aic79xx_inline.h revision 1.6 1 /* $NetBSD: aic79xx_inline.h,v 1.6 2003/08/29 00:46:06 thorpej Exp $ */
2
3 /*
4 * Inline routines shareable across OS platforms.
5 *
6 * Copyright (c) 1994-2001 Justin T. Gibbs.
7 * Copyright (c) 2000-2003 Adaptec Inc.
8 * All rights reserved.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions, and the following disclaimer,
15 * without modification.
16 * 2. Redistributions in binary form must reproduce at minimum a disclaimer
17 * substantially similar to the "NO WARRANTY" disclaimer below
18 * ("Disclaimer") and any redistribution must be conditioned upon
19 * including a substantially similar Disclaimer requirement for further
20 * binary redistribution.
21 * 3. Neither the names of the above-listed copyright holders nor the names
22 * of any contributors may be used to endorse or promote products derived
23 * from this software without specific prior written permission.
24 *
25 * Alternatively, this software may be distributed under the terms of the
26 * GNU General Public License ("GPL") version 2 as published by the Free
27 * Software Foundation.
28 *
29 * NO WARRANTY
30 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
31 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
32 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR
33 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
34 * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
35 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
36 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
37 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
38 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
39 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
40 * POSSIBILITY OF SUCH DAMAGES.
41 *
42 * Id: //depot/aic7xxx/aic7xxx/aic79xx_inline.h#49 $
43 *
44 * $FreeBSD: src/sys/dev/aic7xxx/aic79xx_inline.h,v 1.10 2003/05/26 21:18:48 gibbs Exp $
45 */
46 /*
47 * Ported from FreeBSD by Pascal Renauld, Network Storage Solutions, Inc. - April 2003
48 */
49
50 #ifndef _AIC79XX_INLINE_H_
51 #define _AIC79XX_INLINE_H_
52
53 /******************************** Debugging ***********************************/
54 static __inline char *ahd_name(struct ahd_softc *);
55
56 static __inline char *
57 ahd_name(struct ahd_softc *ahd)
58 {
59 return (ahd->name);
60 }
61
62 /************************ Sequencer Execution Control *************************/
63 static __inline void ahd_known_modes(struct ahd_softc *, ahd_mode, ahd_mode);
64 static __inline ahd_mode_state ahd_build_mode_state(struct ahd_softc *,
65 ahd_mode, ahd_mode);
66 static __inline void ahd_extract_mode_state(struct ahd_softc *,
67 ahd_mode_state, ahd_mode *, ahd_mode *);
68 static __inline void ahd_set_modes(struct ahd_softc *, ahd_mode, ahd_mode);
69 static __inline void ahd_update_modes(struct ahd_softc *);
70 static __inline void ahd_assert_modes(struct ahd_softc *, ahd_mode,
71 ahd_mode, const char *, int);
72 static __inline ahd_mode_state ahd_save_modes(struct ahd_softc *);
73 static __inline void ahd_restore_modes(struct ahd_softc *, ahd_mode_state);
74 static __inline int ahd_is_paused(struct ahd_softc *);
75 static __inline void ahd_pause(struct ahd_softc *);
76 static __inline void ahd_unpause(struct ahd_softc *);
77
78 static __inline void
79 ahd_known_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
80 {
81 ahd->src_mode = src;
82 ahd->dst_mode = dst;
83 ahd->saved_src_mode = src;
84 ahd->saved_dst_mode = dst;
85 }
86
87 static __inline ahd_mode_state
88 ahd_build_mode_state(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
89 {
90 return ((src << SRC_MODE_SHIFT) | (dst << DST_MODE_SHIFT));
91 }
92
93 static __inline void
94 ahd_extract_mode_state(struct ahd_softc *ahd, ahd_mode_state state,
95 ahd_mode *src, ahd_mode *dst)
96 {
97 *src = (state & SRC_MODE) >> SRC_MODE_SHIFT;
98 *dst = (state & DST_MODE) >> DST_MODE_SHIFT;
99 }
100
101 static __inline void
102 ahd_set_modes(struct ahd_softc *ahd, ahd_mode src, ahd_mode dst)
103 {
104 if (ahd->src_mode == src && ahd->dst_mode == dst)
105 return;
106 #ifdef AHD_DEBUG
107 if (ahd->src_mode == AHD_MODE_UNKNOWN
108 || ahd->dst_mode == AHD_MODE_UNKNOWN)
109 panic("Setting mode prior to saving it.\n");
110 if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
111 printf("%s: Setting mode 0x%x\n", ahd_name(ahd),
112 ahd_build_mode_state(ahd, src, dst));
113 #endif
114 ahd_outb(ahd, MODE_PTR, ahd_build_mode_state(ahd, src, dst));
115 ahd->src_mode = src;
116 ahd->dst_mode = dst;
117 }
118
119 static __inline void
120 ahd_update_modes(struct ahd_softc *ahd)
121 {
122 ahd_mode_state mode_ptr;
123 ahd_mode src;
124 ahd_mode dst;
125
126 mode_ptr = ahd_inb(ahd, MODE_PTR);
127 #ifdef AHD_DEBUG
128 if ((ahd_debug & AHD_SHOW_MODEPTR) != 0)
129 printf("Reading mode 0x%x\n", mode_ptr);
130 #endif
131 ahd_extract_mode_state(ahd, mode_ptr, &src, &dst);
