Home | History | Annotate | Line # | Download | only in ic
      1 /*	$NetBSD: arn9003.c,v 1.17 2024/07/05 04:31:50 rin Exp $	*/
      2 /*	$OpenBSD: ar9003.c,v 1.25 2012/10/20 09:53:32 stsp Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2010 Damien Bergamini <damien.bergamini (at) free.fr>
      6  * Copyright (c) 2010 Atheros Communications Inc.
      7  *
      8  * Permission to use, copy, modify, and/or distribute this software for any
      9  * purpose with or without fee is hereby granted, provided that the above
     10  * copyright notice and this permission notice appear in all copies.
     11  *
     12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     19  */
     20 
     21 /*
     22  * Driver for Atheros 802.11a/g/n chipsets.
     23  * Routines for AR9003 family.
     24  */
     25 
     26 #include <sys/cdefs.h>
     27 __KERNEL_RCSID(0, "$NetBSD: arn9003.c,v 1.17 2024/07/05 04:31:50 rin Exp $");
     28 
     29 #include <sys/param.h>
     30 #include <sys/sockio.h>
     31 #include <sys/mbuf.h>
     32 #include <sys/kernel.h>
     33 #include <sys/socket.h>
     34 #include <sys/systm.h>
     35 #include <sys/malloc.h>
     36 #include <sys/queue.h>
     37 #include <sys/callout.h>
     38 #include <sys/conf.h>
     39 #include <sys/device.h>
     40 
     41 #include <sys/bus.h>
     42 #include <sys/endian.h>
     43 #include <sys/intr.h>
     44 
     45 #include <net/bpf.h>
     46 #include <net/if.h>
     47 #include <net/if_arp.h>
     48 #include <net/if_dl.h>
     49 #include <net/if_ether.h>
     50 #include <net/if_media.h>
     51 #include <net/if_types.h>
     52 
     53 #include <netinet/in.h>
     54 #include <netinet/in_systm.h>
     55 #include <netinet/in_var.h>
     56 #include <netinet/ip.h>
     57 
     58 #include <net80211/ieee80211_var.h>
     59 #include <net80211/ieee80211_amrr.h>
     60 #include <net80211/ieee80211_radiotap.h>
     61 
     62 #include <dev/ic/athnreg.h>
     63 #include <dev/ic/athnvar.h>
     64 #include <dev/ic/arn9003reg.h>
     65 #include <dev/ic/arn9003.h>
     66 
     67 #define Static static
     68 
     69 Static void	ar9003_calib_iq(struct athn_softc *);
     70 Static int	ar9003_calib_tx_iq(struct athn_softc *);
     71 Static int	ar9003_compute_predistortion(struct athn_softc *,
     72 		    const uint32_t *, const uint32_t *);
     73 Static void	ar9003_disable_ofdm_weak_signal(struct athn_softc *);
     74 Static void	ar9003_disable_phy(struct athn_softc *);
     75 Static int	ar9003_dma_alloc(struct athn_softc *);
     76 Static void	ar9003_dma_free(struct athn_softc *);
     77 Static void	ar9003_do_calib(struct athn_softc *);
     78 Static void	ar9003_do_noisefloor_calib(struct athn_softc *);
     79 Static void	ar9003_enable_antenna_diversity(struct athn_softc *);
     80 Static void	ar9003_enable_ofdm_weak_signal(struct athn_softc *);
     81 Static void	ar9003_enable_predistorter(struct athn_softc *, int);
     82 Static int	ar9003_find_rom(struct athn_softc *);
     83 Static void	ar9003_force_txgain(struct athn_softc *, uint32_t);
     84 Static int	ar9003_get_desired_txgain(struct athn_softc *, int, int);
     85 Static int	ar9003_get_iq_corr(struct athn_softc *, int32_t[6], int32_t[2]);
     86 Static void	ar9003_gpio_config_input(struct athn_softc *, int);
     87 Static void	ar9003_gpio_config_output(struct athn_softc *, int, int);
     88 Static int	ar9003_gpio_read(struct athn_softc *, int);
     89 Static void	ar9003_gpio_write(struct athn_softc *, int, int);
     90 Static void	ar9003_hw_init(struct athn_softc *, struct ieee80211_channel *,
     91 		    struct ieee80211_channel *);
     92 Static void	ar9003_init_baseband(struct athn_softc *);
     93 Static void	ar9003_init_chains(struct athn_softc *);
     94 Static int	ar9003_intr_status(struct athn_softc *);
     95 Static int	ar9003_intr(struct athn_softc *);
     96 Static void	ar9003_next_calib(struct athn_softc *);
     97 Static void	ar9003_paprd_enable(struct athn_softc *);
     98 Static int	ar9003_paprd_tx_tone(struct athn_softc *);
     99 Static void	ar9003_paprd_tx_tone_done(struct athn_softc *);
    100 Static int	ar9003_read_eep_data(struct athn_softc *, uint32_t, void *,
    101 		    int);
    102 Static int	ar9003_read_eep_word(struct athn_softc *, uint32_t,
    103 		    uint16_t *);
    104 Static int	ar9003_read_otp_data(struct athn_softc *, uint32_t, void *,
    105 		    int);
    106 Static int	ar9003_read_otp_word(struct athn_softc *, uint32_t,
    107 		    uint32_t *);
    108 Static int	ar9003_read_rom(struct athn_softc *);
    109 Static void	ar9003_reset_rx_gain(struct athn_softc *,
    110 		    struct ieee80211_channel *);
    111 Static void	ar9003_reset_tx_gain(struct athn_softc *,
    112 		    struct ieee80211_channel *);
    113 Static int	ar9003_restore_rom_block(struct athn_softc *, uint8_t,
    114 		    uint8_t, const uint8_t *, size_t);
    115 Static void	ar9003_rf_bus_release(struct athn_softc *);
    116 Static int	ar9003_rf_bus_request(struct athn_softc *);
    117 Static void	ar9003_rfsilent_init(struct athn_softc *);
    118 Static int	ar9003_rx_alloc(struct athn_softc *, int, int);
    119 Static void	ar9003_rx_enable(struct athn_softc *);
    120 Static void	ar9003_rx_free(struct athn_softc *, int);
    121 Static void	ar9003_rx_intr(struct athn_softc *, int);
    122 Static int	ar9003_rx_process(struct athn_softc *, int);
    123 Static void	ar9003_rx_radiotap(struct athn_softc *, struct mbuf *,
    124 		    struct ar_rx_status *);
    125 Static void	ar9003_set_cck_weak_signal(struct athn_softc *, int);
    126 Static void	ar9003_set_delta_slope(struct athn_softc *,
    127 		    struct ieee80211_channel *, struct ieee80211_channel *);
    128 Static void	ar9003_set_firstep_level(struct athn_softc *, int);
    129 Static void	ar9003_set_noise_immunity_level(struct athn_softc *, int);
    130 Static void	ar9003_set_phy(struct athn_softc *, struct ieee80211_channel *,
    131 		    struct ieee80211_channel *);
    132 Static void	ar9003_set_rf_mode(struct athn_softc *,
    133 		    struct ieee80211_channel *);
    134 Static void	ar9003_set_rxchains(struct athn_softc *);
    135 Static void	ar9003_set_spur_immunity_level(struct athn_softc *, int);
    136 Static void	ar9003_set_training_gain(struct athn_softc *, int);
    137 Static int	ar9003_swba_intr(struct athn_softc *);
    138 Static int	ar9003_tx(struct athn_softc *, struct mbuf *,
    139 		    struct ieee80211_node *, int);
    140 Static int	ar9003_tx_alloc(struct athn_softc *);
    141 Static void	ar9003_tx_free(struct athn_softc *);
    142 Static void	ar9003_tx_intr(struct athn_softc *);
    143 Static int	ar9003_tx_process(struct athn_softc *);
    144 
    145 #ifdef notused
    146 Static void	ar9003_bb_load_noisefloor(struct athn_softc *);
    147 Static void	ar9003_get_noisefloor(struct athn_softc *,
    148 		    struct ieee80211_channel *);
    149 Static void	ar9003_paprd_calib(struct athn_softc *,
    150 		    struct ieee80211_channel *);
    151 Static void	ar9003_read_noisefloor(struct athn_softc *, int16_t *,
    152 		    int16_t *);
    153 Static void	ar9003_write_noisefloor(struct athn_softc *, int16_t *,
    154 		    int16_t *);
    155 Static void	ar9300_noisefloor_calib(struct athn_softc *);
    156 #endif /* notused */
    157 
    158 /*
    159  * XXX: See if_iwn.c:MCLGETIalt() for a better solution.
    160  * XXX: Put this in a header or in athn.c so it can be shared between
    161  *      ar5008.c and ar9003.c?
    162  */
    163 static struct mbuf *
    164 MCLGETI(struct athn_softc *sc __unused, int how,
    165     struct ifnet *ifp __unused, u_int size)
    166 {
    167 	struct mbuf *m;
    168 
    169 	MGETHDR(m, how, MT_DATA);
    170 	if (m == NULL)
    171 		return NULL;
    172 
    173 	MEXTMALLOC(m, size, how);
    174 	if ((m->m_flags & M_EXT) == 0) {
    175 		m_freem(m);
    176 		return NULL;
    177 	}
    178 	return m;
    179 }
    180 
    181 PUBLIC int
    182 ar9003_attach(struct athn_softc *sc)
    183 {
    184 	struct athn_ops *ops = &sc->sc_ops;
    185 	int error;
    186 
    187 	/* Set callbacks for AR9003 family. */
    188 	ops->gpio_read = ar9003_gpio_read;
    189 	ops->gpio_write = ar9003_gpio_write;
    190 	ops->gpio_config_input = ar9003_gpio_config_input;
    191 	ops->gpio_config_output = ar9003_gpio_config_output;
    192 	ops->rfsilent_init = ar9003_rfsilent_init;
    193 
    194 	ops->dma_alloc = ar9003_dma_alloc;
    195 	ops->dma_free = ar9003_dma_free;
    196 	ops->rx_enable = ar9003_rx_enable;
    197 	ops->intr_status = ar9003_intr_status;
    198 	ops->intr = ar9003_intr;
    199 	ops->tx = ar9003_tx;
    200 
    201 	ops->set_rf_mode = ar9003_set_rf_mode;
    202 	ops->rf_bus_request = ar9003_rf_bus_request;
    203 	ops->rf_bus_release = ar9003_rf_bus_release;
    204 	ops->set_phy = ar9003_set_phy;
    205 	ops->set_delta_slope = ar9003_set_delta_slope;
    206 	ops->enable_antenna_diversity = ar9003_enable_antenna_diversity;
    207 	ops->init_baseband = ar9003_init_baseband;
    208 	ops->disable_phy = ar9003_disable_phy;
    209 	ops->set_rxchains = ar9003_set_rxchains;
    210 	ops->noisefloor_calib = ar9003_do_noisefloor_calib;
    211 	ops->do_calib = ar9003_do_calib;
    212 	ops->next_calib = ar9003_next_calib;
    213 	ops->hw_init = ar9003_hw_init;
    214 
    215 	ops->set_noise_immunity_level = ar9003_set_noise_immunity_level;
    216 	ops->enable_ofdm_weak_signal = ar9003_enable_ofdm_weak_signal;
    217 	ops->disable_ofdm_weak_signal = ar9003_disable_ofdm_weak_signal;
    218 	ops->set_cck_weak_signal = ar9003_set_cck_weak_signal;
    219 	ops->set_firstep_level = ar9003_set_firstep_level;
    220 	ops->set_spur_immunity_level = ar9003_set_spur_immunity_level;
    221 
    222 	/* Set MAC registers offsets. */
    223 	sc->sc_obs_off = AR_OBS;
    224 	sc->sc_gpio_input_en_off = AR_GPIO_INPUT_EN_VAL;
    225 
    226 	if (!(sc->sc_flags & ATHN_FLAG_PCIE))
    227 		athn_config_nonpcie(sc);
    228 	else
    229 		athn_config_pcie(sc);
    230 
    231 	/* Determine ROM type and location. */
    232 	if ((error = ar9003_find_rom(sc)) != 0) {
    233 		aprint_error_dev(sc->sc_dev, "could not find ROM\n");
    234 		return error;
    235 	}
    236 	/* Read entire ROM content in memory. */
    237 	if ((error = ar9003_read_rom(sc)) != 0) {
    238 		aprint_error_dev(sc->sc_dev, "could not read ROM\n");
    239 		return error;
    240 	}
    241 
    242 	/* Determine if it is a non-enterprise AR9003 card. */
    243 	if (AR_READ(sc, AR_ENT_OTP) & AR_ENT_OTP_MPSD)
    244 		sc->sc_flags |= ATHN_FLAG_NON_ENTERPRISE;
    245 
    246 	ops->setup(sc);
    247 	return 0;
    248 }
    249 
    250 /*
    251  * Read 16-bit word from EEPROM.
    252  */
    253 Static int
    254 ar9003_read_eep_word(struct athn_softc *sc, uint32_t addr, uint16_t *val)
    255 {
    256 	uint32_t reg;
    257 	int ntries;
    258 
    259 	reg = AR_READ(sc, AR_EEPROM_OFFSET(addr));
    260 	for (ntries = 0; ntries < 1000; ntries++) {
    261 		reg = AR_READ(sc, AR_EEPROM_STATUS_DATA);
    262 		if (!(reg & (AR_EEPROM_STATUS_DATA_BUSY |
    263 		    AR_EEPROM_STATUS_DATA_PROT_ACCESS))) {
    264 			*val = MS(reg, AR_EEPROM_STATUS_DATA_VAL);
    265 			return 0;
    266 		}
    267 		DELAY(10);
    268 	}
    269 	*val = 0xffff;
    270 	return ETIMEDOUT;
    271 }
    272 
    273 /*
    274  * Read an arbitrary number of bytes at a specified address in EEPROM.
    275  * NB: The address may not be 16-bit aligned.
    276  */
    277 Static int
    278 ar9003_read_eep_data(struct athn_softc *sc, uint32_t addr, void *buf, int len)
    279 {
    280 	uint8_t *dst = buf;
    281 	uint16_t val;
    282 	int error;
    283 
    284 	if (len > 0 && (addr & 1)) {
    285 		/* Deal with non-aligned reads. */
    286 		addr >>= 1;
    287 		error = ar9003_read_eep_word(sc, addr, &val);
    288 		if (error != 0)
    289 			return error;
    290 		*dst++ = val & 0xff;
    291 		addr--;
    292 		len--;
    293 	}
    294 	else
    295 		addr >>= 1;
    296 	for (; len >= 2; addr--, len -= 2) {
    297 		error = ar9003_read_eep_word(sc, addr, &val);
    298 		if (error != 0)
    299 			return error;
    300 		*dst++ = val >> 8;
    301 		*dst++ = val & 0xff;
    302 	}
    303 	if (len > 0) {
    304 		error = ar9003_read_eep_word(sc, addr, &val);
    305 		if (error != 0)
    306 			return error;
    307 		*dst++ = val >> 8;
    308 	}
    309 	return 0;
    310 }
    311 
    312 /*
    313  * Read 32-bit word from OTPROM.
    314  */
    315 Static int
    316 ar9003_read_otp_word(struct athn_softc *sc, uint32_t addr, uint32_t *val)
    317 {
    318 	uint32_t reg;
    319 	int ntries;
    320 
    321 	reg = AR_READ(sc, AR_OTP_BASE(addr));
    322 	for (ntries = 0; ntries < 1000; ntries++) {
    323 		reg = AR_READ(sc, AR_OTP_STATUS);
    324 		if (MS(reg, AR_OTP_STATUS_TYPE) == AR_OTP_STATUS_VALID) {
    325 			*val = AR_READ(sc, AR_OTP_READ_DATA);
    326 			return 0;
    327 		}
    328 		DELAY(10);
    329 	}
    330 	return ETIMEDOUT;
    331 }
    332 
    333 /*
    334  * Read an arbitrary number of bytes at a specified address in OTPROM.
    335  * NB: The address may not be 32-bit aligned.
    336  */
    337 Static int
    338 ar9003_read_otp_data(struct athn_softc *sc, uint32_t addr, void *buf, int len)
    339 {
    340 	uint8_t *dst = buf;
    341 	uint32_t val;
    342 	int error;
    343 
    344 	/* NB: not optimal for non-aligned reads, but correct. */
    345 	for (; len > 0; addr--, len--) {
    346 		error = ar9003_read_otp_word(sc, addr >> 2, &val);
    347 		if (error != 0)
    348 			return error;
    349 		*dst++ = (val >> ((addr & 3) * 8)) & 0xff;
    350 	}
    351 	return 0;
    352 }
    353 
    354 /*
    355  * Determine if the chip has an external EEPROM or an OTPROM and its size.
    356  */
    357 Static int
    358 ar9003_find_rom(struct athn_softc *sc)
    359 {
    360 	struct athn_ops *ops = &sc->sc_ops;
    361 	uint32_t hdr;
    362 	int error;
    363 
    364 	/* Try EEPROM. */
    365 	ops->read_rom_data = ar9003_read_eep_data;
    366 
    367 	sc->sc_eep_size = AR_SREV_9485(sc) ? 4096 : 1024;
    368 	sc->sc_eep_base = sc->sc_eep_size - 1;
    369 	error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
    370 	if (error == 0 && hdr != 0 && hdr != 0xffffffff)
    371 		return 0;
    372 
    373 	sc->sc_eep_size = 512;
    374 	sc->sc_eep_base = sc->sc_eep_size - 1;
    375 	error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
    376 	if (error == 0 && hdr != 0 && hdr != 0xffffffff)
    377 		return 0;
    378 
    379 	/* Try OTPROM. */
    380 	ops->read_rom_data = ar9003_read_otp_data;
    381 
    382 	sc->sc_eep_size = 1024;
    383 	sc->sc_eep_base = sc->sc_eep_size - 1;
    384 	error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
    385 	if (error == 0 && hdr != 0 && hdr != 0xffffffff)
    386 		return 0;
    387 
    388 	sc->sc_eep_size = 512;
    389 	sc->sc_eep_base = sc->sc_eep_size - 1;
    390 	error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
    391 	if (error == 0 && hdr != 0 && hdr != 0xffffffff)
    392 		return 0;
    393 
    394 	return EIO;	/* Not found. */
    395 }
    396 
    397 Static int
    398 ar9003_restore_rom_block(struct athn_softc *sc, uint8_t alg, uint8_t ref,
    399     const uint8_t *buf, size_t len)
    400 {
    401 	const uint8_t *def, *ptr, *end;
    402 	uint8_t *eep = sc->sc_eep;
    403 	size_t off, clen;
    404 
    405 	if (alg == AR_EEP_COMPRESS_BLOCK) {
    406 		/* Block contains chunks that shadow ROM template. */
    407 		def = sc->sc_ops.get_rom_template(sc, ref);
    408 		if (def == NULL) {
    409 			DPRINTFN(DBG_INIT, sc, "unknown template image %d\n",
    410 			    ref);
    411 			return EINVAL;
    412 		}
    413 		/* Start with template. */
    414 		memcpy(eep, def, sc->sc_eep_size);
    415 		/* Shadow template with chunks. */
    416 		off = 0;	/* Offset in ROM image. */
    417 		ptr = buf;	/* Offset in block. */
    418 		end = buf + len;
    419 		/* Process chunks. */
    420 		while (ptr + 2 <= end) {
    421 			off += *ptr++;	/* Gap with previous chunk. */
    422 			clen = *ptr++;	/* Chunk length. */
    423 			/* Make sure block is large enough. */
    424 			if (ptr + clen > end)
    425 				return EINVAL;
    426 			/* Make sure chunk fits in ROM image. */
    427 			if (off + clen > sc->sc_eep_size)
    428 				return EINVAL;
    429 			/* Restore chunk. */
    430 			DPRINTFN(DBG_INIT, sc, "ROM chunk @%zd/%zd\n",
    431 			    off, clen);
    432 			memcpy(&eep[off], ptr, clen);
    433 			ptr += clen;
    434 			off += clen;
    435 		}
    436 	}
    437 	else if (alg == AR_EEP_COMPRESS_NONE) {
    438 		/* Block contains full ROM image. */
    439 		if (len != sc->sc_eep_size) {
    440 			DPRINTFN(DBG_INIT, sc, "block length mismatch %zd\n",
    441 			    len);
    442 			return EINVAL;
    443 		}
    444 		memcpy(eep, buf, len);
    445 	}
    446 	return 0;
    447 }
    448 
    449 Static int
    450 ar9003_read_rom(struct athn_softc *sc)
    451 {
    452 	struct athn_ops *ops = &sc->sc_ops;
    453 	uint8_t *buf, *ptr, alg, ref;
    454 	uint16_t sum, rsum;
    455 	uint32_t hdr;
    456 	int error, addr;
    457 	size_t len, i, j;
    458 
    459 	/* Allocate space to store ROM in host memory. */
    460 	sc->sc_eep = malloc(sc->sc_eep_size, M_DEVBUF, M_WAITOK);
    461 
    462 	/* Allocate temporary buffer to store ROM blocks. */
    463 	buf = malloc(2048, M_DEVBUF, M_WAITOK);
    464 
    465 	/* Restore vendor-specified ROM blocks. */
    466 	addr = sc->sc_eep_base;
    467 	for (i = 0; i < 100; i++) {
    468 		/* Read block header. */
    469 		error = ops->read_rom_data(sc, addr, &hdr, sizeof(hdr));
    470 		if (error != 0)
    471 			break;
    472 		if (hdr == 0 || hdr == 0xffffffff)
    473 			break;
    474 		addr -= sizeof(hdr);
    475 
    476 		/* Extract bits from header. */
    477 		ptr = (uint8_t *)&hdr;
    478 		alg = (ptr[0] & 0xe0) >> 5;
    479 		ref = (ptr[1] & 0x80) >> 2 | (ptr[0] & 0x1f);
    480 		len = (ptr[1] & 0x7f) << 4 | (ptr[2] & 0xf0) >> 4;
    481 		DPRINTFN(DBG_INIT, sc,
    482 		    "ROM block %zd: alg=%d ref=%d len=%zd\n",
    483 		    i, alg, ref, len);
    484 
    485 		/* Read block data (len <= 0x7ff). */
    486 		error = ops->read_rom_data(sc, addr, buf, len);
    487 		if (error != 0)
    488 			break;
    489 		addr -= len;
    490 
    491 		/* Read block checksum. */
    492 		error = ops->read_rom_data(sc, addr, &sum, sizeof(sum));
    493 		if (error != 0)
    494 			break;
    495 		addr -= sizeof(sum);
    496 
    497 		/* Compute block checksum. */
    498 		rsum = 0;
    499 		for (j = 0; j < len; j++)
    500 			rsum += buf[j];
    501 		/* Compare to that in ROM. */
    502 		if (le16toh(sum) != rsum) {
    503 			DPRINTFN(DBG_INIT, sc,
    504 			    "bad block checksum 0x%x/0x%x\n",
    505 			    le16toh(sum), rsum);
    506 			continue;	/* Skip bad block. */
    507 		}
    508 		/* Checksum is correct, restore block. */
    509 		ar9003_restore_rom_block(sc, alg, ref, buf, len);
    510 	}
    511 #if BYTE_ORDER == BIG_ENDIAN
    512 	/* NB: ROM is always little endian. */
    513 	if (error == 0)
    514 		ops->swap_rom(sc);
    515 #endif
    516 	free(buf, M_DEVBUF);
    517 	return error;
    518 }
    519 
    520 /*
    521  * Access to General Purpose Input/Output ports.
