arn9003.c revision 1.14.2.1 1 /* $NetBSD: arn9003.c,v 1.14.2.1 2020/02/29 20:19:08 ad Exp $ */
2 /* $OpenBSD: ar9003.c,v 1.25 2012/10/20 09:53:32 stsp Exp $ */
3
4 /*-
5 * Copyright (c) 2010 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2010 Atheros Communications Inc.
7 *
8 * Permission to use, copy, modify, and/or distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*
22 * Driver for Atheros 802.11a/g/n chipsets.
23 * Routines for AR9003 family.
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: arn9003.c,v 1.14.2.1 2020/02/29 20:19:08 ad Exp $");
28
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/queue.h>
37 #include <sys/callout.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40
41 #include <sys/bus.h>
42 #include <sys/endian.h>
43 #include <sys/intr.h>
44
45 #include <net/bpf.h>
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/if_dl.h>
49 #include <net/if_ether.h>
50 #include <net/if_media.h>
51 #include <net/if_types.h>
52
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip.h>
57
58 #include <net80211/ieee80211_var.h>
59 #include <net80211/ieee80211_amrr.h>
60 #include <net80211/ieee80211_radiotap.h>
61
62 #include <dev/ic/athnreg.h>
63 #include <dev/ic/athnvar.h>
64 #include <dev/ic/arn9003reg.h>
65 #include <dev/ic/arn9003.h>
66
67 #define Static static
68
69 Static void ar9003_calib_iq(struct athn_softc *);
70 Static int ar9003_calib_tx_iq(struct athn_softc *);
71 Static int ar9003_compute_predistortion(struct athn_softc *,
72 const uint32_t *, const uint32_t *);
73 Static void ar9003_disable_ofdm_weak_signal(struct athn_softc *);
74 Static void ar9003_disable_phy(struct athn_softc *);
75 Static int ar9003_dma_alloc(struct athn_softc *);
76 Static void ar9003_dma_free(struct athn_softc *);
77 Static void ar9003_do_calib(struct athn_softc *);
78 Static void ar9003_do_noisefloor_calib(struct athn_softc *);
79 Static void ar9003_enable_antenna_diversity(struct athn_softc *);
80 Static void ar9003_enable_ofdm_weak_signal(struct athn_softc *);
81 Static void ar9003_enable_predistorter(struct athn_softc *, int);
82 Static int ar9003_find_rom(struct athn_softc *);
83 Static void ar9003_force_txgain(struct athn_softc *, uint32_t);
84 Static int ar9003_get_desired_txgain(struct athn_softc *, int, int);
85 Static int ar9003_get_iq_corr(struct athn_softc *, int32_t[], int32_t[]);
86 Static void ar9003_gpio_config_input(struct athn_softc *, int);
87 Static void ar9003_gpio_config_output(struct athn_softc *, int, int);
88 Static int ar9003_gpio_read(struct athn_softc *, int);
89 Static void ar9003_gpio_write(struct athn_softc *, int, int);
90 Static void ar9003_hw_init(struct athn_softc *, struct ieee80211_channel *,
91 struct ieee80211_channel *);
92 Static void ar9003_init_baseband(struct athn_softc *);
93 Static void ar9003_init_chains(struct athn_softc *);
94 Static int ar9003_intr_status(struct athn_softc *);
95 Static int ar9003_intr(struct athn_softc *);
96 Static void ar9003_next_calib(struct athn_softc *);
97 Static void ar9003_paprd_enable(struct athn_softc *);
98 Static int ar9003_paprd_tx_tone(struct athn_softc *);
99 Static void ar9003_paprd_tx_tone_done(struct athn_softc *);
100 Static int ar9003_read_eep_data(struct athn_softc *, uint32_t, void *,
101 int);
102 Static int ar9003_read_eep_word(struct athn_softc *, uint32_t,
103 uint16_t *);
104 Static int ar9003_read_otp_data(struct athn_softc *, uint32_t, void *,
105 int);
106 Static int ar9003_read_otp_word(struct athn_softc *, uint32_t,
107 uint32_t *);
108 Static int ar9003_read_rom(struct athn_softc *);
109 Static void ar9003_reset_rx_gain(struct athn_softc *,
110 struct ieee80211_channel *);
111 Static void ar9003_reset_tx_gain(struct athn_softc *,
112 struct ieee80211_channel *);
113 Static int ar9003_restore_rom_block(struct athn_softc *, uint8_t,
114 uint8_t, const uint8_t *, size_t);
115 Static void ar9003_rf_bus_release(struct athn_softc *);
116 Static int ar9003_rf_bus_request(struct athn_softc *);
117 Static void ar9003_rfsilent_init(struct athn_softc *);
118 Static int ar9003_rx_alloc(struct athn_softc *, int, int);
119 Static void ar9003_rx_enable(struct athn_softc *);
120 Static void ar9003_rx_free(struct athn_softc *, int);
121 Static void ar9003_rx_intr(struct athn_softc *, int);
122 Static int ar9003_rx_process(struct athn_softc *, int);
123 Static void ar9003_rx_radiotap(struct athn_softc *, struct mbuf *,
124 struct ar_rx_status *);
125 Static void ar9003_set_cck_weak_signal(struct athn_softc *, int);
126 Static void ar9003_set_delta_slope(struct athn_softc *,
127 struct ieee80211_channel *, struct ieee80211_channel *);
128 Static void ar9003_set_firstep_level(struct athn_softc *, int);
129 Static void ar9003_set_noise_immunity_level(struct athn_softc *, int);
130 Static void ar9003_set_phy(struct athn_softc *, struct ieee80211_channel *,
131 struct ieee80211_channel *);
132 Static void ar9003_set_rf_mode(struct athn_softc *,
133 struct ieee80211_channel *);
134 Static void ar9003_set_rxchains(struct athn_softc *);
135 Static void ar9003_set_spur_immunity_level(struct athn_softc *, int);
136 Static void ar9003_set_training_gain(struct athn_softc *, int);
137 Static int ar9003_swba_intr(struct athn_softc *);
138 Static int ar9003_tx(struct athn_softc *, struct mbuf *,
139 struct ieee80211_node *, int);
140 Static int ar9003_tx_alloc(struct athn_softc *);
141 Static void ar9003_tx_free(struct athn_softc *);
142 Static void ar9003_tx_intr(struct athn_softc *);
143 Static int ar9003_tx_process(struct athn_softc *);
144
145 #ifdef notused
146 Static void ar9003_bb_load_noisefloor(struct athn_softc *);
147 Static void ar9003_get_noisefloor(struct athn_softc *,
148 struct ieee80211_channel *);
149 Static void ar9003_paprd_calib(struct athn_softc *,
150 struct ieee80211_channel *);
151 Static void ar9003_read_noisefloor(struct athn_softc *, int16_t *,
152 int16_t *);
153 Static void ar9003_write_noisefloor(struct athn_softc *, int16_t *,
154 int16_t *);
155 Static void ar9300_noisefloor_calib(struct athn_softc *);
156 #endif /* notused */
157
158 /*
159 * XXX: See if_iwn.c:MCLGETIalt() for a better solution.
160 * XXX: Put this in a header or in athn.c so it can be shared between
161 * ar5008.c and ar9003.c?
162 */
163 static struct mbuf *
164 MCLGETI(struct athn_softc *sc __unused, int how,
165 struct ifnet *ifp __unused, u_int size)
166 {
167 struct mbuf *m;
168
169 MGETHDR(m, how, MT_DATA);
170 if (m == NULL)
171 return NULL;
172
173 MEXTMALLOC(m, size, how);
174 if ((m->m_flags & M_EXT) == 0) {
175 m_freem(m);
176 return NULL;
177 }
178 return m;
179 }
180
181 PUBLIC int
182 ar9003_attach(struct athn_softc *sc)
183 {
184 struct athn_ops *ops = &sc->sc_ops;
185 int error;
186
187 /* Set callbacks for AR9003 family. */
188 ops->gpio_read = ar9003_gpio_read;
189 ops->gpio_write = ar9003_gpio_write;
190 ops->gpio_config_input = ar9003_gpio_config_input;
191 ops->gpio_config_output = ar9003_gpio_config_output;
192 ops->rfsilent_init = ar9003_rfsilent_init;
193
194 ops->dma_alloc = ar9003_dma_alloc;
195 ops->dma_free = ar9003_dma_free;
196 ops->rx_enable = ar9003_rx_enable;
197 ops->intr_status = ar9003_intr_status;
198 ops->intr = ar9003_intr;
199 ops->tx = ar9003_tx;
200
201 ops->set_rf_mode = ar9003_set_rf_mode;
202 ops->rf_bus_request = ar9003_rf_bus_request;
203 ops->rf_bus_release = ar9003_rf_bus_release;
204 ops->set_phy = ar9003_set_phy;
205 ops->set_delta_slope = ar9003_set_delta_slope;
206 ops->enable_antenna_diversity = ar9003_enable_antenna_diversity;
207 ops->init_baseband = ar9003_init_baseband;
208 ops->disable_phy = ar9003_disable_phy;
209 ops->set_rxchains = ar9003_set_rxchains;
210 ops->noisefloor_calib = ar9003_do_noisefloor_calib;
211 ops->do_calib = ar9003_do_calib;
212 ops->next_calib = ar9003_next_calib;
213 ops->hw_init = ar9003_hw_init;
214
215 ops->set_noise_immunity_level = ar9003_set_noise_immunity_level;
216 ops->enable_ofdm_weak_signal = ar9003_enable_ofdm_weak_signal;
217 ops->disable_ofdm_weak_signal = ar9003_disable_ofdm_weak_signal;
218 ops->set_cck_weak_signal = ar9003_set_cck_weak_signal;
219 ops->set_firstep_level = ar9003_set_firstep_level;
220 ops->set_spur_immunity_level = ar9003_set_spur_immunity_level;
221
222 /* Set MAC registers offsets. */
223 sc->sc_obs_off = AR_OBS;
224 sc->sc_gpio_input_en_off = AR_GPIO_INPUT_EN_VAL;
225
226 if (!(sc->sc_flags & ATHN_FLAG_PCIE))
227 athn_config_nonpcie(sc);
228 else
229 athn_config_pcie(sc);
230
231 /* Determine ROM type and location. */
232 if ((error = ar9003_find_rom(sc)) != 0) {
233 aprint_error_dev(sc->sc_dev, "could not find ROM\n");
234 return error;
235 }
236 /* Read entire ROM content in memory. */
237 if ((error = ar9003_read_rom(sc)) != 0) {
238 aprint_error_dev(sc->sc_dev, "could not read ROM\n");
239 return error;
240 }
241
242 /* Determine if it is a non-enterprise AR9003 card. */
243 if (AR_READ(sc, AR_ENT_OTP) & AR_ENT_OTP_MPSD)
244 sc->sc_flags |= ATHN_FLAG_NON_ENTERPRISE;
245
246 ops->setup(sc);
247 return 0;
248 }
249
250 /*
251 * Read 16-bit word from EEPROM.
252 */
253 Static int
254 ar9003_read_eep_word(struct athn_softc *sc, uint32_t addr, uint16_t *val)
255 {
256 uint32_t reg;
257 int ntries;
258
259 reg = AR_READ(sc, AR_EEPROM_OFFSET(addr));
260 for (ntries = 0; ntries < 1000; ntries++) {
261 reg = AR_READ(sc, AR_EEPROM_STATUS_DATA);
262 if (!(reg & (AR_EEPROM_STATUS_DATA_BUSY |
263 AR_EEPROM_STATUS_DATA_PROT_ACCESS))) {
264 *val = MS(reg, AR_EEPROM_STATUS_DATA_VAL);
265 return 0;
266 }
267 DELAY(10);
268 }
269 *val = 0xffff;
270 return ETIMEDOUT;
271 }
272
273 /*
274 * Read an arbitrary number of bytes at a specified address in EEPROM.
275 * NB: The address may not be 16-bit aligned.
276 */
277 Static int
278 ar9003_read_eep_data(struct athn_softc *sc, uint32_t addr, void *buf, int len)
279 {
280 uint8_t *dst = buf;
281 uint16_t val;
282 int error;
283
284 if (len > 0 && (addr & 1)) {
285 /* Deal with non-aligned reads. */
286 addr >>= 1;
287 error = ar9003_read_eep_word(sc, addr, &val);
288 if (error != 0)
289 return error;
290 *dst++ = val & 0xff;
291 addr--;
292 len--;
293 }
294 else
295 addr >>= 1;
296 for (; len >= 2; addr--, len -= 2) {
297 error = ar9003_read_eep_word(sc, addr, &val);
298 if (error != 0)
299 return error;
300 *dst++ = val >> 8;
301 *dst++ = val & 0xff;
302 }
303 if (len > 0) {
304 error = ar9003_read_eep_word(sc, addr, &val);
305 if (error != 0)
306 return error;
307 *dst++ = val >> 8;
308 }
309 return 0;
310 }
311
312 /*
313 * Read 32-bit word from OTPROM.
314 */
315 Static int
316 ar9003_read_otp_word(struct athn_softc *sc, uint32_t addr, uint32_t *val)
317 {
318 uint32_t reg;
319 int ntries;
320
321 reg = AR_READ(sc, AR_OTP_BASE(addr));
322 for (ntries = 0; ntries < 1000; ntries++) {
323 reg = AR_READ(sc, AR_OTP_STATUS);
324 if (MS(reg, AR_OTP_STATUS_TYPE) == AR_OTP_STATUS_VALID) {
325 *val = AR_READ(sc, AR_OTP_READ_DATA);
326 return 0;
327 }
328 DELAY(10);
329 }
330 return ETIMEDOUT;
331 }
332
333 /*
334 * Read an arbitrary number of bytes at a specified address in OTPROM.
335 * NB: The address may not be 32-bit aligned.
336 */
337 Static int
338 ar9003_read_otp_data(struct athn_softc *sc, uint32_t addr, void *buf, int len)
339 {
340 uint8_t *dst = buf;
341 uint32_t val;
342 int error;
343
344 /* NB: not optimal for non-aligned reads, but correct. */
345 for (; len > 0; addr--, len--) {
346 error = ar9003_read_otp_word(sc, addr >> 2, &val);
347 if (error != 0)
348 return error;
349 *dst++ = (val >> ((addr & 3) * 8)) & 0xff;
350 }
351 return 0;
352 }
353
354 /*
355 * Determine if the chip has an external EEPROM or an OTPROM and its size.