132 ahd_known_modes(ahd, src, dst);
133 }
134
135 static __inline void
136 ahd_assert_modes(struct ahd_softc *ahd, ahd_mode srcmode,
137 ahd_mode dstmode, const char *file, int line)
138 {
139 #ifdef AHD_DEBUG
140 if ((srcmode & AHD_MK_MSK(ahd->src_mode)) == 0
141 || (dstmode & AHD_MK_MSK(ahd->dst_mode)) == 0) {
142 panic("%s:%s:%d: Mode assertion failed.\n",
143 ahd_name(ahd), file, line);
144 }
145 #endif
146 }
147
148 static __inline ahd_mode_state
149 ahd_save_modes(struct ahd_softc *ahd)
150 {
151 if (ahd->src_mode == AHD_MODE_UNKNOWN
152 || ahd->dst_mode == AHD_MODE_UNKNOWN)
153 ahd_update_modes(ahd);
154
155 return (ahd_build_mode_state(ahd, ahd->src_mode, ahd->dst_mode));
156 }
157
158 static __inline void
159 ahd_restore_modes(struct ahd_softc *ahd, ahd_mode_state state)
160 {
161 ahd_mode src;
162 ahd_mode dst;
163
164 ahd_extract_mode_state(ahd, state, &src, &dst);
165 ahd_set_modes(ahd, src, dst);
166 }
167
168 #define AHD_ASSERT_MODES(ahd, source, dest) \
169 ahd_assert_modes(ahd, source, dest, __FILE__, __LINE__);
170
171 /*
172 * Determine whether the sequencer has halted code execution.
173 * Returns non-zero status if the sequencer is stopped.
174 */
175 static __inline int
176 ahd_is_paused(struct ahd_softc *ahd)
177 {
178 return ((ahd_inb(ahd, HCNTRL) & PAUSE) != 0);
179 }
180
181 /*
182 * Request that the sequencer stop and wait, indefinitely, for it
183 * to stop. The sequencer will only acknowledge that it is paused
184 * once it has reached an instruction boundary and PAUSEDIS is
185 * cleared in the SEQCTL register. The sequencer may use PAUSEDIS
186 * for critical sections.
187 */
188 static __inline void
189 ahd_pause(struct ahd_softc *ahd)
190 {
191 ahd_outb(ahd, HCNTRL, ahd->pause);
192
193 /*
194 * Since the sequencer can disable pausing in a critical section, we
195 * must loop until it actually stops.
196 */
197 while (ahd_is_paused(ahd) == 0)
198 ;
199 }
200
201 /*
202 * Allow the sequencer to continue program execution.
203 * We check here to ensure that no additional interrupt
204 * sources that would cause the sequencer to halt have been
205 * asserted. If, for example, a SCSI bus reset is detected
206 * while we are fielding a different, pausing, interrupt type,
207 * we don't want to release the sequencer before going back
208 * into our interrupt handler and dealing with this new
209 * condition.
210 */
211 static __inline void
212 ahd_unpause(struct ahd_softc *ahd)
213 {
214 /*
215 * Automatically restore our modes to those saved
216 * prior to the first change of the mode.
217 */
218 if (ahd->saved_src_mode != AHD_MODE_UNKNOWN
219 && ahd->saved_dst_mode != AHD_MODE_UNKNOWN) {
220 if ((ahd->flags & AHD_UPDATE_PEND_CMDS) != 0)
221 ahd_reset_cmds_pending(ahd);
222 ahd_set_modes(ahd, ahd->saved_src_mode, ahd->saved_dst_mode);
223 }
224
225 if ((ahd_inb(ahd, INTSTAT) & ~CMDCMPLT) == 0)
226 ahd_outb(ahd, HCNTRL, ahd->unpause);
227
228 ahd_known_modes(ahd, AHD_MODE_UNKNOWN, AHD_MODE_UNKNOWN);
229 }
230
231 /*********************** Scatter Gather List Handling *************************/
232 static __inline void *ahd_sg_setup(struct ahd_softc *, struct scb *,
233 void *, bus_addr_t, bus_size_t, int);
234 static __inline void ahd_setup_scb_common(struct ahd_softc *, struct scb *);
235 static __inline void ahd_setup_data_scb(struct ahd_softc *, struct scb *);
236 static __inline void ahd_setup_noxfer_scb(struct ahd_softc *, struct scb *);
237
238 static __inline void *
239 ahd_sg_setup(struct ahd_softc *ahd, struct scb *scb,
240 void *sgptr, bus_addr_t addr, bus_size_t len, int last)
241 {
242 scb->sg_count++;
243 if (sizeof(bus_addr_t) > 4
244 && (ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
245 struct ahd_dma64_seg *sg;
246
247 sg = (struct ahd_dma64_seg *)sgptr;
248 sg->addr = ahd_htole64(addr);
249 sg->len = ahd_htole32(len | (last ? AHD_DMA_LAST_SEG : 0));
250 return (sg + 1);
251 } else {
252 struct ahd_dma_seg *sg;
253
254 sg = (struct ahd_dma_seg *)sgptr;
255 sg->addr = ahd_htole32(addr & 0xFFFFFFFF);
256 sg->len = ahd_htole32(len | ((addr >> 8) & 0x7F000000)
257 | (last ? AHD_DMA_LAST_SEG : 0));
258 return (sg + 1);
259 }
260 }
261
262 static __inline void
263 ahd_setup_scb_common(struct ahd_softc *ahd, struct scb *scb)
264 {
265 /* XXX Handle target mode SCBs. */
266 scb->crc_retry_count = 0;
267 if ((scb->flags & SCB_PACKETIZED) != 0) {
268 /* XXX what about ACA?? It is type 4, but TAG_TYPE == 0x3. */
269 scb->hscb->task_attribute= scb->hscb->control & SCB_TAG_TYPE;
270 }
271
272 if (scb->hscb->cdb_len <= MAX_CDB_LEN_WITH_SENSE_ADDR
273 || (scb->hscb->cdb_len & SCB_CDB_LEN_PTR) != 0)
274 scb->hscb->shared_data.idata.cdb_plus_saddr.sense_addr =
275 ahd_htole32(scb->sense_busaddr);
276 }
277
278 static __inline void
279 ahd_setup_data_scb(struct ahd_softc *ahd, struct scb *scb)
280 {
281 /*
282 * Copy the first SG into the "current" data ponter area.
