arn9003.c revision 1.1 1 /* $NetBSD: arn9003.c,v 1.1 2013/03/30 02:53:01 christos Exp $ */
2 /* $OpenBSD: ar9003.c,v 1.25 2012/10/20 09:53:32 stsp Exp $ */
3
4 /*-
5 * Copyright (c) 2010 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2010 Atheros Communications Inc.
7 *
8 * Permission to use, copy, modify, and/or distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*
22 * Driver for Atheros 802.11a/g/n chipsets.
23 * Routines for AR9003 family.
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: arn9003.c,v 1.1 2013/03/30 02:53:01 christos Exp $");
28
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/queue.h>
37 #include <sys/callout.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40
41 #include <sys/bus.h>
42 #include <sys/endian.h>
43 #include <sys/intr.h>
44
45 #include <net/bpf.h>
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/if_dl.h>
49 #include <net/if_media.h>
50 #include <net/if_types.h>
51
52 #include <netinet/in.h>
53 #include <netinet/in_systm.h>
54 #include <netinet/in_var.h>
55 #include <netinet/ip.h>
56
57 #include <net80211/ieee80211_var.h>
58 #include <net80211/ieee80211_amrr.h>
59 #include <net80211/ieee80211_radiotap.h>
60
61 #include <dev/ic/athnreg.h>
62 #include <dev/ic/athnvar.h>
63 #include <dev/ic/arn9003reg.h>
64 #include <dev/ic/arn9003.h>
65
66 #define Static static
67
68 Static void ar9003_calib_iq(struct athn_softc *);
69 Static int ar9003_calib_tx_iq(struct athn_softc *);
70 Static int ar9003_compute_predistortion(struct athn_softc *,
71 const uint32_t *, const uint32_t *);
72 Static void ar9003_disable_ofdm_weak_signal(struct athn_softc *);
73 Static void ar9003_disable_phy(struct athn_softc *);
74 Static int ar9003_dma_alloc(struct athn_softc *);
75 Static void ar9003_dma_free(struct athn_softc *);
76 Static void ar9003_do_calib(struct athn_softc *);
77 Static void ar9003_do_noisefloor_calib(struct athn_softc *);
78 Static void ar9003_enable_antenna_diversity(struct athn_softc *);
79 Static void ar9003_enable_ofdm_weak_signal(struct athn_softc *);
80 Static void ar9003_enable_predistorter(struct athn_softc *, int);
81 Static int ar9003_find_rom(struct athn_softc *);
82 Static void ar9003_force_txgain(struct athn_softc *, uint32_t);
83 Static int ar9003_get_desired_txgain(struct athn_softc *, int, int);
84 Static int ar9003_get_iq_corr(struct athn_softc *, int32_t[], int32_t[]);
85 Static void ar9003_gpio_config_input(struct athn_softc *, int);
86 Static void ar9003_gpio_config_output(struct athn_softc *, int, int);
87 Static int ar9003_gpio_read(struct athn_softc *, int);
88 Static void ar9003_gpio_write(struct athn_softc *, int, int);
89 Static void ar9003_hw_init(struct athn_softc *, struct ieee80211_channel *,
90 struct ieee80211_channel *);
91 Static void ar9003_init_baseband(struct athn_softc *);
92 Static void ar9003_init_chains(struct athn_softc *);
93 Static int ar9003_intr(struct athn_softc *);
94 Static void ar9003_next_calib(struct athn_softc *);
95 Static void ar9003_paprd_enable(struct athn_softc *);
96 Static int ar9003_paprd_tx_tone(struct athn_softc *);
97 Static void ar9003_paprd_tx_tone_done(struct athn_softc *);
98 Static int ar9003_read_eep_data(struct athn_softc *, uint32_t, void *,
99 int);
100 Static int ar9003_read_eep_word(struct athn_softc *, uint32_t,
101 uint16_t *);
102 Static int ar9003_read_otp_data(struct athn_softc *, uint32_t, void *,
103 int);
104 Static int ar9003_read_otp_word(struct athn_softc *, uint32_t,
105 uint32_t *);
106 Static int ar9003_read_rom(struct athn_softc *);
107 Static void ar9003_reset_rx_gain(struct athn_softc *,
108 struct ieee80211_channel *);
109 Static void ar9003_reset_tx_gain(struct athn_softc *,
110 struct ieee80211_channel *);
111 Static int ar9003_restore_rom_block(struct athn_softc *, uint8_t,
112 uint8_t, const uint8_t *, size_t);
113 Static void ar9003_rf_bus_release(struct athn_softc *);
114 Static int ar9003_rf_bus_request(struct athn_softc *);
115 Static void ar9003_rfsilent_init(struct athn_softc *);
116 Static int ar9003_rx_alloc(struct athn_softc *, int, int);
117 Static void ar9003_rx_enable(struct athn_softc *);
118 Static void ar9003_rx_free(struct athn_softc *, int);
119 Static void ar9003_rx_intr(struct athn_softc *, int);
120 Static int ar9003_rx_process(struct athn_softc *, int);
121 Static void ar9003_rx_radiotap(struct athn_softc *, struct mbuf *,
122 struct ar_rx_status *);
123 Static void ar9003_set_cck_weak_signal(struct athn_softc *, int);
124 Static void ar9003_set_delta_slope(struct athn_softc *,
125 struct ieee80211_channel *, struct ieee80211_channel *);
126 Static void ar9003_set_firstep_level(struct athn_softc *, int);
127 Static void ar9003_set_noise_immunity_level(struct athn_softc *, int);
128 Static void ar9003_set_phy(struct athn_softc *, struct ieee80211_channel *,
129 struct ieee80211_channel *);
130 Static void ar9003_set_rf_mode(struct athn_softc *,
131 struct ieee80211_channel *);
132 Static void ar9003_set_rxchains(struct athn_softc *);
133 Static void ar9003_set_spur_immunity_level(struct athn_softc *, int);
134 Static void ar9003_set_training_gain(struct athn_softc *, int);
135 Static int ar9003_swba_intr(struct athn_softc *);
136 Static int ar9003_tx(struct athn_softc *, struct mbuf *,
137 struct ieee80211_node *, int);
138 Static int ar9003_tx_alloc(struct athn_softc *);
139 Static void ar9003_tx_free(struct athn_softc *);
140 Static void ar9003_tx_intr(struct athn_softc *);
141 Static int ar9003_tx_process(struct athn_softc *);
142
143 #ifdef notused
144 Static void ar9003_bb_load_noisefloor(struct athn_softc *);
145 Static void ar9003_get_noisefloor(struct athn_softc *,
146 struct ieee80211_channel *);
147 Static void ar9003_paprd_calib(struct athn_softc *,
148 struct ieee80211_channel *);
149 Static void ar9003_read_noisefloor(struct athn_softc *, int16_t *,
150 int16_t *);
151 Static void ar9003_write_noisefloor(struct athn_softc *, int16_t *,
152 int16_t *);
153 Static void ar9300_noisefloor_calib(struct athn_softc *);
154 #endif /* notused */
155
156 /*
157 * XXX: See if_iwn.c:MCLGETIalt() for a better solution.
158 * XXX: Put this in a header or in athn.c so it can be shared between
159 * ar5008.c and ar9003.c?
160 */
161 static struct mbuf *
162 MCLGETI(struct athn_softc *sc __unused, int how,
163 struct ifnet *ifp __unused, u_int size)
164 {
165 struct mbuf *m;
166
167 MGETHDR(m, how, MT_DATA);
168 if (m == NULL)
169 return NULL;
170
171 MEXTMALLOC(m, size, how);
172 if ((m->m_flags & M_EXT) == 0) {
173 m_freem(m);
174 return NULL;
175 }
176 return m;
177 }
178
179 PUBLIC int
180 ar9003_attach(struct athn_softc *sc)
181 {
182 struct athn_ops *ops = &sc->sc_ops;
183 int error;
184
185 /* Set callbacks for AR9003 family. */
186 ops->gpio_read = ar9003_gpio_read;
187 ops->gpio_write = ar9003_gpio_write;
188 ops->gpio_config_input = ar9003_gpio_config_input;
189 ops->gpio_config_output = ar9003_gpio_config_output;
190 ops->rfsilent_init = ar9003_rfsilent_init;
191
192 ops->dma_alloc = ar9003_dma_alloc;
193 ops->dma_free = ar9003_dma_free;
194 ops->rx_enable = ar9003_rx_enable;
195 ops->intr = ar9003_intr;
196 ops->tx = ar9003_tx;
197
198 ops->set_rf_mode = ar9003_set_rf_mode;
199 ops->rf_bus_request = ar9003_rf_bus_request;
200 ops->rf_bus_release = ar9003_rf_bus_release;
201 ops->set_phy = ar9003_set_phy;
202 ops->set_delta_slope = ar9003_set_delta_slope;
203 ops->enable_antenna_diversity = ar9003_enable_antenna_diversity;
204 ops->init_baseband = ar9003_init_baseband;
205 ops->disable_phy = ar9003_disable_phy;
206 ops->set_rxchains = ar9003_set_rxchains;
207 ops->noisefloor_calib = ar9003_do_noisefloor_calib;
208 ops->do_calib = ar9003_do_calib;
209 ops->next_calib = ar9003_next_calib;
210 ops->hw_init = ar9003_hw_init;
211
212 ops->set_noise_immunity_level = ar9003_set_noise_immunity_level;
213 ops->enable_ofdm_weak_signal = ar9003_enable_ofdm_weak_signal;
214 ops->disable_ofdm_weak_signal = ar9003_disable_ofdm_weak_signal;
215 ops->set_cck_weak_signal = ar9003_set_cck_weak_signal;
216 ops->set_firstep_level = ar9003_set_firstep_level;
217 ops->set_spur_immunity_level = ar9003_set_spur_immunity_level;
218
219 /* Set MAC registers offsets. */
220 sc->sc_obs_off = AR_OBS;
221 sc->sc_gpio_input_en_off = AR_GPIO_INPUT_EN_VAL;
222
223 if (!(sc->sc_flags & ATHN_FLAG_PCIE))
224 athn_config_nonpcie(sc);
225 else
226 athn_config_pcie(sc);
227
228 /* Determine ROM type and location. */
229 if ((error = ar9003_find_rom(sc)) != 0) {
230 printf("%s: could not find ROM\n", device_xname(sc->sc_dev));
231 return error;
232 }
233 /* Read entire ROM content in memory. */
234 if ((error = ar9003_read_rom(sc)) != 0) {
235 printf("%s: could not read ROM\n", device_xname(sc->sc_dev));
236 return error;
237 }
238
239 /* Determine if it is a non-enterprise AR9003 card. */
240 if (AR_READ(sc, AR_ENT_OTP) & AR_ENT_OTP_MPSD)
241 sc->sc_flags |= ATHN_FLAG_NON_ENTERPRISE;
242
243 ops->setup(sc);
244 return 0;
245 }
246
247 /*
248 * Read 16-bit word from EEPROM.
249 */
250 Static int
251 ar9003_read_eep_word(struct athn_softc *sc, uint32_t addr, uint16_t *val)
252 {
253 uint32_t reg;
254 int ntries;
255
256 reg = AR_READ(sc, AR_EEPROM_OFFSET(addr));
257 for (ntries = 0; ntries < 1000; ntries++) {
258 reg = AR_READ(sc, AR_EEPROM_STATUS_DATA);
259 if (!(reg & (AR_EEPROM_STATUS_DATA_BUSY |
260 AR_EEPROM_STATUS_DATA_PROT_ACCESS))) {
261 *val = MS(reg, AR_EEPROM_STATUS_DATA_VAL);
262 return 0;
263 }
264 DELAY(10);
265 }
266 *val = 0xffff;
267 return ETIMEDOUT;
268 }
269
270 /*
271 * Read an arbitrary number of bytes at a specified address in EEPROM.
272 * NB: The address may not be 16-bit aligned.
273 */
274 Static int
275 ar9003_read_eep_data(struct athn_softc *sc, uint32_t addr, void *buf, int len)
276 {
277 uint8_t *dst = buf;
278 uint16_t val;
279 int error;
280
281 if (len > 0 && (addr & 1)) {
282 /* Deal with non-aligned reads. */
283 addr >>= 1;
284 error = ar9003_read_eep_word(sc, addr, &val);
285 if (error != 0)
286 return error;
287 *dst++ = val & 0xff;
288 addr--;
289 len--;
290 }
291 else
292 addr >>= 1;
293 for (; len >= 2; addr--, len -= 2) {
294 error = ar9003_read_eep_word(sc, addr, &val);
295 if (error != 0)
296 return error;
297 *dst++ = val >> 8;
298 *dst++ = val & 0xff;
299 }
300 if (len > 0) {
301 error = ar9003_read_eep_word(sc, addr, &val);
302 if (error != 0)
303 return error;
304 *dst++ = val >> 8;
305 }
306 return 0;
307 }
308
309 /*
310 * Read 32-bit word from OTPROM.
311 */
312 Static int
313 ar9003_read_otp_word(struct athn_softc *sc, uint32_t addr, uint32_t *val)
314 {
315 uint32_t reg;
316 int ntries;
317
318 reg = AR_READ(sc, AR_OTP_BASE(addr));
319 for (ntries = 0; ntries < 1000; ntries++) {
320 reg = AR_READ(sc, AR_OTP_STATUS);
321 if (MS(reg, AR_OTP_STATUS_TYPE) == AR_OTP_STATUS_VALID) {
322 *val = AR_READ(sc, AR_OTP_READ_DATA);
323 return 0;
324 }
325 DELAY(10);
326 }
327 return ETIMEDOUT;
328 }
329
330 /*
331 * Read an arbitrary number of bytes at a specified address in OTPROM.
332 * NB: The address may not be 32-bit aligned.
333 */
334 Static int
335 ar9003_read_otp_data(struct athn_softc *sc, uint32_t addr, void *buf, int len)
336 {
337 uint8_t *dst = buf;
338 uint32_t val;
339 int error;
340
341 /* NB: not optimal for non-aligned reads, but correct. */
342 for (; len > 0; addr--, len--) {
343 error = ar9003_read_otp_word(sc, addr >> 2, &val);
344 if (error != 0)
345 return error;
346 *dst++ = (val >> ((addr & 3) * 8)) & 0xff;
347 }
348 return 0;
349 }
350
351 /*
352 * Determine if the chip has an external EEPROM or an OTPROM and its size.
353 */
354 Static int
355 ar9003_find_rom(struct athn_softc *sc)
356 {
357 struct athn_ops *ops = &sc->sc_ops;
358 uint32_t hdr;
359 int error;
360
361 /* Try EEPROM. */
362 ops->read_rom_data = ar9003_read_eep_data;
363
364 sc->sc_eep_size = AR_SREV_9485(sc) ? 4096 : 1024;
365 sc->sc_eep_base = sc->sc_eep_size - 1;
366 error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
367 if (error == 0 && hdr != 0 && hdr != 0xffffffff)
368 return 0;
369
370 sc->sc_eep_size = 512;
371 sc->sc_eep_base = sc->sc_eep_size - 1;
372 error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
373 if (error == 0 && hdr != 0 && hdr != 0xffffffff)
374 return 0;
375
376 /* Try OTPROM. */
377 ops->read_rom_data = ar9003_read_otp_data;
378
379 sc->sc_eep_size = 1024;
380 sc->sc_eep_base = sc->sc_eep_size - 1;
381 error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
382 if (error == 0 && hdr != 0 && hdr != 0xffffffff)
383 return 0;
384
385 sc->sc_eep_size = 512;
386 sc->sc_eep_base = sc->sc_eep_size - 1;
387 error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
388 if (error == 0 && hdr != 0 && hdr != 0xffffffff)
389 return 0;
390
391 return EIO; /* Not found. */
392 }
393
394 Static int
395 ar9003_restore_rom_block(struct athn_softc *sc, uint8_t alg, uint8_t ref,
396 const uint8_t *buf, size_t len)
397 {
398 const uint8_t *def, *ptr, *end;
399 uint8_t *eep = sc->sc_eep;
400 size_t off, clen;
401
402 if (alg == AR_EEP_COMPRESS_BLOCK) {
403 /* Block contains chunks that shadow ROM template. */
404 def = sc->sc_ops.get_rom_template(sc, ref);
405 if (def == NULL) {
406 DPRINTFN(DBG_INIT, sc, "unknown template image %d\n",
407 ref);
408 return EINVAL;
409 }
410 /* Start with template. */
411 memcpy(eep, def, sc->sc_eep_size);
412 /* Shadow template with chunks. */
413 off = 0; /* Offset in ROM image. */
414 ptr = buf; /* Offset in block. */
415 end = buf + len;
416 /* Process chunks. */
417 while (ptr + 2 <= end) {
418 off += *ptr++; /* Gap with previous chunk. */
419 clen = *ptr++; /* Chunk length. */
420 /* Make sure block is large enough. */
421 if (ptr + clen > end)
422 return EINVAL;
423 /* Make sure chunk fits in ROM image. */
424 if (off + clen > sc->sc_eep_size)
425 return EINVAL;
426 /* Restore chunk. */
427 DPRINTFN(DBG_INIT, sc, "ROM chunk @%zd/%zd\n",
428 off, clen);
429 memcpy(&eep[off], ptr, clen);
430 ptr += clen;
431 off += clen;
432 }
433 }
434 else if (alg == AR_EEP_COMPRESS_NONE) {
435 /* Block contains full ROM image. */
436 if (len != sc->sc_eep_size) {
437 DPRINTFN(DBG_INIT, sc, "block length mismatch %zd\n",
438 len);
439 return EINVAL;
440 }
441 memcpy(eep, buf, len);
442 }
443 return 0;
444 }
445
446 Static int
447 ar9003_read_rom(struct athn_softc *sc)
448 {
449 struct athn_ops *ops = &sc->sc_ops;
450 uint8_t *buf, *ptr, alg, ref;
451 uint16_t sum, rsum;
452 uint32_t hdr;
453 int error, addr;
454 size_t len, i, j;
455
456 /* Allocate space to store ROM in host memory. */
457 sc->sc_eep = malloc(sc->sc_eep_size, M_DEVBUF, M_NOWAIT);
458 if (sc->sc_eep == NULL)
459 return ENOMEM;
460
461 /* Allocate temporary buffer to store ROM blocks. */
462 buf = malloc(2048, M_DEVBUF, M_NOWAIT);
463 if (buf == NULL)
464 return ENOMEM;
465
466 /* Restore vendor-specified ROM blocks. */
467 addr = sc->sc_eep_base;
468 for (i = 0; i < 100; i++) {
469 /* Read block header. */
470 error = ops->read_rom_data(sc, addr, &hdr, sizeof(hdr));
471 if (error != 0)
472 break;
473 if (hdr == 0 || hdr == 0xffffffff)
474 break;
475 addr -= sizeof(hdr);
476
477 /* Extract bits from header. */
478 ptr = (uint8_t *)&hdr;
479 alg = (ptr[0] & 0xe0) >> 5;
480 ref = (ptr[1] & 0x80) >> 2 | (ptr[0] & 0x1f);
481 len = (ptr[1] & 0x7f) << 4 | (ptr[2] & 0xf0) >> 4;
482 DPRINTFN(DBG_INIT, sc,
483 "ROM block %zd: alg=%d ref=%d len=%zd\n",
484 i, alg, ref, len);
485
486 /* Read block data (len <= 0x7ff). */
487 error = ops->read_rom_data(sc, addr, buf, len);
488 if (error != 0)
489 break;
490 addr -= len;
491
492 /* Read block checksum. */
493 error = ops->read_rom_data(sc, addr, &sum, sizeof(sum));
494 if (error != 0)
495 break;
496 addr -= sizeof(sum);
497
498 /* Compute block checksum. */
499 rsum = 0;
500 for (j = 0; j < len; j++)
501 rsum += buf[j];
502 /* Compare to that in ROM. */
503 if (le16toh(sum) != rsum) {
504 DPRINTFN(DBG_INIT, sc,
505 "bad block checksum 0x%x/0x%x\n",
506 le16toh(sum), rsum);
507 continue; /* Skip bad block. */
508 }
509 /* Checksum is correct, restore block. */
510 ar9003_restore_rom_block(sc, alg, ref, buf, len);
511 }
512 #if BYTE_ORDER == BIG_ENDIAN
513 /* NB: ROM is always little endian. */
514 if (error == 0)
515 ops->swap_rom(sc);
516 #endif
517 free(buf, M_DEVBUF);
518 return error;
519 }
520
521 /*
522 * Access to General Purpose Input/Output ports.