356 */
357 Static int
358 ar9003_find_rom(struct athn_softc *sc)
359 {
360 struct athn_ops *ops = &sc->sc_ops;
361 uint32_t hdr;
362 int error;
363
364 /* Try EEPROM. */
365 ops->read_rom_data = ar9003_read_eep_data;
366
367 sc->sc_eep_size = AR_SREV_9485(sc) ? 4096 : 1024;
368 sc->sc_eep_base = sc->sc_eep_size - 1;
369 error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
370 if (error == 0 && hdr != 0 && hdr != 0xffffffff)
371 return 0;
372
373 sc->sc_eep_size = 512;
374 sc->sc_eep_base = sc->sc_eep_size - 1;
375 error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
376 if (error == 0 && hdr != 0 && hdr != 0xffffffff)
377 return 0;
378
379 /* Try OTPROM. */
380 ops->read_rom_data = ar9003_read_otp_data;
381
382 sc->sc_eep_size = 1024;
383 sc->sc_eep_base = sc->sc_eep_size - 1;
384 error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
385 if (error == 0 && hdr != 0 && hdr != 0xffffffff)
386 return 0;
387
388 sc->sc_eep_size = 512;
389 sc->sc_eep_base = sc->sc_eep_size - 1;
390 error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
391 if (error == 0 && hdr != 0 && hdr != 0xffffffff)
392 return 0;
393
394 return EIO; /* Not found. */
395 }
396
397 Static int
398 ar9003_restore_rom_block(struct athn_softc *sc, uint8_t alg, uint8_t ref,
399 const uint8_t *buf, size_t len)
400 {
401 const uint8_t *def, *ptr, *end;
402 uint8_t *eep = sc->sc_eep;
403 size_t off, clen;
404
405 if (alg == AR_EEP_COMPRESS_BLOCK) {
406 /* Block contains chunks that shadow ROM template. */
407 def = sc->sc_ops.get_rom_template(sc, ref);
408 if (def == NULL) {
409 DPRINTFN(DBG_INIT, sc, "unknown template image %d\n",
410 ref);
411 return EINVAL;
412 }
413 /* Start with template. */
414 memcpy(eep, def, sc->sc_eep_size);
415 /* Shadow template with chunks. */
416 off = 0; /* Offset in ROM image. */
417 ptr = buf; /* Offset in block. */
418 end = buf + len;
419 /* Process chunks. */
420 while (ptr + 2 <= end) {
421 off += *ptr++; /* Gap with previous chunk. */
422 clen = *ptr++; /* Chunk length. */
423 /* Make sure block is large enough. */
424 if (ptr + clen > end)
425 return EINVAL;
426 /* Make sure chunk fits in ROM image. */
427 if (off + clen > sc->sc_eep_size)
428 return EINVAL;
429 /* Restore chunk. */
430 DPRINTFN(DBG_INIT, sc, "ROM chunk @%zd/%zd\n",
431 off, clen);
432 memcpy(&eep[off], ptr, clen);
433 ptr += clen;
434 off += clen;
435 }
436 }
437 else if (alg == AR_EEP_COMPRESS_NONE) {
438 /* Block contains full ROM image. */
439 if (len != sc->sc_eep_size) {
440 DPRINTFN(DBG_INIT, sc, "block length mismatch %zd\n",
441 len);
442 return EINVAL;
443 }
444 memcpy(eep, buf, len);
445 }
446 return 0;
447 }
448
449 Static int
450 ar9003_read_rom(struct athn_softc *sc)
451 {
452 struct athn_ops *ops = &sc->sc_ops;
453 uint8_t *buf, *ptr, alg, ref;
454 uint16_t sum, rsum;
455 uint32_t hdr;
456 int error, addr;
457 size_t len, i, j;
458
459 /* Allocate space to store ROM in host memory. */
460 sc->sc_eep = malloc(sc->sc_eep_size, M_DEVBUF, M_WAITOK);
461
462 /* Allocate temporary buffer to store ROM blocks. */
463 buf = malloc(2048, M_DEVBUF, M_WAITOK);
464
465 /* Restore vendor-specified ROM blocks. */
466 addr = sc->sc_eep_base;
467 for (i = 0; i < 100; i++) {
468 /* Read block header. */
469 error = ops->read_rom_data(sc, addr, &hdr, sizeof(hdr));
470 if (error != 0)
471 break;
472 if (hdr == 0 || hdr == 0xffffffff)
473 break;
474 addr -= sizeof(hdr);
475
476 /* Extract bits from header. */
477 ptr = (uint8_t *)&hdr;
478 alg = (ptr[0] & 0xe0) >> 5;
479 ref = (ptr[1] & 0x80) >> 2 | (ptr[0] & 0x1f);
480 len = (ptr[1] & 0x7f) << 4 | (ptr[2] & 0xf0) >> 4;
481 DPRINTFN(DBG_INIT, sc,
482 "ROM block %zd: alg=%d ref=%d len=%zd\n",
483 i, alg, ref, len);
484
485 /* Read block data (len <= 0x7ff). */
486 error = ops->read_rom_data(sc, addr, buf, len);
487 if (error != 0)
488 break;
489 addr -= len;
490
491 /* Read block checksum. */
492 error = ops->read_rom_data(sc, addr, &sum, sizeof(sum));
493 if (error != 0)
494 break;
495 addr -= sizeof(sum);
496
497 /* Compute block checksum. */
498 rsum = 0;
499 for (j = 0; j < len; j++)
500 rsum += buf[j];
501 /* Compare to that in ROM. */
502 if (le16toh(sum) != rsum) {
503 DPRINTFN(DBG_INIT, sc,
504 "bad block checksum 0x%x/0x%x\n",
505 le16toh(sum), rsum);
506 continue; /* Skip bad block. */
507 }
508 /* Checksum is correct, restore block. */
509 ar9003_restore_rom_block(sc, alg, ref, buf, len);
510 }
511 #if BYTE_ORDER == BIG_ENDIAN
512 /* NB: ROM is always little endian. */
513 if (error == 0)
514 ops->swap_rom(sc);
515 #endif
516 free(buf, M_DEVBUF);
517 return error;
518 }
519
520 /*
521 * Access to General Purpose Input/Output ports.
522 */
523 Static int
524 ar9003_gpio_read(struct athn_softc *sc, int pin)
525 {
526
527 KASSERT(pin < sc->sc_ngpiopins);
528 return ((AR_READ(sc, AR_GPIO_IN) & AR9300_GPIO_IN_VAL) &
529 (1 << pin)) != 0;
530 }
531
532 Static void
533 ar9003_gpio_write(struct athn_softc *sc, int pin, int set)
534 {
535 uint32_t reg;
536
537 KASSERT(pin < sc->sc_ngpiopins);
538 reg = AR_READ(sc, AR_GPIO_IN_OUT);
539 if (set)
540 reg |= 1 << pin;
541 else
542 reg &= ~(1 << pin);
543 AR_WRITE(sc, AR_GPIO_IN_OUT, reg);
544 AR_WRITE_BARRIER(sc);
545 }
546
547 Static void
548 ar9003_gpio_config_input(struct athn_softc *sc, int pin)
549 {
550 uint32_t reg;
551
552 reg = AR_READ(sc, AR_GPIO_OE_OUT);
553 reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2));
554 reg |= AR_GPIO_OE_OUT_DRV_NO << (pin * 2);
555 AR_WRITE(sc, AR_GPIO_OE_OUT, reg);
556 AR_WRITE_BARRIER(sc);
557 }
558
559 Static void
560 ar9003_gpio_config_output(struct athn_softc *sc, int pin, int type)
561 {
562 uint32_t reg;
563 int mux, off;
564
565 mux = pin / 6;
566 off = pin % 6;
567
568 reg = AR_READ(sc, AR_GPIO_OUTPUT_MUX(mux));
569 reg &= ~(0x1f << (off * 5));
570 reg |= (type & 0x1f) << (off * 5);
571 AR_WRITE(sc, AR_GPIO_OUTPUT_MUX(mux), reg);
572
573 reg = AR_READ(sc, AR_GPIO_OE_OUT);
574 reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2));
575 reg |= AR_GPIO_OE_OUT_DRV_ALL << (pin * 2);
576 AR_WRITE(sc, AR_GPIO_OE_OUT, reg);
577 AR_WRITE_BARRIER(sc);
578 }
579
580 Static void
581 ar9003_rfsilent_init(struct athn_softc *sc)
582 {
583 uint32_t reg;
584
585 /* Configure hardware radio switch. */
586 AR_SETBITS(sc, AR_GPIO_INPUT_EN_VAL, AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
587 reg = AR_READ(sc, AR_GPIO_INPUT_MUX2);
588 reg = RW(reg, AR_GPIO_INPUT_MUX2_RFSILENT, 0);
589 AR_WRITE(sc, AR_GPIO_INPUT_MUX2, reg);
590 ar9003_gpio_config_input(sc, sc->sc_rfsilent_pin);
591 AR_SETBITS(sc, AR_PHY_TEST, AR_PHY_TEST_RFSILENT_BB);
592 if (!(sc->sc_flags & ATHN_FLAG_RFSILENT_REVERSED)) {
593 AR_SETBITS(sc, AR_GPIO_INTR_POL,
594 AR_GPIO_INTR_POL_PIN(sc->sc_rfsilent_pin));
595 }
596 AR_WRITE_BARRIER(sc);
597 }
598
599 Static int
600 ar9003_dma_alloc(struct athn_softc *sc)
601 {
602 int error;
603
604 error = ar9003_tx_alloc(sc);
605 if (error != 0)
606 return error;
607
608 error = ar9003_rx_alloc(sc, ATHN_QID_LP, AR9003_RX_LP_QDEPTH);
609 if (error != 0)
610 return error;
611
612 error = ar9003_rx_alloc(sc, ATHN_QID_HP, AR9003_RX_HP_QDEPTH);
613 if (error != 0)
614 return error;
615
616 return 0;
617 }
618
619 Static void
620 ar9003_dma_free(struct athn_softc *sc)
621 {
622
623 ar9003_tx_free(sc);
624 ar9003_rx_free(sc, ATHN_QID_LP);
625 ar9003_rx_free(sc, ATHN_QID_HP);
626 }
627
628 Static int
629 ar9003_tx_alloc(struct athn_softc *sc)
630 {
631 struct athn_tx_buf *bf;
632 bus_size_t size;
633 int error, nsegs, i;
634
635 /*
636 * Allocate Tx status ring.
637 */
638 size = AR9003_NTXSTATUS * sizeof(struct ar_tx_status);
639
640 error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
641 BUS_DMA_NOWAIT, &sc->sc_txsmap);
642 if (error != 0)
643 goto fail;
644
645 error = bus_dmamem_alloc(sc->sc_dmat, size, 4, 0, &sc->sc_txsseg, 1,
646 // XXX &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
647 &nsegs, BUS_DMA_NOWAIT);
648 if (error != 0)
649 goto fail;
650
651 error = bus_dmamem_map(sc->sc_dmat, &sc->sc_txsseg, 1, size,
652 (void **)&sc->sc_txsring, BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
653 if (error != 0)
654 goto fail;
655
656 error = bus_dmamap_load(sc->sc_dmat, sc->sc_txsmap, sc->sc_txsring,
657 size, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
658 if (error != 0)
659 goto fail;
660
661 /*
662 * Allocate a pool of Tx descriptors shared between all Tx queues.
663 */
664 size = ATHN_NTXBUFS * sizeof(struct ar_tx_desc);
665
666 error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
667 BUS_DMA_NOWAIT, &sc->sc_map);
668 if (error != 0)
669 goto fail;
670
671 error = bus_dmamem_alloc(sc->sc_dmat, size, 4, 0, &sc->sc_seg, 1,
672 // XXX &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
673 &nsegs, BUS_DMA_NOWAIT);
674 if (error != 0)
675 goto fail;
676
677 error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, 1, size,
678 (void **)&sc->sc_descs, BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
679 if (error != 0)
680 goto fail;
681
682 error = bus_dmamap_load(sc->sc_dmat, sc->sc_map, sc->sc_descs, size,
683 NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
684 if (error != 0)
685 goto fail;
686
687 SIMPLEQ_INIT(&sc->sc_txbufs);
688 for (i = 0; i < ATHN_NTXBUFS; i++) {
689 bf = &sc->sc_txpool[i];
690
691 error = bus_dmamap_create(sc->sc_dmat, ATHN_TXBUFSZ,
692 AR9003_MAX_SCATTER, ATHN_TXBUFSZ, 0, BUS_DMA_NOWAIT,
693 &bf->bf_map);
694 if (error != 0) {
695 aprint_error_dev(sc->sc_dev,
696 "could not create Tx buf DMA map\n");
697 goto fail;
698 }
699
700 bf->bf_descs = &((struct ar_tx_desc *)sc->sc_descs)[i];
701 bf->bf_daddr = sc->sc_map->dm_segs[0].ds_addr +
702 i * sizeof(struct ar_tx_desc);
703
704 SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
705 }
706 return 0;
707 fail:
708 ar9003_tx_free(sc);
709 return error;
710 }
711
712 Static void
713 ar9003_tx_free(struct athn_softc *sc)
714 {
715 struct athn_tx_buf *bf;
716 int i;
717
718 for (i = 0; i < ATHN_NTXBUFS; i++) {
719 bf = &sc->sc_txpool[i];
720
721 if (bf->bf_map != NULL)
722 bus_dmamap_destroy(sc->sc_dmat, bf->bf_map);
723 }
724 /* Free Tx descriptors. */
725 if (sc->sc_map != NULL) {
726 if (sc->sc_descs != NULL) {
727 bus_dmamap_unload(sc->sc_dmat, sc->sc_map);
728 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
729 ATHN_NTXBUFS * sizeof(struct ar_tx_desc));
730 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
731 }
732 bus_dmamap_destroy(sc->sc_dmat, sc->sc_map);
733 }
734 /* Free Tx status ring. */
735 if (sc->sc_txsmap != NULL) {
736 if (sc->sc_txsring != NULL) {
737 bus_dmamap_unload(sc->sc_dmat, sc->sc_txsmap);
738 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_txsring,
739 AR9003_NTXSTATUS * sizeof(struct ar_tx_status));
740 bus_dmamem_free(sc->sc_dmat, &sc->sc_txsseg, 1);
741 }
742 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsmap);
743 }
744 }
745
746 Static int
747 ar9003_rx_alloc(struct athn_softc *sc, int qid, int count)
748 {
749 struct athn_rxq *rxq = &sc->sc_rxq[qid];
750 struct athn_rx_buf *bf;
751 struct ar_rx_status *ds;
752 int error, i;
753
754 rxq->bf = malloc(count * sizeof(*bf), M_DEVBUF, M_WAITOK | M_ZERO);
755 rxq->count = count;
756
757 for (i = 0; i < rxq->count; i++) {
758 bf = &rxq->bf[i];
759
760 error = bus_dmamap_create(sc->sc_dmat, ATHN_RXBUFSZ, 1,
761 ATHN_RXBUFSZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
762 &bf->bf_map);
763 if (error != 0) {
764 aprint_error_dev(sc->sc_dev,
765 "could not create Rx buf DMA map\n");
766 goto fail;
767 }
768 /*
769 * Assumes MCLGETI returns cache-line-size aligned buffers.