    522  */
    523 Static int
    524 ar9003_gpio_read(struct athn_softc *sc, int pin)
    525 {
    526 
    527 	KASSERT(pin < sc->sc_ngpiopins);
    528 	return ((AR_READ(sc, AR_GPIO_IN) & AR9300_GPIO_IN_VAL) &
    529 	    (1 << pin)) != 0;
    530 }
    531 
    532 Static void
    533 ar9003_gpio_write(struct athn_softc *sc, int pin, int set)
    534 {
    535 	uint32_t reg;
    536 
    537 	KASSERT(pin < sc->sc_ngpiopins);
    538 	reg = AR_READ(sc, AR_GPIO_IN_OUT);
    539 	if (set)
    540 		reg |= 1 << pin;
    541 	else
    542 		reg &= ~(1 << pin);
    543 	AR_WRITE(sc, AR_GPIO_IN_OUT, reg);
    544 	AR_WRITE_BARRIER(sc);
    545 }
    546 
    547 Static void
    548 ar9003_gpio_config_input(struct athn_softc *sc, int pin)
    549 {
    550 	uint32_t reg;
    551 
    552 	reg = AR_READ(sc, AR_GPIO_OE_OUT);
    553 	reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2));
    554 	reg |= AR_GPIO_OE_OUT_DRV_NO << (pin * 2);
    555 	AR_WRITE(sc, AR_GPIO_OE_OUT, reg);
    556 	AR_WRITE_BARRIER(sc);
    557 }
    558 
    559 Static void
    560 ar9003_gpio_config_output(struct athn_softc *sc, int pin, int type)
    561 {
    562 	uint32_t reg;
    563 	int mux, off;
    564 
    565 	mux = pin / 6;
    566 	off = pin % 6;
    567 
    568 	reg = AR_READ(sc, AR_GPIO_OUTPUT_MUX(mux));
    569 	reg &= ~(0x1f << (off * 5));
    570 	reg |= (type & 0x1f) << (off * 5);
    571 	AR_WRITE(sc, AR_GPIO_OUTPUT_MUX(mux), reg);
    572 
    573 	reg = AR_READ(sc, AR_GPIO_OE_OUT);
    574 	reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2));
    575 	reg |= AR_GPIO_OE_OUT_DRV_ALL << (pin * 2);
    576 	AR_WRITE(sc, AR_GPIO_OE_OUT, reg);
    577 	AR_WRITE_BARRIER(sc);
    578 }
    579 
    580 Static void
    581 ar9003_rfsilent_init(struct athn_softc *sc)
    582 {
    583 	uint32_t reg;
    584 
    585 	/* Configure hardware radio switch. */
    586 	AR_SETBITS(sc, AR_GPIO_INPUT_EN_VAL, AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
    587 	reg = AR_READ(sc, AR_GPIO_INPUT_MUX2);
    588 	reg = RW(reg, AR_GPIO_INPUT_MUX2_RFSILENT, 0);
    589 	AR_WRITE(sc, AR_GPIO_INPUT_MUX2, reg);
    590 	ar9003_gpio_config_input(sc, sc->sc_rfsilent_pin);
    591 	AR_SETBITS(sc, AR_PHY_TEST, AR_PHY_TEST_RFSILENT_BB);
    592 	if (!(sc->sc_flags & ATHN_FLAG_RFSILENT_REVERSED)) {
    593 		AR_SETBITS(sc, AR_GPIO_INTR_POL,
    594 		    AR_GPIO_INTR_POL_PIN(sc->sc_rfsilent_pin));
    595 	}
    596 	AR_WRITE_BARRIER(sc);
    597 }
    598 
    599 Static int
    600 ar9003_dma_alloc(struct athn_softc *sc)
    601 {
    602 	int error;
    603 
    604 	error = ar9003_tx_alloc(sc);
    605 	if (error != 0)
    606 		return error;
    607 
    608 	error = ar9003_rx_alloc(sc, ATHN_QID_LP, AR9003_RX_LP_QDEPTH);
    609 	if (error != 0)
    610 		return error;
    611 
    612 	error = ar9003_rx_alloc(sc, ATHN_QID_HP, AR9003_RX_HP_QDEPTH);
    613 	if (error != 0)
    614 		return error;
    615 
    616 	return 0;
    617 }
    618 
    619 Static void
    620 ar9003_dma_free(struct athn_softc *sc)
    621 {
    622 
    623 	ar9003_tx_free(sc);
    624 	ar9003_rx_free(sc, ATHN_QID_LP);
    625 	ar9003_rx_free(sc, ATHN_QID_HP);
    626 }
    627 
    628 Static int
    629 ar9003_tx_alloc(struct athn_softc *sc)
    630 {
    631 	struct athn_tx_buf *bf;
    632 	bus_size_t size;
    633 	int error, nsegs, i;
    634 
    635 	/*
    636 	 * Allocate Tx status ring.
    637 	 */
    638 	size = AR9003_NTXSTATUS * sizeof(struct ar_tx_status);
    639 
    640 	error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
    641 	    BUS_DMA_NOWAIT, &sc->sc_txsmap);
    642 	if (error != 0)
    643 		goto fail;
    644 
    645 	error = bus_dmamem_alloc(sc->sc_dmat, size, 4, 0, &sc->sc_txsseg, 1,
    646 // XXX	    &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
    647 	    &nsegs, BUS_DMA_NOWAIT);
    648 	if (error != 0)
    649 		goto fail;
    650 
    651 	error = bus_dmamem_map(sc->sc_dmat, &sc->sc_txsseg, 1, size,
    652 	    (void **)&sc->sc_txsring, BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    653 	if (error != 0)
    654 		goto fail;
    655 
    656 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_txsmap, sc->sc_txsring,
    657 	     size, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
    658 	if (error != 0)
    659 		goto fail;
    660 
    661 	/*
    662 	 * Allocate a pool of Tx descriptors shared between all Tx queues.
    663 	 */
    664 	size = ATHN_NTXBUFS * sizeof(struct ar_tx_desc);
    665 
    666 	error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
    667 	    BUS_DMA_NOWAIT, &sc->sc_map);
    668 	if (error != 0)
    669 		goto fail;
    670 
    671 	error = bus_dmamem_alloc(sc->sc_dmat, size, 4, 0, &sc->sc_seg, 1,
    672 // XXX	    &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
    673 	    &nsegs, BUS_DMA_NOWAIT);
    674 	if (error != 0)
    675 		goto fail;
    676 
    677 	error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, 1, size,
    678 	    (void **)&sc->sc_descs, BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    679 	if (error != 0)
    680 		goto fail;
    681 
    682 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_map, sc->sc_descs, size,
    683 	    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
    684 	if (error != 0)
    685 		goto fail;
    686 
    687 	SIMPLEQ_INIT(&sc->sc_txbufs);
    688 	for (i = 0; i < ATHN_NTXBUFS; i++) {
    689 		bf = &sc->sc_txpool[i];
    690 
    691 		error = bus_dmamap_create(sc->sc_dmat, ATHN_TXBUFSZ,
    692 		    AR9003_MAX_SCATTER, ATHN_TXBUFSZ, 0, BUS_DMA_NOWAIT,
    693 		    &bf->bf_map);
    694 		if (error != 0) {
    695 			aprint_error_dev(sc->sc_dev,
    696 			    "could not create Tx buf DMA map\n");
    697 			goto fail;
    698 		}
    699 
    700 		bf->bf_descs = &((struct ar_tx_desc *)sc->sc_descs)[i];
    701 		bf->bf_daddr = sc->sc_map->dm_segs[0].ds_addr +
    702 		    i * sizeof(struct ar_tx_desc);
    703 
    704 		SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
    705 	}
    706 	return 0;
    707  fail:
    708 	ar9003_tx_free(sc);
    709 	return error;
    710 }
    711 
    712 Static void
    713 ar9003_tx_free(struct athn_softc *sc)
    714 {
    715 	struct athn_tx_buf *bf;
    716 	int i;
    717 
    718 	for (i = 0; i < ATHN_NTXBUFS; i++) {
    719 		bf = &sc->sc_txpool[i];
    720 
    721 		if (bf->bf_map != NULL)
    722 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_map);
    723 	}
    724 	/* Free Tx descriptors. */
    725 	if (sc->sc_map != NULL) {
    726 		if (sc->sc_descs != NULL) {
    727 			bus_dmamap_unload(sc->sc_dmat, sc->sc_map);
    728 			bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
    729 			    ATHN_NTXBUFS * sizeof(struct ar_tx_desc));
    730 			bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
    731 		}
    732 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_map);
    733 	}
    734 	/* Free Tx status ring. */
    735 	if (sc->sc_txsmap != NULL) {
    736 		if (sc->sc_txsring != NULL) {
    737 			bus_dmamap_unload(sc->sc_dmat, sc->sc_txsmap);
    738 			bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_txsring,
    739 			     AR9003_NTXSTATUS * sizeof(struct ar_tx_status));
    740 			bus_dmamem_free(sc->sc_dmat, &sc->sc_txsseg, 1);
    741 		}
    742 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsmap);
    743 	}
    744 }
    745 
    746 Static int
    747 ar9003_rx_alloc(struct athn_softc *sc, int qid, int count)
    748 {
    749 	struct athn_rxq *rxq = &sc->sc_rxq[qid];
    750 	struct athn_rx_buf *bf;
    751 	struct ar_rx_status *ds;
    752 	int error, i;
    753 
    754 	rxq->bf = malloc(count * sizeof(*bf), M_DEVBUF, M_WAITOK | M_ZERO);
    755 	rxq->count = count;
    756 
    757 	for (i = 0; i < rxq->count; i++) {
    758 		bf = &rxq->bf[i];
    759 
    760 		error = bus_dmamap_create(sc->sc_dmat, ATHN_RXBUFSZ, 1,
    761 		    ATHN_RXBUFSZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    762 		    &bf->bf_map);
    763 		if (error != 0) {
    764 			aprint_error_dev(sc->sc_dev,
    765 			    "could not create Rx buf DMA map\n");
    766 			goto fail;
    767 		}
    768 		/*
    769 		 * Assumes MCLGETI returns cache-line-size aligned buffers.
    770 		 */
    771 		bf->bf_m = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ);
    772 		if (bf->bf_m == NULL) {
    773 			aprint_error_dev(sc->sc_dev,
    774 			    "could not allocate Rx mbuf\n");
    775 			error = ENOBUFS;
    776 			goto fail;
    777 		}
    778 
    779 		error = bus_dmamap_load(sc->sc_dmat, bf->bf_map,
    780 		    mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL,
    781 		    BUS_DMA_NOWAIT);
    782 		if (error != 0) {
    783 			aprint_error_dev(sc->sc_dev,
    784 			    "could not DMA map Rx buffer\n");
    785 			goto fail;
    786 		}
    787 
    788 		ds = mtod(bf->bf_m, struct ar_rx_status *);
    789 		memset(ds, 0, sizeof(*ds));
    790 		bf->bf_desc = ds;
    791 		bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr;
    792 
    793 		bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
    794 		    BUS_DMASYNC_PREREAD);
    795 	}
    796 	return 0;
    797  fail:
    798 	ar9003_rx_free(sc, qid);
    799 	return error;
    800 }
    801 
    802 Static void
    803 ar9003_rx_free(struct athn_softc *sc, int qid)
    804 {
    805 	struct athn_rxq *rxq = &sc->sc_rxq[qid];
    806 	struct athn_rx_buf *bf;
    807 	int i;
    808 
    809 	if (rxq->bf == NULL)
    810 		return;
    811 	for (i = 0; i < rxq->count; i++) {
    812 		bf = &rxq->bf[i];
    813 
    814 		if (bf->bf_map != NULL)
    815 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_map);
    816 		m_freem(bf->bf_m);
    817 	}
    818 	free(rxq->bf, M_DEVBUF);
    819 }
    820 
    821 PUBLIC void
    822 ar9003_reset_txsring(struct athn_softc *sc)
    823 {
    824 
    825 	sc->sc_txscur = 0;
    826 	memset(sc->sc_txsring, 0, AR9003_NTXSTATUS * sizeof(struct ar_tx_status));
    827 	AR_WRITE(sc, AR_Q_STATUS_RING_START,
    828 	    sc->sc_txsmap->dm_segs[0].ds_addr);
    829 	AR_WRITE(sc, AR_Q_STATUS_RING_END,
    830 	    sc->sc_txsmap->dm_segs[0].ds_addr + sc->sc_txsmap->dm_segs[0].ds_len);
    831 	AR_WRITE_BARRIER(sc);
    832 }
    833 
    834 Static void
    835 ar9003_rx_enable(struct athn_softc *sc)
    836 {
    837 	struct athn_rxq *rxq;
    838 	struct athn_rx_buf *bf;
    839 	struct ar_rx_status *ds;
    840 	uint32_t reg;
    841 	int qid, i;
    842 
    843 	reg = AR_READ(sc, AR_RXBP_THRESH);
    844 	reg = RW(reg, AR_RXBP_THRESH_HP, 1);
    845 	reg = RW(reg, AR_RXBP_THRESH_LP, 1);
    846 	AR_WRITE(sc, AR_RXBP_THRESH, reg);
    847 
    848 	/* Set Rx buffer size. */
    849 	AR_WRITE(sc, AR_DATABUF_SIZE, ATHN_RXBUFSZ - sizeof(*ds));
    850 
    851 	for (qid = 0; qid < 2; qid++) {
    852 		rxq = &sc->sc_rxq[qid];
    853 
    854 		/* Setup Rx status descriptors. */
    855 		SIMPLEQ_INIT(&rxq->head);
    856 		for (i = 0; i < rxq->count; i++) {
    857 			bf = &rxq->bf[i];
    858 			ds = bf->bf_desc;
    859 
    860 			memset(ds, 0, sizeof(*ds));
    861 			if (qid == ATHN_QID_LP)
    862 				AR_WRITE(sc, AR_LP_RXDP, bf->bf_daddr);
    863 			else
    864 				AR_WRITE(sc, AR_HP_RXDP, bf->bf_daddr);
    865 			AR_WRITE_BARRIER(sc);
    866 			SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list);
    867 		}
    868 	}
    869 	/* Enable Rx. */
    870 	AR_WRITE(sc, AR_CR, 0);
    871 	AR_WRITE_BARRIER(sc);
    872 }
    873 
    874 Static void
    875 ar9003_rx_radiotap(struct athn_softc *sc, struct mbuf *m,
    876     struct ar_rx_status *ds)
    877 {
    878 	struct athn_rx_radiotap_header *tap = &sc->sc_rxtap;
    879 	struct ieee80211com *ic = &sc->sc_ic;
    880 	uint64_t tsf;
    881 	uint32_t tstamp;
    882 	uint8_t rate;
    883 
    884 	/* Extend the 15-bit timestamp from Rx status to 64-bit TSF. */
    885 	tstamp = ds->ds_status3;
    886 	tsf = AR_READ(sc, AR_TSF_U32);
    887 	tsf = tsf << 32 | AR_READ(sc, AR_TSF_L32);
    888 	if ((tsf & 0x7fff) < tstamp)
    889 		tsf -= 0x8000;
    890 	tsf = (tsf & ~0x7fff) | tstamp;
    891 
    892 	tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
    893 	tap->wr_tsft = htole64(tsf);
    894 	tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
    895 	tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
    896 	tap->wr_dbm_antsignal = MS(ds->ds_status5, AR_RXS5_RSSI_COMBINED);
    897 	/* XXX noise. */
    898 	tap->wr_antenna = MS(ds->ds_status4, AR_RXS4_ANTENNA);
    899 	tap->wr_rate = 0;	/* In case it can't be found below. */
    900 	rate = MS(ds->ds_status1, AR_RXS1_RATE);
    901 	if (rate & 0x80) {		/* HT. */
    902 		/* Bit 7 set means HT MCS instead of rate. */
    903 		tap->wr_rate = rate;
    904 		if (!(ds->ds_status4 & AR_RXS4_GI))
    905 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
    906 
    907 	}
    908 	else if (rate & 0x10) {	/* CCK. */
    909 		if (rate & 0x04)
    910 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
    911 		switch (rate & ~0x14) {
    912 		case 0xb: tap->wr_rate =   2; break;
    913 		case 0xa: tap->wr_rate =   4; break;
    914 		case 0x9: tap->wr_rate =  11; break;
    915 		case 0x8: tap->wr_rate =  22; break;
    916 		}
    917 	}
    918 	else {			/* OFDM. */
    919 		switch (rate) {
    920 		case 0xb: tap->wr_rate =  12; break;
    921 		case 0xf: tap->wr_rate =  18; break;
    922 		case 0xa: tap->wr_rate =  24; break;
    923 		case 0xe: tap->wr_rate =  36; break;
    924 		case 0x9: tap->wr_rate =  48; break;
    925 		case 0xd: tap->wr_rate =  72; break;
    926 		case 0x8: tap->wr_rate =  96; break;
    927 		case 0xc: tap->wr_rate = 108; break;
    928 		}
    929 	}
    930 	bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
    931 }
    932 
    933 Static int
    934 ar9003_rx_process(struct athn_softc *sc, int qid)
    935 {
    936 	struct ieee80211com *ic = &sc->sc_ic;
    937 	struct ifnet *ifp = &sc->sc_if;
    938 	struct athn_rxq *rxq = &sc->sc_rxq[qid];
    939 	struct athn_rx_buf *bf;
    940 	struct ar_rx_status *ds;
    941 	struct ieee80211_frame *wh;
    942 	struct ieee80211_node *ni;
    943 	struct mbuf *m, *m1;
    944 	size_t len;
    945 	u_int32_t rstamp;
    946 	int error, rssi, s;
    947 
    948 	bf = SIMPLEQ_FIRST(&rxq->head);
    949 	if (__predict_false(bf == NULL)) {	/* Should not happen. */
    950 		aprint_error_dev(sc->sc_dev, "Rx queue is empty!\n");
    951 		return ENOENT;
    952 	}
    953 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
    954 	    BUS_DMASYNC_POSTREAD);
    955 
    956 	ds = mtod(bf->bf_m, struct ar_rx_status *);
    957 	if (!(ds->ds_status1 & AR_RXS1_DONE))
    958 		return EBUSY;
    959 
    960 	/* Check that it is a valid Rx status descriptor. */
    961 	if ((ds->ds_info & (AR_RXI_DESC_ID_M | AR_RXI_DESC_TX |
    962 	    AR_RXI_CTRL_STAT)) != SM(AR_RXI_DESC_ID, AR_VENDOR_ATHEROS))
    963 		goto skip;
    964 
    965 	if (!(ds->ds_status11 & AR_RXS11_FRAME_OK)) {
    966 		if (ds->ds_status11 & AR_RXS11_CRC_ERR)
    967 			DPRINTFN(DBG_RX, sc, "CRC error\n");
    968 		else if (ds->ds_status11 & AR_RXS11_PHY_ERR)
    969 			DPRINTFN(DBG_RX, sc, "PHY error=0x%x\n",
    970 			    MS(ds->ds_status11, AR_RXS11_PHY_ERR_CODE));
    971 		else if (ds->ds_status11 & AR_RXS11_DECRYPT_CRC_ERR)
    972 			DPRINTFN(DBG_RX, sc, "Decryption CRC error\n");
    973 		else if (ds->ds_status11 & AR_RXS11_MICHAEL_ERR) {
    974 			DPRINTFN(DBG_RX, sc, "Michael MIC failure\n");
    975 			/* Report Michael MIC failures to net80211. */
    976 
    977 			len = MS(ds->ds_status2, AR_RXS2_DATA_LEN);
    978 			m = bf->bf_m;
    979 			m_set_rcvif(m, ifp);
    980 			m->m_data = (void *)&ds[1];
    981 			m->m_pkthdr.len = m->m_len = len;