523 */
524 Static int
525 ar9003_gpio_read(struct athn_softc *sc, int pin)
526 {
527
528 KASSERT(pin < sc->sc_ngpiopins);
529 return ((AR_READ(sc, AR_GPIO_IN) & AR9300_GPIO_IN_VAL) &
530 (1 << pin)) != 0;
531 }
532
533 Static void
534 ar9003_gpio_write(struct athn_softc *sc, int pin, int set)
535 {
536 uint32_t reg;
537
538 KASSERT(pin < sc->sc_ngpiopins);
539 reg = AR_READ(sc, AR_GPIO_IN_OUT);
540 if (set)
541 reg |= 1 << pin;
542 else
543 reg &= ~(1 << pin);
544 AR_WRITE(sc, AR_GPIO_IN_OUT, reg);
545 AR_WRITE_BARRIER(sc);
546 }
547
548 Static void
549 ar9003_gpio_config_input(struct athn_softc *sc, int pin)
550 {
551 uint32_t reg;
552
553 reg = AR_READ(sc, AR_GPIO_OE_OUT);
554 reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2));
555 reg |= AR_GPIO_OE_OUT_DRV_NO << (pin * 2);
556 AR_WRITE(sc, AR_GPIO_OE_OUT, reg);
557 AR_WRITE_BARRIER(sc);
558 }
559
560 Static void
561 ar9003_gpio_config_output(struct athn_softc *sc, int pin, int type)
562 {
563 uint32_t reg;
564 int mux, off;
565
566 mux = pin / 6;
567 off = pin % 6;
568
569 reg = AR_READ(sc, AR_GPIO_OUTPUT_MUX(mux));
570 reg &= ~(0x1f << (off * 5));
571 reg |= (type & 0x1f) << (off * 5);
572 AR_WRITE(sc, AR_GPIO_OUTPUT_MUX(mux), reg);
573
574 reg = AR_READ(sc, AR_GPIO_OE_OUT);
575 reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2));
576 reg |= AR_GPIO_OE_OUT_DRV_ALL << (pin * 2);
577 AR_WRITE(sc, AR_GPIO_OE_OUT, reg);
578 AR_WRITE_BARRIER(sc);
579 }
580
581 Static void
582 ar9003_rfsilent_init(struct athn_softc *sc)
583 {
584 uint32_t reg;
585
586 /* Configure hardware radio switch. */
587 AR_SETBITS(sc, AR_GPIO_INPUT_EN_VAL, AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
588 reg = AR_READ(sc, AR_GPIO_INPUT_MUX2);
589 reg = RW(reg, AR_GPIO_INPUT_MUX2_RFSILENT, 0);
590 AR_WRITE(sc, AR_GPIO_INPUT_MUX2, reg);
591 ar9003_gpio_config_input(sc, sc->sc_rfsilent_pin);
592 AR_SETBITS(sc, AR_PHY_TEST, AR_PHY_TEST_RFSILENT_BB);
593 if (!(sc->sc_flags & ATHN_FLAG_RFSILENT_REVERSED)) {
594 AR_SETBITS(sc, AR_GPIO_INTR_POL,
595 AR_GPIO_INTR_POL_PIN(sc->sc_rfsilent_pin));
596 }
597 AR_WRITE_BARRIER(sc);
598 }
599
600 Static int
601 ar9003_dma_alloc(struct athn_softc *sc)
602 {
603 int error;
604
605 error = ar9003_tx_alloc(sc);
606 if (error != 0)
607 return error;
608
609 error = ar9003_rx_alloc(sc, ATHN_QID_LP, AR9003_RX_LP_QDEPTH);
610 if (error != 0)
611 return error;
612
613 error = ar9003_rx_alloc(sc, ATHN_QID_HP, AR9003_RX_HP_QDEPTH);
614 if (error != 0)
615 return error;
616
617 return 0;
618 }
619
620 Static void
621 ar9003_dma_free(struct athn_softc *sc)
622 {
623
624 ar9003_tx_free(sc);
625 ar9003_rx_free(sc, ATHN_QID_LP);
626 ar9003_rx_free(sc, ATHN_QID_HP);
627 }
628
629 Static int
630 ar9003_tx_alloc(struct athn_softc *sc)
631 {
632 struct athn_tx_buf *bf;
633 bus_size_t size;
634 int error, nsegs, i;
635
636 /*
637 * Allocate Tx status ring.
638 */
639 size = AR9003_NTXSTATUS * sizeof(struct ar_tx_status);
640
641 error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
642 BUS_DMA_NOWAIT, &sc->sc_txsmap);
643 if (error != 0)
644 goto fail;
645
646 error = bus_dmamem_alloc(sc->sc_dmat, size, 4, 0, &sc->sc_txsseg, 1,
647 // XXX &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
648 &nsegs, BUS_DMA_NOWAIT);
649 if (error != 0)
650 goto fail;
651
652 error = bus_dmamem_map(sc->sc_dmat, &sc->sc_txsseg, 1, size,
653 (void **)&sc->sc_txsring, BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
654 if (error != 0)
655 goto fail;
656
657 error = bus_dmamap_load_raw(sc->sc_dmat, sc->sc_txsmap, &sc->sc_txsseg,
658 1, size, BUS_DMA_NOWAIT | BUS_DMA_READ);
659 if (error != 0)
660 goto fail;
661
662 /*
663 * Allocate a pool of Tx descriptors shared between all Tx queues.
664 */
665 size = ATHN_NTXBUFS * sizeof(struct ar_tx_desc);
666
667 error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
668 BUS_DMA_NOWAIT, &sc->sc_map);
669 if (error != 0)
670 goto fail;
671
672 error = bus_dmamem_alloc(sc->sc_dmat, size, 4, 0, &sc->sc_seg, 1,
673 // XXX &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
674 &nsegs, BUS_DMA_NOWAIT);
675 if (error != 0)
676 goto fail;
677
678 error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, 1, size,
679 (void **)&sc->sc_descs, BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
680 if (error != 0)
681 goto fail;
682
683 error = bus_dmamap_load_raw(sc->sc_dmat, sc->sc_map, &sc->sc_seg, 1, size,
684 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
685 if (error != 0)
686 goto fail;
687
688 SIMPLEQ_INIT(&sc->sc_txbufs);
689 for (i = 0; i < ATHN_NTXBUFS; i++) {
690 bf = &sc->sc_txpool[i];
691
692 error = bus_dmamap_create(sc->sc_dmat, ATHN_TXBUFSZ,
693 AR9003_MAX_SCATTER, ATHN_TXBUFSZ, 0, BUS_DMA_NOWAIT,
694 &bf->bf_map);
695 if (error != 0) {
696 printf("%s: could not create Tx buf DMA map\n",
697 device_xname(sc->sc_dev));
698 goto fail;
699 }
700
701 bf->bf_descs = &((struct ar_tx_desc *)sc->sc_descs)[i];
702 bf->bf_daddr = sc->sc_map->dm_segs[0].ds_addr +
703 i * sizeof(struct ar_tx_desc);
704
705 SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
706 }
707 return 0;
708 fail:
709 ar9003_tx_free(sc);
710 return error;
711 }
712
713 Static void
714 ar9003_tx_free(struct athn_softc *sc)
715 {
716 struct athn_tx_buf *bf;
717 int i;
718
719 for (i = 0; i < ATHN_NTXBUFS; i++) {
720 bf = &sc->sc_txpool[i];
721
722 if (bf->bf_map != NULL)
723 bus_dmamap_destroy(sc->sc_dmat, bf->bf_map);
724 }
725 /* Free Tx descriptors. */
726 if (sc->sc_map != NULL) {
727 if (sc->sc_descs != NULL) {
728 bus_dmamap_unload(sc->sc_dmat, sc->sc_map);
729 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
730 ATHN_NTXBUFS * sizeof(struct ar_tx_desc));
731 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
732 }
733 bus_dmamap_destroy(sc->sc_dmat, sc->sc_map);
734 }
735 /* Free Tx status ring. */
736 if (sc->sc_txsmap != NULL) {
737 if (sc->sc_txsring != NULL) {
738 bus_dmamap_unload(sc->sc_dmat, sc->sc_txsmap);
739 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_txsring,
740 AR9003_NTXSTATUS * sizeof(struct ar_tx_status));
741 bus_dmamem_free(sc->sc_dmat, &sc->sc_txsseg, 1);
742 }
743 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsmap);
744 }
745 }
746
747 Static int
748 ar9003_rx_alloc(struct athn_softc *sc, int qid, int count)
749 {
750 struct athn_rxq *rxq = &sc->sc_rxq[qid];
751 struct athn_rx_buf *bf;
752 struct ar_rx_status *ds;
753 int error, i;
754
755 rxq->bf = malloc(count * sizeof(*bf), M_DEVBUF, M_NOWAIT | M_ZERO);
756 if (rxq->bf == NULL)
757 return ENOMEM;
758
759 rxq->count = count;
760
761 for (i = 0; i < rxq->count; i++) {
762 bf = &rxq->bf[i];
763
764 error = bus_dmamap_create(sc->sc_dmat, ATHN_RXBUFSZ, 1,
765 ATHN_RXBUFSZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
766 &bf->bf_map);
767 if (error != 0) {
768 printf("%s: could not create Rx buf DMA map\n",
769 device_xname(sc->sc_dev));
770 goto fail;
771 }
772 /*
773 * Assumes MCLGETI returns cache-line-size aligned buffers.
774 */
775 bf->bf_m = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ);
776 if (bf->bf_m == NULL) {
777 printf("%s: could not allocate Rx mbuf\n",
778 device_xname(sc->sc_dev));
779 error = ENOBUFS;
780 goto fail;
781 }
782
783 error = bus_dmamap_load(sc->sc_dmat, bf->bf_map,
784 mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL,
785 BUS_DMA_NOWAIT);
786 if (error != 0) {
787 printf("%s: could not DMA map Rx buffer\n",
788 device_xname(sc->sc_dev));
789 goto fail;
790 }
791
792 ds = mtod(bf->bf_m, struct ar_rx_status *);
793 memset(ds, 0, sizeof(*ds));
794 bf->bf_desc = ds;
795 bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr;
796
797 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
798 BUS_DMASYNC_PREREAD);
799 }
800 return 0;
801 fail:
802 ar9003_rx_free(sc, qid);
803 return error;
804 }
805
806 Static void
807 ar9003_rx_free(struct athn_softc *sc, int qid)
808 {
809 struct athn_rxq *rxq = &sc->sc_rxq[qid];
810 struct athn_rx_buf *bf;
811 int i;
812
813 if (rxq->bf == NULL)
814 return;
815 for (i = 0; i < rxq->count; i++) {
816 bf = &rxq->bf[i];
817
818 if (bf->bf_map != NULL)
819 bus_dmamap_destroy(sc->sc_dmat, bf->bf_map);
820 if (bf->bf_m != NULL)
821 m_freem(bf->bf_m);
822 }
823 free(rxq->bf, M_DEVBUF);
824 }
825
826 PUBLIC void
827 ar9003_reset_txsring(struct athn_softc *sc)
828 {
829
830 sc->sc_txscur = 0;
831 memset(sc->sc_txsring, 0, AR9003_NTXSTATUS * sizeof(struct ar_tx_status));
832 AR_WRITE(sc, AR_Q_STATUS_RING_START,
833 sc->sc_txsmap->dm_segs[0].ds_addr);
834 AR_WRITE(sc, AR_Q_STATUS_RING_END,
835 sc->sc_txsmap->dm_segs[0].ds_addr + sc->sc_txsmap->dm_segs[0].ds_len);
836 AR_WRITE_BARRIER(sc);
837 }
838
839 Static void
840 ar9003_rx_enable(struct athn_softc *sc)
841 {
842 struct athn_rxq *rxq;
843 struct athn_rx_buf *bf;
844 struct ar_rx_status *ds;
845 uint32_t reg;
846 int qid, i;
847
848 reg = AR_READ(sc, AR_RXBP_THRESH);
849 reg = RW(reg, AR_RXBP_THRESH_HP, 1);
850 reg = RW(reg, AR_RXBP_THRESH_LP, 1);
851 AR_WRITE(sc, AR_RXBP_THRESH, reg);
852
853 /* Set Rx buffer size. */
854 AR_WRITE(sc, AR_DATABUF_SIZE, ATHN_RXBUFSZ - sizeof(*ds));
855
856 for (qid = 0; qid < 2; qid++) {
857 rxq = &sc->sc_rxq[qid];
858
859 /* Setup Rx status descriptors. */
860 SIMPLEQ_INIT(&rxq->head);
861 for (i = 0; i < rxq->count; i++) {
862 bf = &rxq->bf[i];
863 ds = bf->bf_desc;
864
865 memset(ds, 0, sizeof(*ds));
866 if (qid == ATHN_QID_LP)
867 AR_WRITE(sc, AR_LP_RXDP, bf->bf_daddr);
868 else
869 AR_WRITE(sc, AR_HP_RXDP, bf->bf_daddr);
870 AR_WRITE_BARRIER(sc);
871 SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list);
872 }
873 }
874 /* Enable Rx. */
875 AR_WRITE(sc, AR_CR, 0);
876 AR_WRITE_BARRIER(sc);
877 }
878
879 Static void
880 ar9003_rx_radiotap(struct athn_softc *sc, struct mbuf *m,
881 struct ar_rx_status *ds)
882 {
883 struct athn_rx_radiotap_header *tap = &sc->sc_rxtap;
884 struct ieee80211com *ic = &sc->sc_ic;
885 uint64_t tsf;
886 uint32_t tstamp;
887 uint8_t rate;
888
889 /* Extend the 15-bit timestamp from Rx status to 64-bit TSF. */
890 tstamp = ds->ds_status3;
891 tsf = AR_READ(sc, AR_TSF_U32);
892 tsf = tsf << 32 | AR_READ(sc, AR_TSF_L32);
893 if ((tsf & 0x7fff) < tstamp)
894 tsf -= 0x8000;
895 tsf = (tsf & ~0x7fff) | tstamp;
896
897 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
898 tap->wr_tsft = htole64(tsf);
899 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
900 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
901 tap->wr_dbm_antsignal = MS(ds->ds_status5, AR_RXS5_RSSI_COMBINED);
902 /* XXX noise. */
903 tap->wr_antenna = MS(ds->ds_status4, AR_RXS4_ANTENNA);
904 tap->wr_rate = 0; /* In case it can't be found below. */
905 rate = MS(ds->ds_status1, AR_RXS1_RATE);
906 if (rate & 0x80) { /* HT. */
907 /* Bit 7 set means HT MCS instead of rate. */
908 tap->wr_rate = rate;
909 if (!(ds->ds_status4 & AR_RXS4_GI))
910 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
911
912 }
913 else if (rate & 0x10) { /* CCK. */
914 if (rate & 0x04)
915 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
916 switch (rate & ~0x14) {
917 case 0xb: tap->wr_rate = 2; break;
918 case 0xa: tap->wr_rate = 4; break;
919 case 0x9: tap->wr_rate = 11; break;
920 case 0x8: tap->wr_rate = 22; break;
921 }
922 }
923 else { /* OFDM. */
924 switch (rate) {
925 case 0xb: tap->wr_rate = 12; break;
926 case 0xf: tap->wr_rate = 18; break;
927 case 0xa: tap->wr_rate = 24; break;
928 case 0xe: tap->wr_rate = 36; break;
929 case 0x9: tap->wr_rate = 48; break;
930 case 0xd: tap->wr_rate = 72; break;
931 case 0x8: tap->wr_rate = 96; break;
932 case 0xc: tap->wr_rate = 108; break;
933 }
934 }
935 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
936 }
937
938 Static int
939 ar9003_rx_process(struct athn_softc *sc, int qid)
940 {
941 struct ieee80211com *ic = &sc->sc_ic;
942 struct ifnet *ifp = &sc->sc_if;
943 struct athn_rxq *rxq = &sc->sc_rxq[qid];
944 struct athn_rx_buf *bf;
945 struct ar_rx_status *ds;
946 struct ieee80211_frame *wh;
947 struct ieee80211_node *ni;
948 struct mbuf *m, *m1;
949 size_t len;
950 u_int32_t rstamp;
951 int error, rssi;
952
953 bf = SIMPLEQ_FIRST(&rxq->head);
954 if (__predict_false(bf == NULL)) { /* Should not happen. */
955 printf("%s: Rx queue is empty!\n", device_xname(sc->sc_dev));
956 return ENOENT;
957 }
958 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
959 BUS_DMASYNC_POSTREAD);
960
961 ds = mtod(bf->bf_m, struct ar_rx_status *);
962 if (!(ds->ds_status1 & AR_RXS1_DONE))
963 return EBUSY;
964
965 /* Check that it is a valid Rx status descriptor. */
966 if ((ds->ds_info & (AR_RXI_DESC_ID_M | AR_RXI_DESC_TX |
967 AR_RXI_CTRL_STAT)) != SM(AR_RXI_DESC_ID, AR_VENDOR_ATHEROS))
968 goto skip;
969
970 if (!(ds->ds_status11 & AR_RXS11_FRAME_OK)) {
971 if (ds->ds_status11 & AR_RXS11_CRC_ERR)
972 DPRINTFN(DBG_RX, sc, "CRC error\n");
973 else if (ds->ds_status11 & AR_RXS11_PHY_ERR)
974 DPRINTFN(DBG_RX, sc, "PHY error=0x%x\n",
975 MS(ds->ds_status11, AR_RXS11_PHY_ERR_CODE));
976 else if (ds->ds_status11 & AR_RXS11_DECRYPT_CRC_ERR)
977 DPRINTFN(DBG_RX, sc, "Decryption CRC error\n");
978 else if (ds->ds_status11 & AR_RXS11_MICHAEL_ERR) {
979 DPRINTFN(DBG_RX, sc, "Michael MIC failure\n");
980 /* Report Michael MIC failures to net80211. */
981
982 len = MS(ds->ds_status2, AR_RXS2_DATA_LEN);
983 m = bf->bf_m;
984 m->m_pkthdr.rcvif = ifp;
985 m->m_data = (void *)&ds[1];
986 m->m_pkthdr.len = m->m_len = len;
987 wh = mtod(m, struct ieee80211_frame *);
988
989 ieee80211_notify_michael_failure(ic, wh,
990 0 /* XXX: keyix */);
991 }
992 ifp->if_ierrors++;
993 goto skip;
994 }
995
996 len = MS(ds->ds_status2, AR_RXS2_DATA_LEN);
997 if (__predict_false(len < IEEE80211_MIN_LEN ||
998 len > ATHN_RXBUFSZ - sizeof(*ds))) {
999 DPRINTFN(DBG_RX, sc, "corrupted descriptor length=%zd\n",
1000 len);
1001 ifp->if_ierrors++;
1002 goto skip;
1003 }
1004
1005 /* Allocate a new Rx buffer. */
1006 m1 = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ);
1007 if (__predict_false(m1 == NULL)) {
1008 ic->ic_stats.is_rx_nobuf++;
1009 ifp->if_ierrors++;
1010 goto skip;
1011 }
1012
1013 /* Unmap the old Rx buffer. */
1014 bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
1015
1016 /* Map the new Rx buffer. */
1017 error = bus_dmamap_load(sc->sc_dmat, bf->bf_map, mtod(m1, void *),
1018 ATHN_RXBUFSZ, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
1019 if (__predict_false(error != 0)) {
1020 m_freem(m1);
1021
1022 /* Remap the old Rx buffer or panic. */
1023 error = bus_dmamap_load(sc->sc_dmat, bf->bf_map,
1024 mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL,
1025 BUS_DMA_NOWAIT | BUS_DMA_READ);
1026 KASSERT(error != 0);
1027 bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr;
1028 ifp->if_ierrors++;
1029 goto skip;
1030 }
1031 bf->bf_desc = mtod(m1, struct ar_rx_status *);
1032 bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr;
1033