770 */
771 bf->bf_m = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ);
772 if (bf->bf_m == NULL) {
773 aprint_error_dev(sc->sc_dev,
774 "could not allocate Rx mbuf\n");
775 error = ENOBUFS;
776 goto fail;
777 }
778
779 error = bus_dmamap_load(sc->sc_dmat, bf->bf_map,
780 mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL,
781 BUS_DMA_NOWAIT);
782 if (error != 0) {
783 aprint_error_dev(sc->sc_dev,
784 "could not DMA map Rx buffer\n");
785 goto fail;
786 }
787
788 ds = mtod(bf->bf_m, struct ar_rx_status *);
789 memset(ds, 0, sizeof(*ds));
790 bf->bf_desc = ds;
791 bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr;
792
793 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
794 BUS_DMASYNC_PREREAD);
795 }
796 return 0;
797 fail:
798 ar9003_rx_free(sc, qid);
799 return error;
800 }
801
802 Static void
803 ar9003_rx_free(struct athn_softc *sc, int qid)
804 {
805 struct athn_rxq *rxq = &sc->sc_rxq[qid];
806 struct athn_rx_buf *bf;
807 int i;
808
809 if (rxq->bf == NULL)
810 return;
811 for (i = 0; i < rxq->count; i++) {
812 bf = &rxq->bf[i];
813
814 if (bf->bf_map != NULL)
815 bus_dmamap_destroy(sc->sc_dmat, bf->bf_map);
816 if (bf->bf_m != NULL)
817 m_freem(bf->bf_m);
818 }
819 free(rxq->bf, M_DEVBUF);
820 }
821
822 PUBLIC void
823 ar9003_reset_txsring(struct athn_softc *sc)
824 {
825
826 sc->sc_txscur = 0;
827 memset(sc->sc_txsring, 0, AR9003_NTXSTATUS * sizeof(struct ar_tx_status));
828 AR_WRITE(sc, AR_Q_STATUS_RING_START,
829 sc->sc_txsmap->dm_segs[0].ds_addr);
830 AR_WRITE(sc, AR_Q_STATUS_RING_END,
831 sc->sc_txsmap->dm_segs[0].ds_addr + sc->sc_txsmap->dm_segs[0].ds_len);
832 AR_WRITE_BARRIER(sc);
833 }
834
835 Static void
836 ar9003_rx_enable(struct athn_softc *sc)
837 {
838 struct athn_rxq *rxq;
839 struct athn_rx_buf *bf;
840 struct ar_rx_status *ds;
841 uint32_t reg;
842 int qid, i;
843
844 reg = AR_READ(sc, AR_RXBP_THRESH);
845 reg = RW(reg, AR_RXBP_THRESH_HP, 1);
846 reg = RW(reg, AR_RXBP_THRESH_LP, 1);
847 AR_WRITE(sc, AR_RXBP_THRESH, reg);
848
849 /* Set Rx buffer size. */
850 AR_WRITE(sc, AR_DATABUF_SIZE, ATHN_RXBUFSZ - sizeof(*ds));
851
852 for (qid = 0; qid < 2; qid++) {
853 rxq = &sc->sc_rxq[qid];
854
855 /* Setup Rx status descriptors. */
856 SIMPLEQ_INIT(&rxq->head);
857 for (i = 0; i < rxq->count; i++) {
858 bf = &rxq->bf[i];
859 ds = bf->bf_desc;
860
861 memset(ds, 0, sizeof(*ds));
862 if (qid == ATHN_QID_LP)
863 AR_WRITE(sc, AR_LP_RXDP, bf->bf_daddr);
864 else
865 AR_WRITE(sc, AR_HP_RXDP, bf->bf_daddr);
866 AR_WRITE_BARRIER(sc);
867 SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list);
868 }
869 }
870 /* Enable Rx. */
871 AR_WRITE(sc, AR_CR, 0);
872 AR_WRITE_BARRIER(sc);
873 }
874
875 Static void
876 ar9003_rx_radiotap(struct athn_softc *sc, struct mbuf *m,
877 struct ar_rx_status *ds)
878 {
879 struct athn_rx_radiotap_header *tap = &sc->sc_rxtap;
880 struct ieee80211com *ic = &sc->sc_ic;
881 uint64_t tsf;
882 uint32_t tstamp;
883 uint8_t rate;
884
885 /* Extend the 15-bit timestamp from Rx status to 64-bit TSF. */
886 tstamp = ds->ds_status3;
887 tsf = AR_READ(sc, AR_TSF_U32);
888 tsf = tsf << 32 | AR_READ(sc, AR_TSF_L32);
889 if ((tsf & 0x7fff) < tstamp)
890 tsf -= 0x8000;
891 tsf = (tsf & ~0x7fff) | tstamp;
892
893 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
894 tap->wr_tsft = htole64(tsf);
895 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
896 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
897 tap->wr_dbm_antsignal = MS(ds->ds_status5, AR_RXS5_RSSI_COMBINED);
898 /* XXX noise. */
899 tap->wr_antenna = MS(ds->ds_status4, AR_RXS4_ANTENNA);
900 tap->wr_rate = 0; /* In case it can't be found below. */
901 rate = MS(ds->ds_status1, AR_RXS1_RATE);
902 if (rate & 0x80) { /* HT. */
903 /* Bit 7 set means HT MCS instead of rate. */
904 tap->wr_rate = rate;
905 if (!(ds->ds_status4 & AR_RXS4_GI))
906 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
907
908 }
909 else if (rate & 0x10) { /* CCK. */
910 if (rate & 0x04)
911 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
912 switch (rate & ~0x14) {
913 case 0xb: tap->wr_rate = 2; break;
914 case 0xa: tap->wr_rate = 4; break;
915 case 0x9: tap->wr_rate = 11; break;
916 case 0x8: tap->wr_rate = 22; break;
917 }
918 }
919 else { /* OFDM. */
920 switch (rate) {
921 case 0xb: tap->wr_rate = 12; break;
922 case 0xf: tap->wr_rate = 18; break;
923 case 0xa: tap->wr_rate = 24; break;
924 case 0xe: tap->wr_rate = 36; break;
925 case 0x9: tap->wr_rate = 48; break;
926 case 0xd: tap->wr_rate = 72; break;
927 case 0x8: tap->wr_rate = 96; break;
928 case 0xc: tap->wr_rate = 108; break;
929 }
930 }
931 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
932 }
933
934 Static int
935 ar9003_rx_process(struct athn_softc *sc, int qid)
936 {
937 struct ieee80211com *ic = &sc->sc_ic;
938 struct ifnet *ifp = &sc->sc_if;
939 struct athn_rxq *rxq = &sc->sc_rxq[qid];
940 struct athn_rx_buf *bf;
941 struct ar_rx_status *ds;
942 struct ieee80211_frame *wh;
943 struct ieee80211_node *ni;
944 struct mbuf *m, *m1;
945 size_t len;
946 u_int32_t rstamp;
947 int error, rssi, s;
948
949 bf = SIMPLEQ_FIRST(&rxq->head);
950 if (__predict_false(bf == NULL)) { /* Should not happen. */
951 aprint_error_dev(sc->sc_dev, "Rx queue is empty!\n");
952 return ENOENT;
953 }
954 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
955 BUS_DMASYNC_POSTREAD);
956
957 ds = mtod(bf->bf_m, struct ar_rx_status *);
958 if (!(ds->ds_status1 & AR_RXS1_DONE))
959 return EBUSY;
960
961 /* Check that it is a valid Rx status descriptor. */
962 if ((ds->ds_info & (AR_RXI_DESC_ID_M | AR_RXI_DESC_TX |
963 AR_RXI_CTRL_STAT)) != SM(AR_RXI_DESC_ID, AR_VENDOR_ATHEROS))
964 goto skip;
965
966 if (!(ds->ds_status11 & AR_RXS11_FRAME_OK)) {
967 if (ds->ds_status11 & AR_RXS11_CRC_ERR)
968 DPRINTFN(DBG_RX, sc, "CRC error\n");
969 else if (ds->ds_status11 & AR_RXS11_PHY_ERR)
970 DPRINTFN(DBG_RX, sc, "PHY error=0x%x\n",
971 MS(ds->ds_status11, AR_RXS11_PHY_ERR_CODE));
972 else if (ds->ds_status11 & AR_RXS11_DECRYPT_CRC_ERR)
973 DPRINTFN(DBG_RX, sc, "Decryption CRC error\n");
974 else if (ds->ds_status11 & AR_RXS11_MICHAEL_ERR) {
975 DPRINTFN(DBG_RX, sc, "Michael MIC failure\n");
976 /* Report Michael MIC failures to net80211. */
977
978 len = MS(ds->ds_status2, AR_RXS2_DATA_LEN);
979 m = bf->bf_m;
980 m_set_rcvif(m, ifp);
981 m->m_data = (void *)&ds[1];
982 m->m_pkthdr.len = m->m_len = len;
983 wh = mtod(m, struct ieee80211_frame *);
984
985 ieee80211_notify_michael_failure(ic, wh,
986 0 /* XXX: keyix */);
987 }
988 if_statinc(ifp, if_ierrors);
989 goto skip;
990 }
991
992 len = MS(ds->ds_status2, AR_RXS2_DATA_LEN);
993 if (__predict_false(len < IEEE80211_MIN_LEN ||
994 len > ATHN_RXBUFSZ - sizeof(*ds))) {
995 DPRINTFN(DBG_RX, sc, "corrupted descriptor length=%zd\n",
996 len);
997 if_statinc(ifp, if_ierrors);
998 goto skip;
999 }
1000
1001 /* Allocate a new Rx buffer. */
1002 m1 = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ);
1003 if (__predict_false(m1 == NULL)) {
1004 ic->ic_stats.is_rx_nobuf++;
1005 if_statinc(ifp, if_ierrors);
1006 goto skip;
1007 }
1008
1009 /* Unmap the old Rx buffer. */
1010 bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
1011
1012 /* Map the new Rx buffer. */
1013 error = bus_dmamap_load(sc->sc_dmat, bf->bf_map, mtod(m1, void *),
1014 ATHN_RXBUFSZ, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
1015 if (__predict_false(error != 0)) {
1016 m_freem(m1);
1017
1018 /* Remap the old Rx buffer or panic. */
1019 error = bus_dmamap_load(sc->sc_dmat, bf->bf_map,
1020 mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL,
1021 BUS_DMA_NOWAIT | BUS_DMA_READ);
1022 KASSERT(error != 0);
1023 bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr;
1024 if_statinc(ifp, if_ierrors);
1025 goto skip;
1026 }
1027 bf->bf_desc = mtod(m1, struct ar_rx_status *);
1028 bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr;
1029
1030 m = bf->bf_m;
1031 bf->bf_m = m1;
1032
1033 /* Finalize mbuf. */
1034 m_set_rcvif(m, ifp);
1035 /* Strip Rx status descriptor from head. */
1036 m->m_data = (void *)&ds[1];
1037 m->m_pkthdr.len = m->m_len = len;
1038
1039 s = splnet();
1040
1041 /* Grab a reference to the source node. */
1042 wh = mtod(m, struct ieee80211_frame *);
1043 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1044
1045 /* Remove any HW padding after the 802.11 header. */
1046 if (!(wh->i_fc[0] & IEEE80211_FC0_TYPE_CTL)) {
1047 u_int hdrlen = ieee80211_anyhdrsize(wh);
1048 if (hdrlen & 3) {
1049 memmove((uint8_t *)wh + 2, wh, hdrlen);
1050 m_adj(m, 2);
1051 }
1052 }
1053 if (__predict_false(sc->sc_drvbpf != NULL))
1054 ar9003_rx_radiotap(sc, m, ds);
1055 /* Trim 802.11 FCS after radiotap. */
1056 m_adj(m, -IEEE80211_CRC_LEN);
1057
1058 /* Send the frame to the 802.11 layer. */
1059 rssi = MS(ds->ds_status5, AR_RXS5_RSSI_COMBINED);
1060 rstamp = ds->ds_status3;
1061 ieee80211_input(ic, m, ni, rssi, rstamp);
1062
1063 /* Node is no longer needed. */
1064 ieee80211_free_node(ni);
1065
1066 splx(s);
1067
1068 skip:
1069 /* Unlink this descriptor from head. */
1070 SIMPLEQ_REMOVE_HEAD(&rxq->head, bf_list);
1071 memset(bf->bf_desc, 0, sizeof(*ds));
1072
1073 /* Re-use this descriptor and link it to tail. */
1074 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
1075 BUS_DMASYNC_PREREAD);
1076
1077 if (qid == ATHN_QID_LP)
1078 AR_WRITE(sc, AR_LP_RXDP, bf->bf_daddr);
1079 else
1080 AR_WRITE(sc, AR_HP_RXDP, bf->bf_daddr);
1081 AR_WRITE_BARRIER(sc);
1082 SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list);
1083
1084 /* Re-enable Rx. */
1085 AR_WRITE(sc, AR_CR, 0);
1086 AR_WRITE_BARRIER(sc);
1087 return 0;
1088 }
1089
1090 Static void
1091 ar9003_rx_intr(struct athn_softc *sc, int qid)
1092 {
1093
1094 while (ar9003_rx_process(sc, qid) == 0)
1095 continue;
1096 }
1097
1098 Static int
1099 ar9003_tx_process(struct athn_softc *sc)
1100 {
1101 struct ifnet *ifp = &sc->sc_if;
1102 struct athn_txq *txq;
1103 struct athn_node *an;
1104 struct athn_tx_buf *bf;
1105 struct ar_tx_status *ds;
1106 uint8_t qid, failcnt;
1107
1108 ds = &((struct ar_tx_status *)sc->sc_txsring)[sc->sc_txscur];
1109 if (!(ds->ds_status8 & AR_TXS8_DONE))
1110 return EBUSY;
1111
1112 sc->sc_txscur = (sc->sc_txscur + 1) % AR9003_NTXSTATUS;
1113
1114 /* Check that it is a valid Tx status descriptor. */
1115 if ((ds->ds_info & (AR_TXI_DESC_ID_M | AR_TXI_DESC_TX)) !=
1116 (SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) | AR_TXI_DESC_TX)) {
1117 memset(ds, 0, sizeof(*ds));
1118 return 0;
1119 }
1120 /* Retrieve the queue that was used to send this PDU. */
1121 qid = MS(ds->ds_info, AR_TXI_QCU_NUM);
1122 txq = &sc->sc_txq[qid];
1123
1124 bf = SIMPLEQ_FIRST(&txq->head);
1125 if (bf == NULL || bf == txq->wait) {
1126 memset(ds, 0, sizeof(*ds));
1127 return 0;
1128 }
1129 SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list);
1130 if_statinc(ifp, if_opackets);
1131
1132 sc->sc_tx_timer = 0;
1133
1134 if (ds->ds_status3 & AR_TXS3_EXCESSIVE_RETRIES)
1135 if_statinc(ifp, if_oerrors);
1136
1137 if (ds->ds_status3 & AR_TXS3_UNDERRUN)
1138 athn_inc_tx_trigger_level(sc);
1139
1140 /* Wakeup PA predistortion state machine. */
1141 if (bf->bf_txflags & ATHN_TXFLAG_PAPRD)
1142 ar9003_paprd_tx_tone_done(sc);
1143
1144 an = (struct athn_node *)bf->bf_ni;
1145 /*
1146 * NB: the data fail count contains the number of un-acked tries
1147 * for the final series used. We must add the number of tries for
1148 * each series that was fully processed.