283 */
284 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0) {
285 struct ahd_dma64_seg *sg;
286
287 sg = (struct ahd_dma64_seg *)scb->sg_list;
288 scb->hscb->dataptr = sg->addr;
289 scb->hscb->datacnt = sg->len;
290 } else {
291 struct ahd_dma_seg *sg;
292 uint32_t *dataptr_words;
293
294 sg = (struct ahd_dma_seg *)scb->sg_list;
295 dataptr_words = (uint32_t*)&scb->hscb->dataptr;
296 dataptr_words[0] = sg->addr;
297 dataptr_words[1] = 0;
298 if ((ahd->flags & AHD_39BIT_ADDRESSING) != 0) {
299 uint64_t high_addr;
300
301 high_addr = ahd_le32toh(sg->len) & 0x7F000000;
302 scb->hscb->dataptr |= ahd_htole64(high_addr << 8);
303 }
304 scb->hscb->datacnt = sg->len;
305 }
306 /*
307 * Note where to find the SG entries in bus space.
308 * We also set the full residual flag which the
309 * sequencer will clear as soon as a data transfer
310 * occurs.
311 */
312 scb->hscb->sgptr = ahd_htole32(scb->sg_list_busaddr|SG_FULL_RESID);
313 }
314
315 static __inline void
316 ahd_setup_noxfer_scb(struct ahd_softc *ahd, struct scb *scb)
317 {
318 scb->hscb->sgptr = ahd_htole32(SG_LIST_NULL);
319 scb->hscb->dataptr = 0;
320 scb->hscb->datacnt = 0;
321 }
322
323 /************************** Memory mapping routines ***************************/
324 static __inline size_t ahd_sg_size(struct ahd_softc *);
325 static __inline void *
326 ahd_sg_bus_to_virt(struct ahd_softc *, struct scb *,
327 uint32_t);
328 static __inline uint32_t
329 ahd_sg_virt_to_bus(struct ahd_softc *, struct scb *,
330 void *);
331 static __inline void ahd_sync_scb(struct ahd_softc *, struct scb *, int);
332 static __inline void ahd_sync_sglist(struct ahd_softc *, struct scb *, int);
333 static __inline void ahd_sync_sense(struct ahd_softc *, struct scb *, int);
334 static __inline uint32_t
335 ahd_targetcmd_offset(struct ahd_softc *, u_int);
336
337 static __inline size_t
338 ahd_sg_size(struct ahd_softc *ahd)
339 {
340 if ((ahd->flags & AHD_64BIT_ADDRESSING) != 0)
341 return (sizeof(struct ahd_dma64_seg));
342 return (sizeof(struct ahd_dma_seg));
343 }
344
345 static __inline void *
346 ahd_sg_bus_to_virt(struct ahd_softc *ahd, struct scb *scb, uint32_t sg_busaddr)
347 {
348 bus_addr_t sg_offset;
349
350 /* sg_list_phys points to entry 1, not 0 */
351 sg_offset = sg_busaddr - (scb->sg_list_busaddr - ahd_sg_size(ahd));
352 return ((uint8_t *)scb->sg_list + sg_offset);
353 }
354
355 static __inline uint32_t
356 ahd_sg_virt_to_bus(struct ahd_softc *ahd, struct scb *scb, void *sg)
357 {
358 bus_addr_t sg_offset;
359
360 /* sg_list_phys points to entry 1, not 0 */
361 sg_offset = ((uint8_t *)sg - (uint8_t *)scb->sg_list)
362 - ahd_sg_size(ahd);
363
364 return (scb->sg_list_busaddr + sg_offset);
365 }
366
367 static __inline void
368 ahd_sync_scb(struct ahd_softc *ahd, struct scb *scb, int op)
369 {
370 ahd_dmamap_sync(ahd, ahd->parent_dmat, scb->hscb_map->dmamap,
371 /*offset*/(uint8_t*)scb->hscb - scb->hscb_map->vaddr,
372 /*len*/sizeof(*scb->hscb), op);
373 }
374
375 static __inline void
376 ahd_sync_sglist(struct ahd_softc *ahd, struct scb *scb, int op)
377 {
378 if (scb->sg_count == 0)
379 return;
380
381 ahd_dmamap_sync(ahd, ahd->parent_dmat, scb->sg_map->dmamap,
382 /*offset*/scb->sg_list_busaddr - ahd_sg_size(ahd),
383 /*len*/ahd_sg_size(ahd) * scb->sg_count, op);
384 }
385
386 static __inline void
387 ahd_sync_sense(struct ahd_softc *ahd, struct scb *scb, int op)
388 {
389 ahd_dmamap_sync(ahd, ahd->parent_dmat,
390 scb->sense_map->dmamap,
391 /*offset*/scb->sense_busaddr,