1034 m = bf->bf_m;
1035 bf->bf_m = m1;
1036
1037 /* Finalize mbuf. */
1038 m->m_pkthdr.rcvif = ifp;
1039 /* Strip Rx status descriptor from head. */
1040 m->m_data = (void *)&ds[1];
1041 m->m_pkthdr.len = m->m_len = len;
1042
1043 /* Grab a reference to the source node. */
1044 wh = mtod(m, struct ieee80211_frame *);
1045 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1046
1047 /* Remove any HW padding after the 802.11 header. */
1048 if (!(wh->i_fc[0] & IEEE80211_FC0_TYPE_CTL)) {
1049 u_int hdrlen = ieee80211_anyhdrsize(wh);
1050 if (hdrlen & 3) {
1051 ovbcopy(wh, (uint8_t *)wh + 2, hdrlen);
1052 m_adj(m, 2);
1053 }
1054 }
1055 if (__predict_false(sc->sc_drvbpf != NULL))
1056 ar9003_rx_radiotap(sc, m, ds);
1057 /* Trim 802.11 FCS after radiotap. */
1058 m_adj(m, -IEEE80211_CRC_LEN);
1059
1060 /* Send the frame to the 802.11 layer. */
1061 rssi = MS(ds->ds_status5, AR_RXS5_RSSI_COMBINED);
1062 rstamp = ds->ds_status3;
1063 ieee80211_input(ic, m, ni, rssi, rstamp);
1064
1065 /* Node is no longer needed. */
1066 ieee80211_free_node(ni);
1067
1068 skip:
1069 /* Unlink this descriptor from head. */
1070 SIMPLEQ_REMOVE_HEAD(&rxq->head, bf_list);
1071 memset(bf->bf_desc, 0, sizeof(*ds));
1072
1073 /* Re-use this descriptor and link it to tail. */
1074 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
1075 BUS_DMASYNC_PREREAD);
1076
1077 if (qid == ATHN_QID_LP)
1078 AR_WRITE(sc, AR_LP_RXDP, bf->bf_daddr);
1079 else
1080 AR_WRITE(sc, AR_HP_RXDP, bf->bf_daddr);
1081 AR_WRITE_BARRIER(sc);
1082 SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list);
1083
1084 /* Re-enable Rx. */
1085 AR_WRITE(sc, AR_CR, 0);
1086 AR_WRITE_BARRIER(sc);
1087 return 0;
1088 }
1089
1090 Static void
1091 ar9003_rx_intr(struct athn_softc *sc, int qid)
1092 {
1093
1094 while (ar9003_rx_process(sc, qid) == 0)
1095 continue;
1096 }
1097
1098 Static int
1099 ar9003_tx_process(struct athn_softc *sc)
1100 {
1101 struct ifnet *ifp = &sc->sc_if;
1102 struct athn_txq *txq;
1103 struct athn_node *an;
1104 struct athn_tx_buf *bf;
1105 struct ar_tx_status *ds;
1106 uint8_t qid, failcnt;
1107
1108 ds = &((struct ar_tx_status *)sc->sc_txsring)[sc->sc_txscur];
1109 if (!(ds->ds_status8 & AR_TXS8_DONE))
1110 return EBUSY;
1111
1112 sc->sc_txscur = (sc->sc_txscur + 1) % AR9003_NTXSTATUS;
1113
1114 /* Check that it is a valid Tx status descriptor. */
1115 if ((ds->ds_info & (AR_TXI_DESC_ID_M | AR_TXI_DESC_TX)) !=
1116 (SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) | AR_TXI_DESC_TX)) {
1117 memset(ds, 0, sizeof(*ds));
1118 return 0;
1119 }
1120 /* Retrieve the queue that was used to send this PDU. */
1121 qid = MS(ds->ds_info, AR_TXI_QCU_NUM);
1122 txq = &sc->sc_txq[qid];
1123
1124 bf = SIMPLEQ_FIRST(&txq->head);
1125 if (bf == NULL || bf == txq->wait) {
1126 memset(ds, 0, sizeof(*ds));
1127 return 0;
1128 }
1129 SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list);
1130 ifp->if_opackets++;
1131
1132 sc->sc_tx_timer = 0;
1133
1134 if (ds->ds_status3 & AR_TXS3_EXCESSIVE_RETRIES)
1135 ifp->if_oerrors++;
1136
1137 if (ds->ds_status3 & AR_TXS3_UNDERRUN)
1138 athn_inc_tx_trigger_level(sc);
1139
1140 /* Wakeup PA predistortion state machine. */
1141 if (bf->bf_txflags & ATHN_TXFLAG_PAPRD)
1142 ar9003_paprd_tx_tone_done(sc);
1143
1144 an = (struct athn_node *)bf->bf_ni;
1145 /*
1146 * NB: the data fail count contains the number of un-acked tries
1147 * for the final series used. We must add the number of tries for
1148 * each series that was fully processed.
1149 */
1150 failcnt = MS(ds->ds_status3, AR_TXS3_DATA_FAIL_CNT);
1151 /* NB: Assume two tries per series. */
1152 failcnt += MS(ds->ds_status8, AR_TXS8_FINAL_IDX) * 2;
1153
1154 /* Update rate control statistics. */
1155 an->amn.amn_txcnt++;
1156 if (failcnt > 0)
1157 an->amn.amn_retrycnt++;
1158
1159 DPRINTFN(DBG_TX, sc, "Tx done qid=%d status3=%d fail count=%d\n",
1160 qid, ds->ds_status3, failcnt);
1161
1162 /* Reset Tx status descriptor. */
1163 memset(ds, 0, sizeof(*ds));
1164
1165 /* Unmap Tx buffer. */
1166 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
1167 BUS_DMASYNC_POSTWRITE);
1168 bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
1169
1170 m_freem(bf->bf_m);
1171 bf->bf_m = NULL;
1172 ieee80211_free_node(bf->bf_ni);
1173 bf->bf_ni = NULL;
1174
1175 /* Link Tx buffer back to global free list. */
1176 SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
1177
1178 /* Queue buffers that are waiting if there is new room. */
1179 if (--txq->queued < AR9003_TX_QDEPTH && txq->wait != NULL) {
1180 AR_WRITE(sc, AR_QTXDP(qid), txq->wait->bf_daddr);
1181 AR_WRITE_BARRIER(sc);
1182 txq->wait = SIMPLEQ_NEXT(txq->wait, bf_list);
1183 }
1184 return 0;
1185 }
1186
1187 Static void
1188 ar9003_tx_intr(struct athn_softc *sc)
1189 {
1190 struct ifnet *ifp = &sc->sc_if;
1191
1192 while (ar9003_tx_process(sc) == 0);
1193
1194 if (!SIMPLEQ_EMPTY(&sc->sc_txbufs)) {
1195 ifp->if_flags &= ~IFF_OACTIVE;
1196 ifp->if_start(ifp);
1197 }
1198 }
1199
1200 #ifndef IEEE80211_STA_ONLY
1201 /*
1202 * Process Software Beacon Alert interrupts.
1203 */
1204 Static int
1205 ar9003_swba_intr(struct athn_softc *sc)
1206 {
1207 struct ieee80211com *ic = &sc->sc_ic;
1208 struct ifnet *ifp = &sc->sc_if;
1209 struct ieee80211_node *ni = ic->ic_bss;
1210 struct athn_tx_buf *bf = sc->sc_bcnbuf;
1211 struct ieee80211_frame *wh;
1212 struct ieee80211_beacon_offsets bo;
1213 struct ar_tx_desc *ds;
1214 struct mbuf *m;
1215 uint32_t sum;
1216 uint8_t ridx, hwrate;
1217 int error, totlen;
1218
1219 #if notyet
1220 if (ic->ic_tim_mcast_pending &&
1221 IF_IS_EMPTY(&ni->ni_savedq) &&
1222 SIMPLEQ_EMPTY(&sc->sc_txq[ATHN_QID_CAB].head))
1223 ic->ic_tim_mcast_pending = 0;
1224 #endif
1225 if (ic->ic_dtim_count == 0)
1226 ic->ic_dtim_count = ic->ic_dtim_period - 1;
1227 else
1228 ic->ic_dtim_count--;
1229
1230 /* Make sure previous beacon has been sent. */
1231 if (athn_tx_pending(sc, ATHN_QID_BEACON)) {
1232 DPRINTFN(DBG_INTR, sc, "beacon stuck\n");
1233 return EBUSY;
1234 }
1235 /* Get new beacon. */
1236 m = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo);
1237 if (__predict_false(m == NULL))
1238 return ENOBUFS;
1239 /* Assign sequence number. */
1240 /* XXX: use non-QoS tid? */
1241 wh = mtod(m, struct ieee80211_frame *);
1242 *(uint16_t *)&wh->i_seq[0] =
1243 htole16(ic->ic_bss->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
1244 ic->ic_bss->ni_txseqs[0]++;
1245
1246 /* Unmap and free old beacon if any. */
1247 if (__predict_true(bf->bf_m != NULL)) {
1248 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0,
1249 bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1250 bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
1251 m_freem(bf->bf_m);
1252 bf->bf_m = NULL;
1253 }
1254 /* DMA map new beacon. */
1255 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
1256 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1257 if (__predict_false(error != 0)) {
1258 m_freem(m);
1259 return error;
1260 }
1261 bf->bf_m = m;
1262
1263 /* Setup Tx descriptor (simplified ar9003_tx()). */
1264 ds = bf->bf_descs;
1265 memset(ds, 0, sizeof(*ds));
1266
1267 ds->ds_info =
1268 SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) |
1269 SM(AR_TXI_DESC_NDWORDS, 23) |
1270 SM(AR_TXI_QCU_NUM, ATHN_QID_BEACON) |
1271 AR_TXI_DESC_TX | AR_TXI_CTRL_STAT;
1272
1273 totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1274 ds->ds_ctl11 = SM(AR_TXC11_FRAME_LEN, totlen);
1275 ds->ds_ctl11 |= SM(AR_TXC11_XMIT_POWER, AR_MAX_RATE_POWER);
1276 ds->ds_ctl12 = SM(AR_TXC12_FRAME_TYPE, AR_FRAME_TYPE_BEACON);
1277 ds->ds_ctl12 |= AR_TXC12_NO_ACK;
1278 ds->ds_ctl17 = SM(AR_TXC17_ENCR_TYPE, AR_ENCR_TYPE_CLEAR);
1279
1280 /* Write number of tries. */
1281 ds->ds_ctl13 = SM(AR_TXC13_XMIT_DATA_TRIES0, 1);
1282
1283 /* Write Tx rate. */
1284 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
1285 ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1;
1286 hwrate = athn_rates[ridx].hwrate;
1287 ds->ds_ctl14 = SM(AR_TXC14_XMIT_RATE0, hwrate);
1288
1289 /* Write Tx chains. */
1290 ds->ds_ctl18 = SM(AR_TXC18_CHAIN_SEL0, sc->sc_txchainmask);
1291
1292 ds->ds_segs[0].ds_data = bf->bf_map->dm_segs[0].ds_addr;
1293 /* Segment length must be a multiple of 4. */
1294 ds->ds_segs[0].ds_ctl |= SM(AR_TXC_BUF_LEN,
1295 (bf->bf_map->dm_segs[0].ds_len + 3) & ~3);
1296 /* Compute Tx descriptor checksum. */
1297 sum = ds->ds_info;
1298 sum += ds->ds_segs[0].ds_data;
1299 sum += ds->ds_segs[0].ds_ctl;
1300 sum = (sum >> 16) + (sum & 0xffff);
1301 ds->ds_ctl10 = SM(AR_TXC10_PTR_CHK_SUM, sum);
1302
1303 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
1304 BUS_DMASYNC_PREWRITE);
1305
1306 /* Stop Tx DMA before putting the new beacon on the queue. */
1307 athn_stop_tx_dma(sc, ATHN_QID_BEACON);
1308
1309 AR_WRITE(sc, AR_QTXDP(ATHN_QID_BEACON), bf->bf_daddr);
1310
1311 for(;;) {
1312 if (SIMPLEQ_EMPTY(&sc->sc_txbufs))
1313 break;
1314
1315 IF_DEQUEUE(&ni->ni_savedq, m);
1316 if (m == NULL)
1317 break;
1318 if (!IF_IS_EMPTY(&ni->ni_savedq)) {
1319 /* more queued frames, set the more data bit */
1320 wh = mtod(m, struct ieee80211_frame *);
1321 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1322 }
1323
1324 if (sc->sc_ops.tx(sc, m, ni, ATHN_TXFLAG_CAB) != 0) {
1325 ieee80211_free_node(ni);
1326 ifp->if_oerrors++;
1327 break;
1328 }
1329 }
1330
1331 /* Kick Tx. */
1332 AR_WRITE(sc, AR_Q_TXE, 1 << ATHN_QID_BEACON);
1333 AR_WRITE_BARRIER(sc);
1334 return 0;
1335 }
1336 #endif
1337
1338 Static int
1339 ar9003_intr(struct athn_softc *sc)
1340 {
1341 uint32_t intr, intr2, intr5, sync;
1342
1343 /* Get pending interrupts. */
1344 intr = AR_READ(sc, AR_INTR_ASYNC_CAUSE);
1345 if (!(intr & AR_INTR_MAC_IRQ) || intr == AR_INTR_SPURIOUS) {
1346 intr = AR_READ(sc, AR_INTR_SYNC_CAUSE);
1347 if (intr == AR_INTR_SPURIOUS || (intr & sc->sc_isync) == 0)
1348 return 0; /* Not for us. */
1349 }
1350
1351 if ((AR_READ(sc, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) &&
1352 (AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_ON)
1353 intr = AR_READ(sc, AR_ISR);
1354 else
1355 intr = 0;
1356 sync = AR_READ(sc, AR_INTR_SYNC_CAUSE) & sc->sc_isync;
1357 if (intr == 0 && sync == 0)
1358 return 0; /* Not for us. */
1359
1360 if (intr != 0) {
1361 if (intr & AR_ISR_BCNMISC) {
1362 intr2 = AR_READ(sc, AR_ISR_S2);
1363 #ifdef notyet
1364 if (intr2 & AR_ISR_S2_TIM)
1365 /* TBD */;
1366 if (intr2 & AR_ISR_S2_TSFOOR)
1367 /* TBD */;
1368 if (intr2 & AR_ISR_S2_BB_WATCHDOG)
1369 /* TBD */;
1370 #endif
1371 }
1372 intr = AR_READ(sc, AR_ISR_RAC);
1373 if (intr == AR_INTR_SPURIOUS)
1374 return 1;
1375
1376 #ifndef IEEE80211_STA_ONLY
1377 if (intr & AR_ISR_SWBA)
1378 ar9003_swba_intr(sc);
1379 #endif
1380 if (intr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
1381 ar9003_rx_intr(sc, ATHN_QID_LP);
1382 if (intr & (AR_ISR_LP_RXOK | AR_ISR_RXERR))
1383 ar9003_rx_intr(sc, ATHN_QID_LP);
1384 if (intr & AR_ISR_HP_RXOK)
1385 ar9003_rx_intr(sc, ATHN_QID_HP);
1386
1387 if (intr & (AR_ISR_TXMINTR | AR_ISR_TXINTM))
1388 ar9003_tx_intr(sc);
1389 if (intr & (AR_ISR_TXOK | AR_ISR_TXERR | AR_ISR_TXEOL))
1390 ar9003_tx_intr(sc);
1391
1392 if (intr & AR_ISR_GENTMR) {
1393 intr5 = AR_READ(sc, AR_ISR_S5_S);
1394 DPRINTFN(DBG_INTR, sc,
1395 "GENTMR trigger=%d thresh=%d\n",
1396 MS(intr5, AR_ISR_S5_GENTIMER_TRIG),
1397 MS(intr5, AR_ISR_S5_GENTIMER_THRESH));
1398 }
1399 }
1400 if (sync != 0) {
1401 if (sync & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
1402 AR_WRITE(sc, AR_RC, AR_RC_HOSTIF);
1403 AR_WRITE(sc, AR_RC, 0);
1404 }
1405
1406 if ((sc->sc_flags & ATHN_FLAG_RFSILENT) &&
1407 (sync & AR_INTR_SYNC_GPIO_PIN(sc->sc_rfsilent_pin))) {
1408 struct ifnet *ifp = &sc->sc_if;
1409
1410 printf("%s: radio switch turned off\n",
1411 device_xname(sc->sc_dev));
1412 /* Turn the interface down. */
1413 ifp->if_flags &= ~IFF_UP;
1414 athn_stop(ifp, 1);
1415 return 1;
1416 }
1417
1418 AR_WRITE(sc, AR_INTR_SYNC_CAUSE, sync);
1419 (void)AR_READ(sc, AR_INTR_SYNC_CAUSE);
1420 }
1421 return 1;
1422 }
1423
1424 Static int
1425 ar9003_tx(struct athn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
1426 int txflags)
1427 {
1428 struct ieee80211com *ic = &sc->sc_ic;
1429 struct ieee80211_key *k = NULL;
1430 struct ieee80211_frame *wh;
1431 struct athn_series series[4];
1432 struct ar_tx_desc *ds;
1433 struct athn_txq *txq;
1434 struct athn_tx_buf *bf;
1435 struct athn_node *an = (void *)ni;
1436 struct mbuf *m1;
1437 uint32_t sum;
1438 uint16_t qos;
1439 uint8_t txpower, type, encrtype, ridx[4];
1440 int i, error, totlen, hasqos, qid;
1441
1442 /* Grab a Tx buffer from our global free list. */
1443 bf = SIMPLEQ_FIRST(&sc->sc_txbufs);
1444 KASSERT(bf != NULL);
1445
1446 /* Map 802.11 frame type to hardware frame type. */
1447 wh = mtod(m, struct ieee80211_frame *);
1448 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1449 IEEE80211_FC0_TYPE_MGT) {
1450 /* NB: Beacons do not use ar9003_tx(). */
1451 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1452 IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1453 type = AR_FRAME_TYPE_PROBE_RESP;
1454 else if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1455 IEEE80211_FC0_SUBTYPE_ATIM)
1456 type = AR_FRAME_TYPE_ATIM;
1457 else
1458 type = AR_FRAME_TYPE_NORMAL;
1459 }
1460 else if ((wh->i_fc[0] &
1461 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1462 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) {
1463 type = AR_FRAME_TYPE_PSPOLL;
1464 }
1465 else
1466 type = AR_FRAME_TYPE_NORMAL;
1467
1468 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1469 k = ieee80211_crypto_encap(ic, ni, m);
1470 if (k == NULL)
1471 return ENOBUFS;
1472
1473 /* packet header may have moved, reset our local pointer */
1474 wh = mtod(m, struct ieee80211_frame *);
1475 }
1476
1477 /* XXX 2-byte padding for QoS and 4-addr headers. */
1478
1479 /* Select the HW Tx queue to use for this frame. */
1480 if ((hasqos = ieee80211_has_qos(wh))) {
1481 #ifdef notyet_edca
1482 uint8_t tid;
1483
1484 qos = ieee80211_get_qos(wh);
1485 tid = qos & IEEE80211_QOS_TID;
1486 qid = athn_ac2qid[ieee80211_up_to_ac(ic, tid)];
1487 #else
1488 qos = ieee80211_get_qos(wh);
1489 qid = ATHN_QID_AC_BE;
1490 #endif /* notyet_edca */
1491 }
1492 else if (type == AR_FRAME_TYPE_PSPOLL) {
1493 qos = 0;
1494 qid = ATHN_QID_PSPOLL;
1495 }
1496 else if (txflags & ATHN_TXFLAG_CAB) {
1497 qos = 0;
1498 qid = ATHN_QID_CAB;
1499 }
1500 else {
1501 qos = 0;
1502 qid = ATHN_QID_AC_BE;
1503 }
1504 txq = &sc->sc_txq[qid];
1505
1506 /* Select the transmit rates to use for this frame. */
1507 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1508 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
1509 IEEE80211_FC0_TYPE_DATA) {
1510 /* Use lowest rate for all tries. */
1511 ridx[0] = ridx[1] = ridx[2] = ridx[3] =
1512 (ic->ic_curmode == IEEE80211_MODE_11A) ?