1149 */
1150 failcnt = MS(ds->ds_status3, AR_TXS3_DATA_FAIL_CNT);
1151 /* NB: Assume two tries per series. */
1152 failcnt += MS(ds->ds_status8, AR_TXS8_FINAL_IDX) * 2;
1153
1154 /* Update rate control statistics. */
1155 an->amn.amn_txcnt++;
1156 if (failcnt > 0)
1157 an->amn.amn_retrycnt++;
1158
1159 DPRINTFN(DBG_TX, sc, "Tx done qid=%d status3=%d fail count=%d\n",
1160 qid, ds->ds_status3, failcnt);
1161
1162 /* Reset Tx status descriptor. */
1163 memset(ds, 0, sizeof(*ds));
1164
1165 /* Unmap Tx buffer. */
1166 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
1167 BUS_DMASYNC_POSTWRITE);
1168 bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
1169
1170 m_freem(bf->bf_m);
1171 bf->bf_m = NULL;
1172 ieee80211_free_node(bf->bf_ni);
1173 bf->bf_ni = NULL;
1174
1175 /* Link Tx buffer back to global free list. */
1176 SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
1177
1178 /* Queue buffers that are waiting if there is new room. */
1179 if (--txq->queued < AR9003_TX_QDEPTH && txq->wait != NULL) {
1180 AR_WRITE(sc, AR_QTXDP(qid), txq->wait->bf_daddr);
1181 AR_WRITE_BARRIER(sc);
1182 txq->wait = SIMPLEQ_NEXT(txq->wait, bf_list);
1183 }
1184 return 0;
1185 }
1186
1187 Static void
1188 ar9003_tx_intr(struct athn_softc *sc)
1189 {
1190 struct ifnet *ifp = &sc->sc_if;
1191 int s;
1192
1193 s = splnet();
1194
1195 while (ar9003_tx_process(sc) == 0)
1196 continue;
1197
1198 if (!SIMPLEQ_EMPTY(&sc->sc_txbufs)) {
1199 ifp->if_flags &= ~IFF_OACTIVE;
1200 ifp->if_start(ifp); /* in softint */
1201 }
1202
1203 splx(s);
1204 }
1205
1206 #ifndef IEEE80211_STA_ONLY
1207 /*
1208 * Process Software Beacon Alert interrupts.
1209 */
1210 Static int
1211 ar9003_swba_intr(struct athn_softc *sc)
1212 {
1213 struct ieee80211com *ic = &sc->sc_ic;
1214 struct ifnet *ifp = &sc->sc_if;
1215 struct ieee80211_node *ni = ic->ic_bss;
1216 struct athn_tx_buf *bf = sc->sc_bcnbuf;
1217 struct ieee80211_frame *wh;
1218 struct ieee80211_beacon_offsets bo;
1219 struct ar_tx_desc *ds;
1220 struct mbuf *m;
1221 uint32_t sum;
1222 uint8_t ridx, hwrate;
1223 int error, totlen;
1224
1225 #if notyet
1226 if (ic->ic_tim_mcast_pending &&
1227 IF_IS_EMPTY(&ni->ni_savedq) &&
1228 SIMPLEQ_EMPTY(&sc->sc_txq[ATHN_QID_CAB].head))
1229 ic->ic_tim_mcast_pending = 0;
1230 #endif
1231 if (ic->ic_dtim_count == 0)
1232 ic->ic_dtim_count = ic->ic_dtim_period - 1;
1233 else
1234 ic->ic_dtim_count--;
1235
1236 /* Make sure previous beacon has been sent. */
1237 if (athn_tx_pending(sc, ATHN_QID_BEACON)) {
1238 DPRINTFN(DBG_INTR, sc, "beacon stuck\n");
1239 return EBUSY;
1240 }
1241 /* Get new beacon. */
1242 m = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo);
1243 if (__predict_false(m == NULL))
1244 return ENOBUFS;
1245 /* Assign sequence number. */
1246 /* XXX: use non-QoS tid? */
1247 wh = mtod(m, struct ieee80211_frame *);
1248 *(uint16_t *)&wh->i_seq[0] =
1249 htole16(ic->ic_bss->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
1250 ic->ic_bss->ni_txseqs[0]++;
1251
1252 /* Unmap and free old beacon if any. */
1253 if (__predict_true(bf->bf_m != NULL)) {
1254 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0,
1255 bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1256 bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
1257 m_freem(bf->bf_m);
1258 bf->bf_m = NULL;
1259 }
1260 /* DMA map new beacon. */
1261 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
1262 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1263 if (__predict_false(error != 0)) {
1264 m_freem(m);
1265 return error;
1266 }
1267 bf->bf_m = m;
1268
1269 /* Setup Tx descriptor (simplified ar9003_tx()). */
1270 ds = bf->bf_descs;
1271 memset(ds, 0, sizeof(*ds));
1272
1273 ds->ds_info =
1274 SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) |
1275 SM(AR_TXI_DESC_NDWORDS, 23) |
1276 SM(AR_TXI_QCU_NUM, ATHN_QID_BEACON) |
1277 AR_TXI_DESC_TX | AR_TXI_CTRL_STAT;
1278
1279 totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1280 ds->ds_ctl11 = SM(AR_TXC11_FRAME_LEN, totlen);
1281 ds->ds_ctl11 |= SM(AR_TXC11_XMIT_POWER, AR_MAX_RATE_POWER);
1282 ds->ds_ctl12 = SM(AR_TXC12_FRAME_TYPE, AR_FRAME_TYPE_BEACON);
1283 ds->ds_ctl12 |= AR_TXC12_NO_ACK;
1284 ds->ds_ctl17 = SM(AR_TXC17_ENCR_TYPE, AR_ENCR_TYPE_CLEAR);
1285
1286 /* Write number of tries. */
1287 ds->ds_ctl13 = SM(AR_TXC13_XMIT_DATA_TRIES0, 1);
1288
1289 /* Write Tx rate. */
1290 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
1291 ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1;
1292 hwrate = athn_rates[ridx].hwrate;
1293 ds->ds_ctl14 = SM(AR_TXC14_XMIT_RATE0, hwrate);
1294
1295 /* Write Tx chains. */
1296 ds->ds_ctl18 = SM(AR_TXC18_CHAIN_SEL0, sc->sc_txchainmask);
1297
1298 ds->ds_segs[0].ds_data = bf->bf_map->dm_segs[0].ds_addr;
1299 /* Segment length must be a multiple of 4. */
1300 ds->ds_segs[0].ds_ctl |= SM(AR_TXC_BUF_LEN,
1301 (bf->bf_map->dm_segs[0].ds_len + 3) & ~3);
1302 /* Compute Tx descriptor checksum. */
1303 sum = ds->ds_info;
1304 sum += ds->ds_segs[0].ds_data;
1305 sum += ds->ds_segs[0].ds_ctl;
1306 sum = (sum >> 16) + (sum & 0xffff);
1307 ds->ds_ctl10 = SM(AR_TXC10_PTR_CHK_SUM, sum);
1308
1309 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
1310 BUS_DMASYNC_PREWRITE);
1311
1312 /* Stop Tx DMA before putting the new beacon on the queue. */
1313 athn_stop_tx_dma(sc, ATHN_QID_BEACON);
1314
1315 AR_WRITE(sc, AR_QTXDP(ATHN_QID_BEACON), bf->bf_daddr);
1316
1317 for(;;) {
1318 if (SIMPLEQ_EMPTY(&sc->sc_txbufs))
1319 break;
1320
1321 IF_DEQUEUE(&ni->ni_savedq, m);
1322 if (m == NULL)
1323 break;
1324 if (!IF_IS_EMPTY(&ni->ni_savedq)) {
1325 /* more queued frames, set the more data bit */
1326 wh = mtod(m, struct ieee80211_frame *);
1327 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1328 }
1329
1330 if (sc->sc_ops.tx(sc, m, ni, ATHN_TXFLAG_CAB) != 0) {
1331 ieee80211_free_node(ni);
1332 if_statinc(ifp, if_oerrors);
1333 break;
1334 }
1335 }
1336
1337 /* Kick Tx. */
1338 AR_WRITE(sc, AR_Q_TXE, 1 << ATHN_QID_BEACON);
1339 AR_WRITE_BARRIER(sc);
1340 return 0;
1341 }
1342 #endif
1343
1344 static int
1345 ar9003_get_intr_status(struct athn_softc *sc, uint32_t *intrp, uint32_t *syncp)
1346 {
1347 uint32_t intr, sync;
1348
1349 /* Get pending interrupts. */
1350 intr = AR_READ(sc, AR_INTR_ASYNC_CAUSE);
1351 if (!(intr & AR_INTR_MAC_IRQ) || intr == AR_INTR_SPURIOUS) {
1352 intr = AR_READ(sc, AR_INTR_SYNC_CAUSE);
1353 if (intr == AR_INTR_SPURIOUS || (intr & sc->sc_isync) == 0)
1354 return 0; /* Not for us. */
1355 }
1356
1357 if ((AR_READ(sc, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) &&
1358 (AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_ON)
1359 intr = AR_READ(sc, AR_ISR);
1360 else
1361 intr = 0;
1362 sync = AR_READ(sc, AR_INTR_SYNC_CAUSE) & sc->sc_isync;
1363 if (intr == 0 && sync == 0)
1364 return 0; /* Not for us. */
1365
1366 *intrp = intr;
1367 *syncp = sync;
1368 return 1;
1369 }
1370
1371 Static int
1372 ar9003_intr_status(struct athn_softc *sc)
1373 {
1374 uint32_t intr, sync;
1375
1376 return ar9003_get_intr_status(sc, &intr, &sync);
1377 }
1378
1379 Static int
1380 ar9003_intr(struct athn_softc *sc)
1381 {
1382 uint32_t intr, sync;
1383 #ifndef IEEE80211_STA_ONLY
1384 int s;
1385 #endif
1386
1387 if (!ar9003_get_intr_status(sc, &intr, &sync))
1388 return 0;
1389
1390 if (intr != 0) {
1391 if (intr & AR_ISR_BCNMISC) {
1392 uint32_t intr2 = AR_READ(sc, AR_ISR_S2);
1393 #ifdef notyet
1394 if (intr2 & AR_ISR_S2_TIM)
1395 /* TBD */;
1396 if (intr2 & AR_ISR_S2_TSFOOR)
1397 /* TBD */;
1398 if (intr2 & AR_ISR_S2_BB_WATCHDOG)
1399 /* TBD */;
1400 #else
1401 __USE(intr2);
1402 #endif
1403 }
1404 intr = AR_READ(sc, AR_ISR_RAC);
1405 if (intr == AR_INTR_SPURIOUS)
1406 return 1;
1407
1408 #ifndef IEEE80211_STA_ONLY
1409 if (intr & AR_ISR_SWBA) {
1410 s = splnet();
1411 ar9003_swba_intr(sc);
1412 splx(s);
1413 }
1414 #endif
1415 if (intr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
1416 ar9003_rx_intr(sc, ATHN_QID_LP);
1417 if (intr & (AR_ISR_LP_RXOK | AR_ISR_RXERR))
1418 ar9003_rx_intr(sc, ATHN_QID_LP);
1419 if (intr & AR_ISR_HP_RXOK)
1420 ar9003_rx_intr(sc, ATHN_QID_HP);
1421
1422 if (intr & (AR_ISR_TXMINTR | AR_ISR_TXINTM))
1423 ar9003_tx_intr(sc);
1424 if (intr & (AR_ISR_TXOK | AR_ISR_TXERR | AR_ISR_TXEOL))
1425 ar9003_tx_intr(sc);
1426
1427 if (intr & AR_ISR_GENTMR) {
1428 uint32_t intr5 = AR_READ(sc, AR_ISR_S5_S);
1429 #ifdef ATHN_DEBUG
1430 DPRINTFN(DBG_INTR, sc,
1431 "GENTMR trigger=%d thresh=%d\n",
1432 MS(intr5, AR_ISR_S5_GENTIMER_TRIG),
1433 MS(intr5, AR_ISR_S5_GENTIMER_THRESH));
1434 #else
1435 __USE(intr5);
1436 #endif
1437 }
1438 }
1439 if (sync != 0) {
1440 if (sync & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
1441 AR_WRITE(sc, AR_RC, AR_RC_HOSTIF);
1442 AR_WRITE(sc, AR_RC, 0);
1443 }
1444
1445 if ((sc->sc_flags & ATHN_FLAG_RFSILENT) &&
1446 (sync & AR_INTR_SYNC_GPIO_PIN(sc->sc_rfsilent_pin))) {
1447 pmf_event_inject(sc->sc_dev, PMFE_RADIO_OFF);
1448 return 1;
1449 }
1450
1451 AR_WRITE(sc, AR_INTR_SYNC_CAUSE, sync);
1452 (void)AR_READ(sc, AR_INTR_SYNC_CAUSE);
1453 }
1454 return 1;
1455 }
1456
1457 Static int
1458 ar9003_tx(struct athn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
1459 int txflags)
1460 {
1461 struct ieee80211com *ic = &sc->sc_ic;
1462 struct ieee80211_key *k = NULL;
1463 struct ieee80211_frame *wh;
1464 struct athn_series series[4];
1465 struct ar_tx_desc *ds;
1466 struct athn_txq *txq;
1467 struct athn_tx_buf *bf;
1468 struct athn_node *an = (void *)ni;
1469 struct mbuf *m1;
1470 uint32_t sum;
1471 uint16_t qos;
1472 uint8_t txpower, type, encrtype, ridx[4];
1473 int i, error, totlen, hasqos, qid;
1474
1475 /* Grab a Tx buffer from our global free list. */
1476 bf = SIMPLEQ_FIRST(&sc->sc_txbufs);
1477 KASSERT(bf != NULL);
1478
1479 /* Map 802.11 frame type to hardware frame type. */
1480 wh = mtod(m, struct ieee80211_frame *);
1481 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1482 IEEE80211_FC0_TYPE_MGT) {
1483 /* NB: Beacons do not use ar9003_tx(). */
1484 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1485 IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1486 type = AR_FRAME_TYPE_PROBE_RESP;
1487 else if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1488 IEEE80211_FC0_SUBTYPE_ATIM)
1489 type = AR_FRAME_TYPE_ATIM;
1490 else
1491 type = AR_FRAME_TYPE_NORMAL;
1492 }
1493 else if ((wh->i_fc[0] &
1494 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1495 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) {
1496 type = AR_FRAME_TYPE_PSPOLL;
1497 }
1498 else
1499 type = AR_FRAME_TYPE_NORMAL;
1500
1501 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1502 k = ieee80211_crypto_encap(ic, ni, m);
1503 if (k == NULL)
1504 return ENOBUFS;
1505
1506 /* packet header may have moved, reset our local pointer */
1507 wh = mtod(m, struct ieee80211_frame *);
1508 }
1509
1510 /* XXX 2-byte padding for QoS and 4-addr headers. */
1511
1512 /* Select the HW Tx queue to use for this frame. */
1513 if ((hasqos = ieee80211_has_qos(wh))) {
1514 #ifdef notyet_edca
1515 uint8_t tid;
1516
1517 qos = ieee80211_get_qos(wh);
1518 tid = qos & IEEE80211_QOS_TID;
1519 qid = athn_ac2qid[ieee80211_up_to_ac(ic, tid)];
1520 #else
1521 qos = ieee80211_get_qos(wh);
1522 qid = ATHN_QID_AC_BE;
1523 #endif /* notyet_edca */
1524 }
1525 else if (type == AR_FRAME_TYPE_PSPOLL) {
1526 qos = 0;
1527 qid = ATHN_QID_PSPOLL;
1528 }
1529 else if (txflags & ATHN_TXFLAG_CAB) {
1530 qos = 0;
1531 qid = ATHN_QID_CAB;
1532 }
1533 else {
1534 qos = 0;
1535 qid = ATHN_QID_AC_BE;
1536 }
1537 txq = &sc->sc_txq[qid];
1538
1539 /* Select the transmit rates to use for this frame. */
1540 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1541 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
1542 IEEE80211_FC0_TYPE_DATA) {
1543 /* Use lowest rate for all tries. */
1544 ridx[0] = ridx[1] = ridx[2] = ridx[3] =
1545 (ic->ic_curmode == IEEE80211_MODE_11A) ?