    982 			wh = mtod(m, struct ieee80211_frame *);
    983 
    984 			ieee80211_notify_michael_failure(ic, wh,
    985 			    0 /* XXX: keyix */);
    986 		}
    987 		if_statinc(ifp, if_ierrors);
    988 		goto skip;
    989 	}
    990 
    991 	len = MS(ds->ds_status2, AR_RXS2_DATA_LEN);
    992 	if (__predict_false(len < IEEE80211_MIN_LEN ||
    993 	    len > ATHN_RXBUFSZ - sizeof(*ds))) {
    994 		DPRINTFN(DBG_RX, sc, "corrupted descriptor length=%zd\n",
    995 		    len);
    996 		if_statinc(ifp, if_ierrors);
    997 		goto skip;
    998 	}
    999 
   1000 	/* Allocate a new Rx buffer. */
   1001 	m1 = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ);
   1002 	if (__predict_false(m1 == NULL)) {
   1003 		ic->ic_stats.is_rx_nobuf++;
   1004 		if_statinc(ifp, if_ierrors);
   1005 		goto skip;
   1006 	}
   1007 
   1008 	/* Unmap the old Rx buffer. */
   1009 	bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
   1010 
   1011 	/* Map the new Rx buffer. */
   1012 	error = bus_dmamap_load(sc->sc_dmat, bf->bf_map, mtod(m1, void *),
   1013 	    ATHN_RXBUFSZ, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
   1014 	if (__predict_false(error != 0)) {
   1015 		m_freem(m1);
   1016 
   1017 		/* Remap the old Rx buffer or panic. */
   1018 		error = bus_dmamap_load(sc->sc_dmat, bf->bf_map,
   1019 		    mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL,
   1020 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1021 		KASSERT(error != 0);
   1022 		bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr;
   1023 		if_statinc(ifp, if_ierrors);
   1024 		goto skip;
   1025 	}
   1026 	bf->bf_desc = mtod(m1, struct ar_rx_status *);
   1027 	bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr;
   1028 
   1029 	m = bf->bf_m;
   1030 	bf->bf_m = m1;
   1031 
   1032 	/* Finalize mbuf. */
   1033 	m_set_rcvif(m, ifp);
   1034 	/* Strip Rx status descriptor from head. */
   1035 	m->m_data = (void *)&ds[1];
   1036 	m->m_pkthdr.len = m->m_len = len;
   1037 
   1038 	s = splnet();
   1039 
   1040 	/* Grab a reference to the source node. */
   1041 	wh = mtod(m, struct ieee80211_frame *);
   1042 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   1043 
   1044 	/* Remove any HW padding after the 802.11 header. */
   1045 	if (!(wh->i_fc[0] & IEEE80211_FC0_TYPE_CTL)) {
   1046 		u_int hdrlen = ieee80211_anyhdrsize(wh);
   1047 		if (hdrlen & 3) {
   1048 			memmove((uint8_t *)wh + 2, wh, hdrlen);
   1049 			m_adj(m, 2);
   1050 		}
   1051 	}
   1052 	if (__predict_false(sc->sc_drvbpf != NULL))
   1053 		ar9003_rx_radiotap(sc, m, ds);
   1054 	/* Trim 802.11 FCS after radiotap. */
   1055 	m_adj(m, -IEEE80211_CRC_LEN);
   1056 
   1057 	/* Send the frame to the 802.11 layer. */
   1058 	rssi = MS(ds->ds_status5, AR_RXS5_RSSI_COMBINED);
   1059 	rstamp = ds->ds_status3;
   1060 	ieee80211_input(ic, m, ni, rssi, rstamp);
   1061 
   1062 	/* Node is no longer needed. */
   1063 	ieee80211_free_node(ni);
   1064 
   1065 	splx(s);
   1066 
   1067  skip:
   1068 	/* Unlink this descriptor from head. */
   1069 	SIMPLEQ_REMOVE_HEAD(&rxq->head, bf_list);
   1070 	memset(bf->bf_desc, 0, sizeof(*ds));
   1071 
   1072 	/* Re-use this descriptor and link it to tail. */
   1073 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
   1074 	    BUS_DMASYNC_PREREAD);
   1075 
   1076 	if (qid == ATHN_QID_LP)
   1077 		AR_WRITE(sc, AR_LP_RXDP, bf->bf_daddr);
   1078 	else
   1079 		AR_WRITE(sc, AR_HP_RXDP, bf->bf_daddr);
   1080 	AR_WRITE_BARRIER(sc);
   1081 	SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list);
   1082 
   1083 	/* Re-enable Rx. */
   1084 	AR_WRITE(sc, AR_CR, 0);
   1085 	AR_WRITE_BARRIER(sc);
   1086 	return 0;
   1087 }
   1088 
   1089 Static void
   1090 ar9003_rx_intr(struct athn_softc *sc, int qid)
   1091 {
   1092 
   1093 	while (ar9003_rx_process(sc, qid) == 0)
   1094 		continue;
   1095 }
   1096 
   1097 Static int
   1098 ar9003_tx_process(struct athn_softc *sc)
   1099 {
   1100 	struct ifnet *ifp = &sc->sc_if;
   1101 	struct athn_txq *txq;
   1102 	struct athn_node *an;
   1103 	struct athn_tx_buf *bf;
   1104 	struct ar_tx_status *ds;
   1105 	uint8_t qid, failcnt;
   1106 
   1107 	ds = &((struct ar_tx_status *)sc->sc_txsring)[sc->sc_txscur];
   1108 	if (!(ds->ds_status8 & AR_TXS8_DONE))
   1109 		return EBUSY;
   1110 
   1111 	sc->sc_txscur = (sc->sc_txscur + 1) % AR9003_NTXSTATUS;
   1112 
   1113 	/* Check that it is a valid Tx status descriptor. */
   1114 	if ((ds->ds_info & (AR_TXI_DESC_ID_M | AR_TXI_DESC_TX)) !=
   1115 	    (SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) | AR_TXI_DESC_TX)) {
   1116 		memset(ds, 0, sizeof(*ds));
   1117 		return 0;
   1118 	}
   1119 	/* Retrieve the queue that was used to send this PDU. */
   1120 	qid = MS(ds->ds_info, AR_TXI_QCU_NUM);
   1121 	txq = &sc->sc_txq[qid];
   1122 
   1123 	bf = SIMPLEQ_FIRST(&txq->head);
   1124 	if (bf == NULL || bf == txq->wait) {
   1125 		memset(ds, 0, sizeof(*ds));
   1126 		return 0;
   1127 	}
   1128 	SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list);
   1129 	if_statinc(ifp, if_opackets);
   1130 
   1131 	sc->sc_tx_timer = 0;
   1132 
   1133 	if (ds->ds_status3 & AR_TXS3_EXCESSIVE_RETRIES)
   1134 		if_statinc(ifp, if_oerrors);
   1135 
   1136 	if (ds->ds_status3 & AR_TXS3_UNDERRUN)
   1137 		athn_inc_tx_trigger_level(sc);
   1138 
   1139 	/* Wakeup PA predistortion state machine. */
   1140 	if (bf->bf_txflags & ATHN_TXFLAG_PAPRD)
   1141 		ar9003_paprd_tx_tone_done(sc);
   1142 
   1143 	an = (struct athn_node *)bf->bf_ni;
   1144 	/*
   1145 	 * NB: the data fail count contains the number of un-acked tries
   1146 	 * for the final series used.  We must add the number of tries for
   1147 	 * each series that was fully processed.
   1148 	 */
   1149 	failcnt  = MS(ds->ds_status3, AR_TXS3_DATA_FAIL_CNT);
   1150 	/* NB: Assume two tries per series. */
   1151 	failcnt += MS(ds->ds_status8, AR_TXS8_FINAL_IDX) * 2;
   1152 
   1153 	/* Update rate control statistics. */
   1154 	an->amn.amn_txcnt++;
   1155 	if (failcnt > 0)
   1156 		an->amn.amn_retrycnt++;
   1157 
   1158 	DPRINTFN(DBG_TX, sc, "Tx done qid=%d status3=%d fail count=%d\n",
   1159 	    qid, ds->ds_status3, failcnt);
   1160 
   1161 	/* Reset Tx status descriptor. */
   1162 	memset(ds, 0, sizeof(*ds));
   1163 
   1164 	/* Unmap Tx buffer. */
   1165 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
   1166 	    BUS_DMASYNC_POSTWRITE);
   1167 	bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
   1168 
   1169 	m_freem(bf->bf_m);
   1170 	bf->bf_m = NULL;
   1171 	ieee80211_free_node(bf->bf_ni);
   1172 	bf->bf_ni = NULL;
   1173 
   1174 	/* Link Tx buffer back to global free list. */
   1175 	SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
   1176 
   1177 	/* Queue buffers that are waiting if there is new room. */
   1178 	if (--txq->queued < AR9003_TX_QDEPTH && txq->wait != NULL) {
   1179 		AR_WRITE(sc, AR_QTXDP(qid), txq->wait->bf_daddr);
   1180 		AR_WRITE_BARRIER(sc);
   1181 		txq->wait = SIMPLEQ_NEXT(txq->wait, bf_list);
   1182 	}
   1183 	return 0;
   1184 }
   1185 
   1186 Static void
   1187 ar9003_tx_intr(struct athn_softc *sc)
   1188 {
   1189 	struct ifnet *ifp = &sc->sc_if;
   1190 	int s;
   1191 
   1192 	s = splnet();
   1193 
   1194 	while (ar9003_tx_process(sc) == 0)
   1195 		continue;
   1196 
   1197 	if (!SIMPLEQ_EMPTY(&sc->sc_txbufs)) {
   1198 		ifp->if_flags &= ~IFF_OACTIVE;
   1199 		ifp->if_start(ifp); /* in softint */
   1200 	}
   1201 
   1202 	splx(s);
   1203 }
   1204 
   1205 #ifndef IEEE80211_STA_ONLY
   1206 /*
   1207  * Process Software Beacon Alert interrupts.
   1208  */
   1209 Static int
   1210 ar9003_swba_intr(struct athn_softc *sc)
   1211 {
   1212 	struct ieee80211com *ic = &sc->sc_ic;
   1213 	struct ifnet *ifp = &sc->sc_if;
   1214 	struct ieee80211_node *ni = ic->ic_bss;
   1215 	struct athn_tx_buf *bf = sc->sc_bcnbuf;
   1216 	struct ieee80211_frame *wh;
   1217 	struct ieee80211_beacon_offsets bo;
   1218 	struct ar_tx_desc *ds;
   1219 	struct mbuf *m;
   1220 	uint32_t sum;
   1221 	uint8_t ridx, hwrate;
   1222 	int error, totlen;
   1223 
   1224 #if notyet
   1225 	if (ic->ic_tim_mcast_pending &&
   1226 	    IF_IS_EMPTY(&ni->ni_savedq) &&
   1227 	    SIMPLEQ_EMPTY(&sc->sc_txq[ATHN_QID_CAB].head))
   1228 		ic->ic_tim_mcast_pending = 0;
   1229 #endif
   1230 	if (ic->ic_dtim_count == 0)
   1231 		ic->ic_dtim_count = ic->ic_dtim_period - 1;
   1232 	else
   1233 		ic->ic_dtim_count--;
   1234 
   1235 	/* Make sure previous beacon has been sent. */
   1236 	if (athn_tx_pending(sc, ATHN_QID_BEACON)) {
   1237 		DPRINTFN(DBG_INTR, sc, "beacon stuck\n");
   1238 		return EBUSY;
   1239 	}
   1240 	/* Get new beacon. */
   1241 	m = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo);
   1242 	if (__predict_false(m == NULL))
   1243 		return ENOBUFS;
   1244 	/* Assign sequence number. */
   1245 	/* XXX: use non-QoS tid? */
   1246 	wh = mtod(m, struct ieee80211_frame *);
   1247 	*(uint16_t *)&wh->i_seq[0] =
   1248 	    htole16(ic->ic_bss->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
   1249 	ic->ic_bss->ni_txseqs[0]++;
   1250 
   1251 	/* Unmap and free old beacon if any. */
   1252 	if (__predict_true(bf->bf_m != NULL)) {
   1253 		bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0,
   1254 		    bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1255 		bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
   1256 		m_freem(bf->bf_m);
   1257 		bf->bf_m = NULL;
   1258 	}
   1259 	/* DMA map new beacon. */
   1260 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
   1261 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   1262 	if (__predict_false(error != 0)) {
   1263 		m_freem(m);
   1264 		return error;
   1265 	}
   1266 	bf->bf_m = m;
   1267 
   1268 	/* Setup Tx descriptor (simplified ar9003_tx()). */
   1269 	ds = bf->bf_descs;
   1270 	memset(ds, 0, sizeof(*ds));
   1271 
   1272 	ds->ds_info =
   1273 	    SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) |
   1274 	    SM(AR_TXI_DESC_NDWORDS, 23) |
   1275 	    SM(AR_TXI_QCU_NUM, ATHN_QID_BEACON) |
   1276 	    AR_TXI_DESC_TX | AR_TXI_CTRL_STAT;
   1277 
   1278 	totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
   1279 	ds->ds_ctl11 = SM(AR_TXC11_FRAME_LEN, totlen);
   1280 	ds->ds_ctl11 |= SM(AR_TXC11_XMIT_POWER, AR_MAX_RATE_POWER);
   1281 	ds->ds_ctl12 = SM(AR_TXC12_FRAME_TYPE, AR_FRAME_TYPE_BEACON);
   1282 	ds->ds_ctl12 |= AR_TXC12_NO_ACK;
   1283 	ds->ds_ctl17 = SM(AR_TXC17_ENCR_TYPE, AR_ENCR_TYPE_CLEAR);
   1284 
   1285 	/* Write number of tries. */
   1286 	ds->ds_ctl13 = SM(AR_TXC13_XMIT_DATA_TRIES0, 1);
   1287 
   1288 	/* Write Tx rate. */
   1289 	ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   1290 	    ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1;
   1291 	hwrate = athn_rates[ridx].hwrate;
   1292 	ds->ds_ctl14 = SM(AR_TXC14_XMIT_RATE0, hwrate);
   1293 
   1294 	/* Write Tx chains. */
   1295 	ds->ds_ctl18 = SM(AR_TXC18_CHAIN_SEL0, sc->sc_txchainmask);
   1296 
   1297 	ds->ds_segs[0].ds_data = bf->bf_map->dm_segs[0].ds_addr;
   1298 	/* Segment length must be a multiple of 4. */
   1299 	ds->ds_segs[0].ds_ctl |= SM(AR_TXC_BUF_LEN,
   1300 	    (bf->bf_map->dm_segs[0].ds_len + 3) & ~3);
   1301 	/* Compute Tx descriptor checksum. */
   1302 	sum = ds->ds_info;
   1303 	sum += ds->ds_segs[0].ds_data;
   1304 	sum += ds->ds_segs[0].ds_ctl;
   1305 	sum = (sum >> 16) + (sum & 0xffff);
   1306 	ds->ds_ctl10 = SM(AR_TXC10_PTR_CHK_SUM, sum);
   1307 
   1308 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
   1309 	    BUS_DMASYNC_PREWRITE);
   1310 
   1311 	/* Stop Tx DMA before putting the new beacon on the queue. */
   1312 	athn_stop_tx_dma(sc, ATHN_QID_BEACON);
   1313 
   1314 	AR_WRITE(sc, AR_QTXDP(ATHN_QID_BEACON), bf->bf_daddr);
   1315 
   1316 	for(;;) {
   1317 		if (SIMPLEQ_EMPTY(&sc->sc_txbufs))
   1318 			break;
   1319 
   1320 		IF_DEQUEUE(&ni->ni_savedq, m);
   1321 		if (m == NULL)
   1322 			break;
   1323 		if (!IF_IS_EMPTY(&ni->ni_savedq)) {
   1324 			/* more queued frames, set the more data bit */
   1325 			wh = mtod(m, struct ieee80211_frame *);
   1326 			wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
   1327 		}
   1328 
   1329 		if (sc->sc_ops.tx(sc, m, ni, ATHN_TXFLAG_CAB) != 0) {
   1330 			ieee80211_free_node(ni);
   1331 			if_statinc(ifp, if_oerrors);
   1332 			break;
   1333 		}
   1334 	}
   1335 
   1336 	/* Kick Tx. */
   1337 	AR_WRITE(sc, AR_Q_TXE, 1 << ATHN_QID_BEACON);
   1338 	AR_WRITE_BARRIER(sc);
   1339 	return 0;
   1340 }
   1341 #endif
   1342 
   1343 static int
   1344 ar9003_get_intr_status(struct athn_softc *sc, uint32_t *intrp, uint32_t *syncp)
   1345 {
   1346 	uint32_t intr, sync;
   1347 
   1348 	/* Get pending interrupts. */
   1349 	intr = AR_READ(sc, AR_INTR_ASYNC_CAUSE);
   1350 	if (!(intr & AR_INTR_MAC_IRQ) || intr == AR_INTR_SPURIOUS) {
   1351 		intr = AR_READ(sc, AR_INTR_SYNC_CAUSE);
   1352 		if (intr == AR_INTR_SPURIOUS || (intr & sc->sc_isync) == 0)
   1353 			return 0;	/* Not for us. */
   1354 	}
   1355 
   1356 	if ((AR_READ(sc, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) &&
   1357 	    (AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_ON)
   1358 		intr = AR_READ(sc, AR_ISR);
   1359 	else
   1360 		intr = 0;
   1361 	sync = AR_READ(sc, AR_INTR_SYNC_CAUSE) & sc->sc_isync;
   1362 	if (intr == 0 && sync == 0)
   1363 		return 0;	/* Not for us. */
   1364 
   1365 	*intrp = intr;
   1366 	*syncp = sync;
   1367 	return 1;
   1368 }
   1369 
   1370 Static int
   1371 ar9003_intr_status(struct athn_softc *sc)
   1372 {
   1373 	uint32_t intr, sync;
   1374 
   1375 	return ar9003_get_intr_status(sc, &intr, &sync);
   1376 }
   1377 
   1378 Static int
   1379 ar9003_intr(struct athn_softc *sc)
   1380 {
   1381 	uint32_t intr, sync;
   1382 #ifndef IEEE80211_STA_ONLY
   1383 	int s;
   1384 #endif
   1385 
   1386 	if (!ar9003_get_intr_status(sc, &intr, &sync))
   1387 		return 0;
   1388 
   1389 	if (intr != 0) {
   1390 		if (intr & AR_ISR_BCNMISC) {
   1391 			uint32_t intr2 = AR_READ(sc, AR_ISR_S2);
   1392 #ifdef notyet
   1393 			if (intr2 & AR_ISR_S2_TIM)
   1394 				/* TBD */;
   1395 			if (intr2 & AR_ISR_S2_TSFOOR)
   1396 				/* TBD */;
   1397 			if (intr2 & AR_ISR_S2_BB_WATCHDOG)
   1398 				/* TBD */;
   1399 #else
   1400 			__USE(intr2);
   1401 #endif
   1402 		}
   1403 		intr = AR_READ(sc, AR_ISR_RAC);
   1404 		if (intr == AR_INTR_SPURIOUS)
   1405 			return 1;
   1406 
   1407 #ifndef IEEE80211_STA_ONLY
   1408 		if (intr & AR_ISR_SWBA) {
   1409 			s = splnet();
   1410 			ar9003_swba_intr(sc);
   1411 			splx(s);
   1412 		}
   1413 #endif
   1414 		if (intr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
   1415 			ar9003_rx_intr(sc, ATHN_QID_LP);
   1416 		if (intr & (AR_ISR_LP_RXOK | AR_ISR_RXERR))
   1417 			ar9003_rx_intr(sc, ATHN_QID_LP);
   1418 		if (intr & AR_ISR_HP_RXOK)
   1419 			ar9003_rx_intr(sc, ATHN_QID_HP);
   1420 
   1421 		if (intr & (AR_ISR_TXMINTR | AR_ISR_TXINTM))
   1422 			ar9003_tx_intr(sc);
   1423 		if (intr & (AR_ISR_TXOK | AR_ISR_TXERR | AR_ISR_TXEOL))
   1424 			ar9003_tx_intr(sc);
   1425 
   1426 		if (intr & AR_ISR_GENTMR) {
   1427 			uint32_t intr5 = AR_READ(sc, AR_ISR_S5_S);
   1428 #ifdef ATHN_DEBUG
   1429 			DPRINTFN(DBG_INTR, sc,
   1430 			    "GENTMR trigger=%d thresh=%d\n",
   1431 			    MS(intr5, AR_ISR_S5_GENTIMER_TRIG),
   1432 			    MS(intr5, AR_ISR_S5_GENTIMER_THRESH));
   1433 #else
   1434 			__USE(intr5);
   1435 #endif
   1436 		}
   1437 	}
   1438 	if (sync != 0) {
   1439 		if (sync & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
   1440 			AR_WRITE(sc, AR_RC, AR_RC_HOSTIF);
   1441 			AR_WRITE(sc, AR_RC, 0);