392 /*len*/AHD_SENSE_BUFSIZE, op);
393 }
394
395 static __inline uint32_t
396 ahd_targetcmd_offset(struct ahd_softc *ahd, u_int index)
397 {
398 return (((uint8_t *)&ahd->targetcmds[index])
399 - (uint8_t *)ahd->qoutfifo);
400 }
401
402 /*********************** Miscelaneous Support Functions ***********************/
403 static __inline void ahd_complete_scb(struct ahd_softc *, struct scb *);
404 static __inline void ahd_update_residual(struct ahd_softc *, struct scb *);
405 static __inline struct ahd_initiator_tinfo *
406 ahd_fetch_transinfo(struct ahd_softc *, char, u_int,
407 u_int, struct ahd_tmode_tstate **);
408 static __inline uint16_t
409 ahd_inw(struct ahd_softc *, u_int);
410 static __inline void ahd_outw(struct ahd_softc *, u_int, u_int);
411 static __inline uint32_t
412 ahd_inl(struct ahd_softc *, u_int);
413 static __inline void ahd_outl(struct ahd_softc *, u_int, uint32_t);
414 static __inline uint64_t
415 ahd_inq(struct ahd_softc *, u_int);
416 static __inline void ahd_outq(struct ahd_softc *, u_int, uint64_t);
417 static __inline u_int ahd_get_scbptr(struct ahd_softc *);
418 static __inline void ahd_set_scbptr(struct ahd_softc *, u_int);
419 static __inline u_int ahd_get_hnscb_qoff(struct ahd_softc *);
420 static __inline void ahd_set_hnscb_qoff(struct ahd_softc *, u_int);
421 static __inline u_int ahd_get_hescb_qoff(struct ahd_softc *);
422 static __inline void ahd_set_hescb_qoff(struct ahd_softc *, u_int);
423 static __inline u_int ahd_get_snscb_qoff(struct ahd_softc *);
424 static __inline void ahd_set_snscb_qoff(struct ahd_softc *, u_int);
425 static __inline u_int ahd_get_sescb_qoff(struct ahd_softc *);
426 static __inline void ahd_set_sescb_qoff(struct ahd_softc *, u_int);
427 static __inline u_int ahd_get_sdscb_qoff(struct ahd_softc *);
428 static __inline void ahd_set_sdscb_qoff(struct ahd_softc *, u_int);
429 static __inline u_int ahd_inb_scbram(struct ahd_softc *, u_int);
430 static __inline u_int ahd_inw_scbram(struct ahd_softc *, u_int);
431 static __inline uint32_t
432 ahd_inl_scbram(struct ahd_softc *, u_int);
433 static __inline void ahd_swap_with_next_hscb(struct ahd_softc *,
434 struct scb *);
435 static __inline void ahd_queue_scb(struct ahd_softc *, struct scb *);
436 static __inline uint8_t *
437 ahd_get_sense_buf(struct ahd_softc *, struct scb *);
438 static __inline uint32_t
439 ahd_get_sense_bufaddr(struct ahd_softc *, struct scb *);
440 static __inline void ahd_post_scb(struct ahd_softc *, struct scb *);
441
442
443 static __inline void
444 ahd_post_scb(struct ahd_softc *ahd, struct scb *scb)
445 {
446 uint32_t sgptr;
447
448 sgptr = ahd_le32toh(scb->hscb->sgptr);
449 if ((sgptr & SG_STATUS_VALID) != 0)
450 ahd_handle_scb_status(ahd, scb);
451 else
452 ahd_done(ahd, scb);
453 }
454
455 static __inline void
456 ahd_complete_scb(struct ahd_softc *ahd, struct scb *scb)
457 {
458 uint32_t sgptr;
459
460 sgptr = ahd_le32toh(scb->hscb->sgptr);
461 if ((sgptr & SG_STATUS_VALID) != 0)
462 ahd_handle_scb_status(ahd, scb);
463 else
464 ahd_done(ahd, scb);
465 }
466
467 /*
468 * Determine whether the sequencer reported a residual
469 * for this SCB/transaction.
470 */
471 static __inline void
472 ahd_update_residual(struct ahd_softc *ahd, struct scb *scb)
473 {
474 uint32_t sgptr;
475
476 sgptr = ahd_le32toh(scb->hscb->sgptr);
477 if ((sgptr & SG_STATUS_VALID) != 0)
478 ahd_calc_residual(ahd, scb);
479 }
480
481 /*
482 * Return pointers to the transfer negotiation information
483 * for the specified our_id/remote_id pair.