1546 ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1;
1547 }
1548 else if (ic->ic_fixed_rate != -1) {
1549 /* Use same fixed rate for all tries. */
1550 ridx[0] = ridx[1] = ridx[2] = ridx[3] =
1551 sc->sc_fixed_ridx;
1552 }
1553 else {
1554 int txrate = ni->ni_txrate;
1555 /* Use fallback table of the node. */
1556 for (i = 0; i < 4; i++) {
1557 ridx[i] = an->ridx[txrate];
1558 txrate = an->fallback[txrate];
1559 }
1560 }
1561
1562 if (__predict_false(sc->sc_drvbpf != NULL)) {
1563 struct athn_tx_radiotap_header *tap = &sc->sc_txtap;
1564
1565 tap->wt_flags = 0;
1566 /* Use initial transmit rate. */
1567 tap->wt_rate = athn_rates[ridx[0]].rate;
1568 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1569 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1570 // XXX tap->wt_hwqueue = qid;
1571 if (ridx[0] != ATHN_RIDX_CCK1 &&
1572 (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1573 tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1574
1575 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, BPF_D_OUT);
1576 }
1577
1578 /* DMA map mbuf. */
1579 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
1580 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1581 if (__predict_false(error != 0)) {
1582 if (error != EFBIG) {
1583 aprint_error_dev(sc->sc_dev,
1584 "can't map mbuf (error %d)\n", error);
1585 m_freem(m);
1586 return error;
1587 }
1588 /*
1589 * DMA mapping requires too many DMA segments; linearize
1590 * mbuf in kernel virtual address space and retry.
1591 */
1592 MGETHDR(m1, M_DONTWAIT, MT_DATA);
1593 if (m1 == NULL) {
1594 m_freem(m);
1595 return ENOBUFS;
1596 }
1597 if (m->m_pkthdr.len > (int)MHLEN) {
1598 MCLGET(m1, M_DONTWAIT);
1599 if (!(m1->m_flags & M_EXT)) {
1600 m_freem(m);
1601 m_freem(m1);
1602 return ENOBUFS;
1603 }
1604 }
1605 m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
1606 m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
1607 m_freem(m);
1608 m = m1;
1609
1610 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
1611 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1612 if (error != 0) {
1613 aprint_error_dev(sc->sc_dev,
1614 "can't map mbuf (error %d)\n", error);
1615 m_freem(m);
1616 return error;
1617 }
1618 }
1619 bf->bf_m = m;
1620 bf->bf_ni = ni;
1621 bf->bf_txflags = txflags;
1622
1623 wh = mtod(m, struct ieee80211_frame *);
1624
1625 totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1626
1627 /* Setup Tx descriptor. */
1628 ds = bf->bf_descs;
1629 memset(ds, 0, sizeof(*ds));
1630
1631 ds->ds_info =
1632 SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) |
1633 SM(AR_TXI_DESC_NDWORDS, 23) |
1634 SM(AR_TXI_QCU_NUM, qid) |
1635 AR_TXI_DESC_TX | AR_TXI_CTRL_STAT;
1636
1637 ds->ds_ctl11 = AR_TXC11_CLR_DEST_MASK;
1638 txpower = AR_MAX_RATE_POWER; /* Get from per-rate registers. */
1639 ds->ds_ctl11 |= SM(AR_TXC11_XMIT_POWER, txpower);
1640
1641 ds->ds_ctl12 = SM(AR_TXC12_FRAME_TYPE, type);
1642
1643 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1644 (hasqos && (qos & IEEE80211_QOS_ACKPOLICY_MASK) ==
1645 IEEE80211_QOS_ACKPOLICY_NOACK))
1646 ds->ds_ctl12 |= AR_TXC12_NO_ACK;
1647
1648 #if notyet
1649 if (0 && k != NULL) {
1650 uintptr_t entry;
1651
1652 /*
1653 * Map 802.11 cipher to hardware encryption type and
1654 * compute MIC+ICV overhead.
1655 */
1656 switch (k->k_cipher) {
1657 case IEEE80211_CIPHER_WEP40:
1658 case IEEE80211_CIPHER_WEP104:
1659 encrtype = AR_ENCR_TYPE_WEP;
1660 totlen += 4;
1661 break;
1662 case IEEE80211_CIPHER_TKIP:
1663 encrtype = AR_ENCR_TYPE_TKIP;
1664 totlen += 12;
1665 break;
1666 case IEEE80211_CIPHER_CCMP:
1667 encrtype = AR_ENCR_TYPE_AES;
1668 totlen += 8;
1669 break;
1670 default:
1671 panic("unsupported cipher");
1672 }
1673 /*
1674 * NB: The key cache entry index is stored in the key
1675 * private field when the key is installed.
1676 */
1677 entry = (uintptr_t)k->k_priv;
1678 ds->ds_ctl12 |= SM(AR_TXC12_DEST_IDX, entry);
1679 ds->ds_ctl11 |= AR_TXC11_DEST_IDX_VALID;
1680 }
1681 else
1682 #endif
1683 encrtype = AR_ENCR_TYPE_CLEAR;
1684 ds->ds_ctl17 = SM(AR_TXC17_ENCR_TYPE, encrtype);
1685
1686 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */
1687 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1688 /* NB: Group frames are sent using CCK in 802.11b/g. */
1689 if (totlen > ic->ic_rtsthreshold) {
1690 ds->ds_ctl11 |= AR_TXC11_RTS_ENABLE;
1691 }
1692 else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1693 athn_rates[ridx[0]].phy == IEEE80211_T_OFDM) {
1694 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1695 ds->ds_ctl11 |= AR_TXC11_RTS_ENABLE;
1696 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1697 ds->ds_ctl11 |= AR_TXC11_CTS_ENABLE;
1698 }
1699 }
1700 if (ds->ds_ctl11 & (AR_TXC11_RTS_ENABLE | AR_TXC11_CTS_ENABLE)) {
1701 /* Disable multi-rate retries when protection is used. */
1702 ridx[1] = ridx[2] = ridx[3] = ridx[0];
1703 }
1704 /* Setup multi-rate retries. */
1705 for (i = 0; i < 4; i++) {
1706 series[i].hwrate = athn_rates[ridx[i]].hwrate;
1707 if (athn_rates[ridx[i]].phy == IEEE80211_T_DS &&
1708 ridx[i] != ATHN_RIDX_CCK1 &&
1709 (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1710 series[i].hwrate |= 0x04;
1711 series[i].dur = 0;
1712 }
1713 if (!(ds->ds_ctl12 & AR_TXC12_NO_ACK)) {
1714 /* Compute duration for each series. */
1715 for (i = 0; i < 4; i++) {
1716 series[i].dur = athn_txtime(sc, IEEE80211_ACK_LEN,
1717 athn_rates[ridx[i]].rspridx, ic->ic_flags);
1718 }
1719 }
1720 /* If this is a PA training frame, select the Tx chain to use. */
1721 if (__predict_false(txflags & ATHN_TXFLAG_PAPRD)) {
1722 ds->ds_ctl12 |= SM(AR_TXC12_PAPRD_CHAIN_MASK,
1723 1 << sc->sc_paprd_curchain);
1724 }
1725
1726 /* Write number of tries for each series. */
1727 ds->ds_ctl13 =
1728 SM(AR_TXC13_XMIT_DATA_TRIES0, 2) |
1729 SM(AR_TXC13_XMIT_DATA_TRIES1, 2) |
1730 SM(AR_TXC13_XMIT_DATA_TRIES2, 2) |
1731 SM(AR_TXC13_XMIT_DATA_TRIES3, 4);
1732
1733 /* Tell HW to update duration field in 802.11 header. */
1734 if (type != AR_FRAME_TYPE_PSPOLL)
1735 ds->ds_ctl13 |= AR_TXC13_DUR_UPDATE_ENA;
1736
1737 /* Write Tx rate for each series. */
1738 ds->ds_ctl14 =
1739 SM(AR_TXC14_XMIT_RATE0, series[0].hwrate) |
1740 SM(AR_TXC14_XMIT_RATE1, series[1].hwrate) |
1741 SM(AR_TXC14_XMIT_RATE2, series[2].hwrate) |
1742 SM(AR_TXC14_XMIT_RATE3, series[3].hwrate);
1743
1744 /* Write duration for each series. */
1745 ds->ds_ctl15 =
1746 SM(AR_TXC15_PACKET_DUR0, series[0].dur) |
1747 SM(AR_TXC15_PACKET_DUR1, series[1].dur);
1748 ds->ds_ctl16 =
1749 SM(AR_TXC16_PACKET_DUR2, series[2].dur) |
1750 SM(AR_TXC16_PACKET_DUR3, series[3].dur);
1751
1752 if ((sc->sc_flags & ATHN_FLAG_3TREDUCE_CHAIN) &&
1753 ic->ic_curmode == IEEE80211_MODE_11A) {
1754 /*
1755 * In order to not exceed PCIe power requirements, we only
1756 * use two Tx chains for MCS0~15 on 5GHz band on these chips.