   1442 		}
   1443 
   1444 		if ((sc->sc_flags & ATHN_FLAG_RFSILENT) &&
   1445 		    (sync & AR_INTR_SYNC_GPIO_PIN(sc->sc_rfsilent_pin))) {
   1446 			pmf_event_inject(sc->sc_dev, PMFE_RADIO_OFF);
   1447 			return 1;
   1448 		}
   1449 
   1450 		AR_WRITE(sc, AR_INTR_SYNC_CAUSE, sync);
   1451 		(void)AR_READ(sc, AR_INTR_SYNC_CAUSE);
   1452 	}
   1453 	return 1;
   1454 }
   1455 
   1456 Static int
   1457 ar9003_tx(struct athn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
   1458     int txflags)
   1459 {
   1460 	struct ieee80211com *ic = &sc->sc_ic;
   1461 	struct ieee80211_key *k = NULL;
   1462 	struct ieee80211_frame *wh;
   1463 	struct athn_series series[4];
   1464 	struct ar_tx_desc *ds;
   1465 	struct athn_txq *txq;
   1466 	struct athn_tx_buf *bf;
   1467 	struct athn_node *an = (void *)ni;
   1468 	struct mbuf *m1;
   1469 	uint32_t sum;
   1470 	uint16_t qos;
   1471 	uint8_t txpower, type, encrtype, ridx[4];
   1472 	int i, error, totlen, hasqos, qid;
   1473 
   1474 	/* Grab a Tx buffer from our global free list. */
   1475 	bf = SIMPLEQ_FIRST(&sc->sc_txbufs);
   1476 	KASSERT(bf != NULL);
   1477 
   1478 	/* Map 802.11 frame type to hardware frame type. */
   1479 	wh = mtod(m, struct ieee80211_frame *);
   1480 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1481 	    IEEE80211_FC0_TYPE_MGT) {
   1482 		/* NB: Beacons do not use ar9003_tx(). */
   1483 		if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1484 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   1485 			type = AR_FRAME_TYPE_PROBE_RESP;
   1486 		else if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1487 		    IEEE80211_FC0_SUBTYPE_ATIM)
   1488 			type = AR_FRAME_TYPE_ATIM;
   1489 		else
   1490 			type = AR_FRAME_TYPE_NORMAL;
   1491 	}
   1492 	else if ((wh->i_fc[0] &
   1493 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1494 	    (IEEE80211_FC0_TYPE_CTL  | IEEE80211_FC0_SUBTYPE_PS_POLL)) {
   1495 		type = AR_FRAME_TYPE_PSPOLL;
   1496 	}
   1497 	else
   1498 		type = AR_FRAME_TYPE_NORMAL;
   1499 
   1500 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
   1501 		k = ieee80211_crypto_encap(ic, ni, m);
   1502 		if (k == NULL)
   1503 			return ENOBUFS;
   1504 
   1505 		/* packet header may have moved, reset our local pointer */
   1506 		wh = mtod(m, struct ieee80211_frame *);
   1507 	}
   1508 
   1509 	/* XXX 2-byte padding for QoS and 4-addr headers. */
   1510 
   1511 	/* Select the HW Tx queue to use for this frame. */
   1512 	if ((hasqos = ieee80211_has_qos(wh))) {
   1513 #ifdef notyet_edca
   1514 		uint8_t tid;
   1515 
   1516 		qos = ieee80211_get_qos(wh);
   1517 		tid = qos & IEEE80211_QOS_TID;
   1518 		qid = athn_ac2qid[ieee80211_up_to_ac(ic, tid)];
   1519 #else
   1520 		qos = ieee80211_get_qos(wh);
   1521 		qid = ATHN_QID_AC_BE;
   1522 #endif /* notyet_edca */
   1523 	}
   1524 	else if (type == AR_FRAME_TYPE_PSPOLL) {
   1525 		qos = 0;
   1526 		qid = ATHN_QID_PSPOLL;
   1527 	}
   1528 	else if (txflags & ATHN_TXFLAG_CAB) {
   1529 		qos = 0;
   1530 		qid = ATHN_QID_CAB;
   1531 	}
   1532 	else {
   1533 		qos = 0;
   1534 		qid = ATHN_QID_AC_BE;
   1535 	}
   1536 	txq = &sc->sc_txq[qid];
   1537 
   1538 	/* Select the transmit rates to use for this frame. */
   1539 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   1540 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
   1541 	    IEEE80211_FC0_TYPE_DATA) {
   1542 		/* Use lowest rate for all tries. */
   1543 		ridx[0] = ridx[1] = ridx[2] = ridx[3] =
   1544 		    (ic->ic_curmode == IEEE80211_MODE_11A) ?
   1545 			ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1;
   1546 	}
   1547 	else if (ic->ic_fixed_rate != -1) {
   1548 		/* Use same fixed rate for all tries. */
   1549 		ridx[0] = ridx[1] = ridx[2] = ridx[3] =
   1550 		    sc->sc_fixed_ridx;
   1551 	}
   1552 	else {
   1553 		int txrate = ni->ni_txrate;
   1554 		/* Use fallback table of the node. */
   1555 		for (i = 0; i < 4; i++) {
   1556 			ridx[i] = an->ridx[txrate];
   1557 			txrate = an->fallback[txrate];
   1558 		}
   1559 	}
   1560 
   1561 	if (__predict_false(sc->sc_drvbpf != NULL)) {
   1562 		struct athn_tx_radiotap_header *tap = &sc->sc_txtap;
   1563 
   1564 		tap->wt_flags = 0;
   1565 		/* Use initial transmit rate. */
   1566 		tap->wt_rate = athn_rates[ridx[0]].rate;
   1567 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
   1568 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
   1569 // XXX		tap->wt_hwqueue = qid;
   1570 		if (ridx[0] != ATHN_RIDX_CCK1 &&
   1571 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
   1572 			tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   1573 
   1574 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, BPF_D_OUT);
   1575 	}
   1576 
   1577 	/* DMA map mbuf. */
   1578 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
   1579 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   1580 	if (__predict_false(error != 0)) {
   1581 		if (error != EFBIG) {
   1582 			aprint_error_dev(sc->sc_dev,
   1583 			    "can't map mbuf (error %d)\n", error);
   1584 			m_freem(m);
   1585 			return error;
   1586 		}
   1587 		/*
   1588 		 * DMA mapping requires too many DMA segments; linearize
   1589 		 * mbuf in kernel virtual address space and retry.
   1590 		 */
   1591 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
   1592 		if (m1 == NULL) {
   1593 			m_freem(m);
   1594 			return ENOBUFS;
   1595 		}
   1596 		if (m->m_pkthdr.len > (int)MHLEN) {
   1597 			MCLGET(m1, M_DONTWAIT);
   1598 			if (!(m1->m_flags & M_EXT)) {
   1599 				m_freem(m);
   1600 				m_freem(m1);
   1601 				return ENOBUFS;
   1602 			}
   1603 		}
   1604 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
   1605 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
   1606 		m_freem(m);
   1607 		m = m1;
   1608 
   1609 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
   1610 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   1611 		if (error != 0) {
   1612 			aprint_error_dev(sc->sc_dev,
   1613 			    "can't map mbuf (error %d)\n", error);
   1614 			m_freem(m);
   1615 			return error;
   1616 		}
   1617 	}
   1618 	bf->bf_m = m;
   1619 	bf->bf_ni = ni;
   1620 	bf->bf_txflags = txflags;
   1621 
   1622 	wh = mtod(m, struct ieee80211_frame *);
   1623 
   1624 	totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
   1625 
   1626 	/* Setup Tx descriptor. */
   1627 	ds = bf->bf_descs;
   1628 	memset(ds, 0, sizeof(*ds));
   1629 
   1630 	ds->ds_info =
   1631 	    SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) |
   1632 	    SM(AR_TXI_DESC_NDWORDS, 23) |
   1633 	    SM(AR_TXI_QCU_NUM, qid) |
   1634 	    AR_TXI_DESC_TX | AR_TXI_CTRL_STAT;
   1635 
   1636 	ds->ds_ctl11 = AR_TXC11_CLR_DEST_MASK;
   1637 	txpower = AR_MAX_RATE_POWER;	/* Get from per-rate registers. */
   1638 	ds->ds_ctl11 |= SM(AR_TXC11_XMIT_POWER, txpower);
   1639 
   1640 	ds->ds_ctl12 = SM(AR_TXC12_FRAME_TYPE, type);
   1641 
   1642 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   1643 	    (hasqos && (qos & IEEE80211_QOS_ACKPOLICY_MASK) ==
   1644 	     IEEE80211_QOS_ACKPOLICY_NOACK))
   1645 		ds->ds_ctl12 |= AR_TXC12_NO_ACK;
   1646 
   1647 #if notyet
   1648 	if (0 && k != NULL) {
   1649 		uintptr_t entry;
   1650 
   1651 		/*
   1652 		 * Map 802.11 cipher to hardware encryption type and
   1653 		 * compute MIC+ICV overhead.
   1654 		 */
   1655 		switch (k->k_cipher) {
   1656 		case IEEE80211_CIPHER_WEP40:
   1657 		case IEEE80211_CIPHER_WEP104:
   1658 			encrtype = AR_ENCR_TYPE_WEP;
   1659 			totlen += 4;
   1660 			break;
   1661 		case IEEE80211_CIPHER_TKIP:
   1662 			encrtype = AR_ENCR_TYPE_TKIP;
   1663 			totlen += 12;
   1664 			break;
   1665 		case IEEE80211_CIPHER_CCMP:
   1666 			encrtype = AR_ENCR_TYPE_AES;
   1667 			totlen += 8;
   1668 			break;
   1669 		default:
   1670 			panic("unsupported cipher");
   1671 		}
   1672 		/*
   1673 		 * NB: The key cache entry index is stored in the key
   1674 		 * private field when the key is installed.
   1675 		 */
   1676 		entry = (uintptr_t)k->k_priv;
   1677 		ds->ds_ctl12 |= SM(AR_TXC12_DEST_IDX, entry);
   1678 		ds->ds_ctl11 |= AR_TXC11_DEST_IDX_VALID;
   1679 	}
   1680 	else
   1681 #endif
   1682 		encrtype = AR_ENCR_TYPE_CLEAR;
   1683 	ds->ds_ctl17 = SM(AR_TXC17_ENCR_TYPE, encrtype);
   1684 
   1685 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
   1686 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1687 		/* NB: Group frames are sent using CCK in 802.11b/g. */
   1688 		if (totlen > ic->ic_rtsthreshold) {
   1689 			ds->ds_ctl11 |= AR_TXC11_RTS_ENABLE;
   1690 		}
   1691 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   1692 		    athn_rates[ridx[0]].phy == IEEE80211_T_OFDM) {
   1693 			if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   1694 				ds->ds_ctl11 |= AR_TXC11_RTS_ENABLE;
   1695 			else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   1696 				ds->ds_ctl11 |= AR_TXC11_CTS_ENABLE;
   1697 		}
   1698 	}
   1699 	if (ds->ds_ctl11 & (AR_TXC11_RTS_ENABLE | AR_TXC11_CTS_ENABLE)) {
   1700 		/* Disable multi-rate retries when protection is used. */
   1701 		ridx[1] = ridx[2] = ridx[3] = ridx[0];
   1702 	}
   1703 	/* Setup multi-rate retries. */
   1704 	for (i = 0; i < 4; i++) {
   1705 		series[i].hwrate = athn_rates[ridx[i]].hwrate;
   1706 		if (athn_rates[ridx[i]].phy == IEEE80211_T_DS &&
   1707 		    ridx[i] != ATHN_RIDX_CCK1 &&
   1708 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
   1709 			series[i].hwrate |= 0x04;
   1710 		series[i].dur = 0;
   1711 	}
   1712 	if (!(ds->ds_ctl12 & AR_TXC12_NO_ACK)) {
   1713 		/* Compute duration for each series. */
   1714 		for (i = 0; i < 4; i++) {
   1715 			series[i].dur = athn_txtime(sc, IEEE80211_ACK_LEN,
   1716 			    athn_rates[ridx[i]].rspridx, ic->ic_flags);
   1717 		}
   1718 	}
   1719 	/* If this is a PA training frame, select the Tx chain to use. */
   1720 	if (__predict_false(txflags & ATHN_TXFLAG_PAPRD)) {
   1721 		ds->ds_ctl12 |= SM(AR_TXC12_PAPRD_CHAIN_MASK,
   1722 		    1 << sc->sc_paprd_curchain);
   1723 	}
   1724 
   1725 	/* Write number of tries for each series. */
   1726 	ds->ds_ctl13 =
   1727 	    SM(AR_TXC13_XMIT_DATA_TRIES0, 2) |
   1728 	    SM(AR_TXC13_XMIT_DATA_TRIES1, 2) |
   1729 	    SM(AR_TXC13_XMIT_DATA_TRIES2, 2) |
   1730 	    SM(AR_TXC13_XMIT_DATA_TRIES3, 4);
   1731 
   1732 	/* Tell HW to update duration field in 802.11 header. */
   1733 	if (type != AR_FRAME_TYPE_PSPOLL)
   1734 		ds->ds_ctl13 |= AR_TXC13_DUR_UPDATE_ENA;
   1735 
   1736 	/* Write Tx rate for each series. */
   1737 	ds->ds_ctl14 =
   1738 	    SM(AR_TXC14_XMIT_RATE0, series[0].hwrate) |
   1739 	    SM(AR_TXC14_XMIT_RATE1, series[1].hwrate) |
   1740 	    SM(AR_TXC14_XMIT_RATE2, series[2].hwrate) |
   1741 	    SM(AR_TXC14_XMIT_RATE3, series[3].hwrate);
   1742 
   1743 	/* Write duration for each series. */
   1744 	ds->ds_ctl15 =
   1745 	    SM(AR_TXC15_PACKET_DUR0, series[0].dur) |
   1746 	    SM(AR_TXC15_PACKET_DUR1, series[1].dur);
   1747 	ds->ds_ctl16 =
   1748 	    SM(AR_TXC16_PACKET_DUR2, series[2].dur) |
   1749 	    SM(AR_TXC16_PACKET_DUR3, series[3].dur);
   1750 
   1751 	if ((sc->sc_flags & ATHN_FLAG_3TREDUCE_CHAIN) &&
   1752 	    ic->ic_curmode == IEEE80211_MODE_11A) {
   1753 		/*
   1754 		 * In order to not exceed PCIe power requirements, we only
   1755 		 * use two Tx chains for MCS0~15 on 5GHz band on these chips.
   1756 		 */
   1757 		ds->ds_ctl18 =
   1758 		    SM(AR_TXC18_CHAIN_SEL0,
   1759 			(ridx[0] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask) |
   1760 		    SM(AR_TXC18_CHAIN_SEL1,
   1761 			(ridx[1] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask) |
   1762 		    SM(AR_TXC18_CHAIN_SEL2,
   1763 			(ridx[2] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask) |
   1764 		    SM(AR_TXC18_CHAIN_SEL3,
   1765 			(ridx[3] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask);
   1766 	}
   1767 	else {
   1768 		/* Use the same Tx chains for all tries. */
   1769 		ds->ds_ctl18 =
   1770 		    SM(AR_TXC18_CHAIN_SEL0, sc->sc_txchainmask) |
   1771 		    SM(AR_TXC18_CHAIN_SEL1, sc->sc_txchainmask) |
   1772 		    SM(AR_TXC18_CHAIN_SEL2, sc->sc_txchainmask) |
   1773 		    SM(AR_TXC18_CHAIN_SEL3, sc->sc_txchainmask);
   1774 	}
   1775 #ifdef notyet
   1776 #ifndef IEEE80211_NO_HT
   1777 	/* Use the same short GI setting for all tries. */
   1778 	if (ic->ic_flags & IEEE80211_F_SHGI)
   1779 		ds->ds_ctl18 |= AR_TXC18_GI0123;
   1780 	/* Use the same channel width for all tries. */
   1781 	if (ic->ic_flags & IEEE80211_F_CBW40)
   1782 		ds->ds_ctl18 |= AR_TXC18_2040_0123;
   1783 #endif
   1784 #endif
   1785 
   1786 	if (ds->ds_ctl11 & (AR_TXC11_RTS_ENABLE | AR_TXC11_CTS_ENABLE)) {
   1787 		uint8_t protridx, hwrate;
   1788 		uint16_t dur = 0;
   1789 
   1790 		/* Use the same protection mode for all tries. */
   1791 		if (ds->ds_ctl11 & AR_TXC11_RTS_ENABLE) {
   1792 			ds->ds_ctl15 |= AR_TXC15_RTSCTS_QUAL01;
   1793 			ds->ds_ctl16 |= AR_TXC16_RTSCTS_QUAL23;
   1794 		}
   1795 		/* Select protection rate (suboptimal but ok). */
   1796 		protridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   1797 		    ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK2;
   1798 		if (ds->ds_ctl11 & AR_TXC11_RTS_ENABLE) {
   1799 			/* Account for CTS duration. */
   1800 			dur += athn_txtime(sc, IEEE80211_ACK_LEN,
   1801 			    athn_rates[protridx].rspridx, ic->ic_flags);
   1802 		}
   1803 		dur += athn_txtime(sc, totlen, ridx[0], ic->ic_flags);
   1804 		if (!(ds->ds_ctl12 & AR_TXC12_NO_ACK)) {
   1805 			/* Account for ACK duration. */
   1806 			dur += athn_txtime(sc, IEEE80211_ACK_LEN,
   1807 			    athn_rates[ridx[0]].rspridx, ic->ic_flags);
   1808 		}
   1809 		/* Write protection frame duration and rate. */
   1810 		ds->ds_ctl13 |= SM(AR_TXC13_BURST_DUR, dur);
   1811 		hwrate = athn_rates[protridx].hwrate;
   1812 		if (protridx == ATHN_RIDX_CCK2 &&
   1813 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
   1814 			hwrate |= 0x04;
   1815 		ds->ds_ctl18 |= SM(AR_TXC18_RTSCTS_RATE, hwrate);
   1816 	}
   1817 
   1818 	ds->ds_ctl11 |= SM(AR_TXC11_FRAME_LEN, totlen);
   1819 	ds->ds_ctl19 = AR_TXC19_NOT_SOUNDING;
   1820 
   1821 	for (i = 0; i < bf->bf_map->dm_nsegs; i++) {
   1822 		ds->ds_segs[i].ds_data = bf->bf_map->dm_segs[i].ds_addr;
   1823 		ds->ds_segs[i].ds_ctl = SM(AR_TXC_BUF_LEN,
   1824 		    bf->bf_map->dm_segs[i].ds_len);
   1825 	}
   1826 	/* Compute Tx descriptor checksum. */
   1827 	sum = ds->ds_info + ds->ds_link;
   1828 	for (i = 0; i < 4; i++) {
   1829 		sum += ds->ds_segs[i].ds_data;
   1830 		sum += ds->ds_segs[i].ds_ctl;
   1831 	}
   1832 	sum = (sum >> 16) + (sum & 0xffff);
   1833 	ds->ds_ctl10 = SM(AR_TXC10_PTR_CHK_SUM, sum);
   1834 
   1835 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
   1836 	    BUS_DMASYNC_PREWRITE);
   1837 
   1838 	DPRINTFN(DBG_TX, sc,
   1839 	    "Tx qid=%d nsegs=%d ctl11=0x%x ctl12=0x%x ctl14=0x%x\n",
   1840 	    qid, bf->bf_map->dm_nsegs, ds->ds_ctl11, ds->ds_ctl12,
   1841 	    ds->ds_ctl14);
   1842 
   1843 	SIMPLEQ_REMOVE_HEAD(&sc->sc_txbufs, bf_list);
   1844 	SIMPLEQ_INSERT_TAIL(&txq->head, bf, bf_list);
   1845 
   1846 	/* Queue buffer unless hardware FIFO is already full. */
   1847 	if (++txq->queued <= AR9003_TX_QDEPTH) {
   1848 		AR_WRITE(sc, AR_QTXDP(qid), bf->bf_daddr);
   1849 		AR_WRITE_BARRIER(sc);
   1850 	}
   1851 	else if (txq->wait == NULL)
   1852 		txq->wait = bf;
   1853 	return 0;
   1854 }
   1855 
   1856 Static void
   1857 ar9003_set_rf_mode(struct athn_softc *sc, struct ieee80211_channel *c)
   1858 {
   1859 	uint32_t reg;
   1860 
   1861 	reg = IEEE80211_IS_CHAN_2GHZ(c) ?