1513 ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1;
1514 }
1515 else if (ic->ic_fixed_rate != -1) {
1516 /* Use same fixed rate for all tries. */
1517 ridx[0] = ridx[1] = ridx[2] = ridx[3] =
1518 sc->sc_fixed_ridx;
1519 }
1520 else {
1521 int txrate = ni->ni_txrate;
1522 /* Use fallback table of the node. */
1523 for (i = 0; i < 4; i++) {
1524 ridx[i] = an->ridx[txrate];
1525 txrate = an->fallback[txrate];
1526 }
1527 }
1528
1529 if (__predict_false(sc->sc_drvbpf != NULL)) {
1530 struct athn_tx_radiotap_header *tap = &sc->sc_txtap;
1531
1532 tap->wt_flags = 0;
1533 /* Use initial transmit rate. */
1534 tap->wt_rate = athn_rates[ridx[0]].rate;
1535 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1536 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1537 // XXX tap->wt_hwqueue = qid;
1538 if (ridx[0] != ATHN_RIDX_CCK1 &&
1539 (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1540 tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1541
1542 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
1543 }
1544
1545 /* DMA map mbuf. */
1546 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
1547 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1548 if (__predict_false(error != 0)) {
1549 if (error != EFBIG) {
1550 printf("%s: can't map mbuf (error %d)\n",
1551 device_xname(sc->sc_dev), error);
1552 m_freem(m);
1553 return error;
1554 }
1555 /*
1556 * DMA mapping requires too many DMA segments; linearize
1557 * mbuf in kernel virtual address space and retry.
1558 */
1559 MGETHDR(m1, M_DONTWAIT, MT_DATA);
1560 if (m1 == NULL) {
1561 m_freem(m);
1562 return ENOBUFS;
1563 }
1564 if (m->m_pkthdr.len > (int)MHLEN) {
1565 MCLGET(m1, M_DONTWAIT);
1566 if (!(m1->m_flags & M_EXT)) {
1567 m_freem(m);
1568 m_freem(m1);
1569 return ENOBUFS;
1570 }
1571 }
1572 m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
1573 m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
1574 m_freem(m);
1575 m = m1;
1576
1577 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
1578 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1579 if (error != 0) {
1580 printf("%s: can't map mbuf (error %d)\n",
1581 device_xname(sc->sc_dev), error);
1582 m_freem(m);
1583 return error;
1584 }
1585 }
1586 bf->bf_m = m;
1587 bf->bf_ni = ni;
1588 bf->bf_txflags = txflags;
1589
1590 wh = mtod(m, struct ieee80211_frame *);
1591
1592 totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1593
1594 /* Setup Tx descriptor. */
1595 ds = bf->bf_descs;
1596 memset(ds, 0, sizeof(*ds));
1597
1598 ds->ds_info =
1599 SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) |
1600 SM(AR_TXI_DESC_NDWORDS, 23) |
1601 SM(AR_TXI_QCU_NUM, qid) |
1602 AR_TXI_DESC_TX | AR_TXI_CTRL_STAT;
1603
1604 ds->ds_ctl11 = AR_TXC11_CLR_DEST_MASK;
1605 txpower = AR_MAX_RATE_POWER; /* Get from per-rate registers. */
1606 ds->ds_ctl11 |= SM(AR_TXC11_XMIT_POWER, txpower);
1607
1608 ds->ds_ctl12 = SM(AR_TXC12_FRAME_TYPE, type);
1609
1610 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1611 (hasqos && (qos & IEEE80211_QOS_ACKPOLICY_MASK) ==
1612 IEEE80211_QOS_ACKPOLICY_NOACK))
1613 ds->ds_ctl12 |= AR_TXC12_NO_ACK;
1614
1615 #if notyet
1616 if (0 && k != NULL) {
1617 uintptr_t entry;
1618
1619 /*
1620 * Map 802.11 cipher to hardware encryption type and
1621 * compute MIC+ICV overhead.
1622 */
1623 switch (k->k_cipher) {
1624 case IEEE80211_CIPHER_WEP40:
1625 case IEEE80211_CIPHER_WEP104:
1626 encrtype = AR_ENCR_TYPE_WEP;
1627 totlen += 4;
1628 break;
1629 case IEEE80211_CIPHER_TKIP:
1630 encrtype = AR_ENCR_TYPE_TKIP;
1631 totlen += 12;
1632 break;
1633 case IEEE80211_CIPHER_CCMP:
1634 encrtype = AR_ENCR_TYPE_AES;
1635 totlen += 8;
1636 break;
1637 default:
1638 panic("unsupported cipher");
1639 }
1640 /*
1641 * NB: The key cache entry index is stored in the key
1642 * private field when the key is installed.
1643 */
1644 entry = (uintptr_t)k->k_priv;
1645 ds->ds_ctl12 |= SM(AR_TXC12_DEST_IDX, entry);
1646 ds->ds_ctl11 |= AR_TXC11_DEST_IDX_VALID;
1647 }
1648 else
1649 #endif
1650 encrtype = AR_ENCR_TYPE_CLEAR;
1651 ds->ds_ctl17 = SM(AR_TXC17_ENCR_TYPE, encrtype);
1652
1653 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */
1654 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1655 /* NB: Group frames are sent using CCK in 802.11b/g. */
1656 if (totlen > ic->ic_rtsthreshold) {
1657 ds->ds_ctl11 |= AR_TXC11_RTS_ENABLE;
1658 }
1659 else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1660 athn_rates[ridx[0]].phy == IEEE80211_T_OFDM) {
1661 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1662 ds->ds_ctl11 |= AR_TXC11_RTS_ENABLE;
1663 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1664 ds->ds_ctl11 |= AR_TXC11_CTS_ENABLE;
1665 }
1666 }
1667 if (ds->ds_ctl11 & (AR_TXC11_RTS_ENABLE | AR_TXC11_CTS_ENABLE)) {
1668 /* Disable multi-rate retries when protection is used. */
1669 ridx[1] = ridx[2] = ridx[3] = ridx[0];
1670 }
1671 /* Setup multi-rate retries. */
1672 for (i = 0; i < 4; i++) {
1673 series[i].hwrate = athn_rates[ridx[i]].hwrate;
1674 if (athn_rates[ridx[i]].phy == IEEE80211_T_DS &&
1675 ridx[i] != ATHN_RIDX_CCK1 &&
1676 (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1677 series[i].hwrate |= 0x04;
1678 series[i].dur = 0;
1679 }
1680 if (!(ds->ds_ctl12 & AR_TXC12_NO_ACK)) {
1681 /* Compute duration for each series. */
1682 for (i = 0; i < 4; i++) {
1683 series[i].dur = athn_txtime(sc, IEEE80211_ACK_LEN,
1684 athn_rates[ridx[i]].rspridx, ic->ic_flags);
1685 }
1686 }
1687 /* If this is a PA training frame, select the Tx chain to use. */
1688 if (__predict_false(txflags & ATHN_TXFLAG_PAPRD)) {
1689 ds->ds_ctl12 |= SM(AR_TXC12_PAPRD_CHAIN_MASK,
1690 1 << sc->sc_paprd_curchain);
1691 }
1692
1693 /* Write number of tries for each series. */
1694 ds->ds_ctl13 =
1695 SM(AR_TXC13_XMIT_DATA_TRIES0, 2) |
1696 SM(AR_TXC13_XMIT_DATA_TRIES1, 2) |
1697 SM(AR_TXC13_XMIT_DATA_TRIES2, 2) |
1698 SM(AR_TXC13_XMIT_DATA_TRIES3, 4);
1699
1700 /* Tell HW to update duration field in 802.11 header. */
1701 if (type != AR_FRAME_TYPE_PSPOLL)
1702 ds->ds_ctl13 |= AR_TXC13_DUR_UPDATE_ENA;
1703
1704 /* Write Tx rate for each series. */
1705 ds->ds_ctl14 =
1706 SM(AR_TXC14_XMIT_RATE0, series[0].hwrate) |
1707 SM(AR_TXC14_XMIT_RATE1, series[1].hwrate) |
1708 SM(AR_TXC14_XMIT_RATE2, series[2].hwrate) |
1709 SM(AR_TXC14_XMIT_RATE3, series[3].hwrate);
1710
1711 /* Write duration for each series. */
1712 ds->ds_ctl15 =
1713 SM(AR_TXC15_PACKET_DUR0, series[0].dur) |
1714 SM(AR_TXC15_PACKET_DUR1, series[1].dur);
1715 ds->ds_ctl16 =
1716 SM(AR_TXC16_PACKET_DUR2, series[2].dur) |
1717 SM(AR_TXC16_PACKET_DUR3, series[3].dur);
1718
1719 if ((sc->sc_flags & ATHN_FLAG_3TREDUCE_CHAIN) &&
1720 ic->ic_curmode == IEEE80211_MODE_11A) {
1721 /*
1722 * In order to not exceed PCIe power requirements, we only
1723 * use two Tx chains for MCS0~15 on 5GHz band on these chips.
1724 */
1725 ds->ds_ctl18 =
1726 SM(AR_TXC18_CHAIN_SEL0,
1727 (ridx[0] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask) |
1728 SM(AR_TXC18_CHAIN_SEL1,
1729 (ridx[1] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask) |
1730 SM(AR_TXC18_CHAIN_SEL2,
1731 (ridx[2] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask) |
1732 SM(AR_TXC18_CHAIN_SEL3,
1733 (ridx[3] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask);
1734 }
1735 else {
1736 /* Use the same Tx chains for all tries. */
1737 ds->ds_ctl18 =
1738 SM(AR_TXC18_CHAIN_SEL0, sc->sc_txchainmask) |
1739 SM(AR_TXC18_CHAIN_SEL1, sc->sc_txchainmask) |
1740 SM(AR_TXC18_CHAIN_SEL2, sc->sc_txchainmask) |
1741 SM(AR_TXC18_CHAIN_SEL3, sc->sc_txchainmask);
1742 }
1743 #ifdef notyet
1744 #ifndef IEEE80211_NO_HT
1745 /* Use the same short GI setting for all tries. */
1746 if (ic->ic_flags & IEEE80211_F_SHGI)
1747 ds->ds_ctl18 |= AR_TXC18_GI0123;
1748 /* Use the same channel width for all tries. */
1749 if (ic->ic_flags & IEEE80211_F_CBW40)
1750 ds->ds_ctl18 |= AR_TXC18_2040_0123;
1751 #endif
1752 #endif
1753
1754 if (ds->ds_ctl11 & (AR_TXC11_RTS_ENABLE | AR_TXC11_CTS_ENABLE)) {
1755 uint8_t protridx, hwrate;
1756 uint16_t dur = 0;
1757
1758 /* Use the same protection mode for all tries. */
1759 if (ds->ds_ctl11 & AR_TXC11_RTS_ENABLE) {
1760 ds->ds_ctl15 |= AR_TXC15_RTSCTS_QUAL01;
1761 ds->ds_ctl16 |= AR_TXC16_RTSCTS_QUAL23;
1762 }
1763 /* Select protection rate (suboptimal but ok). */
1764 protridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
1765 ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK2;
1766 if (ds->ds_ctl11 & AR_TXC11_RTS_ENABLE) {
1767 /* Account for CTS duration. */
1768 dur += athn_txtime(sc, IEEE80211_ACK_LEN,
1769 athn_rates[protridx].rspridx, ic->ic_flags);
1770 }
1771 dur += athn_txtime(sc, totlen, ridx[0], ic->ic_flags);
1772 if (!(ds->ds_ctl12 & AR_TXC12_NO_ACK)) {
1773 /* Account for ACK duration. */
1774 dur += athn_txtime(sc, IEEE80211_ACK_LEN,
1775 athn_rates[ridx[0]].rspridx, ic->ic_flags);
1776 }
1777 /* Write protection frame duration and rate. */
1778 ds->ds_ctl13 |= SM(AR_TXC13_BURST_DUR, dur);
1779 hwrate = athn_rates[protridx].hwrate;
1780 if (protridx == ATHN_RIDX_CCK2 &&
1781 (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1782 hwrate |= 0x04;
1783 ds->ds_ctl18 |= SM(AR_TXC18_RTSCTS_RATE, hwrate);
1784 }
1785
1786 ds->ds_ctl11 |= SM(AR_TXC11_FRAME_LEN, totlen);
1787 ds->ds_ctl19 = AR_TXC19_NOT_SOUNDING;
1788
1789 for (i = 0; i < bf->bf_map->dm_nsegs; i++) {
1790 ds->ds_segs[i].ds_data = bf->bf_map->dm_segs[i].ds_addr;
1791 ds->ds_segs[i].ds_ctl = SM(AR_TXC_BUF_LEN,
1792 bf->bf_map->dm_segs[i].ds_len);
1793 }
1794 /* Compute Tx descriptor checksum. */
1795 sum = ds->ds_info + ds->ds_link;
1796 for (i = 0; i < 4; i++) {
1797 sum += ds->ds_segs[i].ds_data;
1798 sum += ds->ds_segs[i].ds_ctl;
1799 }
1800 sum = (sum >> 16) + (sum & 0xffff);
1801 ds->ds_ctl10 = SM(AR_TXC10_PTR_CHK_SUM, sum);
1802
1803 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
1804 BUS_DMASYNC_PREWRITE);
1805
1806 DPRINTFN(DBG_TX, sc,
1807 "Tx qid=%d nsegs=%d ctl11=0x%x ctl12=0x%x ctl14=0x%x\n",
1808 qid, bf->bf_map->dm_nsegs, ds->ds_ctl11, ds->ds_ctl12,
1809 ds->ds_ctl14);
1810
1811 SIMPLEQ_REMOVE_HEAD(&sc->sc_txbufs, bf_list);
1812 SIMPLEQ_INSERT_TAIL(&txq->head, bf, bf_list);
1813
1814 /* Queue buffer unless hardware FIFO is already full. */
1815 if (++txq->queued <= AR9003_TX_QDEPTH) {
1816 AR_WRITE(sc, AR_QTXDP(qid), bf->bf_daddr);
1817 AR_WRITE_BARRIER(sc);
1818 }
1819 else if (txq->wait == NULL)
1820 txq->wait = bf;
1821 return 0;
1822 }
1823
1824 Static void
1825 ar9003_set_rf_mode(struct athn_softc *sc, struct ieee80211_channel *c)
1826 {
1827 uint32_t reg;
1828
1829 reg = IEEE80211_IS_CHAN_2GHZ(c) ?