1757 */
1758 ds->ds_ctl18 =
1759 SM(AR_TXC18_CHAIN_SEL0,
1760 (ridx[0] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask) |
1761 SM(AR_TXC18_CHAIN_SEL1,
1762 (ridx[1] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask) |
1763 SM(AR_TXC18_CHAIN_SEL2,
1764 (ridx[2] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask) |
1765 SM(AR_TXC18_CHAIN_SEL3,
1766 (ridx[3] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask);
1767 }
1768 else {
1769 /* Use the same Tx chains for all tries. */
1770 ds->ds_ctl18 =
1771 SM(AR_TXC18_CHAIN_SEL0, sc->sc_txchainmask) |
1772 SM(AR_TXC18_CHAIN_SEL1, sc->sc_txchainmask) |
1773 SM(AR_TXC18_CHAIN_SEL2, sc->sc_txchainmask) |
1774 SM(AR_TXC18_CHAIN_SEL3, sc->sc_txchainmask);
1775 }
1776 #ifdef notyet
1777 #ifndef IEEE80211_NO_HT
1778 /* Use the same short GI setting for all tries. */
1779 if (ic->ic_flags & IEEE80211_F_SHGI)
1780 ds->ds_ctl18 |= AR_TXC18_GI0123;
1781 /* Use the same channel width for all tries. */
1782 if (ic->ic_flags & IEEE80211_F_CBW40)
1783 ds->ds_ctl18 |= AR_TXC18_2040_0123;
1784 #endif
1785 #endif
1786
1787 if (ds->ds_ctl11 & (AR_TXC11_RTS_ENABLE | AR_TXC11_CTS_ENABLE)) {
1788 uint8_t protridx, hwrate;
1789 uint16_t dur = 0;
1790
1791 /* Use the same protection mode for all tries. */
1792 if (ds->ds_ctl11 & AR_TXC11_RTS_ENABLE) {
1793 ds->ds_ctl15 |= AR_TXC15_RTSCTS_QUAL01;
1794 ds->ds_ctl16 |= AR_TXC16_RTSCTS_QUAL23;
1795 }
1796 /* Select protection rate (suboptimal but ok). */
1797 protridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
1798 ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK2;
1799 if (ds->ds_ctl11 & AR_TXC11_RTS_ENABLE) {
1800 /* Account for CTS duration. */
1801 dur += athn_txtime(sc, IEEE80211_ACK_LEN,
1802 athn_rates[protridx].rspridx, ic->ic_flags);
1803 }
1804 dur += athn_txtime(sc, totlen, ridx[0], ic->ic_flags);
1805 if (!(ds->ds_ctl12 & AR_TXC12_NO_ACK)) {
1806 /* Account for ACK duration. */
1807 dur += athn_txtime(sc, IEEE80211_ACK_LEN,
1808 athn_rates[ridx[0]].rspridx, ic->ic_flags);
1809 }
1810 /* Write protection frame duration and rate. */
1811 ds->ds_ctl13 |= SM(AR_TXC13_BURST_DUR, dur);
1812 hwrate = athn_rates[protridx].hwrate;
1813 if (protridx == ATHN_RIDX_CCK2 &&
1814 (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1815 hwrate |= 0x04;
1816 ds->ds_ctl18 |= SM(AR_TXC18_RTSCTS_RATE, hwrate);
1817 }
1818
1819 ds->ds_ctl11 |= SM(AR_TXC11_FRAME_LEN, totlen);
1820 ds->ds_ctl19 = AR_TXC19_NOT_SOUNDING;
1821
1822 for (i = 0; i < bf->bf_map->dm_nsegs; i++) {
1823 ds->ds_segs[i].ds_data = bf->bf_map->dm_segs[i].ds_addr;
1824 ds->ds_segs[i].ds_ctl = SM(AR_TXC_BUF_LEN,
1825 bf->bf_map->dm_segs[i].ds_len);
1826 }
1827 /* Compute Tx descriptor checksum. */
1828 sum = ds->ds_info + ds->ds_link;
1829 for (i = 0; i < 4; i++) {
1830 sum += ds->ds_segs[i].ds_data;
1831 sum += ds->ds_segs[i].ds_ctl;
1832 }
1833 sum = (sum >> 16) + (sum & 0xffff);
1834 ds->ds_ctl10 = SM(AR_TXC10_PTR_CHK_SUM, sum);
1835
1836 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
1837 BUS_DMASYNC_PREWRITE);
1838
1839 DPRINTFN(DBG_TX, sc,
1840 "Tx qid=%d nsegs=%d ctl11=0x%x ctl12=0x%x ctl14=0x%x\n",
1841 qid, bf->bf_map->dm_nsegs, ds->ds_ctl11, ds->ds_ctl12,
1842 ds->ds_ctl14);
1843
1844 SIMPLEQ_REMOVE_HEAD(&sc->sc_txbufs, bf_list);
1845 SIMPLEQ_INSERT_TAIL(&txq->head, bf, bf_list);
1846
1847 /* Queue buffer unless hardware FIFO is already full. */
1848 if (++txq->queued <= AR9003_TX_QDEPTH) {
1849 AR_WRITE(sc, AR_QTXDP(qid), bf->bf_daddr);
1850 AR_WRITE_BARRIER(sc);
1851 }
1852 else if (txq->wait == NULL)
1853 txq->wait = bf;
1854 return 0;
1855 }
1856
1857 Static void
1858 ar9003_set_rf_mode(struct athn_softc *sc, struct ieee80211_channel *c)
1859 {
1860 uint32_t reg;
1861
1862 reg = IEEE80211_IS_CHAN_2GHZ(c) ?
1863 AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1864 if (IEEE80211_IS_CHAN_5GHZ(c) &&
1865 (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)) {
1866 reg |= AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE;
1867 }
1868 AR_WRITE(sc, AR_PHY_MODE, reg);
1869 AR_WRITE_BARRIER(sc);
1870 }
1871
1872 static __inline uint32_t
1873 ar9003_synth_delay(struct athn_softc *sc)
1874 {
1875 uint32_t synth_delay;
1876
1877 synth_delay = MS(AR_READ(sc, AR_PHY_RX_DELAY), AR_PHY_RX_DELAY_DELAY);
1878 if (sc->sc_ic.ic_curmode == IEEE80211_MODE_11B)
1879 synth_delay = (synth_delay * 4) / 22;
1880 else
1881 synth_delay = synth_delay / 10; /* in 100ns steps */
1882 return synth_delay;
1883 }
1884
1885 Static int
1886 ar9003_rf_bus_request(struct athn_softc *sc)
1887 {
1888 int ntries;
1889
1890 /* Request RF Bus grant. */
1891 AR_WRITE(sc, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1892 for (ntries = 0; ntries < 10000; ntries++) {
1893 if (AR_READ(sc, AR_PHY_RFBUS_GRANT) & AR_PHY_RFBUS_GRANT_EN)
1894 return 0;
1895 DELAY(10);
1896 }
1897 DPRINTFN(DBG_RF, sc, "could not kill baseband Rx");
1898 return ETIMEDOUT;
1899 }
1900
1901 Static void
1902 ar9003_rf_bus_release(struct athn_softc *sc)
1903 {
1904 /* Wait for the synthesizer to settle. */
1905 DELAY(AR_BASE_PHY_ACTIVE_DELAY + ar9003_synth_delay(sc));
1906
1907 /* Release the RF Bus grant. */
1908 AR_WRITE(sc, AR_PHY_RFBUS_REQ, 0);
1909 AR_WRITE_BARRIER(sc);
1910 }
1911
1912 Static void
1913 ar9003_set_phy(struct athn_softc *sc, struct ieee80211_channel *c,
1914 struct ieee80211_channel *extc)
1915 {
1916 uint32_t phy;
1917
1918 phy = AR_READ(sc, AR_PHY_GEN_CTRL);
1919 phy |= AR_PHY_GC_HT_EN | AR_PHY_GC_SHORT_GI_40 |
1920 AR_PHY_GC_SINGLE_HT_LTF1 | AR_PHY_GC_WALSH;
1921 #ifndef IEEE80211_NO_HT
1922 if (extc != NULL) {
1923 phy |= AR_PHY_GC_DYN2040_EN;
1924 if (extc > c) /* XXX */
1925 phy |= AR_PHY_GC_DYN2040_PRI_CH;
1926 }
1927 #endif
1928 /* Turn off Green Field detection for now. */
1929 phy &= ~AR_PHY_GC_GF_DETECT_EN;
1930 AR_WRITE(sc, AR_PHY_GEN_CTRL, phy);
1931
1932 AR_WRITE(sc, AR_2040_MODE,
1933 (extc != NULL) ? AR_2040_JOINED_RX_CLEAR : 0);
1934
1935 /* Set global transmit timeout. */
1936 AR_WRITE(sc, AR_GTXTO, SM(AR_GTXTO_TIMEOUT_LIMIT, 25));
1937 /* Set carrier sense timeout. */
1938 AR_WRITE(sc, AR_CST, SM(AR_CST_TIMEOUT_LIMIT, 15));
1939 AR_WRITE_BARRIER(sc);
1940 }
1941
1942 Static void
1943 ar9003_set_delta_slope(struct athn_softc *sc, struct ieee80211_channel *c,
1944 struct ieee80211_channel *extc)
1945 {
1946 uint32_t coeff, exp, man, reg;
1947
1948 /* Set Delta Slope (exponent and mantissa). */
1949 coeff = (100 << 24) / c->ic_freq;
1950 athn_get_delta_slope(coeff, &exp, &man);
1951 DPRINTFN(DBG_RF, sc, "delta slope coeff exp=%u man=%u\n", exp, man);
1952
1953 reg = AR_READ(sc, AR_PHY_TIMING3);
1954 reg = RW(reg, AR_PHY_TIMING3_DSC_EXP, exp);
1955 reg = RW(reg, AR_PHY_TIMING3_DSC_MAN, man);
1956 AR_WRITE(sc, AR_PHY_TIMING3, reg);
1957
1958 /* For Short GI, coeff is 9/10 that of normal coeff. */
1959 coeff = (9 * coeff) / 10;
1960 athn_get_delta_slope(coeff, &exp, &man);
1961 DPRINTFN(DBG_RF, sc, "delta slope coeff exp=%u man=%u\n", exp, man);
1962
1963 reg = AR_READ(sc, AR_PHY_SGI_DELTA);
1964 reg = RW(reg, AR_PHY_SGI_DSC_EXP, exp);
1965 reg = RW(reg, AR_PHY_SGI_DSC_MAN, man);
1966 AR_WRITE(sc, AR_PHY_SGI_DELTA, reg);
1967 AR_WRITE_BARRIER(sc);
1968 }
1969
1970 Static void
1971 ar9003_enable_antenna_diversity(struct athn_softc *sc)
1972 {
1973 AR_SETBITS(sc, AR_PHY_CCK_DETECT,
1974 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
1975 AR_WRITE_BARRIER(sc);
1976 }
1977
1978 Static void
1979 ar9003_init_baseband(struct athn_softc *sc)
1980 {
1981 uint32_t synth_delay;
1982
1983 synth_delay = ar9003_synth_delay(sc);
1984 /* Activate the PHY (includes baseband activate and synthesizer on). */
1985 AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
1986 AR_WRITE_BARRIER(sc);
1987 DELAY(AR_BASE_PHY_ACTIVE_DELAY + synth_delay);
1988 }
1989
1990 Static void
1991 ar9003_disable_phy(struct athn_softc *sc)
1992 {
1993 AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1994 AR_WRITE_BARRIER(sc);
1995 }
1996
1997 Static void
1998 ar9003_init_chains(struct athn_softc *sc)
1999 {
2000 if (sc->sc_rxchainmask == 0x5 || sc->sc_txchainmask == 0x5)
2001 AR_SETBITS(sc, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
2002
2003 /* Setup chain masks. */
2004 AR_WRITE(sc, AR_PHY_RX_CHAINMASK, sc->sc_rxchainmask);
2005 AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->sc_rxchainmask);
2006
2007 if (sc->sc_flags & ATHN_FLAG_3TREDUCE_CHAIN) {
2008 /*
2009 * All self-generated frames are sent using two Tx chains
2010 * on these chips to not exceed PCIe power requirements.