   1862 	    AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
   1863 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
   1864 	    (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)) {
   1865 		reg |= AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE;
   1866 	}
   1867 	AR_WRITE(sc, AR_PHY_MODE, reg);
   1868 	AR_WRITE_BARRIER(sc);
   1869 }
   1870 
   1871 static __inline uint32_t
   1872 ar9003_synth_delay(struct athn_softc *sc)
   1873 {
   1874 	uint32_t synth_delay;
   1875 
   1876 	synth_delay = MS(AR_READ(sc, AR_PHY_RX_DELAY), AR_PHY_RX_DELAY_DELAY);
   1877 	if (sc->sc_ic.ic_curmode == IEEE80211_MODE_11B)
   1878 		synth_delay = (synth_delay * 4) / 22;
   1879 	else
   1880 		synth_delay = synth_delay / 10;	/* in 100ns steps */
   1881 	return synth_delay;
   1882 }
   1883 
   1884 Static int
   1885 ar9003_rf_bus_request(struct athn_softc *sc)
   1886 {
   1887 	int ntries;
   1888 
   1889 	/* Request RF Bus grant. */
   1890 	AR_WRITE(sc, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
   1891 	for (ntries = 0; ntries < 10000; ntries++) {
   1892 		if (AR_READ(sc, AR_PHY_RFBUS_GRANT) & AR_PHY_RFBUS_GRANT_EN)
   1893 			return 0;
   1894 		DELAY(10);
   1895 	}
   1896 	DPRINTFN(DBG_RF, sc, "could not kill baseband Rx");
   1897 	return ETIMEDOUT;
   1898 }
   1899 
   1900 Static void
   1901 ar9003_rf_bus_release(struct athn_softc *sc)
   1902 {
   1903 	/* Wait for the synthesizer to settle. */
   1904 	DELAY(AR_BASE_PHY_ACTIVE_DELAY + ar9003_synth_delay(sc));
   1905 
   1906 	/* Release the RF Bus grant. */
   1907 	AR_WRITE(sc, AR_PHY_RFBUS_REQ, 0);
   1908 	AR_WRITE_BARRIER(sc);
   1909 }
   1910 
   1911 Static void
   1912 ar9003_set_phy(struct athn_softc *sc, struct ieee80211_channel *c,
   1913     struct ieee80211_channel *extc)
   1914 {
   1915 	uint32_t phy;
   1916 
   1917 	phy = AR_READ(sc, AR_PHY_GEN_CTRL);
   1918 	phy |= AR_PHY_GC_HT_EN | AR_PHY_GC_SHORT_GI_40 |
   1919 	    AR_PHY_GC_SINGLE_HT_LTF1 | AR_PHY_GC_WALSH;
   1920 #ifndef IEEE80211_NO_HT
   1921 	if (extc != NULL) {
   1922 		phy |= AR_PHY_GC_DYN2040_EN;
   1923 		if (extc > c)	/* XXX */
   1924 			phy |= AR_PHY_GC_DYN2040_PRI_CH;
   1925 	}
   1926 #endif
   1927 	/* Turn off Green Field detection for now. */
   1928 	phy &= ~AR_PHY_GC_GF_DETECT_EN;
   1929 	AR_WRITE(sc, AR_PHY_GEN_CTRL, phy);
   1930 
   1931 	AR_WRITE(sc, AR_2040_MODE,
   1932 	    (extc != NULL) ? AR_2040_JOINED_RX_CLEAR : 0);
   1933 
   1934 	/* Set global transmit timeout. */
   1935 	AR_WRITE(sc, AR_GTXTO, SM(AR_GTXTO_TIMEOUT_LIMIT, 25));
   1936 	/* Set carrier sense timeout. */
   1937 	AR_WRITE(sc, AR_CST, SM(AR_CST_TIMEOUT_LIMIT, 15));
   1938 	AR_WRITE_BARRIER(sc);
   1939 }
   1940 
   1941 Static void
   1942 ar9003_set_delta_slope(struct athn_softc *sc, struct ieee80211_channel *c,
   1943     struct ieee80211_channel *extc)
   1944 {
   1945 	uint32_t coeff, exp, man, reg;
   1946 
   1947 	/* Set Delta Slope (exponent and mantissa). */
   1948 	coeff = (100 << 24) / c->ic_freq;
   1949 	athn_get_delta_slope(coeff, &exp, &man);
   1950 	DPRINTFN(DBG_RF, sc, "delta slope coeff exp=%u man=%u\n", exp, man);
   1951 
   1952 	reg = AR_READ(sc, AR_PHY_TIMING3);
   1953 	reg = RW(reg, AR_PHY_TIMING3_DSC_EXP, exp);
   1954 	reg = RW(reg, AR_PHY_TIMING3_DSC_MAN, man);
   1955 	AR_WRITE(sc, AR_PHY_TIMING3, reg);
   1956 
   1957 	/* For Short GI, coeff is 9/10 that of normal coeff. */
   1958 	coeff = (9 * coeff) / 10;
   1959 	athn_get_delta_slope(coeff, &exp, &man);
   1960 	DPRINTFN(DBG_RF, sc, "delta slope coeff exp=%u man=%u\n", exp, man);
   1961 
   1962 	reg = AR_READ(sc, AR_PHY_SGI_DELTA);
   1963 	reg = RW(reg, AR_PHY_SGI_DSC_EXP, exp);
   1964 	reg = RW(reg, AR_PHY_SGI_DSC_MAN, man);
   1965 	AR_WRITE(sc, AR_PHY_SGI_DELTA, reg);
   1966 	AR_WRITE_BARRIER(sc);
   1967 }
   1968 
   1969 Static void
   1970 ar9003_enable_antenna_diversity(struct athn_softc *sc)
   1971 {
   1972 	AR_SETBITS(sc, AR_PHY_CCK_DETECT,
   1973 	    AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
   1974 	AR_WRITE_BARRIER(sc);
   1975 }
   1976 
   1977 Static void
   1978 ar9003_init_baseband(struct athn_softc *sc)
   1979 {
   1980 	uint32_t synth_delay;
   1981 
   1982 	synth_delay = ar9003_synth_delay(sc);
   1983 	/* Activate the PHY (includes baseband activate and synthesizer on). */
   1984 	AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
   1985 	AR_WRITE_BARRIER(sc);
   1986 	DELAY(AR_BASE_PHY_ACTIVE_DELAY + synth_delay);
   1987 }
   1988 
   1989 Static void
   1990 ar9003_disable_phy(struct athn_softc *sc)
   1991 {
   1992 	AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
   1993 	AR_WRITE_BARRIER(sc);
   1994 }
   1995 
   1996 Static void
   1997 ar9003_init_chains(struct athn_softc *sc)
   1998 {
   1999 	if (sc->sc_rxchainmask == 0x5 || sc->sc_txchainmask == 0x5)
   2000 		AR_SETBITS(sc, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
   2001 
   2002 	/* Setup chain masks. */
   2003 	AR_WRITE(sc, AR_PHY_RX_CHAINMASK,  sc->sc_rxchainmask);
   2004 	AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->sc_rxchainmask);
   2005 
   2006 	if (sc->sc_flags & ATHN_FLAG_3TREDUCE_CHAIN) {
   2007 		/*
   2008 		 * All self-generated frames are sent using two Tx chains
   2009 		 * on these chips to not exceed PCIe power requirements.
   2010 		 */
   2011 		AR_WRITE(sc, AR_SELFGEN_MASK, 0x3);
   2012 	}
   2013 	else
   2014 		AR_WRITE(sc, AR_SELFGEN_MASK, sc->sc_txchainmask);
   2015 	AR_WRITE_BARRIER(sc);
   2016 }
   2017 
   2018 Static void
   2019 ar9003_set_rxchains(struct athn_softc *sc)
   2020 {
   2021 	if (sc->sc_rxchainmask == 0x3 || sc->sc_rxchainmask == 0x5) {
   2022 		AR_WRITE(sc, AR_PHY_RX_CHAINMASK,  sc->sc_rxchainmask);
   2023 		AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->sc_rxchainmask);
   2024 		AR_WRITE_BARRIER(sc);
   2025 	}
   2026 }
   2027 
   2028 #ifdef notused
   2029 Static void
   2030 ar9003_read_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext)
   2031 {
   2032 /* Sign-extends 9-bit value (assumes upper bits are zeroes). */
   2033 #define SIGN_EXT(v)	(((v) ^ 0x100) - 0x100)
   2034 	uint32_t reg;
   2035 	int i;
   2036 
   2037 	for (i = 0; i < sc->sc_nrxchains; i++) {
   2038 		reg = AR_READ(sc, AR_PHY_CCA(i));
   2039 		nf[i] = MS(reg, AR_PHY_MINCCA_PWR);
   2040 		nf[i] = SIGN_EXT(nf[i]);
   2041 
   2042 		reg = AR_READ(sc, AR_PHY_EXT_CCA(i));
   2043 		nf_ext[i] = MS(reg, AR_PHY_EXT_MINCCA_PWR);
   2044 		nf_ext[i] = SIGN_EXT(nf_ext[i]);
   2045 	}
   2046 #undef SIGN_EXT
   2047 }
   2048 #endif /* notused */
   2049 
   2050 #ifdef notused
   2051 Static void
   2052 ar9003_write_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext)
   2053 {
   2054 	uint32_t reg;
   2055 	int i;
   2056 
   2057 	for (i = 0; i < sc->sc_nrxchains; i++) {
   2058 		reg = AR_READ(sc, AR_PHY_CCA(i));
   2059 		reg = RW(reg, AR_PHY_MAXCCA_PWR, nf[i]);
   2060 		AR_WRITE(sc, AR_PHY_CCA(i), reg);
   2061 
   2062 		reg = AR_READ(sc, AR_PHY_EXT_CCA(i));
   2063 		reg = RW(reg, AR_PHY_EXT_MAXCCA_PWR, nf_ext[i]);
   2064 		AR_WRITE(sc, AR_PHY_EXT_CCA(i), reg);
   2065 	}
   2066 	AR_WRITE_BARRIER(sc);
   2067 }
   2068 #endif /* notused */
   2069 
   2070 #ifdef notused
   2071 Static void
   2072 ar9003_get_noisefloor(struct athn_softc *sc, struct ieee80211_channel *c)
   2073 {
   2074 	int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS];
   2075 	int16_t cca_min, cca_max;
   2076 	int i;
   2077 
   2078 	if (AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
   2079 		/* Noisefloor calibration not finished. */
   2080 		return;
   2081 	}
   2082 	/* Noisefloor calibration is finished. */
   2083 	ar9003_read_noisefloor(sc, nf, nf_ext);
   2084 
   2085 	if (IEEE80211_IS_CHAN_2GHZ(c)) {
   2086 		cca_min = sc->sc_cca_min_2g;
   2087 		cca_max = sc->sc_cca_max_2g;
   2088 	}
   2089 	else {
   2090 		cca_min = sc->sc_cca_min_5g;
   2091 		cca_max = sc->sc_cca_max_5g;
   2092 	}
   2093 	/* Update noisefloor history. */
   2094 	for (i = 0; i < sc->sc_nrxchains; i++) {
   2095 		if (nf[i] < cca_min)
   2096 			nf[i] = cca_min;
   2097 		else if (nf[i] > cca_max)
   2098 			nf[i] = cca_max;
   2099 		if (nf_ext[i] < cca_min)
   2100 			nf_ext[i] = cca_min;
   2101 		else if (nf_ext[i] > cca_max)
   2102 			nf_ext[i] = cca_max;
   2103 
   2104 		sc->sc_nf_hist[sc->sc_nf_hist_cur].nf[i] = nf[i];
   2105 		sc->sc_nf_hist[sc->sc_nf_hist_cur].nf_ext[i] = nf_ext[i];
   2106 	}
   2107 	if (++sc->sc_nf_hist_cur >= ATHN_NF_CAL_HIST_MAX)
   2108 		sc->sc_nf_hist_cur = 0;
   2109 }
   2110 #endif /* notused */
   2111 
   2112 #ifdef notused
   2113 Static void
   2114 ar9003_bb_load_noisefloor(struct athn_softc *sc)
   2115 {
   2116 	int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS];
   2117 	int i, ntries;
   2118 
   2119 	/* Write filtered noisefloor values. */
   2120 	for (i = 0; i < sc->sc_nrxchains; i++) {
   2121 		nf[i] = sc->sc_nf_priv[i] * 2;
   2122 		nf_ext[i] = sc->sc_nf_ext_priv[i] * 2;
   2123 	}
   2124 	ar9003_write_noisefloor(sc, nf, nf_ext);
   2125 
   2126 	/* Load filtered noisefloor values into baseband. */
   2127 	AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
   2128 	AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
   2129 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
   2130 	/* Wait for load to complete. */
   2131 	for (ntries = 0; ntries < 1000; ntries++) {
   2132 		if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF))
   2133 			break;
   2134 		DELAY(10);
   2135 	}
   2136 	if (ntries == 1000) {
   2137 		DPRINTFN(DBG_RF, sc, "failed to load noisefloor values\n");
   2138 		return;
   2139 	}
   2140 
   2141 	/* Restore noisefloor values to initial (max) values. */
   2142 	for (i = 0; i < AR_MAX_CHAINS; i++)
   2143 		nf[i] = nf_ext[i] = -50 * 2;
   2144 	ar9003_write_noisefloor(sc, nf, nf_ext);
   2145 }
   2146 #endif /* notused */
   2147 
   2148 #ifdef notused
   2149 Static void
   2150 ar9300_noisefloor_calib(struct athn_softc *sc)
   2151 {
   2152 
   2153 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
   2154 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
   2155 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
   2156 }
   2157 #endif /* notused */
   2158 
   2159 Static void
   2160 ar9003_do_noisefloor_calib(struct athn_softc *sc)
   2161 {
   2162 
   2163 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
   2164 }
   2165 
   2166 PUBLIC int
   2167 ar9003_init_calib(struct athn_softc *sc)
   2168 {
   2169 	uint8_t txchainmask, rxchainmask;
   2170 	uint32_t reg;
   2171 	int ntries;
   2172 
   2173 	/* Save chains masks. */
   2174 	txchainmask = sc->sc_txchainmask;
   2175 	rxchainmask = sc->sc_rxchainmask;
   2176 	/* Configure hardware before calibration. */
   2177 	if (AR_READ(sc, AR_ENT_OTP) & AR_ENT_OTP_CHAIN2_DISABLE)
   2178 		txchainmask = rxchainmask = 0x3;
   2179 	else
   2180 		txchainmask = rxchainmask = 0x7;
   2181 	ar9003_init_chains(sc);
   2182 
   2183 	/* Perform Tx IQ calibration. */
   2184 	ar9003_calib_tx_iq(sc);
   2185 	/* Disable and re-enable the PHY chips. */
   2186 	AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
   2187 	AR_WRITE_BARRIER(sc);
   2188 	DELAY(5);
   2189 	AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
   2190 
   2191 	/* Calibrate the AGC. */
   2192 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL);
   2193 	/* Poll for offset calibration completion. */
   2194 	for (ntries = 0; ntries < 10000; ntries++) {
   2195 		reg = AR_READ(sc, AR_PHY_AGC_CONTROL);
   2196 		if (!(reg & AR_PHY_AGC_CONTROL_CAL))
   2197 			break;
   2198 		DELAY(10);
   2199 	}
   2200 	if (ntries == 10000)
   2201 		return ETIMEDOUT;
   2202 
   2203 	/* Restore chains masks. */
   2204 	sc->sc_txchainmask = txchainmask;
   2205 	sc->sc_rxchainmask = rxchainmask;
   2206 	ar9003_init_chains(sc);
   2207 
   2208 	return 0;
   2209 }
   2210 
   2211 Static void
   2212 ar9003_do_calib(struct athn_softc *sc)
   2213 {
   2214 	uint32_t reg;
   2215 
   2216 	if (sc->sc_cur_calib_mask & ATHN_CAL_IQ) {
   2217 		reg = AR_READ(sc, AR_PHY_TIMING4);
   2218 		reg = RW(reg, AR_PHY_TIMING4_IQCAL_LOG_COUNT_MAX, 10);
   2219 		AR_WRITE(sc, AR_PHY_TIMING4, reg);
   2220 		AR_WRITE(sc, AR_PHY_CALMODE, AR_PHY_CALMODE_IQ);
   2221 		AR_SETBITS(sc, AR_PHY_TIMING4, AR_PHY_TIMING4_DO_CAL);
   2222 		AR_WRITE_BARRIER(sc);
   2223 	}
   2224 	else if (sc->sc_cur_calib_mask & ATHN_CAL_TEMP) {
   2225 		AR_SETBITS(sc, AR_PHY_65NM_CH0_THERM,
   2226 		    AR_PHY_65NM_CH0_THERM_LOCAL);
   2227 		AR_SETBITS(sc, AR_PHY_65NM_CH0_THERM,
   2228 		    AR_PHY_65NM_CH0_THERM_START);
   2229 		AR_WRITE_BARRIER(sc);
   2230 	}
   2231 }
   2232 
   2233 Static void
   2234 ar9003_next_calib(struct athn_softc *sc)
   2235 {
   2236 	/* Check if we have any calibration in progress. */
   2237 	if (sc->sc_cur_calib_mask != 0) {
   2238 		if (!(AR_READ(sc, AR_PHY_TIMING4) & AR_PHY_TIMING4_DO_CAL)) {
   2239 			/* Calibration completed for current sample. */
   2240 			ar9003_calib_iq(sc);
   2241 		}
   2242 	}
   2243 }
   2244 
   2245 Static void
   2246 ar9003_calib_iq(struct athn_softc *sc)
   2247 {
   2248 	struct athn_iq_cal *cal;
   2249 	uint32_t reg, i_coff_denom, q_coff_denom;
   2250 	int32_t i_coff, q_coff;
   2251 	int i, iq_corr_neg;
   2252 
   2253 	for (i = 0; i < AR_MAX_CHAINS; i++) {
   2254 		cal = &sc->sc_calib.iq[i];
   2255 
   2256 		/* Read IQ calibration measures (clear on read). */
   2257 		cal->pwr_meas_i = AR_READ(sc, AR_PHY_IQ_ADC_MEAS_0_B(i));
   2258 		cal->pwr_meas_q = AR_READ(sc, AR_PHY_IQ_ADC_MEAS_1_B(i));
   2259 		cal->iq_corr_meas =
   2260 		    (int32_t)AR_READ(sc, AR_PHY_IQ_ADC_MEAS_2_B(i));
   2261 	}
   2262 
   2263 	for (i = 0; i < sc->sc_nrxchains; i++) {
   2264 		cal = &sc->sc_calib.iq[i];
   2265 
   2266 		if (cal->pwr_meas_q == 0)
   2267 			continue;
   2268 
   2269 		if ((iq_corr_neg = cal->iq_corr_meas) < 0)
   2270 			cal->iq_corr_meas = -cal->iq_corr_meas;
   2271 
   2272 		i_coff_denom =
