 1;
972 }
973
974 if ((intstat & SCSIINT) != 0) {
975 ahd_handle_scsiint(ahd, intstat);
976 return 1;
977 }
978
979 return 1;
980 }
981
982 static __inline void
983 ahd_minphys(bp)
984 struct buf *bp;
985 {
986 /*
987 * Even though the card can transfer up to 16megs per command
988 * we are limited by the number of segments in the dma segment
989 * list that we can hold. The worst case is that all pages are
990 * discontinuous physically, hense the "page per segment" limit
991 * enforced here.
992 */
993 if (bp->b_bcount > AHD_MAXTRANSFER_SIZE) {
994 bp->b_bcount = AHD_MAXTRANSFER_SIZE;
995 }
996 minphys(bp);
997 }
998
999 static __inline u_int32_t scsi_4btoul(u_int8_t *bytes);
1000
1001 static __inline u_int32_t
1002 scsi_4btoul(u_int8_t *bytes)
1003 {
1004 u_int32_t rv;
1005
1006 rv = (bytes[0] << 24) |
1007 (bytes[1] << 16) |
1008 (bytes[2] << 8) |
1009 bytes[3];
1010 return (rv);
1011 }
1012
1013
1014 #endif /* _AIC79XX_INLINE_H_ */
1015