2011 */
2012 AR_WRITE(sc, AR_SELFGEN_MASK, 0x3);
2013 }
2014 else
2015 AR_WRITE(sc, AR_SELFGEN_MASK, sc->sc_txchainmask);
2016 AR_WRITE_BARRIER(sc);
2017 }
2018
2019 Static void
2020 ar9003_set_rxchains(struct athn_softc *sc)
2021 {
2022 if (sc->sc_rxchainmask == 0x3 || sc->sc_rxchainmask == 0x5) {
2023 AR_WRITE(sc, AR_PHY_RX_CHAINMASK, sc->sc_rxchainmask);
2024 AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->sc_rxchainmask);
2025 AR_WRITE_BARRIER(sc);
2026 }
2027 }
2028
2029 #ifdef notused
2030 Static void
2031 ar9003_read_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext)
2032 {
2033 /* Sign-extends 9-bit value (assumes upper bits are zeroes). */
2034 #define SIGN_EXT(v) (((v) ^ 0x100) - 0x100)
2035 uint32_t reg;
2036 int i;
2037
2038 for (i = 0; i < sc->sc_nrxchains; i++) {
2039 reg = AR_READ(sc, AR_PHY_CCA(i));
2040 nf[i] = MS(reg, AR_PHY_MINCCA_PWR);
2041 nf[i] = SIGN_EXT(nf[i]);
2042
2043 reg = AR_READ(sc, AR_PHY_EXT_CCA(i));
2044 nf_ext[i] = MS(reg, AR_PHY_EXT_MINCCA_PWR);
2045 nf_ext[i] = SIGN_EXT(nf_ext[i]);
2046 }
2047 #undef SIGN_EXT
2048 }
2049 #endif /* notused */
2050
2051 #ifdef notused
2052 Static void
2053 ar9003_write_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext)
2054 {
2055 uint32_t reg;
2056 int i;
2057
2058 for (i = 0; i < sc->sc_nrxchains; i++) {
2059 reg = AR_READ(sc, AR_PHY_CCA(i));
2060 reg = RW(reg, AR_PHY_MAXCCA_PWR, nf[i]);
2061 AR_WRITE(sc, AR_PHY_CCA(i), reg);
2062
2063 reg = AR_READ(sc, AR_PHY_EXT_CCA(i));
2064 reg = RW(reg, AR_PHY_EXT_MAXCCA_PWR, nf_ext[i]);
2065 AR_WRITE(sc, AR_PHY_EXT_CCA(i), reg);
2066 }
2067 AR_WRITE_BARRIER(sc);
2068 }
2069 #endif /* notused */
2070
2071 #ifdef notused
2072 Static void
2073 ar9003_get_noisefloor(struct athn_softc *sc, struct ieee80211_channel *c)
2074 {
2075 int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS];
2076 int16_t cca_min, cca_max;
2077 int i;
2078
2079 if (AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
2080 /* Noisefloor calibration not finished. */
2081 return;
2082 }
2083 /* Noisefloor calibration is finished. */
2084 ar9003_read_noisefloor(sc, nf, nf_ext);
2085
2086 if (IEEE80211_IS_CHAN_2GHZ(c)) {
2087 cca_min = sc->sc_cca_min_2g;
2088 cca_max = sc->sc_cca_max_2g;
2089 }
2090 else {
2091 cca_min = sc->sc_cca_min_5g;
2092 cca_max = sc->sc_cca_max_5g;
2093 }
2094 /* Update noisefloor history. */
2095 for (i = 0; i < sc->sc_nrxchains; i++) {
2096 if (nf[i] < cca_min)
2097 nf[i] = cca_min;
2098 else if (nf[i] > cca_max)
2099 nf[i] = cca_max;
2100 if (nf_ext[i] < cca_min)
2101 nf_ext[i] = cca_min;
2102 else if (nf_ext[i] > cca_max)
2103 nf_ext[i] = cca_max;
2104
2105 sc->sc_nf_hist[sc->sc_nf_hist_cur].nf[i] = nf[i];
2106 sc->sc_nf_hist[sc->sc_nf_hist_cur].nf_ext[i] = nf_ext[i];
2107 }
2108 if (++sc->sc_nf_hist_cur >= ATHN_NF_CAL_HIST_MAX)
2109 sc->sc_nf_hist_cur = 0;
2110 }
2111 #endif /* notused */
2112
2113 #ifdef notused
2114 Static void
2115 ar9003_bb_load_noisefloor(struct athn_softc *sc)
2116 {
2117 int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS];
2118 int i, ntries;
2119
2120 /* Write filtered noisefloor values. */
2121 for (i = 0; i < sc->sc_nrxchains; i++) {
2122 nf[i] = sc->sc_nf_priv[i] * 2;
2123 nf_ext[i] = sc->sc_nf_ext_priv[i] * 2;
2124 }
2125 ar9003_write_noisefloor(sc, nf, nf_ext);
2126
2127 /* Load filtered noisefloor values into baseband. */
2128 AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
2129 AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
2130 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
2131 /* Wait for load to complete. */
2132 for (ntries = 0; ntries < 1000; ntries++) {
2133 if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF))
2134 break;
2135 DELAY(10);
2136 }
2137 if (ntries == 1000) {
2138 DPRINTFN(DBG_RF, sc, "failed to load noisefloor values\n");
2139 return;
2140 }
2141
2142 /* Restore noisefloor values to initial (max) values. */
2143 for (i = 0; i < AR_MAX_CHAINS; i++)
2144 nf[i] = nf_ext[i] = -50 * 2;
2145 ar9003_write_noisefloor(sc, nf, nf_ext);
2146 }
2147 #endif /* notused */
2148
2149 #ifdef notused
2150 Static void
2151 ar9300_noisefloor_calib(struct athn_softc *sc)
2152 {
2153
2154 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
2155 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
2156 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
2157 }
2158 #endif /* notused */
2159
2160 Static void
2161 ar9003_do_noisefloor_calib(struct athn_softc *sc)
2162 {
2163
2164 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
2165 }
2166
2167 PUBLIC int
2168 ar9003_init_calib(struct athn_softc *sc)
2169 {
2170 uint8_t txchainmask, rxchainmask;
2171 uint32_t reg;
2172 int ntries;
2173
2174 /* Save chains masks. */
2175 txchainmask = sc->sc_txchainmask;
2176 rxchainmask = sc->sc_rxchainmask;
2177 /* Configure hardware before calibration. */
2178 if (AR_READ(sc, AR_ENT_OTP) & AR_ENT_OTP_CHAIN2_DISABLE)
2179 txchainmask = rxchainmask = 0x3;
2180 else
2181 txchainmask = rxchainmask = 0x7;
2182 ar9003_init_chains(sc);
2183
2184 /* Perform Tx IQ calibration. */
2185 ar9003_calib_tx_iq(sc);
2186 /* Disable and re-enable the PHY chips. */
2187 AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
2188 AR_WRITE_BARRIER(sc);
2189 DELAY(5);
2190 AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
2191
2192 /* Calibrate the AGC. */
2193 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL);
2194 /* Poll for offset calibration completion. */
2195 for (ntries = 0; ntries < 10000; ntries++) {
2196 reg = AR_READ(sc, AR_PHY_AGC_CONTROL);
2197 if (!(reg & AR_PHY_AGC_CONTROL_CAL))
2198 break;
2199 DELAY(10);
2200 }
2201 if (ntries == 10000)
2202 return ETIMEDOUT;
2203
2204 /* Restore chains masks. */
2205 sc->sc_txchainmask = txchainmask;
2206 sc->sc_rxchainmask = rxchainmask;
2207 ar9003_init_chains(sc);
2208
2209 return 0;
2210 }
2211
2212 Static void
2213 ar9003_do_calib(struct athn_softc *sc)
2214 {
2215 uint32_t reg;
2216
2217 if (sc->sc_cur_calib_mask & ATHN_CAL_IQ) {
2218 reg = AR_READ(sc, AR_PHY_TIMING4);
2219 reg = RW(reg, AR_PHY_TIMING4_IQCAL_LOG_COUNT_MAX, 10);
2220 AR_WRITE(sc, AR_PHY_TIMING4, reg);
2221 AR_WRITE(sc, AR_PHY_CALMODE, AR_PHY_CALMODE_IQ);
2222 AR_SETBITS(sc, AR_PHY_TIMING4, AR_PHY_TIMING4_DO_CAL);
2223 AR_WRITE_BARRIER(sc);
2224 }
2225 else if (sc->sc_cur_calib_mask & ATHN_CAL_TEMP) {
2226 AR_SETBITS(sc, AR_PHY_65NM_CH0_THERM,
2227 AR_PHY_65NM_CH0_THERM_LOCAL);
2228 AR_SETBITS(sc, AR_PHY_65NM_CH0_THERM,
2229 AR_PHY_65NM_CH0_THERM_START);
2230 AR_WRITE_BARRIER(sc);
2231 }
2232 }
2233
2234 Static void
2235 ar9003_next_calib(struct athn_softc *sc)
2236 {
2237 /* Check if we have any calibration in progress. */
2238 if (sc->sc_cur_calib_mask != 0) {
2239 if (!(AR_READ(sc, AR_PHY_TIMING4) & AR_PHY_TIMING4_DO_CAL)) {
2240 /* Calibration completed for current sample. */
2241 ar9003_calib_iq(sc);
2242 }
2243 }
2244 }
2245
2246 Static void
2247 ar9003_calib_iq(struct athn_softc *sc)
2248 {
2249 struct athn_iq_cal *cal;
2250 uint32_t reg, i_coff_denom, q_coff_denom;
2251 int32_t i_coff, q_coff;
2252 int i, iq_corr_neg;
2253
2254 for (i = 0; i < AR_MAX_CHAINS; i++) {
2255 cal = &sc->sc_calib.iq[i];
2256
2257 /* Read IQ calibration measures (clear on read). */
2258 cal->pwr_meas_i = AR_READ(sc, AR_PHY_IQ_ADC_MEAS_0_B(i));
2259 cal->pwr_meas_q = AR_READ(sc, AR_PHY_IQ_ADC_MEAS_1_B(i));
2260 cal->iq_corr_meas =
2261 (int32_t)AR_READ(sc, AR_PHY_IQ_ADC_MEAS_2_B(i));
2262 }
2263
2264 for (i = 0; i < sc->sc_nrxchains; i++) {
2265 cal = &sc->sc_calib.iq[i];
2266
2267 if (cal->pwr_meas_q == 0)
2268 continue;
2269
2270 if ((iq_corr_neg = cal->iq_corr_meas) < 0)
2271 cal->iq_corr_meas = -cal->iq_corr_meas;
2272
2273 i_coff_denom =
2274 (cal->pwr_meas_i / 2 + cal->pwr_meas_q / 2) / 256;
2275 q_coff_denom = cal->pwr_meas_q / 64;
2276
2277 if (i_coff_denom == 0 || q_coff_denom == 0)
2278 continue; /* Prevents division by zero. */
2279
2280 i_coff = cal->iq_corr_meas / i_coff_denom;
2281 q_coff = (cal->pwr_meas_i / q_coff_denom) - 64;
2282
2283 if (i_coff > 63)
2284 i_coff = 63;
2285 else if (i_coff < -63)
2286 i_coff = -63;
2287 /* Negate i_coff if iq_corr_meas is positive. */
2288 if (!iq_corr_neg)
2289 i_coff = -i_coff;
2290 if (q_coff > 63)
2291 q_coff = 63;
2292 else if (q_coff < -63)
2293 q_coff = -63;
2294
2295 DPRINTFN(DBG_RF, sc, "IQ calibration for chain %d\n", i);
2296 reg = AR_READ(sc, AR_PHY_RX_IQCAL_CORR_B(i));
2297 reg = RW(reg, AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF, i_coff);
2298 reg = RW(reg, AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF, q_coff);
2299 AR_WRITE(sc, AR_PHY_RX_IQCAL_CORR_B(i), reg);
2300 }
2301
2302 /* Apply new settings. */
2303 AR_SETBITS(sc, AR_PHY_RX_IQCAL_CORR_B(0),
2304 AR_PHY_RX_IQCAL_CORR_IQCORR_ENABLE);
2305 AR_WRITE_BARRIER(sc);
2306
2307 /* IQ calibration done. */
2308 sc->sc_cur_calib_mask &= ~ATHN_CAL_IQ;
2309 memset(&sc->sc_calib, 0, sizeof(sc->sc_calib));
2310 }
2311
2312 #define DELPT 32
2313 Static int
2314 ar9003_get_iq_corr(struct athn_softc *sc, int32_t res[6], int32_t coeff[2])
2315 {
2316 /* Sign-extends 12-bit value (assumes upper bits are zeroes). */
2317 #define SIGN_EXT(v) (((v) ^ 0x800) - 0x800)
2318 #define SCALE (1 << 15)
2319 #define SHIFT (1 << 8)
2320 struct {
2321 int32_t m, p, c;
2322 } val[2][2];
2323 int32_t mag[2][2], phs[2][2], cos[2], sin[2];
2324 int32_t div, f1, f2, f3, m, p, c;
2325 int32_t txmag, txphs, rxmag, rxphs;
2326 int32_t q_coff, i_coff;
2327 int i, j;
2328
2329 /* Extract our twelve signed 12-bit values from res[] array. */
2330 val[0][0].m = res[0] & 0xfff;
2331 val[0][0].p = (res[0] >> 12) & 0xfff;
2332 val[0][0].c = ((res[0] >> 24) & 0xff) | (res[1] & 0xf) << 8;
2333
2334 val[0][1].m = (res[1] >> 4) & 0xfff;
2335 val[0][1].p = res[2] & 0xfff;
2336 val[0][1].c = (res[2] >> 12) & 0xfff;
2337
2338 val[1][0].m = ((res[2] >> 24) & 0xff) | (res[3] & 0xf) << 8;
2339 val[1][0].p = (res[3] >> 4) & 0xfff;
2340 val[1][0].c = res[4] & 0xfff;
2341
2342 val[1][1].m = (res[4] >> 12) & 0xfff;
2343 val[1][1].p = ((res[4] >> 24) & 0xff) | (res[5] & 0xf) << 8;
2344 val[1][1].c = (res[5] >> 4) & 0xfff;
2345
2346 for (i = 0; i < 2; i++) {
2347 int32_t ymin, ymax;
2348 for (j = 0; j < 2; j++) {
2349 m = SIGN_EXT(val[i][j].m);
2350 p = SIGN_EXT(val[i][j].p);
2351 c = SIGN_EXT(val[i][j].c);
2352
2353 if (p == 0)
2354 return 1; /* Prevent division by 0. */
2355
2356 mag[i][j] = (m * SCALE) / p;
2357 phs[i][j] = (c * SCALE) / p;
2358 }
2359 sin[i] = ((mag[i][0] - mag[i][1]) * SHIFT) / DELPT;
2360 cos[i] = ((phs[i][0] - phs[i][1]) * SHIFT) / DELPT;
2361 /* Find magnitude by approximation. */
2362 ymin = MIN(abs(sin[i]), abs(cos[i]));
2363 ymax = MAX(abs(sin[i]), abs(cos[i]));
2364 div = ymax - (ymax / 32) + (ymin / 8) + (ymin / 4);
2365 if (div == 0)
2366 return 1; /* Prevent division by 0. */
2367 /* Normalize sin and cos by magnitude. */
2368 sin[i] = (sin[i] * SCALE) / div;
2369 cos[i] = (cos[i] * SCALE) / div;
2370 }
2371
2372 /* Compute IQ mismatch (solve 4x4 linear equation). */
2373 f1 = cos[0] - cos[1];
2374 f3 = sin[0] - sin[1];
2375 f2 = (f1 * f1 + f3 * f3) / SCALE;
2376 if (f2 == 0)
2377 return 1; /* Prevent division by 0. */
2378
2379 /* Compute Tx magnitude mismatch. */
2380 txmag = (f1 * ( mag[0][0] - mag[1][0]) +
2381 f3 * ( phs[0][0] - phs[1][0])) / f2;
2382 /* Compute Tx phase mismatch. */
2383 txphs = (f3 * (-mag[0][0] + mag[1][0]) +
2384 f1 * ( phs[0][0] - phs[1][0])) / f2;
2385
2386 if (txmag == SCALE)
2387 return 1; /* Prevent division by 0. */
2388
2389 /* Compute Rx magnitude mismatch. */
2390 rxmag = mag[0][0] - (cos[0] * txmag + sin[0] * txphs) / SCALE;
2391 /* Compute Rx phase mismatch. */
2392 rxphs = phs[0][0] + (sin[0] * txmag - cos[0] * txphs) / SCALE;
2393
2394 if (-rxmag == SCALE)
2395 return 1; /* Prevent division by 0. */
2396
2397 txmag = (txmag * SCALE) / (SCALE - txmag);
2398 txphs = -txphs;
2399
2400 q_coff = (txmag * 128) / SCALE;
2401 if (q_coff < -63)
2402 q_coff = -63;
2403 else if (q_coff > 63)
2404 q_coff = 63;
2405 i_coff = (txphs * 256) / SCALE;
2406 if (i_coff < -63)
2407 i_coff = -63;
2408 else if (i_coff > 63)
2409 i_coff = 63;
2410 coeff[0] = q_coff * 128 + i_coff;
2411
2412 rxmag = (-rxmag * SCALE) / (SCALE + rxmag);
2413 rxphs = -rxphs;
2414
2415 q_coff = (rxmag * 128) / SCALE;
2416 if (q_coff < -63)
2417 q_coff = -63;
2418 else if (q_coff > 63)
2419 q_coff = 63;
2420 i_coff = (rxphs * 256) / SCALE;
2421 if (i_coff < -63)
2422 i_coff = -63;
2423 else if (i_coff > 63)
2424 i_coff = 63;
2425 coeff[1] = q_coff * 128 + i_coff;
2426
2427 return 0;
2428 #undef SHIFT
2429 #undef SCALE
2430 #undef SIGN_EXT
2431 }
2432
2433 Static int
2434 ar9003_calib_tx_iq(struct athn_softc *sc)
2435 {
2436 uint32_t reg;
2437 int32_t res[6], coeff[2];
2438 int i, j, ntries;
2439
2440 reg = AR_READ(sc, AR_PHY_TX_IQCAL_CONTROL_1);
2441 reg = RW(reg, AR_PHY_TX_IQCAQL_CONTROL_1_IQCORR_I_Q_COFF_DELPT, DELPT);
2442 AR_WRITE(sc, AR_PHY_TX_IQCAL_CONTROL_1, reg);
2443
2444 /* Start Tx IQ calibration. */
2445 AR_SETBITS(sc, AR_PHY_TX_IQCAL_START, AR_PHY_TX_IQCAL_START_DO_CAL);
2446 /* Wait for completion. */
2447 for (ntries = 0; ntries < 10000; ntries++) {
2448 reg = AR_READ(sc, AR_PHY_TX_IQCAL_START);
2449 if (!(reg & AR_PHY_TX_IQCAL_START_DO_CAL))
2450 break;
2451 DELAY(10);
2452 }
2453 if (ntries == 10000)
2454 return ETIMEDOUT;
2455
2456 for (i = 0; i < sc->sc_ntxchains; i++) {
2457 /* Read Tx IQ calibration status for this chain. */
2458 reg = AR_READ(sc, AR_PHY_TX_IQCAL_STATUS_B(i));
2459 if (reg & AR_PHY_TX_IQCAL_STATUS_FAILED)
2460 return EIO;
2461 /*
2462 * Read Tx IQ calibration results for this chain.