484 */
485 static __inline struct ahd_initiator_tinfo *
486 ahd_fetch_transinfo(struct ahd_softc *ahd, char channel, u_int our_id,
487 u_int remote_id, struct ahd_tmode_tstate **tstate)
488 {
489 /*
490 * Transfer data structures are stored from the perspective
491 * of the target role. Since the parameters for a connection
492 * in the initiator role to a given target are the same as
493 * when the roles are reversed, we pretend we are the target.
494 */
495 if (channel == 'B')
496 our_id += 8;
497 *tstate = ahd->enabled_targets[our_id];
498 return (&(*tstate)->transinfo[remote_id]);
499 }
500
501 #define AHD_COPY_COL_IDX(dst, src) \
502 do { \
503 dst->hscb->scsiid = src->hscb->scsiid; \
504 dst->hscb->lun = src->hscb->lun; \
505 } while (0)
506
507 static __inline uint16_t
508 ahd_inw(struct ahd_softc *ahd, u_int port)
509 {
510 return ((ahd_inb(ahd, port+1) << 8) | ahd_inb(ahd, port));
511 }
512
513 static __inline void
514 ahd_outw(struct ahd_softc *ahd, u_int port, u_int value)
515 {
516 ahd_outb(ahd, port, value & 0xFF);
517 ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
518 }
519
520 static __inline uint32_t
521 ahd_inl(struct ahd_softc *ahd, u_int port)
522 {
523 return ((ahd_inb(ahd, port))
524 | (ahd_inb(ahd, port+1) << 8)
525 | (ahd_inb(ahd, port+2) << 16)
526 | (ahd_inb(ahd, port+3) << 24));
527 }
528
529 static __inline void
530 ahd_outl(struct ahd_softc *ahd, u_int port, uint32_t value)
531 {
532 ahd_outb(ahd, port, (value) & 0xFF);
533 ahd_outb(ahd, port+1, ((value) >> 8) & 0xFF);
534 ahd_outb(ahd, port+2, ((value) >> 16) & 0xFF);
535 ahd_outb(ahd, port+3, ((value) >> 24) & 0xFF);
536 }
537
538 static __inline uint64_t
539 ahd_inq(struct ahd_softc *ahd, u_int port)
540 {
541 return ((ahd_inb(ahd, port))
542 | (ahd_inb(ahd, port+1) << 8)
543 | (ahd_inb(ahd, port+2) << 16)
544 | (ahd_inb(ahd, port+3) << 24)
545 | (((uint64_t)ahd_inb(ahd, port+4)) << 32)
546 | (((uint64_t)ahd_inb(ahd, port+5)) << 40)
547 | (((uint64_t)ahd_inb(ahd, port+6)) << 48)
548 | (((uint64_t)ahd_inb(ahd, port+7)) << 56));
549 }
550
551 static __inline void
552 ahd_outq(struct ahd_softc *ahd, u_int port, uint64_t value)
553 {
554 ahd_outb(ahd, port, value & 0xFF);
555 ahd_outb(ahd, port+1, (value >> 8) & 0xFF);
556 ahd_outb(ahd, port+2, (value >> 16) & 0xFF);
557 ahd_outb(ahd, port+3, (value >> 24) & 0xFF);
558 ahd_outb(ahd, port+4, (value >> 32) & 0xFF);
559 ahd_outb(ahd, port+5, (value >> 40) & 0xFF);
560 ahd_outb(ahd, port+6, (value >> 48) & 0xFF);
561 ahd_outb(ahd, port+7, (value >> 56) & 0xFF);
562 }
563
564 static __inline u_int
565 ahd_get_scbptr(struct ahd_softc *ahd)
566 {
567 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
568 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
569 return (ahd_inb(ahd, SCBPTR) | (ahd_inb(ahd, SCBPTR + 1) << 8));
570 }
571
572 static __inline void
573 ahd_set_scbptr(struct ahd_softc *ahd, u_int scbptr)
574 {
575 AHD_ASSERT_MODES(ahd, ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK),
576 ~(AHD_MODE_UNKNOWN_MSK|AHD_MODE_CFG_MSK));
577 ahd_outb(ahd, SCBPTR, scbptr & 0xFF);
578 ahd_outb(ahd, SCBPTR+1, (scbptr >> 8) & 0xFF);
579 }
580
581 static __inline u_int
582 ahd_get_hnscb_qoff(struct ahd_softc *ahd)
583 {
584 return (ahd_inw_atomic(ahd, HNSCB_QOFF));
585 }
586
587 static __inline void
588 ahd_set_hnscb_qoff(struct ahd_softc *ahd, u_int value)
589 {
590 ahd_outw_atomic(ahd, HNSCB_QOFF, value);
591 }
592
593 static __inline u_int
594 ahd_get_hescb_qoff(struct ahd_softc *ahd)
595 {
596 return (ahd_inb(ahd, HESCB_QOFF));
597 }
598
599 static __inline void
600 ahd_set_hescb_qoff(struct ahd_softc *ahd, u_int value)
601 {
602 ahd_outb(ahd, HESCB_QOFF, value);