1830 AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1831 if (IEEE80211_IS_CHAN_5GHZ(c) &&
1832 (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)) {
1833 reg |= AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE;
1834 }
1835 AR_WRITE(sc, AR_PHY_MODE, reg);
1836 AR_WRITE_BARRIER(sc);
1837 }
1838
1839 static __inline uint32_t
1840 ar9003_synth_delay(struct athn_softc *sc)
1841 {
1842 uint32_t delay;
1843
1844 delay = MS(AR_READ(sc, AR_PHY_RX_DELAY), AR_PHY_RX_DELAY_DELAY);
1845 if (sc->sc_ic.ic_curmode == IEEE80211_MODE_11B)
1846 delay = (delay * 4) / 22;
1847 else
1848 delay = delay / 10; /* in 100ns steps */
1849 return delay;
1850 }
1851
1852 Static int
1853 ar9003_rf_bus_request(struct athn_softc *sc)
1854 {
1855 int ntries;
1856
1857 /* Request RF Bus grant. */
1858 AR_WRITE(sc, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1859 for (ntries = 0; ntries < 10000; ntries++) {
1860 if (AR_READ(sc, AR_PHY_RFBUS_GRANT) & AR_PHY_RFBUS_GRANT_EN)
1861 return 0;
1862 DELAY(10);
1863 }
1864 DPRINTFN(DBG_RF, sc, "could not kill baseband Rx");
1865 return ETIMEDOUT;
1866 }
1867
1868 Static void
1869 ar9003_rf_bus_release(struct athn_softc *sc)
1870 {
1871 /* Wait for the synthesizer to settle. */
1872 DELAY(AR_BASE_PHY_ACTIVE_DELAY + ar9003_synth_delay(sc));
1873
1874 /* Release the RF Bus grant. */
1875 AR_WRITE(sc, AR_PHY_RFBUS_REQ, 0);
1876 AR_WRITE_BARRIER(sc);
1877 }
1878
1879 Static void
1880 ar9003_set_phy(struct athn_softc *sc, struct ieee80211_channel *c,
1881 struct ieee80211_channel *extc)
1882 {
1883 uint32_t phy;
1884
1885 phy = AR_READ(sc, AR_PHY_GEN_CTRL);
1886 phy |= AR_PHY_GC_HT_EN | AR_PHY_GC_SHORT_GI_40 |
1887 AR_PHY_GC_SINGLE_HT_LTF1 | AR_PHY_GC_WALSH;
1888 #ifndef IEEE80211_NO_HT
1889 if (extc != NULL) {
1890 phy |= AR_PHY_GC_DYN2040_EN;
1891 if (extc > c) /* XXX */
1892 phy |= AR_PHY_GC_DYN2040_PRI_CH;
1893 }
1894 #endif
1895 /* Turn off Green Field detection for now. */
1896 phy &= ~AR_PHY_GC_GF_DETECT_EN;
1897 AR_WRITE(sc, AR_PHY_GEN_CTRL, phy);
1898
1899 AR_WRITE(sc, AR_2040_MODE,
1900 (extc != NULL) ? AR_2040_JOINED_RX_CLEAR : 0);
1901
1902 /* Set global transmit timeout. */
1903 AR_WRITE(sc, AR_GTXTO, SM(AR_GTXTO_TIMEOUT_LIMIT, 25));
1904 /* Set carrier sense timeout. */
1905 AR_WRITE(sc, AR_CST, SM(AR_CST_TIMEOUT_LIMIT, 15));
1906 AR_WRITE_BARRIER(sc);
1907 }
1908
1909 Static void
1910 ar9003_set_delta_slope(struct athn_softc *sc, struct ieee80211_channel *c,
1911 struct ieee80211_channel *extc)
1912 {
1913 uint32_t coeff, exp, man, reg;
1914
1915 /* Set Delta Slope (exponent and mantissa). */
1916 coeff = (100 << 24) / c->ic_freq;
1917 athn_get_delta_slope(coeff, &exp, &man);
1918 DPRINTFN(DBG_RF, sc, "delta slope coeff exp=%u man=%u\n", exp, man);
1919
1920 reg = AR_READ(sc, AR_PHY_TIMING3);
1921 reg = RW(reg, AR_PHY_TIMING3_DSC_EXP, exp);
1922 reg = RW(reg, AR_PHY_TIMING3_DSC_MAN, man);
1923 AR_WRITE(sc, AR_PHY_TIMING3, reg);
1924
1925 /* For Short GI, coeff is 9/10 that of normal coeff. */
1926 coeff = (9 * coeff) / 10;
1927 athn_get_delta_slope(coeff, &exp, &man);
1928 DPRINTFN(DBG_RF, sc, "delta slope coeff exp=%u man=%u\n", exp, man);
1929
1930 reg = AR_READ(sc, AR_PHY_SGI_DELTA);
1931 reg = RW(reg, AR_PHY_SGI_DSC_EXP, exp);
1932 reg = RW(reg, AR_PHY_SGI_DSC_MAN, man);
1933 AR_WRITE(sc, AR_PHY_SGI_DELTA, reg);
1934 AR_WRITE_BARRIER(sc);
1935 }
1936
1937 Static void
1938 ar9003_enable_antenna_diversity(struct athn_softc *sc)
1939 {
1940 AR_SETBITS(sc, AR_PHY_CCK_DETECT,
1941 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
1942 AR_WRITE_BARRIER(sc);
1943 }
1944
1945 Static void
1946 ar9003_init_baseband(struct athn_softc *sc)
1947 {
1948 uint32_t synth_delay;
1949
1950 synth_delay = ar9003_synth_delay(sc);
1951 /* Activate the PHY (includes baseband activate and synthesizer on). */
1952 AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
1953 AR_WRITE_BARRIER(sc);
1954 DELAY(AR_BASE_PHY_ACTIVE_DELAY + synth_delay);
1955 }
1956
1957 Static void
1958 ar9003_disable_phy(struct athn_softc *sc)
1959 {
1960 AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1961 AR_WRITE_BARRIER(sc);
1962 }
1963
1964 Static void
1965 ar9003_init_chains(struct athn_softc *sc)
1966 {
1967 if (sc->sc_rxchainmask == 0x5 || sc->sc_txchainmask == 0x5)
1968 AR_SETBITS(sc, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
1969
1970 /* Setup chain masks. */
1971 AR_WRITE(sc, AR_PHY_RX_CHAINMASK, sc->sc_rxchainmask);
1972 AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->sc_rxchainmask);
1973
1974 if (sc->sc_flags & ATHN_FLAG_3TREDUCE_CHAIN) {
1975 /*
1976 * All self-generated frames are sent using two Tx chains
1977 * on these chips to not exceed PCIe power requirements.
1978 */
1979 AR_WRITE(sc, AR_SELFGEN_MASK, 0x3);
1980 }
1981 else
1982 AR_WRITE(sc, AR_SELFGEN_MASK, sc->sc_txchainmask);
1983 AR_WRITE_BARRIER(sc);
1984 }
1985
1986 Static void
1987 ar9003_set_rxchains(struct athn_softc *sc)
1988 {
1989 if (sc->sc_rxchainmask == 0x3 || sc->sc_rxchainmask == 0x5) {
1990 AR_WRITE(sc, AR_PHY_RX_CHAINMASK, sc->sc_rxchainmask);
1991 AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->sc_rxchainmask);
1992 AR_WRITE_BARRIER(sc);
1993 }
1994 }
1995
1996 #ifdef notused
1997 Static void
1998 ar9003_read_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext)
1999 {
2000 /* Sign-extends 9-bit value (assumes upper bits are zeroes). */
2001 #define SIGN_EXT(v) (((v) ^ 0x100) - 0x100)
2002 uint32_t reg;
2003 int i;
2004
2005 for (i = 0; i < sc->sc_nrxchains; i++) {
2006 reg = AR_READ(sc, AR_PHY_CCA(i));
2007 nf[i] = MS(reg, AR_PHY_MINCCA_PWR);
2008 nf[i] = SIGN_EXT(nf[i]);
2009
2010 reg = AR_READ(sc, AR_PHY_EXT_CCA(i));
2011 nf_ext[i] = MS(reg, AR_PHY_EXT_MINCCA_PWR);
2012 nf_ext[i] = SIGN_EXT(nf_ext[i]);
2013 }
2014 #undef SIGN_EXT
2015 }
2016 #endif /* notused */
2017
2018 #ifdef notused
2019 Static void
2020 ar9003_write_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext)
2021 {
2022 uint32_t reg;
2023 int i;
2024
2025 for (i = 0; i < sc->sc_nrxchains; i++) {
2026 reg = AR_READ(sc, AR_PHY_CCA(i));
2027 reg = RW(reg, AR_PHY_MAXCCA_PWR, nf[i]);
2028 AR_WRITE(sc, AR_PHY_CCA(i), reg);
2029
2030 reg = AR_READ(sc, AR_PHY_EXT_CCA(i));
2031 reg = RW(reg, AR_PHY_EXT_MAXCCA_PWR, nf_ext[i]);
2032 AR_WRITE(sc, AR_PHY_EXT_CCA(i), reg);
2033 }
2034 AR_WRITE_BARRIER(sc);
2035 }
2036 #endif /* notused */
2037
2038 #ifdef notused
2039 Static void
2040 ar9003_get_noisefloor(struct athn_softc *sc, struct ieee80211_channel *c)
2041 {
2042 int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS];
2043 int16_t cca_min, cca_max;
2044 int i;
2045
2046 if (AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
2047 /* Noisefloor calibration not finished. */
2048 return;
2049 }
2050 /* Noisefloor calibration is finished. */
2051 ar9003_read_noisefloor(sc, nf, nf_ext);
2052
2053 if (IEEE80211_IS_CHAN_2GHZ(c)) {
2054 cca_min = sc->sc_cca_min_2g;
2055 cca_max = sc->sc_cca_max_2g;
2056 }
2057 else {
2058 cca_min = sc->sc_cca_min_5g;
2059 cca_max = sc->sc_cca_max_5g;
2060 }
2061 /* Update noisefloor history. */
2062 for (i = 0; i < sc->sc_nrxchains; i++) {
2063 if (nf[i] < cca_min)
2064 nf[i] = cca_min;
2065 else if (nf[i] > cca_max)
2066 nf[i] = cca_max;
2067 if (nf_ext[i] < cca_min)
2068 nf_ext[i] = cca_min;
2069 else if (nf_ext[i] > cca_max)
2070 nf_ext[i] = cca_max;
2071
2072 sc->sc_nf_hist[sc->sc_nf_hist_cur].nf[i] = nf[i];
2073 sc->sc_nf_hist[sc->sc_nf_hist_cur].nf_ext[i] = nf_ext[i];
2074 }
2075 if (++sc->sc_nf_hist_cur >= ATHN_NF_CAL_HIST_MAX)
2076 sc->sc_nf_hist_cur = 0;
2077 }
2078 #endif /* notused */
2079
2080 #ifdef notused
2081 Static void
2082 ar9003_bb_load_noisefloor(struct athn_softc *sc)
2083 {
2084 int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS];
2085 int i, ntries;
2086
2087 /* Write filtered noisefloor values. */
2088 for (i = 0; i < sc->sc_nrxchains; i++) {
2089 nf[i] = sc->sc_nf_priv[i] * 2;
2090 nf_ext[i] = sc->sc_nf_ext_priv[i] * 2;
2091 }
2092 ar9003_write_noisefloor(sc, nf, nf_ext);
2093
2094 /* Load filtered noisefloor values into baseband. */
2095 AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
2096 AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
2097 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
2098 /* Wait for load to complete. */
2099 for (ntries = 0; ntries < 1000; ntries++) {
2100 if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF))
2101 break;
2102 DELAY(10);
2103 }
2104 if (ntries == 1000) {
2105 DPRINTFN(DBG_RF, sc, "failed to load noisefloor values\n");
2106 return;
2107 }
2108
2109 /* Restore noisefloor values to initial (max) values. */
2110 for (i = 0; i < AR_MAX_CHAINS; i++)
2111 nf[i] = nf_ext[i] = -50 * 2;
2112 ar9003_write_noisefloor(sc, nf, nf_ext);
2113 }
2114 #endif /* notused */
2115
2116 #ifdef notused
2117 Static void
2118 ar9300_noisefloor_calib(struct athn_softc *sc)
2119 {
2120
2121 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
2122 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
2123 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
2124 }
2125 #endif /* notused */
2126
2127 Static void
2128 ar9003_do_noisefloor_calib(struct athn_softc *sc)
2129 {
2130
2131 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
2132 }
2133
2134 PUBLIC int
2135 ar9003_init_calib(struct athn_softc *sc)
2136 {
2137 uint8_t txchainmask, rxchainmask;
2138 uint32_t reg;
2139 int ntries;
2140
2141 /* Save chains masks. */
2142 txchainmask = sc->sc_txchainmask;
2143 rxchainmask = sc->sc_rxchainmask;
2144 /* Configure hardware before calibration. */
2145 if (AR_READ(sc, AR_ENT_OTP) & AR_ENT_OTP_CHAIN2_DISABLE)
2146 txchainmask = rxchainmask = 0x3;
2147 else
2148 txchainmask = rxchainmask = 0x7;
2149 ar9003_init_chains(sc);
2150
2151 /* Perform Tx IQ calibration. */
2152 ar9003_calib_tx_iq(sc);
2153 /* Disable and re-enable the PHY chips. */
2154 AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
2155 AR_WRITE_BARRIER(sc);
2156 DELAY(5);
2157 AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
2158
2159 /* Calibrate the AGC. */
2160 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL);
2161 /* Poll for offset calibration completion. */
2162 for (ntries = 0; ntries < 10000; ntries++) {
2163 reg = AR_READ(sc, AR_PHY_AGC_CONTROL);
2164 if (!(reg & AR_PHY_AGC_CONTROL_CAL))
2165 break;
2166 DELAY(10);
2167 }
2168 if (ntries == 10000)
2169 return ETIMEDOUT;
2170
2171 /* Restore chains masks. */
2172 sc->sc_txchainmask = txchainmask;
2173 sc->sc_rxchainmask = rxchainmask;
2174 ar9003_init_chains(sc);
2175
2176 return 0;
2177 }
2178
2179 Static void
2180 ar9003_do_calib(struct athn_softc *sc)
2181 {
2182 uint32_t reg;
2183
2184 if (sc->sc_cur_calib_mask & ATHN_CAL_IQ) {
2185 reg = AR_READ(sc, AR_PHY_TIMING4);
2186 reg = RW(reg, AR_PHY_TIMING4_IQCAL_LOG_COUNT_MAX, 10);
2187 AR_WRITE(sc, AR_PHY_TIMING4, reg);
2188 AR_WRITE(sc, AR_PHY_CALMODE, AR_PHY_CALMODE_IQ);
2189 AR_SETBITS(sc, AR_PHY_TIMING4, AR_PHY_TIMING4_DO_CAL);
2190 AR_WRITE_BARRIER(sc);
2191 }
2192 else if (sc->sc_cur_calib_mask & ATHN_CAL_TEMP) {
2193 AR_SETBITS(sc, AR_PHY_65NM_CH0_THERM,
2194 AR_PHY_65NM_CH0_THERM_LOCAL);
2195 AR_SETBITS(sc, AR_PHY_65NM_CH0_THERM,
2196 AR_PHY_65NM_CH0_THERM_START);
2197 AR_WRITE_BARRIER(sc);
2198 }
2199 }
2200
2201 Static void
2202 ar9003_next_calib(struct athn_softc *sc)
2203 {
2204 /* Check if we have any calibration in progress. */
2205 if (sc->sc_cur_calib_mask != 0) {
2206 if (!(AR_READ(sc, AR_PHY_TIMING4) & AR_PHY_TIMING4_DO_CAL)) {
2207 /* Calibration completed for current sample. */
2208 ar9003_calib_iq(sc);
2209 }
2210 }
2211 }
2212
2213 Static void
2214 ar9003_calib_iq(struct athn_softc *sc)
2215 {
2216 struct athn_iq_cal *cal;
2217 uint32_t reg, i_coff_denom, q_coff_denom;
2218 int32_t i_coff, q_coff;
2219 int i, iq_corr_neg;
2220
2221 for (i = 0; i < AR_MAX_CHAINS; i++) {
2222 cal = &sc->sc_calib.iq[i];
2223
2224 /* Read IQ calibration measures (clear on read). */
2225 cal->pwr_meas_i = AR_READ(sc, AR_PHY_IQ_ADC_MEAS_0_B(i));
2226 cal->pwr_meas_q = AR_READ(sc, AR_PHY_IQ_ADC_MEAS_1_B(i));
2227 cal->iq_corr_meas =
2228 (int32_t)AR_READ(sc, AR_PHY_IQ_ADC_MEAS_2_B(i));
2229 }
2230
2231 for (i = 0; i < sc->sc_nrxchains; i++) {
2232 cal = &sc->sc_calib.iq[i];
2233
2234 if (cal->pwr_meas_q == 0)
2235 continue;
2236
2237 if ((iq_corr_neg = cal->iq_corr_meas < 0))
2238 cal->iq_corr_meas = -cal->iq_corr_meas;
2239
2240 i_coff_denom =
2241 (cal->pwr_meas_i / 2 + cal->pwr_meas_q / 2) / 256;
2242 q_coff_denom = cal->pwr_meas_q / 64;