   2273 		    (cal->pwr_meas_i / 2 + cal->pwr_meas_q / 2) / 256;
   2274 		q_coff_denom = cal->pwr_meas_q / 64;
   2275 
   2276 		if (i_coff_denom == 0 || q_coff_denom == 0)
   2277 			continue;	/* Prevents division by zero. */
   2278 
   2279 		i_coff = cal->iq_corr_meas / i_coff_denom;
   2280 		q_coff = (cal->pwr_meas_i / q_coff_denom) - 64;
   2281 
   2282 		if (i_coff > 63)
   2283 			i_coff = 63;
   2284 		else if (i_coff < -63)
   2285 			i_coff = -63;
   2286 		/* Negate i_coff if iq_corr_meas is positive. */
   2287 		if (!iq_corr_neg)
   2288 			i_coff = -i_coff;
   2289 		if (q_coff > 63)
   2290 			q_coff = 63;
   2291 		else if (q_coff < -63)
   2292 			q_coff = -63;
   2293 
   2294 		DPRINTFN(DBG_RF, sc, "IQ calibration for chain %d\n", i);
   2295 		reg = AR_READ(sc, AR_PHY_RX_IQCAL_CORR_B(i));
   2296 		reg = RW(reg, AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF, i_coff);
   2297 		reg = RW(reg, AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF, q_coff);
   2298 		AR_WRITE(sc, AR_PHY_RX_IQCAL_CORR_B(i), reg);
   2299 	}
   2300 
   2301 	/* Apply new settings. */
   2302 	AR_SETBITS(sc, AR_PHY_RX_IQCAL_CORR_B(0),
   2303 	    AR_PHY_RX_IQCAL_CORR_IQCORR_ENABLE);
   2304 	AR_WRITE_BARRIER(sc);
   2305 
   2306 	/* IQ calibration done. */
   2307 	sc->sc_cur_calib_mask &= ~ATHN_CAL_IQ;
   2308 	memset(&sc->sc_calib, 0, sizeof(sc->sc_calib));
   2309 }
   2310 
   2311 #define DELPT	32
   2312 Static int
   2313 ar9003_get_iq_corr(struct athn_softc *sc, int32_t res[6], int32_t coeff[2])
   2314 {
   2315 /* Sign-extends 12-bit value (assumes upper bits are zeroes). */
   2316 #define SIGN_EXT(v)	(((v) ^ 0x800) - 0x800)
   2317 #define SCALE		(1 << 15)
   2318 #define SHIFT		(1 <<  8)
   2319 	struct {
   2320 		int32_t	m, p, c;
   2321 	} val[2][2];
   2322 	int32_t mag[2][2], phs[2][2], cos[2], sin[2];
   2323 	int32_t div, f1, f2, f3, m, p, c;
   2324 	int32_t txmag, txphs, rxmag, rxphs;
   2325 	int32_t q_coff, i_coff;
   2326 	int i, j;
   2327 
   2328 	/* Extract our twelve signed 12-bit values from res[] array. */
   2329 	val[0][0].m = res[0] & 0xfff;
   2330 	val[0][0].p = (res[0] >> 12) & 0xfff;
   2331 	val[0][0].c = ((res[0] >> 24) & 0xff) | (res[1] & 0xf) << 8;
   2332 
   2333 	val[0][1].m = (res[1] >> 4) & 0xfff;
   2334 	val[0][1].p = res[2] & 0xfff;
   2335 	val[0][1].c = (res[2] >> 12) & 0xfff;
   2336 
   2337 	val[1][0].m = ((res[2] >> 24) & 0xff) | (res[3] & 0xf) << 8;
   2338 	val[1][0].p = (res[3] >> 4) & 0xfff;
   2339 	val[1][0].c = res[4] & 0xfff;
   2340 
   2341 	val[1][1].m = (res[4] >> 12) & 0xfff;
   2342 	val[1][1].p = ((res[4] >> 24) & 0xff) | (res[5] & 0xf) << 8;
   2343 	val[1][1].c = (res[5] >> 4) & 0xfff;
   2344 
   2345 	for (i = 0; i < 2; i++) {
   2346 		int32_t ymin, ymax;
   2347 		for (j = 0; j < 2; j++) {
   2348 			m = SIGN_EXT(val[i][j].m);
   2349 			p = SIGN_EXT(val[i][j].p);
   2350 			c = SIGN_EXT(val[i][j].c);
   2351 
   2352 			if (p == 0)
   2353 				return 1;	/* Prevent division by 0. */
   2354 
   2355 			mag[i][j] = (m * SCALE) / p;
   2356 			phs[i][j] = (c * SCALE) / p;
   2357 		}
   2358 		sin[i] = ((mag[i][0] - mag[i][1]) * SHIFT) / DELPT;
   2359 		cos[i] = ((phs[i][0] - phs[i][1]) * SHIFT) / DELPT;
   2360 		/* Find magnitude by approximation. */
   2361 		ymin = MIN(abs(sin[i]), abs(cos[i]));
   2362 		ymax = MAX(abs(sin[i]), abs(cos[i]));
   2363 		div = ymax - (ymax / 32) + (ymin / 8) + (ymin / 4);
   2364 		if (div == 0)
   2365 			return 1;	/* Prevent division by 0. */
   2366 		/* Normalize sin and cos by magnitude. */
   2367 		sin[i] = (sin[i] * SCALE) / div;
   2368 		cos[i] = (cos[i] * SCALE) / div;
   2369 	}
   2370 
   2371 	/* Compute IQ mismatch (solve 4x4 linear equation). */
   2372 	f1 = cos[0] - cos[1];
   2373 	f3 = sin[0] - sin[1];
   2374 	f2 = (f1 * f1 + f3 * f3) / SCALE;
   2375 	if (f2 == 0)
   2376 		return 1;	/* Prevent division by 0. */
   2377 
   2378 	/* Compute Tx magnitude mismatch. */
   2379 	txmag = (f1 * ( mag[0][0] - mag[1][0]) +
   2380 		 f3 * ( phs[0][0] - phs[1][0])) / f2;
   2381 	/* Compute Tx phase mismatch. */
   2382 	txphs = (f3 * (-mag[0][0] + mag[1][0]) +
   2383 		 f1 * ( phs[0][0] - phs[1][0])) / f2;
   2384 
   2385 	if (txmag == SCALE)
   2386 		return 1;	/* Prevent division by 0. */
   2387 
   2388 	/* Compute Rx magnitude mismatch. */
   2389 	rxmag = mag[0][0] - (cos[0] * txmag + sin[0] * txphs) / SCALE;
   2390 	/* Compute Rx phase mismatch. */
   2391 	rxphs = phs[0][0] + (sin[0] * txmag - cos[0] * txphs) / SCALE;
   2392 
   2393 	if (-rxmag == SCALE)
   2394 		return 1;	/* Prevent division by 0. */
   2395 
   2396 	txmag = (txmag * SCALE) / (SCALE - txmag);
   2397 	txphs = -txphs;
   2398 
   2399 	q_coff = (txmag * 128) / SCALE;
   2400 	if (q_coff < -63)
   2401 		q_coff = -63;
   2402 	else if (q_coff > 63)
   2403 		q_coff = 63;
   2404 	i_coff = (txphs * 256) / SCALE;
   2405 	if (i_coff < -63)
   2406 		i_coff = -63;
   2407 	else if (i_coff > 63)
   2408 		i_coff = 63;
   2409 	coeff[0] = q_coff * 128 + i_coff;
   2410 
   2411 	rxmag = (-rxmag * SCALE) / (SCALE + rxmag);
   2412 	rxphs = -rxphs;
   2413 
   2414 	q_coff = (rxmag * 128) / SCALE;
   2415 	if (q_coff < -63)
   2416 		q_coff = -63;
   2417 	else if (q_coff > 63)
   2418 		q_coff = 63;
   2419 	i_coff = (rxphs * 256) / SCALE;
   2420 	if (i_coff < -63)
   2421 		i_coff = -63;
   2422 	else if (i_coff > 63)
   2423 		i_coff = 63;
   2424 	coeff[1] = q_coff * 128 + i_coff;
   2425 
   2426 	return 0;
   2427 #undef SHIFT
   2428 #undef SCALE
   2429 #undef SIGN_EXT
   2430 }
   2431 
   2432 Static int
   2433 ar9003_calib_tx_iq(struct athn_softc *sc)
   2434 {
   2435 	uint32_t reg;
   2436 	int32_t res[6], coeff[2];
   2437 	int i, j, ntries;
   2438 
   2439 	reg = AR_READ(sc, AR_PHY_TX_IQCAL_CONTROL_1);
   2440 	reg = RW(reg, AR_PHY_TX_IQCAQL_CONTROL_1_IQCORR_I_Q_COFF_DELPT, DELPT);
   2441 	AR_WRITE(sc, AR_PHY_TX_IQCAL_CONTROL_1, reg);
   2442 
   2443 	/* Start Tx IQ calibration. */
   2444 	AR_SETBITS(sc, AR_PHY_TX_IQCAL_START, AR_PHY_TX_IQCAL_START_DO_CAL);
   2445 	/* Wait for completion. */
   2446 	for (ntries = 0; ntries < 10000; ntries++) {
   2447 		reg = AR_READ(sc, AR_PHY_TX_IQCAL_START);
   2448 		if (!(reg & AR_PHY_TX_IQCAL_START_DO_CAL))
   2449 			break;
   2450 		DELAY(10);
   2451 	}
   2452 	if (ntries == 10000)
   2453 		return ETIMEDOUT;
   2454 
   2455 	for (i = 0; i < sc->sc_ntxchains; i++) {
   2456 		/* Read Tx IQ calibration status for this chain. */
   2457 		reg = AR_READ(sc, AR_PHY_TX_IQCAL_STATUS_B(i));
   2458 		if (reg & AR_PHY_TX_IQCAL_STATUS_FAILED)
   2459 			return EIO;
   2460 		/*
   2461 		 * Read Tx IQ calibration results for this chain.
   2462 		 * This consists in twelve signed 12-bit values.
   2463 		 */
   2464 		for (j = 0; j < 3; j++) {
   2465 			AR_CLRBITS(sc, AR_PHY_CHAN_INFO_MEMORY,
   2466 			    AR_PHY_CHAN_INFO_TAB_S2_READ);
   2467 			reg = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(i, j));
   2468 			res[j * 2 + 0] = reg;
   2469 
   2470 			AR_SETBITS(sc, AR_PHY_CHAN_INFO_MEMORY,
   2471 			    AR_PHY_CHAN_INFO_TAB_S2_READ);
   2472 			reg = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(i, j));
   2473 			res[j * 2 + 1] = reg & 0xffff;
   2474 		}
   2475 
   2476 		/* Compute Tx IQ correction. */
   2477 		if (ar9003_get_iq_corr(sc, res, coeff) != 0)
   2478 			return EIO;
   2479 
   2480 		/* Write Tx IQ correction coefficients. */
   2481 		reg = AR_READ(sc, AR_PHY_TX_IQCAL_CORR_COEFF_01_B(i));
   2482 		reg = RW(reg, AR_PHY_TX_IQCAL_CORR_COEFF_01_COEFF_TABLE,
   2483 		    coeff[0]);
   2484 		AR_WRITE(sc, AR_PHY_TX_IQCAL_CORR_COEFF_01_B(i), reg);
   2485 
   2486 		reg = AR_READ(sc, AR_PHY_RX_IQCAL_CORR_B(i));
   2487 		reg = RW(reg, AR_PHY_RX_IQCAL_CORR_LOOPBACK_IQCORR_Q_Q_COFF,
   2488 		    coeff[1] >> 7);
   2489 		reg = RW(reg, AR_PHY_RX_IQCAL_CORR_LOOPBACK_IQCORR_Q_I_COFF,
   2490 		    coeff[1]);
   2491 		AR_WRITE(sc, AR_PHY_RX_IQCAL_CORR_B(i), reg);
   2492 		AR_WRITE_BARRIER(sc);
   2493 	}
   2494 
   2495 	/* Enable Tx IQ correction. */
   2496 	AR_SETBITS(sc, AR_PHY_TX_IQCAL_CONTROL_3,
   2497 	    AR_PHY_TX_IQCAL_CONTROL_3_IQCORR_EN);
   2498 	AR_SETBITS(sc, AR_PHY_RX_IQCAL_CORR_B(0),
   2499 	    AR_PHY_RX_IQCAL_CORR_B0_LOOPBACK_IQCORR_EN);
   2500 	AR_WRITE_BARRIER(sc);
   2501 	return 0;
   2502 }
   2503 #undef DELPT
   2504 
   2505 /*-
   2506  * The power amplifier predistortion state machine works as follows:
   2507  * 1) Disable digital predistorters for all Tx chains
   2508  * 2) Repeat steps 3~7 for all Tx chains
   2509  * 3)   Force Tx gain to that of training signal
   2510  * 4)   Send training signal (asynchronous)
   2511  * 5)   Wait for training signal to complete (asynchronous)
   2512  * 6)   Read PA measurements (input power, output power, output phase)
   2513  * 7)   Compute the predistortion function that linearizes PA output
   2514  * 8) Write predistortion functions to hardware tables for all Tx chains
   2515  * 9) Enable digital predistorters for all Tx chains
   2516  */
   2517 #ifdef notused
   2518 Static void
   2519 ar9003_paprd_calib(struct athn_softc *sc, struct ieee80211_channel *c)
   2520 {
   2521 	static const int scaling[] = {
   2522 		261376, 248079, 233759, 220464,
   2523 		208194, 196949, 185706, 175487
   2524 	};
   2525 	struct athn_ops *ops = &sc->sc_ops;
   2526 	uint32_t reg, ht20mask, ht40mask;
   2527 	int i;
   2528 
   2529 	/* Read PA predistortion masks from ROM. */
   2530 	ops->get_paprd_masks(sc, c, &ht20mask, &ht40mask);
   2531 
   2532 	/* AM-to-AM: amplifier's amplitude characteristic. */
   2533 	reg = AR_READ(sc, AR_PHY_PAPRD_AM2AM);
   2534 	reg = RW(reg, AR_PHY_PAPRD_AM2AM_MASK, ht20mask);
   2535 	AR_WRITE(sc, AR_PHY_PAPRD_AM2AM, reg);
   2536 
   2537 	/* AM-to-PM: amplifier's phase transfer characteristic. */
   2538 	reg = AR_READ(sc, AR_PHY_PAPRD_AM2PM);
   2539 	reg = RW(reg, AR_PHY_PAPRD_AM2PM_MASK, ht20mask);
   2540 	AR_WRITE(sc, AR_PHY_PAPRD_AM2PM, reg);
   2541 
   2542 	reg = AR_READ(sc, AR_PHY_PAPRD_HT40);
   2543 	reg = RW(reg, AR_PHY_PAPRD_HT40_MASK, ht40mask);
   2544 	AR_WRITE(sc, AR_PHY_PAPRD_HT40, reg);
   2545 
   2546 	for (i = 0; i < AR9003_MAX_CHAINS; i++) {
   2547 		AR_SETBITS(sc, AR_PHY_PAPRD_CTRL0_B(i),
   2548 		    AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE);
   2549 
   2550 		reg = AR_READ(sc, AR_PHY_PAPRD_CTRL1_B(i));
   2551 		reg = RW(reg, AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT, 181);
   2552 		reg = RW(reg, AR_PHY_PAPRD_CTRL1_MAG_SCALE_FACT, 361);
   2553 		reg &= ~AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA;
   2554 		reg |= AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENA;
   2555 		reg |= AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENA;
   2556 		AR_WRITE(sc, AR_PHY_PAPRD_CTRL1_B(i), reg);
   2557 
   2558 		reg = AR_READ(sc, AR_PHY_PAPRD_CTRL0_B(i));
   2559 		reg = RW(reg, AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3);
   2560 		AR_WRITE(sc, AR_PHY_PAPRD_CTRL0_B(i), reg);
   2561 	}
   2562 
   2563 	/* Disable all digital predistorters during calibration. */
   2564 	for (i = 0; i < AR9003_MAX_CHAINS; i++) {
   2565 		AR_CLRBITS(sc, AR_PHY_PAPRD_CTRL0_B(i),
   2566 		    AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE);
   2567 	}
   2568 	AR_WRITE_BARRIER(sc);
   2569 
   2570 	/*
   2571 	 * Configure training signal.
   2572 	 */
   2573 	reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL1);
   2574 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL1_AGC2_SETTLING, 28);
   2575 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL1_LB_SKIP, 0x30);
   2576 	reg &= ~AR_PHY_PAPRD_TRAINER_CNTL1_RX_BB_GAIN_FORCE;
   2577 	reg &= ~AR_PHY_PAPRD_TRAINER_CNTL1_IQCORR_ENABLE;
   2578 	reg |= AR_PHY_PAPRD_TRAINER_CNTL1_LB_ENABLE;
   2579 	reg |= AR_PHY_PAPRD_TRAINER_CNTL1_TX_GAIN_FORCE;
   2580 	reg |= AR_PHY_PAPRD_TRAINER_CNTL1_TRAIN_ENABLE;
   2581 	AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL1, reg);
   2582 
   2583 	AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL2, 147);
   2584 
   2585 	reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL3);
   2586 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_FINE_CORR_LEN, 4);
   2587 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_COARSE_CORR_LEN, 4);
   2588 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_NUM_CORR_STAGES, 7);
   2589 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_MIN_LOOPBACK_DEL, 1);
   2590 	if (AR_SREV_9485(sc))
   2591 		reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_QUICK_DROP, -3);
   2592 	else
   2593 		reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_QUICK_DROP, -6);
   2594 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_ADC_DESIRED_SIZE, -15);
   2595 	reg |= AR_PHY_PAPRD_TRAINER_CNTL3_BBTXMIX_DISABLE;
   2596 	AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL3, reg);
   2597 
   2598 	reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL4);
   2599 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_SAFETY_DELTA, 0);
   2600 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_MIN_CORR, 400);
   2601 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_NUM_TRAIN_SAMPLES, 100);
   2602 	AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL4, reg);
   2603 
   2604 	for (i = 0; i < __arraycount(scaling); i++) {
   2605 		reg = AR_READ(sc, AR_PHY_PAPRD_PRE_POST_SCALE_B0(i));
   2606 		reg = RW(reg, AR_PHY_PAPRD_PRE_POST_SCALING, scaling[i]);
   2607 		AR_WRITE(sc, AR_PHY_PAPRD_PRE_POST_SCALE_B0(i), reg);
   2608 	}
   2609 
   2610 	/* Save Tx gain table. */
   2611 	for (i = 0; i < AR9003_TX_GAIN_TABLE_SIZE; i++)
   2612 		sc->sc_txgain[i] = AR_READ(sc, AR_PHY_TXGAIN_TABLE(i));
   2613 
   2614 	/* Set Tx power of training signal (use setting for MCS0). */
   2615 	sc->sc_trainpow = MS(AR_READ(sc, AR_PHY_PWRTX_RATE5),
   2616 	    AR_PHY_PWRTX_RATE5_POWERTXHT20_0) - 4;
   2617 
   2618 	/*
   2619 	 * Start PA predistortion calibration state machine.