603 }
604
605 static __inline u_int
606 ahd_get_snscb_qoff(struct ahd_softc *ahd)
607 {
608 u_int oldvalue;
609
610 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
611 oldvalue = ahd_inw(ahd, SNSCB_QOFF);
612 ahd_outw(ahd, SNSCB_QOFF, oldvalue);
613 return (oldvalue);
614 }
615
616 static __inline void
617 ahd_set_snscb_qoff(struct ahd_softc *ahd, u_int value)
618 {
619 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
620 ahd_outw(ahd, SNSCB_QOFF, value);
621 }
622
623 static __inline u_int
624 ahd_get_sescb_qoff(struct ahd_softc *ahd)
625 {
626 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
627 return (ahd_inb(ahd, SESCB_QOFF));
628 }
629
630 static __inline void
631 ahd_set_sescb_qoff(struct ahd_softc *ahd, u_int value)
632 {
633 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
634 ahd_outb(ahd, SESCB_QOFF, value);
635 }
636
637 static __inline u_int
638 ahd_get_sdscb_qoff(struct ahd_softc *ahd)
639 {
640 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
641 return (ahd_inb(ahd, SDSCB_QOFF) | (ahd_inb(ahd, SDSCB_QOFF + 1) << 8));
642 }
643
644 static __inline void
645 ahd_set_sdscb_qoff(struct ahd_softc *ahd, u_int value)
646 {
647 AHD_ASSERT_MODES(ahd, AHD_MODE_CCHAN_MSK, AHD_MODE_CCHAN_MSK);
648 ahd_outb(ahd, SDSCB_QOFF, value & 0xFF);
649 ahd_outb(ahd, SDSCB_QOFF+1, (value >> 8) & 0xFF);
650 }
651
652 static __inline u_int
653 ahd_inb_scbram(struct ahd_softc *ahd, u_int offset)
654 {
655 u_int value;
656
657 /*
658 * Workaround PCI-X Rev A. hardware bug.
659 * After a host read of SCB memory, the chip
660 * may become confused into thinking prefetch
661 * was required. This starts the discard timer
662 * running and can cause an unexpected discard
663 * timer interrupt. The work around is to read
664 * a normal register prior to the exhaustion of
665 * the discard timer. The mode pointer register
666 * has no side effects and so serves well for
667 * this purpose.
668 *
669 * Razor #528
670 */
671 value = ahd_inb(ahd, offset);
672 if ((ahd->flags & AHD_PCIX_SCBRAM_RD_BUG) != 0)
673 ahd_inb(ahd, MODE_PTR);
674 return (value);
675 }
676
677 static __inline u_int
678 ahd_inw_scbram(struct ahd_softc *ahd, u_int offset)
679 {
680 return (ahd_inb_scbram(ahd, offset)
681 | (ahd_inb_scbram(ahd, offset+1) << 8));
682 }
683
684 static __inline uint32_t
685 ahd_inl_scbram(struct ahd_softc *ahd, u_int offset)
686 {
687 return (ahd_inb_scbram(ahd, offset)
688 | (ahd_inb_scbram(ahd, offset+1) << 8)
689 | (ahd_inb_scbram(ahd, offset+2) << 16)
690 | (ahd_inb_scbram(ahd, offset+3) << 24));
691 }
692
693 static __inline struct scb *
694 ahd_lookup_scb(struct ahd_softc *ahd, u_int tag)
695 {
696 struct scb* scb;
697
698 if (tag >= AHD_SCB_MAX)
699 return (NULL);
700 scb = ahd->scb_data.scbindex[tag];
701 if (scb != NULL)
702 ahd_sync_scb(ahd, scb,
703 BUS_DMASYNC_POSTREAD|BUS_DMASYNC_POSTWRITE);
704 return (scb);
705 }
706
707 static __inline void
708 ahd_swap_with_next_hscb(struct ahd_softc *ahd, struct scb *scb)
709 {
710 struct hardware_scb *q_hscb;
711 struct map_node *q_hscb_map;
712 uint32_t saved_hscb_busaddr;
713
714 /*
715 * Our queuing method is a bit tricky. The card
716 * knows in advance which HSCB (by address) to download,
717 * and we can't disappoint it. To achieve this, the next
718 * HSCB to download is saved off in ahd->next_queued_hscb.
719 * When we are called to queue "an arbitrary scb",
720 * we copy the contents of the incoming HSCB to the one
721 * the sequencer knows about, swap HSCB pointers and
722 * finally assign the SCB to the tag indexed location
723 * in the scb_array. This makes sure that we can still
724 * locate the correct SCB by SCB_TAG.