2243
2244 if (i_coff_denom == 0 || q_coff_denom == 0)
2245 continue; /* Prevents division by zero. */
2246
2247 i_coff = cal->iq_corr_meas / i_coff_denom;
2248 q_coff = (cal->pwr_meas_i / q_coff_denom) - 64;
2249
2250 if (i_coff > 63)
2251 i_coff = 63;
2252 else if (i_coff < -63)
2253 i_coff = -63;
2254 /* Negate i_coff if iq_corr_meas is positive. */
2255 if (!iq_corr_neg)
2256 i_coff = -i_coff;
2257 if (q_coff > 63)
2258 q_coff = 63;
2259 else if (q_coff < -63)
2260 q_coff = -63;
2261
2262 DPRINTFN(DBG_RF, sc, "IQ calibration for chain %d\n", i);
2263 reg = AR_READ(sc, AR_PHY_RX_IQCAL_CORR_B(i));
2264 reg = RW(reg, AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF, i_coff);
2265 reg = RW(reg, AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF, q_coff);
2266 AR_WRITE(sc, AR_PHY_RX_IQCAL_CORR_B(i), reg);
2267 }
2268
2269 /* Apply new settings. */
2270 AR_SETBITS(sc, AR_PHY_RX_IQCAL_CORR_B(0),
2271 AR_PHY_RX_IQCAL_CORR_IQCORR_ENABLE);
2272 AR_WRITE_BARRIER(sc);
2273
2274 /* IQ calibration done. */
2275 sc->sc_cur_calib_mask &= ~ATHN_CAL_IQ;
2276 memset(&sc->sc_calib, 0, sizeof(sc->sc_calib));
2277 }
2278
2279 #define DELPT 32
2280 Static int
2281 ar9003_get_iq_corr(struct athn_softc *sc, int32_t res[6], int32_t coeff[2])
2282 {
2283 /* Sign-extends 12-bit value (assumes upper bits are zeroes). */
2284 #define SIGN_EXT(v) (((v) ^ 0x800) - 0x800)
2285 #define SCALE (1 << 15)
2286 #define SHIFT (1 << 8)
2287 struct {
2288 int32_t m, p, c;
2289 } val[2][2];
2290 int32_t mag[2][2], phs[2][2], cos[2], sin[2];
2291 int32_t div, f1, f2, f3, m, p, c;
2292 int32_t txmag, txphs, rxmag, rxphs;
2293 int32_t q_coff, i_coff;
2294 int i, j;
2295
2296 /* Extract our twelve signed 12-bit values from res[] array. */
2297 val[0][0].m = res[0] & 0xfff;
2298 val[0][0].p = (res[0] >> 12) & 0xfff;
2299 val[0][0].c = ((res[0] >> 24) & 0xff) | (res[1] & 0xf) << 8;
2300
2301 val[0][1].m = (res[1] >> 4) & 0xfff;
2302 val[0][1].p = res[2] & 0xfff;
2303 val[0][1].c = (res[2] >> 12) & 0xfff;
2304
2305 val[1][0].m = ((res[2] >> 24) & 0xff) | (res[3] & 0xf) << 8;
2306 val[1][0].p = (res[3] >> 4) & 0xfff;
2307 val[1][0].c = res[4] & 0xfff;
2308
2309 val[1][1].m = (res[4] >> 12) & 0xfff;
2310 val[1][1].p = ((res[4] >> 24) & 0xff) | (res[5] & 0xf) << 8;
2311 val[1][1].c = (res[5] >> 4) & 0xfff;
2312
2313 for (i = 0; i < 2; i++) {
2314 int32_t ymin, ymax;
2315 for (j = 0; j < 2; j++) {
2316 m = SIGN_EXT(val[i][j].m);
2317 p = SIGN_EXT(val[i][j].p);
2318 c = SIGN_EXT(val[i][j].c);
2319
2320 if (p == 0)
2321 return 1; /* Prevent division by 0. */
2322
2323 mag[i][j] = (m * SCALE) / p;
2324 phs[i][j] = (c * SCALE) / p;
2325 }
2326 sin[i] = ((mag[i][0] - mag[i][1]) * SHIFT) / DELPT;
2327 cos[i] = ((phs[i][0] - phs[i][1]) * SHIFT) / DELPT;
2328 /* Find magnitude by approximation. */
2329 ymin = MIN(abs(sin[i]), abs(cos[i]));
2330 ymax = MAX(abs(sin[i]), abs(cos[i]));
2331 div = ymax - (ymax / 32) + (ymin / 8) + (ymin / 4);
2332 if (div == 0)
2333 return 1; /* Prevent division by 0. */
2334 /* Normalize sin and cos by magnitude. */
2335 sin[i] = (sin[i] * SCALE) / div;
2336 cos[i] = (cos[i] * SCALE) / div;
2337 }
2338
2339 /* Compute IQ mismatch (solve 4x4 linear equation). */
2340 f1 = cos[0] - cos[1];
2341 f3 = sin[0] - sin[1];
2342 f2 = (f1 * f1 + f3 * f3) / SCALE;
2343 if (f2 == 0)
2344 return 1; /* Prevent division by 0. */
2345
2346 /* Compute Tx magnitude mismatch. */
2347 txmag = (f1 * ( mag[0][0] - mag[1][0]) +
2348 f3 * ( phs[0][0] - phs[1][0])) / f2;
2349 /* Compute Tx phase mismatch. */
2350 txphs = (f3 * (-mag[0][0] + mag[1][0]) +
2351 f1 * ( phs[0][0] - phs[1][0])) / f2;
2352
2353 if (txmag == SCALE)
2354 return 1; /* Prevent division by 0. */
2355
2356 /* Compute Rx magnitude mismatch. */
2357 rxmag = mag[0][0] - (cos[0] * txmag + sin[0] * txphs) / SCALE;
2358 /* Compute Rx phase mismatch. */
2359 rxphs = phs[0][0] + (sin[0] * txmag - cos[0] * txphs) / SCALE;
2360
2361 if (-rxmag == SCALE)
2362 return 1; /* Prevent division by 0. */
2363
2364 txmag = (txmag * SCALE) / (SCALE - txmag);
2365 txphs = -txphs;
2366
2367 q_coff = (txmag * 128) / SCALE;
2368 if (q_coff < -63)
2369 q_coff = -63;
2370 else if (q_coff > 63)
2371 q_coff = 63;
2372 i_coff = (txphs * 256) / SCALE;
2373 if (i_coff < -63)
2374 i_coff = -63;
2375 else if (i_coff > 63)
2376 i_coff = 63;
2377 coeff[0] = q_coff * 128 + i_coff;
2378
2379 rxmag = (-rxmag * SCALE) / (SCALE + rxmag);
2380 rxphs = -rxphs;
2381
2382 q_coff = (rxmag * 128) / SCALE;
2383 if (q_coff < -63)
2384 q_coff = -63;
2385 else if (q_coff > 63)
2386 q_coff = 63;
2387 i_coff = (rxphs * 256) / SCALE;
2388 if (i_coff < -63)
2389 i_coff = -63;
2390 else if (i_coff > 63)
2391 i_coff = 63;
2392 coeff[1] = q_coff * 128 + i_coff;
2393
2394 return 0;
2395 #undef SHIFT
2396 #undef SCALE
2397 #undef SIGN_EXT
2398 }
2399
2400 Static int
2401 ar9003_calib_tx_iq(struct athn_softc *sc)
2402 {
2403 uint32_t reg;
2404 int32_t res[6], coeff[2];
2405 int i, j, ntries;
2406
2407 reg = AR_READ(sc, AR_PHY_TX_IQCAL_CONTROL_1);
2408 reg = RW(reg, AR_PHY_TX_IQCAQL_CONTROL_1_IQCORR_I_Q_COFF_DELPT, DELPT);
2409 AR_WRITE(sc, AR_PHY_TX_IQCAL_CONTROL_1, reg);
2410
2411 /* Start Tx IQ calibration. */
2412 AR_SETBITS(sc, AR_PHY_TX_IQCAL_START, AR_PHY_TX_IQCAL_START_DO_CAL);
2413 /* Wait for completion. */
2414 for (ntries = 0; ntries < 10000; ntries++) {
2415 reg = AR_READ(sc, AR_PHY_TX_IQCAL_START);
2416 if (!(reg & AR_PHY_TX_IQCAL_START_DO_CAL))
2417 break;
2418 DELAY(10);
2419 }
2420 if (ntries == 10000)
2421 return ETIMEDOUT;
2422
2423 for (i = 0; i < sc->sc_ntxchains; i++) {
2424 /* Read Tx IQ calibration status for this chain. */
2425 reg = AR_READ(sc, AR_PHY_TX_IQCAL_STATUS_B(i));
2426 if (reg & AR_PHY_TX_IQCAL_STATUS_FAILED)
2427 return EIO;
2428 /*
2429 * Read Tx IQ calibration results for this chain.
2430 * This consists in twelve signed 12-bit values.
2431 */
2432 for (j = 0; j < 3; j++) {
2433 AR_CLRBITS(sc, AR_PHY_CHAN_INFO_MEMORY,
2434 AR_PHY_CHAN_INFO_TAB_S2_READ);
2435 reg = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(i, j));
2436 res[j * 2 + 0] = reg;
2437
2438 AR_SETBITS(sc, AR_PHY_CHAN_INFO_MEMORY,
2439 AR_PHY_CHAN_INFO_TAB_S2_READ);
2440 reg = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(i, j));
2441 res[j * 2 + 1] = reg & 0xffff;
2442 }
2443
2444 /* Compute Tx IQ correction. */
2445 if (ar9003_get_iq_corr(sc, res, coeff) != 0)
2446 return EIO;
2447
2448 /* Write Tx IQ correction coefficients. */
2449 reg = AR_READ(sc, AR_PHY_TX_IQCAL_CORR_COEFF_01_B(i));
2450 reg = RW(reg, AR_PHY_TX_IQCAL_CORR_COEFF_01_COEFF_TABLE,
2451 coeff[0]);
2452 AR_WRITE(sc, AR_PHY_TX_IQCAL_CORR_COEFF_01_B(i), reg);
2453
2454 reg = AR_READ(sc, AR_PHY_RX_IQCAL_CORR_B(i));
2455 reg = RW(reg, AR_PHY_RX_IQCAL_CORR_LOOPBACK_IQCORR_Q_Q_COFF,
2456 coeff[1] >> 7);
2457 reg = RW(reg, AR_PHY_RX_IQCAL_CORR_LOOPBACK_IQCORR_Q_I_COFF,
2458 coeff[1]);
2459 AR_WRITE(sc, AR_PHY_RX_IQCAL_CORR_B(i), reg);
2460 AR_WRITE_BARRIER(sc);
2461 }
2462
2463 /* Enable Tx IQ correction. */
2464 AR_SETBITS(sc, AR_PHY_TX_IQCAL_CONTROL_3,
2465 AR_PHY_TX_IQCAL_CONTROL_3_IQCORR_EN);
2466 AR_SETBITS(sc, AR_PHY_RX_IQCAL_CORR_B(0),
2467 AR_PHY_RX_IQCAL_CORR_B0_LOOPBACK_IQCORR_EN);
2468 AR_WRITE_BARRIER(sc);
2469 return 0;
2470 }
2471 #undef DELPT
2472
2473 /*-
2474 * The power amplifier predistortion state machine works as follows:
2475 * 1) Disable digital predistorters for all Tx chains
2476 * 2) Repeat steps 3~7 for all Tx chains
2477 * 3) Force Tx gain to that of training signal
2478 * 4) Send training signal (asynchronous)
2479 * 5) Wait for training signal to complete (asynchronous)
2480 * 6) Read PA measurements (input power, output power, output phase)
2481 * 7) Compute the predistortion function that linearizes PA output
2482 * 8) Write predistortion functions to hardware tables for all Tx chains
2483 * 9) Enable digital predistorters for all Tx chains
2484 */
2485 #ifdef notused
2486 Static void
2487 ar9003_paprd_calib(struct athn_softc *sc, struct ieee80211_channel *c)
2488 {
2489 static const int scaling[] = {
2490 261376, 248079, 233759, 220464,
2491 208194, 196949, 185706, 175487
2492 };
2493 struct athn_ops *ops = &sc->sc_ops;
2494 uint32_t reg, ht20mask, ht40mask;
2495 int i;
2496
2497 /* Read PA predistortion masks from ROM. */
2498 ops->get_paprd_masks(sc, c, &ht20mask, &ht40mask);
2499
2500 /* AM-to-AM: amplifier's amplitude characteristic. */
2501 reg = AR_READ(sc, AR_PHY_PAPRD_AM2AM);
2502 reg = RW(reg, AR_PHY_PAPRD_AM2AM_MASK, ht20mask);
2503 AR_WRITE(sc, AR_PHY_PAPRD_AM2AM, reg);
2504
2505 /* AM-to-PM: amplifier's phase transfer characteristic. */
2506 reg = AR_READ(sc, AR_PHY_PAPRD_AM2PM);
2507 reg = RW(reg, AR_PHY_PAPRD_AM2PM_MASK, ht20mask);
2508 AR_WRITE(sc, AR_PHY_PAPRD_AM2PM, reg);
2509
2510 reg = AR_READ(sc, AR_PHY_PAPRD_HT40);
2511 reg = RW(reg, AR_PHY_PAPRD_HT40_MASK, ht40mask);
2512 AR_WRITE(sc, AR_PHY_PAPRD_HT40, reg);
2513
2514 for (i = 0; i < AR9003_MAX_CHAINS; i++) {
2515 AR_SETBITS(sc, AR_PHY_PAPRD_CTRL0_B(i),
2516 AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE);
2517
2518 reg = AR_READ(sc, AR_PHY_PAPRD_CTRL1_B(i));
2519 reg = RW(reg, AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT, 181);
2520 reg = RW(reg, AR_PHY_PAPRD_CTRL1_MAG_SCALE_FACT, 361);
2521 reg &= ~AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA;
2522 reg |= AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENA;
2523 reg |= AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENA;
2524 AR_WRITE(sc, AR_PHY_PAPRD_CTRL1_B(i), reg);
2525
2526 reg = AR_READ(sc, AR_PHY_PAPRD_CTRL0_B(i));
2527 reg = RW(reg, AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3);
2528 AR_WRITE(sc, AR_PHY_PAPRD_CTRL0_B(i), reg);
2529 }
2530
2531 /* Disable all digital predistorters during calibration. */
2532 for (i = 0; i < AR9003_MAX_CHAINS; i++) {
2533 AR_CLRBITS(sc, AR_PHY_PAPRD_CTRL0_B(i),
2534 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE);
2535 }
2536 AR_WRITE_BARRIER(sc);
2537
2538 /*
2539 * Configure training signal.
2540 */
2541 reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL1);
2542 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL1_AGC2_SETTLING, 28);
2543 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL1_LB_SKIP, 0x30);
2544 reg &= ~AR_PHY_PAPRD_TRAINER_CNTL1_RX_BB_GAIN_FORCE;
2545 reg &= ~AR_PHY_PAPRD_TRAINER_CNTL1_IQCORR_ENABLE;
2546 reg |= AR_PHY_PAPRD_TRAINER_CNTL1_LB_ENABLE;
2547 reg |= AR_PHY_PAPRD_TRAINER_CNTL1_TX_GAIN_FORCE;
2548 reg |= AR_PHY_PAPRD_TRAINER_CNTL1_TRAIN_ENABLE;
2549 AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL1, reg);
2550
2551 AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL2, 147);
2552
2553 reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL3);
2554 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_FINE_CORR_LEN, 4);
2555 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_COARSE_CORR_LEN, 4);
2556 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_NUM_CORR_STAGES, 7);
2557 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_MIN_LOOPBACK_DEL, 1);
2558 if (AR_SREV_9485(sc))
2559 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_QUICK_DROP, -3);
2560 else
2561 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_QUICK_DROP, -6);
2562 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_ADC_DESIRED_SIZE, -15);
2563 reg |= AR_PHY_PAPRD_TRAINER_CNTL3_BBTXMIX_DISABLE;
2564 AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL3, reg);
2565
2566 reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL4);
2567 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_SAFETY_DELTA, 0);
2568 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_MIN_CORR, 400);
2569 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_NUM_TRAIN_SAMPLES, 100);
2570 AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL4, reg);
2571
2572 for (i = 0; i < __arraycount(scaling); i++) {
2573 reg = AR_READ(sc, AR_PHY_PAPRD_PRE_POST_SCALE_B0(i));
2574 reg = RW(reg, AR_PHY_PAPRD_PRE_POST_SCALING, scaling[i]);
2575 AR_WRITE(sc, AR_PHY_PAPRD_PRE_POST_SCALE_B0(i), reg);
2576 }
2577
2578 /* Save Tx gain table. */
2579 for (i = 0; i < AR9003_TX_GAIN_TABLE_SIZE; i++)
2580 sc->sc_txgain[i] = AR_READ(sc, AR_PHY_TXGAIN_TABLE(i));
2581
2582 /* Set Tx power of training signal (use setting for MCS0). */
2583 sc->sc_trainpow = MS(AR_READ(sc, AR_PHY_PWRTX_RATE5),
2584 AR_PHY_PWRTX_RATE5_POWERTXHT20_0) - 4;
2585
2586 /*
2587 * Start PA predistortion calibration state machine.