   2620 	 */
   2621 	/* Find first available Tx chain. */
   2622 	sc->sc_paprd_curchain = 0;
   2623 	while (!(sc->sc_txchainmask & (1 << sc->sc_paprd_curchain)))
   2624 		sc->sc_paprd_curchain++;
   2625 
   2626 	/* Make sure training done bit is clear. */
   2627 	AR_CLRBITS(sc, AR_PHY_PAPRD_TRAINER_STAT1,
   2628 	    AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE);
   2629 	AR_WRITE_BARRIER(sc);
   2630 
   2631 	/* Transmit training signal. */
   2632 	ar9003_paprd_tx_tone(sc);
   2633 }
   2634 #endif /* notused */
   2635 
   2636 Static int
   2637 ar9003_get_desired_txgain(struct athn_softc *sc, int chain, int pow)
   2638 {
   2639 	int32_t scale, atemp, avolt, tempcal, voltcal, temp, volt;
   2640 	int32_t tempcorr, voltcorr;
   2641 	uint32_t reg;
   2642 	int8_t delta;
   2643 
   2644 	scale = MS(AR_READ(sc, AR_PHY_TPC_12),
   2645 	    AR_PHY_TPC_12_DESIRED_SCALE_HT40_5);
   2646 
   2647 	reg = AR_READ(sc, AR_PHY_TPC_19);
   2648 	atemp = MS(reg, AR_PHY_TPC_19_ALPHA_THERM);
   2649 	avolt = MS(reg, AR_PHY_TPC_19_ALPHA_VOLT);
   2650 
   2651 	reg = AR_READ(sc, AR_PHY_TPC_18);
   2652 	tempcal = MS(reg, AR_PHY_TPC_18_THERM_CAL);
   2653 	voltcal = MS(reg, AR_PHY_TPC_18_VOLT_CAL);
   2654 
   2655 	reg = AR_READ(sc, AR_PHY_BB_THERM_ADC_4);
   2656 	temp = MS(reg, AR_PHY_BB_THERM_ADC_4_LATEST_THERM);
   2657 	volt = MS(reg, AR_PHY_BB_THERM_ADC_4_LATEST_VOLT);
   2658 
   2659 	delta = (int8_t)MS(AR_READ(sc, AR_PHY_TPC_11_B(chain)),
   2660 	    AR_PHY_TPC_11_OLPC_GAIN_DELTA);
   2661 
   2662 	/* Compute temperature and voltage correction. */
   2663 	tempcorr = (atemp * (temp - tempcal) + 128) / 256;
   2664 	voltcorr = (avolt * (volt - voltcal) + 64) / 128;
   2665 
   2666 	/* Compute desired Tx gain. */
   2667 	return pow - delta - tempcorr - voltcorr + scale;
   2668 }
   2669 
   2670 Static void
   2671 ar9003_force_txgain(struct athn_softc *sc, uint32_t txgain)
   2672 {
   2673 	uint32_t reg;
   2674 
   2675 	reg = AR_READ(sc, AR_PHY_TX_FORCED_GAIN);
   2676 	reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXBB1DBGAIN,
   2677 	    MS(txgain, AR_PHY_TXGAIN_TXBB1DBGAIN));
   2678 	reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXBB6DBGAIN,
   2679 	    MS(txgain, AR_PHY_TXGAIN_TXBB6DBGAIN));
   2680 	reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXMXRGAIN,
   2681 	    MS(txgain, AR_PHY_TXGAIN_TXMXRGAIN));
   2682 	reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNA,
   2683 	    MS(txgain, AR_PHY_TXGAIN_PADRVGNA));
   2684 	reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNB,
   2685 	    MS(txgain, AR_PHY_TXGAIN_PADRVGNB));
   2686 	reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNC,
   2687 	    MS(txgain, AR_PHY_TXGAIN_PADRVGNC));
   2688 	reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGND,
   2689 	    MS(txgain, AR_PHY_TXGAIN_PADRVGND));
   2690 	reg &= ~AR_PHY_TX_FORCED_GAIN_ENABLE_PAL;
   2691 	reg &= ~AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN;
   2692 	AR_WRITE(sc, AR_PHY_TX_FORCED_GAIN, reg);
   2693 
   2694 	reg = AR_READ(sc, AR_PHY_TPC_1);
   2695 	reg = RW(reg, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0);
   2696 	reg &= ~AR_PHY_TPC_1_FORCE_DAC_GAIN;
   2697 	AR_WRITE(sc, AR_PHY_TPC_1, reg);
   2698 	AR_WRITE_BARRIER(sc);
   2699 }
   2700 
   2701 Static void
   2702 ar9003_set_training_gain(struct athn_softc *sc, int chain)
   2703 {
   2704 	size_t i;
   2705 	int gain;
   2706 
   2707 	/*
   2708 	 * Get desired gain for training signal power (take into account
   2709 	 * current temperature/voltage).
   2710 	 */
   2711 	gain = ar9003_get_desired_txgain(sc, chain, sc->sc_trainpow);
   2712 	/* Find entry in table. */
   2713 	for (i = 0; i < AR9003_TX_GAIN_TABLE_SIZE - 1; i++)
   2714 		if ((int)MS(sc->sc_txgain[i], AR_PHY_TXGAIN_INDEX) >= gain)
   2715 			break;
   2716 	ar9003_force_txgain(sc, sc->sc_txgain[i]);
   2717 }
   2718 
   2719 Static int
   2720 ar9003_paprd_tx_tone(struct athn_softc *sc)
   2721 {
   2722 #define TONE_LEN	1800
   2723 	struct ieee80211com *ic = &sc->sc_ic;
   2724 	struct ieee80211_frame *wh;
   2725 	struct ieee80211_node *ni;
   2726 	struct mbuf *m;
   2727 	int error;
   2728 
   2729 	/* Build a Null (no data) frame of TONE_LEN bytes. */
   2730 	m = MCLGETI(NULL, M_DONTWAIT, NULL, TONE_LEN);
   2731 	if (m == NULL)
   2732 		return ENOBUFS;
   2733 	memset(mtod(m, void *), 0, TONE_LEN);
   2734 	wh = mtod(m, struct ieee80211_frame *);
   2735 	wh->i_fc[0] = IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA;
   2736 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   2737 	*(uint16_t *)wh->i_dur = htole16(10);	/* XXX */
   2738 	IEEE80211_ADDR_COPY(wh->i_addr1, ic->ic_myaddr);
   2739 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   2740 	IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_myaddr);
   2741 	m->m_pkthdr.len = m->m_len = TONE_LEN;
   2742 
   2743 	/* Set gain of training signal. */
   2744 	ar9003_set_training_gain(sc, sc->sc_paprd_curchain);
   2745 
   2746 	/* Transmit training signal. */
   2747 	ni = ieee80211_ref_node(ic->ic_bss);
   2748 	if ((error = ar9003_tx(sc, m, ni, ATHN_TXFLAG_PAPRD)) != 0)
   2749 		ieee80211_free_node(ni);
   2750 	return error;
   2751 #undef TONE_LEN
   2752 }
   2753 
   2754 static __inline int
   2755 get_scale(int val)
   2756 {
   2757 	int log = 0;
   2758 
   2759 	/* Find the log base 2 (position of highest bit set). */
   2760 	while (val >>= 1)
   2761 		log++;
   2762 
   2763 	return (log > 10) ? log - 10 : 0;
   2764 }
   2765 
   2766 /*
   2767  * Compute predistortion function to linearize power amplifier output based
   2768  * on feedback from training signal.
   2769  */
   2770 Static int
   2771 ar9003_compute_predistortion(struct athn_softc *sc, const uint32_t *lo,
   2772     const uint32_t *hi)
   2773 {
   2774 #define NBINS	23
   2775 	int chain = sc->sc_paprd_curchain;
   2776 	int x[NBINS + 1], y[NBINS + 1], t[NBINS + 1];
   2777 	int b1[NBINS + 1], b2[NBINS + 1], xtilde[NBINS + 1];
   2778 	int nsamples, txsum, rxsum, rosum, maxidx;
   2779 	int order, order5x, order5xrem, order3x, order3xrem, y5, y3;
   2780 	int icept, G, I, L, M, angle, xnonlin, y2, y4, sumy2, sumy4;
   2781 	int alpha, beta, scale, Qalpha, Qbeta, Qscale, Qx, Qb1, Qb2;
   2782 	int tavg, ttilde, maxb1abs, maxb2abs, maxxtildeabs, in;
   2783 	int tmp, i;
   2784 
   2785 	/* Set values at origin. */
   2786 	x[0] = y[0] = t[0] = 0;
   2787 
   2788 #define SCALE	32
   2789 	maxidx = 0;
   2790 	for (i = 0; i < NBINS; i++) {
   2791 		nsamples = lo[i] & 0xffff;
   2792 		/* Skip bins that contain 16 or less samples. */
   2793 		if (nsamples <= 16) {
   2794 			x[i + 1] = y[i + 1] = t[i + 1] = 0;
   2795 			continue;
   2796 		}
   2797 		txsum = (hi[i] & 0x7ff) << 16 | lo[i] >> 16;
   2798 		rxsum = (lo[i + NBINS] & 0xffff) << 5 |
   2799 		    ((hi[i] >> 11) & 0x1f);
   2800 		rosum = (hi[i + NBINS] & 0x7ff) << 16 | hi[i + NBINS] >> 16;
   2801 		/* Sign-extend 27-bit value. */
   2802 		rosum = (rosum ^ 0x4000000) - 0x4000000;
   2803 
   2804 		txsum *= SCALE;
   2805 		rxsum *= SCALE;
   2806 		rosum *= SCALE;
   2807 
   2808 		x[i + 1] = ((txsum + nsamples) / nsamples + SCALE) / SCALE;
   2809 		y[i + 1] = ((rxsum + nsamples) / nsamples + SCALE) / SCALE +
   2810 		    SCALE * maxidx + SCALE / 2;
   2811 		t[i + 1] = (rosum + nsamples) / nsamples;
   2812 		maxidx++;
   2813 	}
   2814 #undef SCALE
   2815 
   2816 #define SCALE_LOG	8
   2817 #define SCALE		(1 << SCALE_LOG)
   2818 	if (x[6] == x[3])
   2819 		return 1;	/* Prevent division by 0. */
   2820 	G = ((y[6] - y[3]) * SCALE + (x[6] - x[3])) / (x[6] - x[3]);
   2821 	if (G == 0)
   2822 		return 1;	/* Prevent division by 0. */
   2823 
   2824 	sc->sc_gain1[chain] = G;	/* Save low signal gain. */
   2825 
   2826 	/* Find interception point. */
   2827 	icept = (G * (x[0] - x[3]) + SCALE) / SCALE + y[3];
   2828 	for (i = 0; i <= 3; i++) {
   2829 		y[i] = i * 32;
   2830 		x[i] = (y[i] * SCALE + G) / G;
   2831 	}
   2832 	for (i = 4; i <= maxidx; i++)
   2833 		y[i] -= icept;
   2834 
   2835 	xnonlin = x[maxidx] - (y[maxidx] * SCALE + G) / G;
   2836 	order = (xnonlin + y[maxidx]) / y[maxidx];
   2837 	if (order == 0)
   2838 		M = 10;
   2839 	else if (order == 1)
   2840 		M = 9;
   2841 	else
   2842 		M = 8;
   2843 
   2844 	I = (maxidx >= 16) ? 7 : maxidx / 2;
   2845 	L = maxidx - I;
   2846 
   2847 	sumy2 = sumy4 = y2 = y4 = 0;
   2848 	for (i = 0; i <= L; i++) {
   2849 		if (y[i + I] == 0)
   2850 			return 1;	/* Prevent division by 0. */
   2851 
   2852 		xnonlin = x[i + I] - ((y[i + I] * SCALE) + G) / G;
   2853 		xtilde[i] = ((xnonlin << M) + y[i + I]) / y[i + I];
   2854 		xtilde[i] = ((xtilde[i] << M) + y[i + I]) / y[i + I];
   2855 		xtilde[i] = ((xtilde[i] << M) + y[i + I]) / y[i + I];
   2856 
   2857 		y2 = (y[i + I] * y[i + I] + SCALE * SCALE) / (SCALE * SCALE);
   2858 
   2859 		sumy2 += y2;
   2860 		sumy4 += y2 * y2;
   2861 
   2862 		b1[i] = y2 * (L + 1);
   2863 		b2[i] = y2;
   2864 	}
   2865 	for (i = 0; i <= L; i++) {
   2866 		b1[i] -= sumy2;
   2867 		b2[i] = sumy4 - sumy2 * b2[i];
   2868 	}
   2869 
   2870 	maxxtildeabs = maxb1abs = maxb2abs = 0;
   2871 	for (i = 0; i <= L; i++) {
   2872 		tmp = abs(xtilde[i]);
   2873 		if (tmp > maxxtildeabs)
   2874 			maxxtildeabs = tmp;
   2875 
   2876 		tmp = abs(b1[i]);
   2877 		if (tmp > maxb1abs)
   2878 			maxb1abs = tmp;
   2879 
   2880 		tmp = abs(b2[i]);
   2881 		if (tmp > maxb2abs)
   2882 			maxb2abs = tmp;
   2883 	}
   2884 	Qx  = get_scale(maxxtildeabs);
   2885 	Qb1 = get_scale(maxb1abs);
   2886 	Qb2 = get_scale(maxb2abs);
   2887 	for (i = 0; i <= L; i++) {
   2888 		xtilde[i] /= 1 << Qx;
   2889 		b1[i] /= 1 << Qb1;
   2890 		b2[i] /= 1 << Qb2;
   2891 	}
   2892 
   2893 	alpha = beta = 0;
   2894 	for (i = 0; i <= L; i++) {
   2895 		alpha += b1[i] * xtilde[i];
   2896 		beta  += b2[i] * xtilde[i];
   2897 	}
   2898 
   2899 	scale = ((y4 / SCALE_LOG) * (L + 1) -
   2900 		 (y2 / SCALE_LOG) * sumy2) * SCALE_LOG;
   2901 
   2902 	Qscale = get_scale(abs(scale));
   2903 	scale /= 1 << Qscale;
   2904 	Qalpha = get_scale(abs(alpha));
   2905 	alpha /= 1 << Qalpha;
   2906 	Qbeta  = get_scale(abs(beta));
   2907 	beta  /= 1 << Qbeta;
   2908 
   2909 	order = 3 * M - Qx - Qb1 - Qbeta + 10 + Qscale;
   2910 	order5x = 1 << (order / 5);
   2911 	order5xrem = 1 << (order % 5);
   2912 
   2913 	order = 3 * M - Qx - Qb2 - Qalpha + 10 + Qscale;
   2914 	order3x = 1 << (order / 3);
   2915 	order3xrem = 1 << (order % 3);
   2916 
   2917 	for (i = 0; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) {
   2918 		tmp = i * 32;
   2919 
   2920 		/* Fifth order. */
   2921 		y5 = ((beta * tmp) / 64) / order5x;
   2922 		y5 = (y5 * tmp) / order5x;
   2923 		y5 = (y5 * tmp) / order5x;
   2924 		y5 = (y5 * tmp) / order5x;
   2925 		y5 = (y5 * tmp) / order5x;
   2926 		y5 = y5 / order5xrem;
   2927 
   2928 		/* Third oder. */
   2929 		y3 = (alpha * tmp) / order3x;
   2930 		y3 = (y3 * tmp) / order3x;
   2931 		y3 = (y3 * tmp) / order3x;
   2932 		y3 = y3 / order3xrem;
   2933 
   2934 		in = y5 + y3 + (SCALE * tmp) / G;
   2935 		if (i >= 2 && in < sc->sc_pa_in[chain][i - 1]) {
   2936 			in = sc->sc_pa_in[chain][i - 1] +
   2937 			    (sc->sc_pa_in[chain][i - 1] -
   2938 			     sc->sc_pa_in[chain][i - 2]);
   2939 		}
   2940 		if (in > 1400)
   2941 			in = 1400;
   2942 		sc->sc_pa_in[chain][i] = in;
   2943 	}
   2944 
   2945 	/* Compute average theta of first 5 bins (linear region). */
   2946 	tavg = 0;
   2947 	for (i = 1; i <= 5; i++)
   2948 		tavg += t[i];
   2949 	tavg /= 5;
   2950 	for (i = 1; i <= 5; i++)
   2951 		t[i] = 0;
   2952 	for (i = 6; i <= maxidx; i++)
   2953 		t[i] -= tavg;
   2954 
   2955 	alpha = beta = 0;
   2956 	for (i = 0; i <= L; i++) {
   2957 		ttilde = ((t[i + I] << M) + y[i + I]) / y[i + I];
   2958 		ttilde = ((ttilde << M) +  y[i + I]) / y[i + I];
   2959 		ttilde = ((ttilde << M) +  y[i + I]) / y[i + I];
   2960 
   2961 		alpha += b2[i] * ttilde;
   2962 		beta  += b1[i] * ttilde;
   2963 	}
   2964 
   2965 	Qalpha = get_scale(abs(alpha));
   2966 	alpha /= 1 << Qalpha;
   2967 	Qbeta  = get_scale(abs(beta));
   2968 	beta  /= 1 << Qbeta;
   2969 
   2970 	order = 3 * M - Qx - Qb1 - Qbeta + 10 + Qscale + 5;
   2971 	order5x = 1 << (order / 5);
   2972 	order5xrem = 1 << (order % 5);
   2973 
   2974 	order = 3 * M - Qx - Qb2 - Qalpha + 10 + Qscale + 5;
   2975 	order3x = 1 << (order / 3);
   2976 	order3xrem = 1 << (order % 3);
   2977 
   2978 	for (i = 0; i <= 4; i++)
   2979 		sc->sc_angle[chain][i] = 0;	/* Linear at that range. */
   2980 	for (i = 5; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) {
   2981 		tmp = i * 32;
   2982 
   2983 		/* Fifth order. */
   2984 		if (beta > 0)
   2985 			y5 = (((beta * tmp - 64) / 64) - order5x) / order5x;
   2986 		else
   2987 			y5 = (((beta * tmp - 64) / 64) + order5x) / order5x;
   2988 		y5 = (y5 * tmp) / order5x;
   2989 		y5 = (y5 * tmp) / order5x;
   2990 		y5 = (y5 * tmp) / order5x;
   2991 		y5 = (y5 * tmp) / order5x;
   2992 		y5 = y5 / order5xrem;
   2993 
   2994 		/* Third oder. */
   2995 		if (beta > 0)	/* XXX alpha? */
   2996 			y3 = (alpha * tmp - order3x) / order3x;
   2997 		else
   2998 			y3 = (alpha * tmp + order3x) / order3x;
   2999 		y3 = (y3 * tmp) / order3x;
   3000 		y3 = (y3 * tmp) / order3x;
   3001 		y3 = y3 / order3xrem;
   3002 
   3003 		angle = y5 + y3;
   3004 		if (angle < -150)
   3005 			angle = -150;
   3006 		else if (angle > 150)
   3007 			angle = 150;
   3008 		sc->sc_angle[chain][i] = angle;
   3009 	}
   3010 	/* Angle for entry 4 is derived from angle for entry 5. */
   3011 	sc->sc_angle[chain][4] = (sc->sc_angle[chain][5] + 2) / 2;
   3012 
   3013 	return 0;
   3014 #undef SCALE
   3015 #undef SCALE_LOG
   3016 #undef NBINS
   3017 }
   3018 
   3019 Static void
   3020 ar9003_enable_predistorter(struct athn_softc *sc, int chain)
   3021 {
   3022 	uint32_t reg;
   3023 	int i;
   3024 
   3025 	/* Write digital predistorter lookup table. */
   3026 	for (i = 0; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) {
   3027 		AR_WRITE(sc, AR_PHY_PAPRD_MEM_TAB_B(chain, i),
   3028 		    SM(AR_PHY_PAPRD_PA_IN, sc->sc_pa_in[chain][i]) |
   3029 		    SM(AR_PHY_PAPRD_ANGLE, sc->sc_angle[chain][i]));
   3030 	}
   3031 
   3032 	reg = AR_READ(sc, AR_PHY_PA_GAIN123_B(chain));
   3033 	reg = RW(reg, AR_PHY_PA_GAIN123_PA_GAIN1, sc->sc_gain1[chain]);
   3034 	AR_WRITE(sc, AR_PHY_PA_GAIN123_B(chain), reg);
   3035 
   3036 	/* Indicate Tx power used for calibration (training signal). */
   3037 	reg = AR_READ(sc, AR_PHY_PAPRD_CTRL1_B(chain));
   3038 	reg = RW(reg, AR_PHY_PAPRD_CTRL1_POWER_AT_AM2AM_CAL, sc->sc_trainpow);
   3039 	AR_WRITE(sc, AR_PHY_PAPRD_CTRL1_B(chain), reg);
   3040 
   3041 	/* Enable digital predistorter for this chain. */
   3042 	AR_SETBITS(sc, AR_PHY_PAPRD_CTRL0_B(chain),
   3043 	    AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE);
   3044 	AR_WRITE_BARRIER(sc);
   3045 }
   3046 
   3047 Static void
   3048 ar9003_paprd_enable(struct athn_softc *sc)
   3049 {
   3050 	int i;
   3051 
   3052 	/* Enable digital predistorters for all Tx chains. */
   3053 	for (i = 0; i < AR9003_MAX_CHAINS; i++)
   3054 		if (sc->sc_txchainmask & (1 << i))
   3055 			ar9003_enable_predistorter(sc, i);
   3056 }
   3057 
   3058 /*
   3059  * This function is called when our training signal has been sent.