725 */
726 q_hscb = ahd->next_queued_hscb;
727 q_hscb_map = ahd->next_queued_hscb_map;
728 saved_hscb_busaddr = q_hscb->hscb_busaddr;
729 memcpy(q_hscb, scb->hscb, sizeof(*scb->hscb));
730 q_hscb->hscb_busaddr = saved_hscb_busaddr;
731 q_hscb->next_hscb_busaddr = scb->hscb->hscb_busaddr;
732
733 /* Now swap HSCB pointers. */
734 ahd->next_queued_hscb = scb->hscb;
735 ahd->next_queued_hscb_map = scb->hscb_map;
736 scb->hscb = q_hscb;
737 scb->hscb_map = q_hscb_map;
738
739 KASSERT((vaddr_t)scb->hscb >= (vaddr_t)scb->hscb_map->vaddr &&
740 (vaddr_t)scb->hscb < (vaddr_t)scb->hscb_map->vaddr + PAGE_SIZE);
741
742 /* Now define the mapping from tag to SCB in the scbindex */
743 ahd->scb_data.scbindex[SCB_GET_TAG(scb)] = scb;
744 }
745
746 /*
747 * Tell the sequencer about a new transaction to execute.
748 */
749 static __inline void
750 ahd_queue_scb(struct ahd_softc *ahd, struct scb *scb)
751 {
752 ahd_swap_with_next_hscb(ahd, scb);
753
754 if (SCBID_IS_NULL(SCB_GET_TAG(scb)))
755 panic("Attempt to queue invalid SCB tag %x\n",
756 SCB_GET_TAG(scb));
757
758 /*
759 * Keep a history of SCBs we've downloaded in the qinfifo.
760 */
761 ahd->qinfifo[AHD_QIN_WRAP(ahd->qinfifonext)] = SCB_GET_TAG(scb);
762 ahd->qinfifonext++;
763
764 if (scb->sg_count != 0)
765 ahd_setup_data_scb(ahd, scb);
766 else
767 ahd_setup_noxfer_scb(ahd, scb);
768 ahd_setup_scb_common(ahd, scb);
769
770 /*
771 * Make sure our data is consistent from the
772 * perspective of the adapter.
773 */
774 ahd_sync_scb(ahd, scb, BUS_DMASYNC_PREREAD|BUS_DMASYNC_PREWRITE);
775
776 #ifdef AHD_DEBUG
777 if ((ahd_debug & AHD_SHOW_QUEUE) != 0) {
778 uint64_t host_dataptr;
779
780 host_dataptr = ahd_le64toh(scb->hscb->dataptr);
781 printf("%s: Queueing SCB 0x%x bus addr 0x%x - 0x%x%x/0x%x\n",
782 ahd_name(ahd),
783 SCB_GET_TAG(scb), ahd_le32toh(scb->hscb->hscb_busaddr),
784 (u_int)((host_dataptr >> 32) & 0xFFFFFFFF),
785 (u_int)(host_dataptr & 0xFFFFFFFF),
786 ahd_le32toh(scb->hscb->datacnt));
787 }
788 #endif
789 /* Tell the adapter about the newly queued SCB */
790 ahd_set_hnscb_qoff(ahd, ahd->qinfifonext);
791 }
792
793 static __inline uint8_t *
794 ahd_get_sense_buf(struct ahd_softc *ahd, struct scb *scb)
795 {
796 return (scb->sense_data);
797 }
798
799 static __inline uint32_t
800 ahd_get_sense_bufaddr(struct ahd_softc *ahd, struct scb *scb)
801 {
802 return (scb->sense_busaddr);
803 }
804
805 /************************** Interrupt Processing ******************************/
806 static __inline void ahd_sync_qoutfifo(struct ahd_softc *, int);
807 static __inline void ahd_sync_tqinfifo(struct ahd_softc *, int);
808 static __inline u_int ahd_check_cmdcmpltqueues(struct ahd_softc *);
809 static __inline int ahd_intr(void *);
810 static __inline void ahd_minphys(struct buf *);
811
812 static __inline void
813 ahd_sync_qoutfifo(struct ahd_softc *ahd, int op)
814 {
815 ahd_dmamap_sync(ahd, ahd->parent_dmat, ahd->shared_data_map.dmamap,
816 /*offset*/0, /*len*/AHD_SCB_MAX * sizeof(uint16_t), op);
817 }
818
819 static __inline void
820 ahd_sync_tqinfifo(struct ahd_softc *ahd, int op)
821 {
822 #ifdef AHD_TARGET_MODE
823 if ((ahd->flags & AHD_TARGETROLE) != 0) {
824 ahd_dmamap_sync(ahd, ahd->parent_dmat /*shared_data_dmat*/,
825 ahd->shared_data_map.dmamap,
826 ahd_targetcmd_offset(ahd, 0),
827 sizeof(struct target_cmd) * AHD_TMODE_CMDS,
828 op);
829 }
830 #endif
831 }
832
833 /*
834 * See if the firmware has posted any completed commands
835 * into our in-core command complete fifos.