2588 */
2589 /* Find first available Tx chain. */
2590 sc->sc_paprd_curchain = 0;
2591 while (!(sc->sc_txchainmask & (1 << sc->sc_paprd_curchain)))
2592 sc->sc_paprd_curchain++;
2593
2594 /* Make sure training done bit is clear. */
2595 AR_CLRBITS(sc, AR_PHY_PAPRD_TRAINER_STAT1,
2596 AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE);
2597 AR_WRITE_BARRIER(sc);
2598
2599 /* Transmit training signal. */
2600 ar9003_paprd_tx_tone(sc);
2601 }
2602 #endif /* notused */
2603
2604 Static int
2605 ar9003_get_desired_txgain(struct athn_softc *sc, int chain, int pow)
2606 {
2607 int32_t scale, atemp, avolt, tempcal, voltcal, temp, volt;
2608 int32_t tempcorr, voltcorr;
2609 uint32_t reg;
2610 int8_t delta;
2611
2612 scale = MS(AR_READ(sc, AR_PHY_TPC_12),
2613 AR_PHY_TPC_12_DESIRED_SCALE_HT40_5);
2614
2615 reg = AR_READ(sc, AR_PHY_TPC_19);
2616 atemp = MS(reg, AR_PHY_TPC_19_ALPHA_THERM);
2617 avolt = MS(reg, AR_PHY_TPC_19_ALPHA_VOLT);
2618
2619 reg = AR_READ(sc, AR_PHY_TPC_18);
2620 tempcal = MS(reg, AR_PHY_TPC_18_THERM_CAL);
2621 voltcal = MS(reg, AR_PHY_TPC_18_VOLT_CAL);
2622
2623 reg = AR_READ(sc, AR_PHY_BB_THERM_ADC_4);
2624 temp = MS(reg, AR_PHY_BB_THERM_ADC_4_LATEST_THERM);
2625 volt = MS(reg, AR_PHY_BB_THERM_ADC_4_LATEST_VOLT);
2626
2627 delta = (int8_t)MS(AR_READ(sc, AR_PHY_TPC_11_B(chain)),
2628 AR_PHY_TPC_11_OLPC_GAIN_DELTA);
2629
2630 /* Compute temperature and voltage correction. */
2631 tempcorr = (atemp * (temp - tempcal) + 128) / 256;
2632 voltcorr = (avolt * (volt - voltcal) + 64) / 128;
2633
2634 /* Compute desired Tx gain. */
2635 return pow - delta - tempcorr - voltcorr + scale;
2636 }
2637
2638 Static void
2639 ar9003_force_txgain(struct athn_softc *sc, uint32_t txgain)
2640 {
2641 uint32_t reg;
2642
2643 reg = AR_READ(sc, AR_PHY_TX_FORCED_GAIN);
2644 reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXBB1DBGAIN,
2645 MS(txgain, AR_PHY_TXGAIN_TXBB1DBGAIN));
2646 reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXBB6DBGAIN,
2647 MS(txgain, AR_PHY_TXGAIN_TXBB6DBGAIN));
2648 reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXMXRGAIN,
2649 MS(txgain, AR_PHY_TXGAIN_TXMXRGAIN));
2650 reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNA,
2651 MS(txgain, AR_PHY_TXGAIN_PADRVGNA));
2652 reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNB,
2653 MS(txgain, AR_PHY_TXGAIN_PADRVGNB));
2654 reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNC,
2655 MS(txgain, AR_PHY_TXGAIN_PADRVGNC));
2656 reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGND,
2657 MS(txgain, AR_PHY_TXGAIN_PADRVGND));
2658 reg &= ~AR_PHY_TX_FORCED_GAIN_ENABLE_PAL;
2659 reg &= ~AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN;
2660 AR_WRITE(sc, AR_PHY_TX_FORCED_GAIN, reg);
2661
2662 reg = AR_READ(sc, AR_PHY_TPC_1);
2663 reg = RW(reg, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0);
2664 reg &= ~AR_PHY_TPC_1_FORCE_DAC_GAIN;
2665 AR_WRITE(sc, AR_PHY_TPC_1, reg);
2666 AR_WRITE_BARRIER(sc);
2667 }
2668
2669 Static void
2670 ar9003_set_training_gain(struct athn_softc *sc, int chain)
2671 {
2672 size_t i;
2673 int gain;
2674
2675 /*
2676 * Get desired gain for training signal power (take into account
2677 * current temperature/voltage).
2678 */
2679 gain = ar9003_get_desired_txgain(sc, chain, sc->sc_trainpow);
2680 /* Find entry in table. */
2681 for (i = 0; i < AR9003_TX_GAIN_TABLE_SIZE - 1; i++)
2682 if ((int)MS(sc->sc_txgain[i], AR_PHY_TXGAIN_INDEX) >= gain)
2683 break;
2684 ar9003_force_txgain(sc, sc->sc_txgain[i]);
2685 }
2686
2687 Static int
2688 ar9003_paprd_tx_tone(struct athn_softc *sc)
2689 {
2690 #define TONE_LEN 1800
2691 struct ieee80211com *ic = &sc->sc_ic;
2692 struct ieee80211_frame *wh;
2693 struct ieee80211_node *ni;
2694 struct mbuf *m;
2695 int error;
2696
2697 /* Build a Null (no data) frame of TONE_LEN bytes. */
2698 m = MCLGETI(NULL, M_DONTWAIT, NULL, TONE_LEN);
2699 if (m == NULL)
2700 return ENOBUFS;
2701 memset(mtod(m, void *), 0, TONE_LEN);
2702 wh = mtod(m, struct ieee80211_frame *);
2703 wh->i_fc[0] = IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA;
2704 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2705 *(uint16_t *)wh->i_dur = htole16(10); /* XXX */
2706 IEEE80211_ADDR_COPY(wh->i_addr1, ic->ic_myaddr);
2707 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2708 IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_myaddr);
2709 m->m_pkthdr.len = m->m_len = TONE_LEN;
2710
2711 /* Set gain of training signal. */
2712 ar9003_set_training_gain(sc, sc->sc_paprd_curchain);
2713
2714 /* Transmit training signal. */
2715 ni = ieee80211_ref_node(ic->ic_bss);
2716 if ((error = ar9003_tx(sc, m, ni, ATHN_TXFLAG_PAPRD)) != 0)
2717 ieee80211_free_node(ni);
2718 return error;
2719 #undef TONE_LEN
2720 }
2721
2722 static __inline int
2723 get_scale(int val)
2724 {
2725 int log = 0;
2726
2727 /* Find the log base 2 (position of highest bit set). */
2728 while (val >>= 1)
2729 log++;
2730
2731 return (log > 10) ? log - 10 : 0;
2732 }
2733
2734 /*
2735 * Compute predistortion function to linearize power amplifier output based
2736 * on feedback from training signal.
2737 */
2738 Static int
2739 ar9003_compute_predistortion(struct athn_softc *sc, const uint32_t *lo,
2740 const uint32_t *hi)
2741 {
2742 #define NBINS 23
2743 int chain = sc->sc_paprd_curchain;
2744 int x[NBINS + 1], y[NBINS + 1], t[NBINS + 1];
2745 int b1[NBINS + 1], b2[NBINS + 1], xtilde[NBINS + 1];
2746 int nsamples, txsum, rxsum, rosum, maxidx;
2747 int order, order5x, order5xrem, order3x, order3xrem, y5, y3;
2748 int icept, G, I, L, M, angle, xnonlin, y2, y4, sumy2, sumy4;
2749 int alpha, beta, scale, Qalpha, Qbeta, Qscale, Qx, Qb1, Qb2;
2750 int tavg, ttilde, maxb1abs, maxb2abs, maxxtildeabs, in;
2751 int tmp, i;
2752
2753 /* Set values at origin. */
2754 x[0] = y[0] = t[0] = 0;
2755
2756 #define SCALE 32
2757 maxidx = 0;
2758 for (i = 0; i < NBINS; i++) {
2759 nsamples = lo[i] & 0xffff;
2760 /* Skip bins that contain 16 or less samples. */
2761 if (nsamples <= 16) {
2762 x[i + 1] = y[i + 1] = t[i + 1] = 0;
2763 continue;
2764 }
2765 txsum = (hi[i] & 0x7ff) << 16 | lo[i] >> 16;
2766 rxsum = (lo[i + NBINS] & 0xffff) << 5 |
2767 ((hi[i] >> 11) & 0x1f);
2768 rosum = (hi[i + NBINS] & 0x7ff) << 16 | hi[i + NBINS] >> 16;
2769 /* Sign-extend 27-bit value. */
2770 rosum = (rosum ^ 0x4000000) - 0x4000000;
2771
2772 txsum *= SCALE;
2773 rxsum *= SCALE;
2774 rosum *= SCALE;
2775
2776 x[i + 1] = ((txsum + nsamples) / nsamples + SCALE) / SCALE;
2777 y[i + 1] = ((rxsum + nsamples) / nsamples + SCALE) / SCALE +
2778 SCALE * maxidx + SCALE / 2;
2779 t[i + 1] = (rosum + nsamples) / nsamples;
2780 maxidx++;
2781 }
2782 #undef SCALE
2783
2784 #define SCALE_LOG 8
2785 #define SCALE (1 << SCALE_LOG)
2786 if (x[6] == x[3])
2787 return 1; /* Prevent division by 0. */
2788 G = ((y[6] - y[3]) * SCALE + (x[6] - x[3])) / (x[6] - x[3]);
2789 if (G == 0)
2790 return 1; /* Prevent division by 0. */
2791
2792 sc->sc_gain1[chain] = G; /* Save low signal gain. */
2793
2794 /* Find interception point. */
2795 icept = (G * (x[0] - x[3]) + SCALE) / SCALE + y[3];
2796 for (i = 0; i <= 3; i++) {
2797 y[i] = i * 32;
2798 x[i] = (y[i] * SCALE + G) / G;
2799 }
2800 for (i = 4; i <= maxidx; i++)
2801 y[i] -= icept;
2802
2803 xnonlin = x[maxidx] - (y[maxidx] * SCALE + G) / G;
2804 order = (xnonlin + y[maxidx]) / y[maxidx];
2805 if (order == 0)
2806 M = 10;
2807 else if (order == 1)
2808 M = 9;
2809 else
2810 M = 8;
2811
2812 I = (maxidx >= 16) ? 7 : maxidx / 2;
2813 L = maxidx - I;
2814
2815 sumy2 = sumy4 = y2 = y4 = 0;
2816 for (i = 0; i <= L; i++) {
2817 if (y[i + I] == 0)
2818 return 1; /* Prevent division by 0. */
2819
2820 xnonlin = x[i + I] - ((y[i + I] * SCALE) + G) / G;
2821 xtilde[i] = ((xnonlin << M) + y[i + I]) / y[i + I];
2822 xtilde[i] = ((xtilde[i] << M) + y[i + I]) / y[i + I];
2823 xtilde[i] = ((xtilde[i] << M) + y[i + I]) / y[i + I];
2824
2825 y2 = (y[i + I] * y[i + I] + SCALE * SCALE) / (SCALE * SCALE);
2826
2827 sumy2 += y2;
2828 sumy4 += y2 * y2;
2829
2830 b1[i] = y2 * (L + 1);
2831 b2[i] = y2;
2832 }
2833 for (i = 0; i <= L; i++) {
2834 b1[i] -= sumy2;
2835 b2[i] = sumy4 - sumy2 * b2[i];
2836 }
2837
2838 maxxtildeabs = maxb1abs = maxb2abs = 0;
2839 for (i = 0; i <= L; i++) {
2840 tmp = abs(xtilde[i]);
2841 if (tmp > maxxtildeabs)
2842 maxxtildeabs = tmp;
2843
2844 tmp = abs(b1[i]);
2845 if (tmp > maxb1abs)
2846 maxb1abs = tmp;
2847
2848 tmp = abs(b2[i]);
2849 if (tmp > maxb2abs)
2850 maxb2abs = tmp;
2851 }
2852 Qx = get_scale(maxxtildeabs);
2853 Qb1 = get_scale(maxb1abs);
2854 Qb2 = get_scale(maxb2abs);
2855 for (i = 0; i <= L; i++) {
2856 xtilde[i] /= 1 << Qx;
2857 b1[i] /= 1 << Qb1;
2858 b2[i] /= 1 << Qb2;
2859 }
2860
2861 alpha = beta = 0;
2862 for (i = 0; i <= L; i++) {
2863 alpha += b1[i] * xtilde[i];
2864 beta += b2[i] * xtilde[i];
2865 }
2866
2867 scale = ((y4 / SCALE_LOG) * (L + 1) -
2868 (y2 / SCALE_LOG) * sumy2) * SCALE_LOG;
2869
2870 Qscale = get_scale(abs(scale));
2871 scale /= 1 << Qscale;
2872 Qalpha = get_scale(abs(alpha));
2873 alpha /= 1 << Qalpha;
2874 Qbeta = get_scale(abs(beta));
2875 beta /= 1 << Qbeta;
2876
2877 order = 3 * M - Qx - Qb1 - Qbeta + 10 + Qscale;
2878 order5x = 1 << (order / 5);
2879 order5xrem = 1 << (order % 5);
2880
2881 order = 3 * M - Qx - Qb2 - Qalpha + 10 + Qscale;
2882 order3x = 1 << (order / 3);
2883 order3xrem = 1 << (order % 3);
2884
2885 for (i = 0; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) {
2886 tmp = i * 32;
2887
2888 /* Fifth order. */
2889 y5 = ((beta * tmp) / 64) / order5x;
2890 y5 = (y5 * tmp) / order5x;
2891 y5 = (y5 * tmp) / order5x;
2892 y5 = (y5 * tmp) / order5x;
2893 y5 = (y5 * tmp) / order5x;
2894 y5 = y5 / order5xrem;
2895
2896 /* Third oder. */
2897 y3 = (alpha * tmp) / order3x;
2898 y3 = (y3 * tmp) / order3x;
2899 y3 = (y3 * tmp) / order3x;
2900 y3 = y3 / order3xrem;
2901
2902 in = y5 + y3 + (SCALE * tmp) / G;
2903 if (i >= 2 && in < sc->sc_pa_in[chain][i - 1]) {
2904 in = sc->sc_pa_in[chain][i - 1] +
2905 (sc->sc_pa_in[chain][i - 1] -
2906 sc->sc_pa_in[chain][i - 2]);
2907 }
2908 if (in > 1400)
2909 in = 1400;
2910 sc->sc_pa_in[chain][i] = in;
2911 }
2912
2913 /* Compute average theta of first 5 bins (linear region). */
2914 tavg = 0;
2915 for (i = 1; i <= 5; i++)
2916 tavg += t[i];
2917 tavg /= 5;
2918 for (i = 1; i <= 5; i++)
2919 t[i] = 0;
2920 for (i = 6; i <= maxidx; i++)
2921 t[i] -= tavg;
2922
2923 alpha = beta = 0;
2924 for (i = 0; i <= L; i++) {
2925 ttilde = ((t[i + I] << M) + y[i + I]) / y[i + I];
2926 ttilde = ((ttilde << M) + y[i + I]) / y[i + I];
2927 ttilde = ((ttilde << M) + y[i + I]) / y[i + I];
2928
2929 alpha += b2[i] * ttilde;
2930 beta += b1[i] * ttilde;
2931 }
2932
2933 Qalpha = get_scale(abs(alpha));
2934 alpha /= 1 << Qalpha;
2935 Qbeta = get_scale(abs(beta));
2936 beta /= 1 << Qbeta;
2937
2938 order = 3 * M - Qx - Qb1 - Qbeta + 10 + Qscale + 5;
2939 order5x = 1 << (order / 5);
2940 order5xrem = 1 << (order % 5);
2941
2942 order = 3 * M - Qx - Qb2 - Qalpha + 10 + Qscale + 5;
2943 order3x = 1 << (order / 3);
2944 order3xrem = 1 << (order % 3);
2945
2946 for (i = 0; i <= 4; i++)
2947 sc->sc_angle[chain][i] = 0; /* Linear at that range. */
2948 for (i = 5; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) {
2949 tmp = i * 32;
2950
2951 /* Fifth order. */
2952 if (beta > 0)
2953 y5 = (((beta * tmp - 64) / 64) - order5x) / order5x;
2954 else
2955 y5 = (((beta * tmp - 64) / 64) + order5x) / order5x;
2956 y5 = (y5 * tmp) / order5x;
2957 y5 = (y5 * tmp) / order5x;
2958 y5 = (y5 * tmp) / order5x;
2959 y5 = (y5 * tmp) / order5x;
2960 y5 = y5 / order5xrem;
2961
2962 /* Third oder. */
2963 if (beta > 0) /* XXX alpha? */
2964 y3 = (alpha * tmp - order3x) / order3x;
2965 else
2966 y3 = (alpha * tmp + order3x) / order3x;
2967 y3 = (y3 * tmp) / order3x;
2968 y3 = (y3 * tmp) / order3x;
2969 y3 = y3 / order3xrem;
2970
2971 angle = y5 + y3;
2972 if (angle < -150)
2973 angle = -150;
2974 else if (angle > 150)
2975 angle = 150;
2976 sc->sc_angle[chain][i] = angle;
2977 }
2978 /* Angle for entry 4 is derived from angle for entry 5. */
2979 sc->sc_angle[chain][4] = (sc->sc_angle[chain][5] + 2) / 2;
2980
2981 return 0;
2982 #undef SCALE
2983 #undef SCALE_LOG
2984 #undef NBINS
2985 }
2986
2987 Static void
2988 ar9003_enable_predistorter(struct athn_softc *sc, int chain)
2989 {
2990 uint32_t reg;
2991 int i;
2992
2993 /* Write digital predistorter lookup table. */
2994 for (i = 0; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) {
2995 AR_WRITE(sc, AR_PHY_PAPRD_MEM_TAB_B(chain, i),
2996 SM(AR_PHY_PAPRD_PA_IN, sc->sc_pa_in[chain][i]) |
2997 SM(AR_PHY_PAPRD_ANGLE, sc->sc_angle[chain][i]));
2998 }
2999
3000 reg = AR_READ(sc, AR_PHY_PA_GAIN123_B(chain));
3001 reg = RW(reg, AR_PHY_PA_GAIN123_PA_GAIN1, sc->sc_gain1[chain]);
3002 AR_WRITE(sc, AR_PHY_PA_GAIN123_B(chain), reg);
3003
3004 /* Indicate Tx power used for calibration (training signal). */
3005 reg = AR_READ(sc, AR_PHY_PAPRD_CTRL1_B(chain));
3006 reg = RW(reg, AR_PHY_PAPRD_CTRL1_POWER_AT_AM2AM_CAL, sc->sc_trainpow);
3007 AR_WRITE(sc, AR_PHY_PAPRD_CTRL1_B(chain), reg);
3008
3009 /* Enable digital predistorter for this chain. */
3010 AR_SETBITS(sc, AR_PHY_PAPRD_CTRL0_B(chain),
3011 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE);
3012 AR_WRITE_BARRIER(sc);
3013 }
3014
3015 Static void
3016 ar9003_paprd_enable(struct athn_softc *sc)
3017 {
3018 int i;
3019
3020 /* Enable digital predistorters for all Tx chains. */
3021 for (i = 0; i < AR9003_MAX_CHAINS; i++)
3022 if (sc->sc_txchainmask & (1 << i))
3023 ar9003_enable_predistorter(sc, i);
3024 }
3025
3026 /*
3027 * This function is called when our training signal has been sent.