   3060  */
   3061 Static void
   3062 ar9003_paprd_tx_tone_done(struct athn_softc *sc)
   3063 {
   3064 	uint32_t lo[48], hi[48];
   3065 	size_t i;
   3066 
   3067 	/* Make sure training is complete. */
   3068 	if (!(AR_READ(sc, AR_PHY_PAPRD_TRAINER_STAT1) &
   3069 	    AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE))
   3070 		return;
   3071 
   3072 	/* Read feedback from training signal. */
   3073 	AR_CLRBITS(sc, AR_PHY_CHAN_INFO_MEMORY, AR_PHY_CHAN_INFO_TAB_S2_READ);
   3074 	for (i = 0; i < __arraycount(lo); i++)
   3075 		lo[i] = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(0, i));
   3076 	AR_SETBITS(sc, AR_PHY_CHAN_INFO_MEMORY, AR_PHY_CHAN_INFO_TAB_S2_READ);
   3077 	for (i = 0; i < __arraycount(hi); i++)
   3078 		hi[i] = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(0, i));
   3079 
   3080 	AR_CLRBITS(sc, AR_PHY_PAPRD_TRAINER_STAT1,
   3081 	    AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE);
   3082 
   3083 	/* Compute predistortion function based on this feedback. */
   3084 	if (ar9003_compute_predistortion(sc, lo, hi) != 0)
   3085 		return;
   3086 
   3087 	/* Get next available Tx chain. */
   3088 	while (++sc->sc_paprd_curchain < AR9003_MAX_CHAINS)
   3089 		if (sc->sc_txchainmask & (1 << sc->sc_paprd_curchain))
   3090 			break;
   3091 	if (sc->sc_paprd_curchain == AR9003_MAX_CHAINS) {
   3092 		/* All Tx chains measured; enable digital predistortion. */
   3093 		ar9003_paprd_enable(sc);
   3094 	}
   3095 	else	/* Measure next Tx chain. */
   3096 		ar9003_paprd_tx_tone(sc);
   3097 }
   3098 
   3099 PUBLIC void
   3100 ar9003_write_txpower(struct athn_softc *sc, int16_t power[ATHN_POWER_COUNT])
   3101 {
   3102 
   3103 	/* Make sure forced gain is disabled. */
   3104 	AR_WRITE(sc, AR_PHY_TX_FORCED_GAIN, 0);
   3105 
   3106 	AR_WRITE(sc, AR_PHY_PWRTX_RATE1,
   3107 	    (power[ATHN_POWER_OFDM18  ] & 0x3f) << 24 |
   3108 	    (power[ATHN_POWER_OFDM12  ] & 0x3f) << 16 |
   3109 	    (power[ATHN_POWER_OFDM9   ] & 0x3f) <<  8 |
   3110 	    (power[ATHN_POWER_OFDM6   ] & 0x3f));
   3111 	AR_WRITE(sc, AR_PHY_PWRTX_RATE2,
   3112 	    (power[ATHN_POWER_OFDM54  ] & 0x3f) << 24 |
   3113 	    (power[ATHN_POWER_OFDM48  ] & 0x3f) << 16 |
   3114 	    (power[ATHN_POWER_OFDM36  ] & 0x3f) <<  8 |
   3115 	    (power[ATHN_POWER_OFDM24  ] & 0x3f));
   3116 	AR_WRITE(sc, AR_PHY_PWRTX_RATE3,
   3117 	    (power[ATHN_POWER_CCK2_SP ] & 0x3f) << 24 |
   3118 	    (power[ATHN_POWER_CCK2_LP ] & 0x3f) << 16 |
   3119 	    /* NB: No eXtended Range for AR9003. */
   3120 	    (power[ATHN_POWER_CCK1_LP ] & 0x3f));
   3121 	AR_WRITE(sc, AR_PHY_PWRTX_RATE4,
   3122 	    (power[ATHN_POWER_CCK11_SP] & 0x3f) << 24 |
   3123 	    (power[ATHN_POWER_CCK11_LP] & 0x3f) << 16 |
   3124 	    (power[ATHN_POWER_CCK55_SP] & 0x3f) <<  8 |
   3125 	    (power[ATHN_POWER_CCK55_LP] & 0x3f));
   3126 	/*
   3127 	 * NB: AR_PHY_PWRTX_RATE5 needs to be written even if HT is disabled
   3128 	 * because it is read by PA predistortion functions.
   3129 	 */
   3130 	AR_WRITE(sc, AR_PHY_PWRTX_RATE5,
   3131 	    (power[ATHN_POWER_HT20( 5)] & 0x3f) << 24 |
   3132 	    (power[ATHN_POWER_HT20( 4)] & 0x3f) << 16 |
   3133 	    (power[ATHN_POWER_HT20( 1)] & 0x3f) <<  8 |
   3134 	    (power[ATHN_POWER_HT20( 0)] & 0x3f));
   3135 #ifndef IEEE80211_NO_HT
   3136 	AR_WRITE(sc, AR_PHY_PWRTX_RATE6,
   3137 	    (power[ATHN_POWER_HT20(13)] & 0x3f) << 24 |
   3138 	    (power[ATHN_POWER_HT20(12)] & 0x3f) << 16 |
   3139 	    (power[ATHN_POWER_HT20( 7)] & 0x3f) <<  8 |
   3140 	    (power[ATHN_POWER_HT20( 6)] & 0x3f));
   3141 	AR_WRITE(sc, AR_PHY_PWRTX_RATE7,
   3142 	    (power[ATHN_POWER_HT40( 5)] & 0x3f) << 24 |
   3143 	    (power[ATHN_POWER_HT40( 4)] & 0x3f) << 16 |
   3144 	    (power[ATHN_POWER_HT40( 1)] & 0x3f) <<  8 |
   3145 	    (power[ATHN_POWER_HT40( 0)] & 0x3f));
   3146 	AR_WRITE(sc, AR_PHY_PWRTX_RATE8,
   3147 	    (power[ATHN_POWER_HT40(13)] & 0x3f) << 24 |
   3148 	    (power[ATHN_POWER_HT40(12)] & 0x3f) << 16 |
   3149 	    (power[ATHN_POWER_HT40( 7)] & 0x3f) <<  8 |
   3150 	    (power[ATHN_POWER_HT40( 6)] & 0x3f));
   3151 	AR_WRITE(sc, AR_PHY_PWRTX_RATE10,
   3152 	    (power[ATHN_POWER_HT20(21)] & 0x3f) << 24 |
   3153 	    (power[ATHN_POWER_HT20(20)] & 0x3f) << 16 |
   3154 	    (power[ATHN_POWER_HT20(15)] & 0x3f) <<  8 |
   3155 	    (power[ATHN_POWER_HT20(14)] & 0x3f));
   3156 	AR_WRITE(sc, AR_PHY_PWRTX_RATE11,
   3157 	    (power[ATHN_POWER_HT40(23)] & 0x3f) << 24 |
   3158 	    (power[ATHN_POWER_HT40(22)] & 0x3f) << 16 |
   3159 	    (power[ATHN_POWER_HT20(23)] & 0x3f) <<  8 |
   3160 	    (power[ATHN_POWER_HT20(22)] & 0x3f));
   3161 	AR_WRITE(sc, AR_PHY_PWRTX_RATE12,
   3162 	    (power[ATHN_POWER_HT40(21)] & 0x3f) << 24 |
   3163 	    (power[ATHN_POWER_HT40(20)] & 0x3f) << 16 |
   3164 	    (power[ATHN_POWER_HT40(15)] & 0x3f) <<  8 |
   3165 	    (power[ATHN_POWER_HT40(14)] & 0x3f));
   3166 #endif
   3167 	AR_WRITE_BARRIER(sc);
   3168 }
   3169 
   3170 Static void
   3171 ar9003_reset_rx_gain(struct athn_softc *sc, struct ieee80211_channel *c)
   3172 {
   3173 #define X(x)	((uint32_t)(x) << 2)
   3174 	const struct athn_gain *prog = sc->sc_rx_gain;
   3175 	const uint32_t *pvals;
   3176 	int i;
   3177 
   3178 	if (IEEE80211_IS_CHAN_2GHZ(c))
   3179 		pvals = prog->vals_2g;
   3180 	else
   3181 		pvals = prog->vals_5g;
   3182 	for (i = 0; i < prog->nregs; i++)
   3183 		AR_WRITE(sc, X(prog->regs[i]), pvals[i]);
   3184 	AR_WRITE_BARRIER(sc);
   3185 #undef X
   3186 }
   3187 
   3188 Static void
   3189 ar9003_reset_tx_gain(struct athn_softc *sc, struct ieee80211_channel *c)
   3190 {
   3191 #define X(x)	((uint32_t)(x) << 2)
   3192 	const struct athn_gain *prog = sc->sc_tx_gain;
   3193 	const uint32_t *pvals;
   3194 	int i;
   3195 
   3196 	if (IEEE80211_IS_CHAN_2GHZ(c))
   3197 		pvals = prog->vals_2g;
   3198 	else
   3199 		pvals = prog->vals_5g;
   3200 	for (i = 0; i < prog->nregs; i++)
   3201 		AR_WRITE(sc, X(prog->regs[i]), pvals[i]);
   3202 	AR_WRITE_BARRIER(sc);
   3203 #undef X
   3204 }
   3205 
   3206 Static void
   3207 ar9003_hw_init(struct athn_softc *sc, struct ieee80211_channel *c,
   3208     struct ieee80211_channel *extc)
   3209 {
   3210 #define X(x)	((uint32_t)(x) << 2)
   3211 	struct athn_ops *ops = &sc->sc_ops;
   3212 	const struct athn_ini *ini = sc->sc_ini;
   3213 	const uint32_t *pvals;
   3214 	uint32_t reg;
   3215 	int i;
   3216 
   3217 	/*
   3218 	 * The common init values include the pre and core phases for the
   3219 	 * SoC, MAC, BB and Radio subsystems.
   3220 	 */
   3221 	DPRINTFN(DBG_INIT, sc, "writing pre and core init vals\n");
   3222 	for (i = 0; i < ini->ncmregs; i++) {
   3223 		AR_WRITE(sc, X(ini->cmregs[i]), ini->cmvals[i]);
   3224 		if (AR_IS_ANALOG_REG(X(ini->cmregs[i])))
   3225 			DELAY(100);
   3226 		if ((i & 0x1f) == 0)
   3227 			DELAY(1);
   3228 	}
   3229 
   3230 	/*
   3231 	 * The modal init values include the post phase for the SoC, MAC,
   3232 	 * BB and Radio subsystems.
   3233 	 */
   3234 #ifndef IEEE80211_NO_HT
   3235 	if (extc != NULL) {
   3236 		if (IEEE80211_IS_CHAN_2GHZ(c))
   3237 			pvals = ini->vals_2g40;
   3238 		else
   3239 			pvals = ini->vals_5g40;
   3240 	}
   3241 	else
   3242 #endif
   3243 	{
   3244 		if (IEEE80211_IS_CHAN_2GHZ(c))
   3245 			pvals = ini->vals_2g20;
   3246 		else
   3247 			pvals = ini->vals_5g20;
   3248 	}
   3249 	DPRINTFN(DBG_INIT, sc, "writing post init vals\n");
   3250 	for (i = 0; i < ini->nregs; i++) {
   3251 		AR_WRITE(sc, X(ini->regs[i]), pvals[i]);
   3252 		if (AR_IS_ANALOG_REG(X(ini->regs[i])))
   3253 			DELAY(100);
   3254 		if ((i & 0x1f) == 0)
   3255 			DELAY(1);
   3256 	}
   3257 
   3258 	if (sc->sc_rx_gain != NULL)
   3259 		ar9003_reset_rx_gain(sc, c);
   3260 	if (sc->sc_tx_gain != NULL)
   3261 		ar9003_reset_tx_gain(sc, c);
   3262 
   3263 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
   3264 	    (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)) {
   3265 		/* Update modal values for fast PLL clock. */
   3266 #ifndef IEEE80211_NO_HT
   3267 		if (extc != NULL)
   3268 			pvals = ini->fastvals_5g40;
   3269 		else
   3270 #endif
   3271 			pvals = ini->fastvals_5g20;
   3272 		DPRINTFN(DBG_INIT, sc, "writing fast pll clock init vals\n");
   3273 		for (i = 0; i < ini->nfastregs; i++) {
   3274 			AR_WRITE(sc, X(ini->fastregs[i]), pvals[i]);
   3275 			if (AR_IS_ANALOG_REG(X(ini->fastregs[i])))
   3276 				DELAY(100);
   3277 			if ((i & 0x1f) == 0)
   3278 				DELAY(1);
   3279 		}
   3280 	}
   3281 
   3282 	/*
   3283 	 * Set the RX_ABORT and RX_DIS bits to prevent frames with corrupted
   3284 	 * descriptor status.
   3285 	 */
   3286 	AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
   3287 
   3288 	reg = AR_READ(sc, AR_PCU_MISC_MODE2);
   3289 	reg &= ~AR_PCU_MISC_MODE2_ADHOC_MCAST_KEYID_ENABLE;
   3290 	reg |= AR_PCU_MISC_MODE2_AGG_WEP_ENABLE_FIX;
   3291 	reg |= AR_PCU_MISC_MODE2_ENABLE_AGGWEP;
   3292 	AR_WRITE(sc, AR_PCU_MISC_MODE2, reg);
   3293 	AR_WRITE_BARRIER(sc);
   3294 
   3295 	ar9003_set_phy(sc, c, extc);
   3296 	ar9003_init_chains(sc);
   3297 
   3298 	ops->set_txpower(sc, c, extc);
   3299 #undef X
   3300 }
   3301 
   3302 PUBLIC void
   3303 ar9003_get_lg_tpow(struct athn_softc *sc, struct ieee80211_channel *c,
   3304     uint8_t ctl, const uint8_t *fbins,
   3305     const struct ar_cal_target_power_leg *tgt, int nchans, uint8_t tpow[4])
   3306 {
   3307 	uint8_t fbin;
   3308 	int i, delta, lo, hi;
   3309 
   3310 	lo = hi = -1;
   3311 	fbin = athn_chan2fbin(c);
   3312 	for (i = 0; i < nchans; i++) {
   3313 		delta = fbin - fbins[i];
   3314 		/* Find the largest sample that is <= our frequency. */
   3315 		if (delta >= 0 && (lo == -1 || delta < fbin - fbins[lo]))
   3316 			lo = i;
   3317 		/* Find the smallest sample that is >= our frequency. */
   3318 		if (delta <= 0 && (hi == -1 || delta > fbin - fbins[hi]))
   3319 			hi = i;
   3320 	}
   3321 	if (lo == -1)
   3322 		lo = hi;
   3323 	else if (hi == -1)
   3324 		hi = lo;
   3325 	/* Interpolate values. */
   3326 	for (i = 0; i < 4; i++) {
   3327 		tpow[i] = athn_interpolate(fbin,
   3328 		    fbins[lo], tgt[lo].tPow2x[i],
   3329 		    fbins[hi], tgt[hi].tPow2x[i]);
   3330 	}
   3331 	/* XXX Apply conformance test limit. */
   3332 }
   3333 
   3334 PUBLIC void
   3335 ar9003_get_ht_tpow(struct athn_softc *sc, struct ieee80211_channel *c,
   3336     uint8_t ctl, const uint8_t *fbins,
   3337     const struct ar_cal_target_power_ht *tgt, int nchans, uint8_t tpow[14])
   3338 {
   3339 	uint8_t fbin;
   3340 	int i, delta, lo, hi;
   3341 
   3342 	lo = hi = -1;
   3343 	fbin = athn_chan2fbin(c);
   3344 	for (i = 0; i < nchans; i++) {
   3345 		delta = fbin - fbins[i];
   3346 		/* Find the largest sample that is <= our frequency. */
   3347 		if (delta >= 0 && (lo == -1 || delta < fbin - fbins[lo]))
   3348 			lo = i;
   3349 		/* Find the smallest sample that is >= our frequency. */
   3350 		if (delta <= 0 && (hi == -1 || delta > fbin - fbins[hi]))
   3351 			hi = i;
   3352 	}
   3353 	if (lo == -1)
   3354 		lo = hi;
   3355 	else if (hi == -1)
   3356 		hi = lo;
   3357 	/* Interpolate values. */
   3358 	for (i = 0; i < 14; i++) {
   3359 		tpow[i] = athn_interpolate(fbin,
   3360 		    fbins[lo], tgt[lo].tPow2x[i],
   3361 		    fbins[hi], tgt[hi].tPow2x[i]);
   3362 	}
   3363 	/* XXX Apply conformance test limit. */
   3364 }
   3365 
   3366 /*
   3367  * Adaptive noise immunity.
   3368  */
   3369 Static void
   3370 ar9003_set_noise_immunity_level(struct athn_softc *sc, int level)
   3371 {
   3372 	int high = level == 4;
   3373 	uint32_t reg;
   3374 
   3375 	reg = AR_READ(sc, AR_PHY_DESIRED_SZ);
   3376 	reg = RW(reg, AR_PHY_DESIRED_SZ_TOT_DES, high ? -62 : -55);
   3377 	AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg);
   3378 
   3379 	reg = AR_READ(sc, AR_PHY_AGC);
   3380 	reg = RW(reg, AR_PHY_AGC_COARSE_LOW, high ? -70 : -64);
   3381 	reg = RW(reg, AR_PHY_AGC_COARSE_HIGH, high ? -12 : -14);
   3382 	AR_WRITE(sc, AR_PHY_AGC, reg);
   3383 
   3384 	reg = AR_READ(sc, AR_PHY_FIND_SIG);
   3385 	reg = RW(reg, AR_PHY_FIND_SIG_FIRPWR, high ? -80 : -78);
   3386 	AR_WRITE(sc, AR_PHY_FIND_SIG, reg);
   3387 	AR_WRITE_BARRIER(sc);
   3388 }
   3389 
   3390 Static void
   3391 ar9003_enable_ofdm_weak_signal(struct athn_softc *sc)
   3392 {
   3393 	uint32_t reg;
   3394 
   3395 	reg = AR_READ(sc, AR_PHY_SFCORR_LOW);
   3396 	reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 50);
   3397 	reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 40);
   3398 	reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 48);
   3399 	AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg);
   3400 
   3401 	reg = AR_READ(sc, AR_PHY_SFCORR);
   3402 	reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 77);
   3403 	reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 64);
   3404 	reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 16);
   3405 	AR_WRITE(sc, AR_PHY_SFCORR, reg);
   3406 
   3407 	reg = AR_READ(sc, AR_PHY_SFCORR_EXT);
   3408 	reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 50);
   3409 	reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 40);
   3410 	reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 77);
   3411 	reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 64);
   3412 	AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg);
   3413 
   3414 	AR_SETBITS(sc, AR_PHY_SFCORR_LOW,
   3415 	    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
   3416 	AR_WRITE_BARRIER(sc);
   3417 }
   3418 
   3419 Static void
   3420 ar9003_disable_ofdm_weak_signal(struct athn_softc *sc)
   3421 {
   3422 	uint32_t reg;
   3423 
   3424 	reg = AR_READ(sc, AR_PHY_SFCORR_LOW);
   3425 	reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 127);
   3426 	reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 127);
   3427 	reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 63);
   3428 	AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg);
   3429 
   3430 	reg = AR_READ(sc, AR_PHY_SFCORR);
   3431 	reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 127);
   3432 	reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 127);
   3433 	reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 31);
   3434 	AR_WRITE(sc, AR_PHY_SFCORR, reg);
   3435 
   3436 	reg = AR_READ(sc, AR_PHY_SFCORR_EXT);
   3437 	reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 127);
   3438 	reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 127);
   3439 	reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 127);
   3440 	reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 127);
   3441 	AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg);
   3442 
   3443 	AR_CLRBITS(sc, AR_PHY_SFCORR_LOW,
   3444 	    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
   3445 	AR_WRITE_BARRIER(sc);
   3446 }
   3447 
   3448 Static void
   3449 ar9003_set_cck_weak_signal(struct athn_softc *sc, int high)
   3450 {
   3451 	uint32_t reg;
   3452 
   3453 	reg = AR_READ(sc, AR_PHY_CCK_DETECT);
   3454 	reg = RW(reg, AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK, high ? 6 : 8);
   3455 	AR_WRITE(sc, AR_PHY_CCK_DETECT, reg);
   3456 	AR_WRITE_BARRIER(sc);
   3457 }
   3458 
   3459 Static void
   3460 ar9003_set_firstep_level(struct athn_softc *sc, int level)
   3461 {
   3462 	uint32_t reg;
   3463 
   3464 	reg = AR_READ(sc, AR_PHY_FIND_SIG);
   3465 	reg = RW(reg, AR_PHY_FIND_SIG_FIRSTEP, level * 4);
   3466 	AR_WRITE(sc, AR_PHY_FIND_SIG, reg);
   3467 	AR_WRITE_BARRIER(sc);
   3468 }
   3469 
   3470 Static void
   3471 ar9003_set_spur_immunity_level(struct athn_softc *sc, int level)
   3472 {
   3473 	uint32_t reg;
   3474 
   3475 	reg = AR_READ(sc, AR_PHY_TIMING5);
   3476 	reg = RW(reg, AR_PHY_TIMING5_CYCPWR_THR1, (level + 1) * 2);
   3477 	AR_WRITE(sc, AR_PHY_TIMING5, reg);
   3478 	AR_WRITE_BARRIER(sc);
   3479 }
   3480