836 */
837 #define AHD_RUN_QOUTFIFO 0x1
838 #define AHD_RUN_TQINFIFO 0x2
839 static __inline u_int
840 ahd_check_cmdcmpltqueues(struct ahd_softc *ahd)
841 {
842 u_int retval;
843
844 retval = 0;
845 ahd_dmamap_sync(ahd, ahd->parent_dmat /*shared_data_dmat*/, ahd->shared_data_map.dmamap,
846 /*offset*/ahd->qoutfifonext, /*len*/2,
847 BUS_DMASYNC_POSTREAD);
848 if ((ahd->qoutfifo[ahd->qoutfifonext]
849 & QOUTFIFO_ENTRY_VALID_LE) == ahd->qoutfifonext_valid_tag)
850 retval |= AHD_RUN_QOUTFIFO;
851 #ifdef AHD_TARGET_MODE
852 if ((ahd->flags & AHD_TARGETROLE) != 0
853 && (ahd->flags & AHD_TQINFIFO_BLOCKED) == 0) {
854 ahd_dmamap_sync(ahd, ahd->parent_dmat /*shared_data_dmat*/,
855 ahd->shared_data_map.dmamap,
856 ahd_targetcmd_offset(ahd, ahd->tqinfifofnext),
857 /*len*/sizeof(struct target_cmd),
858 BUS_DMASYNC_POSTREAD);
859 if (ahd->targetcmds[ahd->tqinfifonext].cmd_valid != 0)
860 retval |= AHD_RUN_TQINFIFO;
861 }
862 #endif
863 return (retval);
864 }
865
866 /*
867 * Catch an interrupt from the adapter
868 */
869 static __inline int
870 ahd_intr(void *arg)
871 {
872 struct ahd_softc *ahd = (struct ahd_softc*)arg;
873 u_int intstat;
874
875 if ((ahd->pause & INTEN) == 0) {
876 /*
877 * Our interrupt is not enabled on the chip
878 * and may be disabled for re-entrancy reasons,
879 * so just return. This is likely just a shared
880 * interrupt.
881 */
882 return (0);
883 }
884
885 /*
886 * Instead of directly reading the interrupt status register,
887 * infer the cause of the interrupt by checking our in-core
888 * completion queues. This avoids a costly PCI bus read in
889 * most cases.
890 */
891 if ((ahd->flags & AHD_ALL_INTERRUPTS) == 0
892 && (ahd_check_cmdcmpltqueues(ahd) != 0))
893 intstat = CMDCMPLT;
894 else
895 intstat = ahd_inb(ahd, INTSTAT);
896
897 if ((intstat & INT_PEND) == 0)
898 return (0);
899
900 if (intstat & CMDCMPLT) {
901 ahd_outb(ahd, CLRINT, CLRCMDINT);
902
903 /*
904 * Ensure that the chip sees that we've cleared
905 * this interrupt before we walk the output fifo.
906 * Otherwise, we may, due to posted bus writes,
907 * clear the interrupt after we finish the scan,
908 * and after the sequencer has added new entries
909 * and asserted the interrupt again.
910 */
911 if ((ahd->bugs & AHD_INTCOLLISION_BUG) != 0) {
912 if (ahd_is_paused(ahd)) {
913 /*
914 * Potentially lost SEQINT.
915 * If SEQINTCODE is non-zero,
916 * simulate the SEQINT.
917 */
918 if (ahd_inb(ahd, SEQINTCODE) != NO_SEQINT)
919 intstat |= SEQINT;
920 }
921 } else {
922 ahd_flush_device_writes(ahd);
923 }
924 scsipi_channel_freeze(&ahd->sc_channel, 1);
925 ahd_run_qoutfifo(ahd);
926 scsipi_channel_thaw(&ahd->sc_channel, 1);
927 ahd->cmdcmplt_counts[ahd->cmdcmplt_bucket]++;
928 ahd->cmdcmplt_total++;
929 #ifdef AHD_TARGET_MODE
930 if ((ahd->flags & AHD_TARGETROLE) != 0)
931 ahd_run_tqinfifo(ahd, /*paused*/FALSE);
932 #endif
933 if (intstat == CMDCMPLT)
934 return 1;
935 }
936
937 /*
938 * Handle statuses that may invalidate our cached
939 * copy of INTSTAT separately.
940 */
941 if (intstat == 0xFF && (ahd->features & AHD_REMOVABLE) != 0) {
942 /* Hot eject. Do nothing */
943 } else if (intstat & HWERRINT) {
944 ahd_handle_hwerrint(ahd);
945 } else if ((intstat & (PCIINT|SPLTINT)) != 0) {
946 ahd->bus_intr(ahd);
947 } else {
948
949 if ((intstat & SEQINT) != 0)
950 ahd_handle_seqint(ahd, intstat);
951
952 if ((intstat & SCSIINT) != 0)
953 ahd_handle_scsiint(ahd, intstat);
954 }
955
956 return (1);
957 }
958
959 static __inline void
960 ahd_minphys(bp)
961 struct buf *bp;
962 {
963 /*
964 * Even though the card can transfer up to 16megs per command
965 * we are limited by the number of segments in the DMA segment
966 * list that we can hold. The worst case is that all pages are
967 * discontinuous physically, hense the "page per segment" limit
968 * enforced here.
969 */
970 if (bp->b_bcount > AHD_MAXTRANSFER_SIZE) {
971 bp->b_bcount = AHD_MAXTRANSFER_SIZE;
972 }
973 minphys(bp);
974 }
975
976 static __inline u_int32_t scsi_4btoul(u_int8_t *);
977
978 static __inline u_int32_t
979 scsi_4btoul(u_int8_t *bytes)
980 {
981 u_int32_t rv;
982
983 rv = (bytes[0] << 24) |
984 (bytes[1] << 16) |
985 (bytes[2] << 8) |
986 bytes[3];
987 return (rv);
988 }
989
990
991 #endif /* _AIC79XX_INLINE_H_ */
992