3028 */
3029 Static void
3030 ar9003_paprd_tx_tone_done(struct athn_softc *sc)
3031 {
3032 uint32_t lo[48], hi[48];
3033 size_t i;
3034
3035 /* Make sure training is complete. */
3036 if (!(AR_READ(sc, AR_PHY_PAPRD_TRAINER_STAT1) &
3037 AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE))
3038 return;
3039
3040 /* Read feedback from training signal. */
3041 AR_CLRBITS(sc, AR_PHY_CHAN_INFO_MEMORY, AR_PHY_CHAN_INFO_TAB_S2_READ);
3042 for (i = 0; i < __arraycount(lo); i++)
3043 lo[i] = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(0, i));
3044 AR_SETBITS(sc, AR_PHY_CHAN_INFO_MEMORY, AR_PHY_CHAN_INFO_TAB_S2_READ);
3045 for (i = 0; i < __arraycount(hi); i++)
3046 hi[i] = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(0, i));
3047
3048 AR_CLRBITS(sc, AR_PHY_PAPRD_TRAINER_STAT1,
3049 AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE);
3050
3051 /* Compute predistortion function based on this feedback. */
3052 if (ar9003_compute_predistortion(sc, lo, hi) != 0)
3053 return;
3054
3055 /* Get next available Tx chain. */
3056 while (++sc->sc_paprd_curchain < AR9003_MAX_CHAINS)
3057 if (sc->sc_txchainmask & (1 << sc->sc_paprd_curchain))
3058 break;
3059 if (sc->sc_paprd_curchain == AR9003_MAX_CHAINS) {
3060 /* All Tx chains measured; enable digital predistortion. */
3061 ar9003_paprd_enable(sc);
3062 }
3063 else /* Measure next Tx chain. */
3064 ar9003_paprd_tx_tone(sc);
3065 }
3066
3067 PUBLIC void
3068 ar9003_write_txpower(struct athn_softc *sc, int16_t power[ATHN_POWER_COUNT])
3069 {
3070
3071 /* Make sure forced gain is disabled. */
3072 AR_WRITE(sc, AR_PHY_TX_FORCED_GAIN, 0);
3073
3074 AR_WRITE(sc, AR_PHY_PWRTX_RATE1,
3075 (power[ATHN_POWER_OFDM18 ] & 0x3f) << 24 |
3076 (power[ATHN_POWER_OFDM12 ] & 0x3f) << 16 |
3077 (power[ATHN_POWER_OFDM9 ] & 0x3f) << 8 |
3078 (power[ATHN_POWER_OFDM6 ] & 0x3f));
3079 AR_WRITE(sc, AR_PHY_PWRTX_RATE2,
3080 (power[ATHN_POWER_OFDM54 ] & 0x3f) << 24 |
3081 (power[ATHN_POWER_OFDM48 ] & 0x3f) << 16 |
3082 (power[ATHN_POWER_OFDM36 ] & 0x3f) << 8 |
3083 (power[ATHN_POWER_OFDM24 ] & 0x3f));
3084 AR_WRITE(sc, AR_PHY_PWRTX_RATE3,
3085 (power[ATHN_POWER_CCK2_SP ] & 0x3f) << 24 |
3086 (power[ATHN_POWER_CCK2_LP ] & 0x3f) << 16 |
3087 /* NB: No eXtended Range for AR9003. */
3088 (power[ATHN_POWER_CCK1_LP ] & 0x3f));
3089 AR_WRITE(sc, AR_PHY_PWRTX_RATE4,
3090 (power[ATHN_POWER_CCK11_SP] & 0x3f) << 24 |
3091 (power[ATHN_POWER_CCK11_LP] & 0x3f) << 16 |
3092 (power[ATHN_POWER_CCK55_SP] & 0x3f) << 8 |
3093 (power[ATHN_POWER_CCK55_LP] & 0x3f));
3094 /*
3095 * NB: AR_PHY_PWRTX_RATE5 needs to be written even if HT is disabled
3096 * because it is read by PA predistortion functions.
3097 */
3098 AR_WRITE(sc, AR_PHY_PWRTX_RATE5,
3099 (power[ATHN_POWER_HT20( 5)] & 0x3f) << 24 |
3100 (power[ATHN_POWER_HT20( 4)] & 0x3f) << 16 |
3101 (power[ATHN_POWER_HT20( 1)] & 0x3f) << 8 |
3102 (power[ATHN_POWER_HT20( 0)] & 0x3f));
3103 #ifndef IEEE80211_NO_HT
3104 AR_WRITE(sc, AR_PHY_PWRTX_RATE6,
3105 (power[ATHN_POWER_HT20(13)] & 0x3f) << 24 |
3106 (power[ATHN_POWER_HT20(12)] & 0x3f) << 16 |
3107 (power[ATHN_POWER_HT20( 7)] & 0x3f) << 8 |
3108 (power[ATHN_POWER_HT20( 6)] & 0x3f));
3109 AR_WRITE(sc, AR_PHY_PWRTX_RATE7,
3110 (power[ATHN_POWER_HT40( 5)] & 0x3f) << 24 |
3111 (power[ATHN_POWER_HT40( 4)] & 0x3f) << 16 |
3112 (power[ATHN_POWER_HT40( 1)] & 0x3f) << 8 |
3113 (power[ATHN_POWER_HT40( 0)] & 0x3f));
3114 AR_WRITE(sc, AR_PHY_PWRTX_RATE8,
3115 (power[ATHN_POWER_HT40(13)] & 0x3f) << 24 |
3116 (power[ATHN_POWER_HT40(12)] & 0x3f) << 16 |
3117 (power[ATHN_POWER_HT40( 7)] & 0x3f) << 8 |
3118 (power[ATHN_POWER_HT40( 6)] & 0x3f));
3119 AR_WRITE(sc, AR_PHY_PWRTX_RATE10,
3120 (power[ATHN_POWER_HT20(21)] & 0x3f) << 24 |
3121 (power[ATHN_POWER_HT20(20)] & 0x3f) << 16 |
3122 (power[ATHN_POWER_HT20(15)] & 0x3f) << 8 |
3123 (power[ATHN_POWER_HT20(14)] & 0x3f));
3124 AR_WRITE(sc, AR_PHY_PWRTX_RATE11,
3125 (power[ATHN_POWER_HT40(23)] & 0x3f) << 24 |
3126 (power[ATHN_POWER_HT40(22)] & 0x3f) << 16 |
3127 (power[ATHN_POWER_HT20(23)] & 0x3f) << 8 |
3128 (power[ATHN_POWER_HT20(22)] & 0x3f));
3129 AR_WRITE(sc, AR_PHY_PWRTX_RATE12,
3130 (power[ATHN_POWER_HT40(21)] & 0x3f) << 24 |
3131 (power[ATHN_POWER_HT40(20)] & 0x3f) << 16 |
3132 (power[ATHN_POWER_HT40(15)] & 0x3f) << 8 |
3133 (power[ATHN_POWER_HT40(14)] & 0x3f));
3134 #endif
3135 AR_WRITE_BARRIER(sc);
3136 }
3137
3138 Static void
3139 ar9003_reset_rx_gain(struct athn_softc *sc, struct ieee80211_channel *c)
3140 {
3141 #define X(x) ((uint32_t)(x) << 2)
3142 const struct athn_gain *prog = sc->sc_rx_gain;
3143 const uint32_t *pvals;
3144 int i;
3145
3146 if (IEEE80211_IS_CHAN_2GHZ(c))
3147 pvals = prog->vals_2g;
3148 else
3149 pvals = prog->vals_5g;
3150 for (i = 0; i < prog->nregs; i++)
3151 AR_WRITE(sc, X(prog->regs[i]), pvals[i]);
3152 AR_WRITE_BARRIER(sc);
3153 #undef X
3154 }
3155
3156 Static void
3157 ar9003_reset_tx_gain(struct athn_softc *sc, struct ieee80211_channel *c)
3158 {
3159 #define X(x) ((uint32_t)(x) << 2)
3160 const struct athn_gain *prog = sc->sc_tx_gain;
3161 const uint32_t *pvals;
3162 int i;
3163
3164 if (IEEE80211_IS_CHAN_2GHZ(c))
3165 pvals = prog->vals_2g;
3166 else
3167 pvals = prog->vals_5g;
3168 for (i = 0; i < prog->nregs; i++)
3169 AR_WRITE(sc, X(prog->regs[i]), pvals[i]);
3170 AR_WRITE_BARRIER(sc);
3171 #undef X
3172 }
3173
3174 Static void
3175 ar9003_hw_init(struct athn_softc *sc, struct ieee80211_channel *c,
3176 struct ieee80211_channel *extc)
3177 {
3178 #define X(x) ((uint32_t)(x) << 2)
3179 struct athn_ops *ops = &sc->sc_ops;
3180 const struct athn_ini *ini = sc->sc_ini;
3181 const uint32_t *pvals;
3182 uint32_t reg;
3183 int i;
3184
3185 /*
3186 * The common init values include the pre and core phases for the
3187 * SoC, MAC, BB and Radio subsystems.
3188 */
3189 DPRINTFN(DBG_INIT, sc, "writing pre and core init vals\n");
3190 for (i = 0; i < ini->ncmregs; i++) {
3191 AR_WRITE(sc, X(ini->cmregs[i]), ini->cmvals[i]);
3192 if (AR_IS_ANALOG_REG(X(ini->cmregs[i])))
3193 DELAY(100);
3194 if ((i & 0x1f) == 0)
3195 DELAY(1);
3196 }
3197
3198 /*
3199 * The modal init values include the post phase for the SoC, MAC,
3200 * BB and Radio subsystems.
3201 */
3202 #ifndef IEEE80211_NO_HT
3203 if (extc != NULL) {
3204 if (IEEE80211_IS_CHAN_2GHZ(c))
3205 pvals = ini->vals_2g40;
3206 else
3207 pvals = ini->vals_5g40;
3208 }
3209 else
3210 #endif
3211 {
3212 if (IEEE80211_IS_CHAN_2GHZ(c))
3213 pvals = ini->vals_2g20;
3214 else
3215 pvals = ini->vals_5g20;
3216 }
3217 DPRINTFN(DBG_INIT, sc, "writing post init vals\n");
3218 for (i = 0; i < ini->nregs; i++) {
3219 AR_WRITE(sc, X(ini->regs[i]), pvals[i]);
3220 if (AR_IS_ANALOG_REG(X(ini->regs[i])))
3221 DELAY(100);
3222 if ((i & 0x1f) == 0)
3223 DELAY(1);
3224 }
3225
3226 if (sc->sc_rx_gain != NULL)
3227 ar9003_reset_rx_gain(sc, c);
3228 if (sc->sc_tx_gain != NULL)
3229 ar9003_reset_tx_gain(sc, c);
3230
3231 if (IEEE80211_IS_CHAN_5GHZ(c) &&
3232 (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)) {
3233 /* Update modal values for fast PLL clock. */
3234 #ifndef IEEE80211_NO_HT
3235 if (extc != NULL)
3236 pvals = ini->fastvals_5g40;
3237 else
3238 #endif
3239 pvals = ini->fastvals_5g20;
3240 DPRINTFN(DBG_INIT, sc, "writing fast pll clock init vals\n");
3241 for (i = 0; i < ini->nfastregs; i++) {
3242 AR_WRITE(sc, X(ini->fastregs[i]), pvals[i]);
3243 if (AR_IS_ANALOG_REG(X(ini->fastregs[i])))
3244 DELAY(100);
3245 if ((i & 0x1f) == 0)
3246 DELAY(1);
3247 }
3248 }
3249
3250 /*
3251 * Set the RX_ABORT and RX_DIS bits to prevent frames with corrupted
3252 * descriptor status.
3253 */
3254 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
3255
3256 reg = AR_READ(sc, AR_PCU_MISC_MODE2);
3257 reg &= ~AR_PCU_MISC_MODE2_ADHOC_MCAST_KEYID_ENABLE;
3258 reg |= AR_PCU_MISC_MODE2_AGG_WEP_ENABLE_FIX;
3259 reg |= AR_PCU_MISC_MODE2_ENABLE_AGGWEP;
3260 AR_WRITE(sc, AR_PCU_MISC_MODE2, reg);
3261 AR_WRITE_BARRIER(sc);
3262
3263 ar9003_set_phy(sc, c, extc);
3264 ar9003_init_chains(sc);
3265
3266 ops->set_txpower(sc, c, extc);
3267 #undef X
3268 }
3269
3270 PUBLIC void
3271 ar9003_get_lg_tpow(struct athn_softc *sc, struct ieee80211_channel *c,
3272 uint8_t ctl, const uint8_t *fbins,
3273 const struct ar_cal_target_power_leg *tgt, int nchans, uint8_t tpow[4])
3274 {
3275 uint8_t fbin;
3276 int i, delta, lo, hi;
3277
3278 lo = hi = -1;
3279 fbin = athn_chan2fbin(c);
3280 for (i = 0; i < nchans; i++) {
3281 delta = fbin - fbins[i];
3282 /* Find the largest sample that is <= our frequency. */
3283 if (delta >= 0 && (lo == -1 || delta < fbin - fbins[lo]))
3284 lo = i;
3285 /* Find the smallest sample that is >= our frequency. */
3286 if (delta <= 0 && (hi == -1 || delta > fbin - fbins[hi]))
3287 hi = i;
3288 }
3289 if (lo == -1)
3290 lo = hi;
3291 else if (hi == -1)
3292 hi = lo;
3293 /* Interpolate values. */
3294 for (i = 0; i < 4; i++) {
3295 tpow[i] = athn_interpolate(fbin,
3296 fbins[lo], tgt[lo].tPow2x[i],
3297 fbins[hi], tgt[hi].tPow2x[i]);
3298 }
3299 /* XXX Apply conformance test limit. */
3300 }
3301
3302 PUBLIC void
3303 ar9003_get_ht_tpow(struct athn_softc *sc, struct ieee80211_channel *c,
3304 uint8_t ctl, const uint8_t *fbins,
3305 const struct ar_cal_target_power_ht *tgt, int nchans, uint8_t tpow[14])
3306 {
3307 uint8_t fbin;
3308 int i, delta, lo, hi;
3309
3310 lo = hi = -1;
3311 fbin = athn_chan2fbin(c);
3312 for (i = 0; i < nchans; i++) {
3313 delta = fbin - fbins[i];
3314 /* Find the largest sample that is <= our frequency. */
3315 if (delta >= 0 && (lo == -1 || delta < fbin - fbins[lo]))
3316 lo = i;
3317 /* Find the smallest sample that is >= our frequency. */
3318 if (delta <= 0 && (hi == -1 || delta > fbin - fbins[hi]))
3319 hi = i;
3320 }
3321 if (lo == -1)
3322 lo = hi;
3323 else if (hi == -1)
3324 hi = lo;
3325 /* Interpolate values. */
3326 for (i = 0; i < 14; i++) {
3327 tpow[i] = athn_interpolate(fbin,
3328 fbins[lo], tgt[lo].tPow2x[i],
3329 fbins[hi], tgt[hi].tPow2x[i]);
3330 }
3331 /* XXX Apply conformance test limit. */
3332 }
3333
3334 /*
3335 * Adaptive noise immunity.
3336 */
3337 Static void
3338 ar9003_set_noise_immunity_level(struct athn_softc *sc, int level)
3339 {
3340 int high = level == 4;
3341 uint32_t reg;
3342
3343 reg = AR_READ(sc, AR_PHY_DESIRED_SZ);
3344 reg = RW(reg, AR_PHY_DESIRED_SZ_TOT_DES, high ? -62 : -55);
3345 AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg);
3346
3347 reg = AR_READ(sc, AR_PHY_AGC);
3348 reg = RW(reg, AR_PHY_AGC_COARSE_LOW, high ? -70 : -64);
3349 reg = RW(reg, AR_PHY_AGC_COARSE_HIGH, high ? -12 : -14);
3350 AR_WRITE(sc, AR_PHY_AGC, reg);
3351
3352 reg = AR_READ(sc, AR_PHY_FIND_SIG);
3353 reg = RW(reg, AR_PHY_FIND_SIG_FIRPWR, high ? -80 : -78);
3354 AR_WRITE(sc, AR_PHY_FIND_SIG, reg);
3355 AR_WRITE_BARRIER(sc);
3356 }
3357
3358 Static void
3359 ar9003_enable_ofdm_weak_signal(struct athn_softc *sc)
3360 {
3361 uint32_t reg;
3362
3363 reg = AR_READ(sc, AR_PHY_SFCORR_LOW);
3364 reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 50);
3365 reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 40);
3366 reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 48);
3367 AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg);
3368
3369 reg = AR_READ(sc, AR_PHY_SFCORR);
3370 reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 77);
3371 reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 64);
3372 reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 16);
3373 AR_WRITE(sc, AR_PHY_SFCORR, reg);
3374
3375 reg = AR_READ(sc, AR_PHY_SFCORR_EXT);
3376 reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 50);
3377 reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 40);
3378 reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 77);
3379 reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 64);
3380 AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg);
3381
3382 AR_SETBITS(sc, AR_PHY_SFCORR_LOW,
3383 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
3384 AR_WRITE_BARRIER(sc);
3385 }
3386
3387 Static void
3388 ar9003_disable_ofdm_weak_signal(struct athn_softc *sc)
3389 {
3390 uint32_t reg;
3391
3392 reg = AR_READ(sc, AR_PHY_SFCORR_LOW);
3393 reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 127);
3394 reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 127);
3395 reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 63);
3396 AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg);
3397
3398 reg = AR_READ(sc, AR_PHY_SFCORR);
3399 reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 127);
3400 reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 127);
3401 reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 31);
3402 AR_WRITE(sc, AR_PHY_SFCORR, reg);
3403
3404 reg = AR_READ(sc, AR_PHY_SFCORR_EXT);
3405 reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 127);
3406 reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 127);
3407 reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 127);
3408 reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 127);
3409 AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg);
3410
3411 AR_CLRBITS(sc, AR_PHY_SFCORR_LOW,
3412 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
3413 AR_WRITE_BARRIER(sc);
3414 }
3415
3416 Static void
3417 ar9003_set_cck_weak_signal(struct athn_softc *sc, int high)
3418 {
3419 uint32_t reg;
3420
3421 reg = AR_READ(sc, AR_PHY_CCK_DETECT);
3422 reg = RW(reg, AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK, high ? 6 : 8);
3423 AR_WRITE(sc, AR_PHY_CCK_DETECT, reg);
3424 AR_WRITE_BARRIER(sc);
3425 }
3426
3427 Static void
3428 ar9003_set_firstep_level(struct athn_softc *sc, int level)
3429 {
3430 uint32_t reg;
3431
3432 reg = AR_READ(sc, AR_PHY_FIND_SIG);
3433 reg = RW(reg, AR_PHY_FIND_SIG_FIRSTEP, level * 4);
3434 AR_WRITE(sc, AR_PHY_FIND_SIG, reg);
3435 AR_WRITE_BARRIER(sc);
3436 }
3437
3438 Static void
3439 ar9003_set_spur_immunity_level(struct athn_softc *sc, int level)
3440 {
3441 uint32_t reg;
3442
3443 reg = AR_READ(sc, AR_PHY_TIMING5);
3444 reg = RW(reg, AR_PHY_TIMING5_CYCPWR_THR1, (level + 1) * 2);
3445 AR_WRITE(sc, AR_PHY_TIMING5, reg);
3446 AR_WRITE_BARRIER(sc);
3447 }
3448