2463 * This consists in twelve signed 12-bit values.
2464 */
2465 for (j = 0; j < 3; j++) {
2466 AR_CLRBITS(sc, AR_PHY_CHAN_INFO_MEMORY,
2467 AR_PHY_CHAN_INFO_TAB_S2_READ);
2468 reg = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(i, j));
2469 res[j * 2 + 0] = reg;
2470
2471 AR_SETBITS(sc, AR_PHY_CHAN_INFO_MEMORY,
2472 AR_PHY_CHAN_INFO_TAB_S2_READ);
2473 reg = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(i, j));
2474 res[j * 2 + 1] = reg & 0xffff;
2475 }
2476
2477 /* Compute Tx IQ correction. */
2478 if (ar9003_get_iq_corr(sc, res, coeff) != 0)
2479 return EIO;
2480
2481 /* Write Tx IQ correction coefficients. */
2482 reg = AR_READ(sc, AR_PHY_TX_IQCAL_CORR_COEFF_01_B(i));
2483 reg = RW(reg, AR_PHY_TX_IQCAL_CORR_COEFF_01_COEFF_TABLE,
2484 coeff[0]);
2485 AR_WRITE(sc, AR_PHY_TX_IQCAL_CORR_COEFF_01_B(i), reg);
2486
2487 reg = AR_READ(sc, AR_PHY_RX_IQCAL_CORR_B(i));
2488 reg = RW(reg, AR_PHY_RX_IQCAL_CORR_LOOPBACK_IQCORR_Q_Q_COFF,
2489 coeff[1] >> 7);
2490 reg = RW(reg, AR_PHY_RX_IQCAL_CORR_LOOPBACK_IQCORR_Q_I_COFF,
2491 coeff[1]);
2492 AR_WRITE(sc, AR_PHY_RX_IQCAL_CORR_B(i), reg);
2493 AR_WRITE_BARRIER(sc);
2494 }
2495
2496 /* Enable Tx IQ correction. */
2497 AR_SETBITS(sc, AR_PHY_TX_IQCAL_CONTROL_3,
2498 AR_PHY_TX_IQCAL_CONTROL_3_IQCORR_EN);
2499 AR_SETBITS(sc, AR_PHY_RX_IQCAL_CORR_B(0),
2500 AR_PHY_RX_IQCAL_CORR_B0_LOOPBACK_IQCORR_EN);
2501 AR_WRITE_BARRIER(sc);
2502 return 0;
2503 }
2504 #undef DELPT
2505
2506 /*-
2507 * The power amplifier predistortion state machine works as follows:
2508 * 1) Disable digital predistorters for all Tx chains
2509 * 2) Repeat steps 3~7 for all Tx chains
2510 * 3) Force Tx gain to that of training signal
2511 * 4) Send training signal (asynchronous)
2512 * 5) Wait for training signal to complete (asynchronous)
2513 * 6) Read PA measurements (input power, output power, output phase)
2514 * 7) Compute the predistortion function that linearizes PA output
2515 * 8) Write predistortion functions to hardware tables for all Tx chains
2516 * 9) Enable digital predistorters for all Tx chains
2517 */
2518 #ifdef notused
2519 Static void
2520 ar9003_paprd_calib(struct athn_softc *sc, struct ieee80211_channel *c)
2521 {
2522 static const int scaling[] = {
2523 261376, 248079, 233759, 220464,
2524 208194, 196949, 185706, 175487
2525 };
2526 struct athn_ops *ops = &sc->sc_ops;
2527 uint32_t reg, ht20mask, ht40mask;
2528 int i;
2529
2530 /* Read PA predistortion masks from ROM. */
2531 ops->get_paprd_masks(sc, c, &ht20mask, &ht40mask);
2532
2533 /* AM-to-AM: amplifier's amplitude characteristic. */
2534 reg = AR_READ(sc, AR_PHY_PAPRD_AM2AM);
2535 reg = RW(reg, AR_PHY_PAPRD_AM2AM_MASK, ht20mask);
2536 AR_WRITE(sc, AR_PHY_PAPRD_AM2AM, reg);
2537
2538 /* AM-to-PM: amplifier's phase transfer characteristic. */
2539 reg = AR_READ(sc, AR_PHY_PAPRD_AM2PM);
2540 reg = RW(reg, AR_PHY_PAPRD_AM2PM_MASK, ht20mask);
2541 AR_WRITE(sc, AR_PHY_PAPRD_AM2PM, reg);
2542
2543 reg = AR_READ(sc, AR_PHY_PAPRD_HT40);
2544 reg = RW(reg, AR_PHY_PAPRD_HT40_MASK, ht40mask);
2545 AR_WRITE(sc, AR_PHY_PAPRD_HT40, reg);
2546
2547 for (i = 0; i < AR9003_MAX_CHAINS; i++) {
2548 AR_SETBITS(sc, AR_PHY_PAPRD_CTRL0_B(i),
2549 AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE);
2550
2551 reg = AR_READ(sc, AR_PHY_PAPRD_CTRL1_B(i));
2552 reg = RW(reg, AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT, 181);
2553 reg = RW(reg, AR_PHY_PAPRD_CTRL1_MAG_SCALE_FACT, 361);
2554 reg &= ~AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA;
2555 reg |= AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENA;
2556 reg |= AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENA;
2557 AR_WRITE(sc, AR_PHY_PAPRD_CTRL1_B(i), reg);
2558
2559 reg = AR_READ(sc, AR_PHY_PAPRD_CTRL0_B(i));
2560 reg = RW(reg, AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3);
2561 AR_WRITE(sc, AR_PHY_PAPRD_CTRL0_B(i), reg);
2562 }
2563
2564 /* Disable all digital predistorters during calibration. */
2565 for (i = 0; i < AR9003_MAX_CHAINS; i++) {
2566 AR_CLRBITS(sc, AR_PHY_PAPRD_CTRL0_B(i),
2567 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE);
2568 }
2569 AR_WRITE_BARRIER(sc);
2570
2571 /*
2572 * Configure training signal.
2573 */
2574 reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL1);
2575 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL1_AGC2_SETTLING, 28);
2576 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL1_LB_SKIP, 0x30);
2577 reg &= ~AR_PHY_PAPRD_TRAINER_CNTL1_RX_BB_GAIN_FORCE;
2578 reg &= ~AR_PHY_PAPRD_TRAINER_CNTL1_IQCORR_ENABLE;
2579 reg |= AR_PHY_PAPRD_TRAINER_CNTL1_LB_ENABLE;
2580 reg |= AR_PHY_PAPRD_TRAINER_CNTL1_TX_GAIN_FORCE;
2581 reg |= AR_PHY_PAPRD_TRAINER_CNTL1_TRAIN_ENABLE;
2582 AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL1, reg);
2583
2584 AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL2, 147);
2585
2586 reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL3);
2587 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_FINE_CORR_LEN, 4);
2588 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_COARSE_CORR_LEN, 4);
2589 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_NUM_CORR_STAGES, 7);
2590 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_MIN_LOOPBACK_DEL, 1);
2591 if (AR_SREV_9485(sc))
2592 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_QUICK_DROP, -3);
2593 else
2594 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_QUICK_DROP, -6);
2595 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_ADC_DESIRED_SIZE, -15);
2596 reg |= AR_PHY_PAPRD_TRAINER_CNTL3_BBTXMIX_DISABLE;
2597 AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL3, reg);
2598
2599 reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL4);
2600 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_SAFETY_DELTA, 0);
2601 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_MIN_CORR, 400);
2602 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_NUM_TRAIN_SAMPLES, 100);
2603 AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL4, reg);
2604
2605 for (i = 0; i < __arraycount(scaling); i++) {
2606 reg = AR_READ(sc, AR_PHY_PAPRD_PRE_POST_SCALE_B0(i));
2607 reg = RW(reg, AR_PHY_PAPRD_PRE_POST_SCALING, scaling[i]);
2608 AR_WRITE(sc, AR_PHY_PAPRD_PRE_POST_SCALE_B0(i), reg);
2609 }
2610
2611 /* Save Tx gain table. */
2612 for (i = 0; i < AR9003_TX_GAIN_TABLE_SIZE; i++)
2613 sc->sc_txgain[i] = AR_READ(sc, AR_PHY_TXGAIN_TABLE(i));
2614
2615 /* Set Tx power of training signal (use setting for MCS0). */
2616 sc->sc_trainpow = MS(AR_READ(sc, AR_PHY_PWRTX_RATE5),
2617 AR_PHY_PWRTX_RATE5_POWERTXHT20_0) - 4;
2618
2619 /*
2620 * Start PA predistortion calibration state machine.
2621 */
2622 /* Find first available Tx chain. */
2623 sc->sc_paprd_curchain = 0;
2624 while (!(sc->sc_txchainmask & (1 << sc->sc_paprd_curchain)))
2625 sc->sc_paprd_curchain++;
2626
2627 /* Make sure training done bit is clear. */
2628 AR_CLRBITS(sc, AR_PHY_PAPRD_TRAINER_STAT1,
2629 AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE);
2630 AR_WRITE_BARRIER(sc);
2631
2632 /* Transmit training signal. */
2633 ar9003_paprd_tx_tone(sc);
2634 }
2635 #endif /* notused */
2636
2637 Static int
2638 ar9003_get_desired_txgain(struct athn_softc *sc, int chain, int pow)
2639 {
2640 int32_t scale, atemp, avolt, tempcal, voltcal, temp, volt;
2641 int32_t tempcorr, voltcorr;
2642 uint32_t reg;
2643 int8_t delta;
2644
2645 scale = MS(AR_READ(sc, AR_PHY_TPC_12),
2646 AR_PHY_TPC_12_DESIRED_SCALE_HT40_5);
2647
2648 reg = AR_READ(sc, AR_PHY_TPC_19);
2649 atemp = MS(reg, AR_PHY_TPC_19_ALPHA_THERM);
2650 avolt = MS(reg, AR_PHY_TPC_19_ALPHA_VOLT);
2651
2652 reg = AR_READ(sc, AR_PHY_TPC_18);
2653 tempcal = MS(reg, AR_PHY_TPC_18_THERM_CAL);
2654 voltcal = MS(reg, AR_PHY_TPC_18_VOLT_CAL);
2655
2656 reg = AR_READ(sc, AR_PHY_BB_THERM_ADC_4);
2657 temp = MS(reg, AR_PHY_BB_THERM_ADC_4_LATEST_THERM);
2658 volt = MS(reg, AR_PHY_BB_THERM_ADC_4_LATEST_VOLT);
2659
2660 delta = (int8_t)MS(AR_READ(sc, AR_PHY_TPC_11_B(chain)),
2661 AR_PHY_TPC_11_OLPC_GAIN_DELTA);
2662
2663 /* Compute temperature and voltage correction. */
2664 tempcorr = (atemp * (temp - tempcal) + 128) / 256;
2665 voltcorr = (avolt * (volt - voltcal) + 64) / 128;
2666
2667 /* Compute desired Tx gain. */
2668 return pow - delta - tempcorr - voltcorr + scale;
2669 }
2670
2671 Static void
2672 ar9003_force_txgain(struct athn_softc *sc, uint32_t txgain)
2673 {
2674 uint32_t reg;
2675
2676 reg = AR_READ(sc, AR_PHY_TX_FORCED_GAIN);
2677 reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXBB1DBGAIN,
2678 MS(txgain, AR_PHY_TXGAIN_TXBB1DBGAIN));
2679 reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXBB6DBGAIN,
2680 MS(txgain, AR_PHY_TXGAIN_TXBB6DBGAIN));
2681 reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXMXRGAIN,
2682 MS(txgain, AR_PHY_TXGAIN_TXMXRGAIN));
2683 reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNA,
2684 MS(txgain, AR_PHY_TXGAIN_PADRVGNA));
2685 reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNB,
2686 MS(txgain, AR_PHY_TXGAIN_PADRVGNB));
2687 reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNC,
2688 MS(txgain, AR_PHY_TXGAIN_PADRVGNC));
2689 reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGND,
2690 MS(txgain, AR_PHY_TXGAIN_PADRVGND));
2691 reg &= ~AR_PHY_TX_FORCED_GAIN_ENABLE_PAL;
2692 reg &= ~AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN;
2693 AR_WRITE(sc, AR_PHY_TX_FORCED_GAIN, reg);
2694
2695 reg = AR_READ(sc, AR_PHY_TPC_1);
2696 reg = RW(reg, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0);
2697 reg &= ~AR_PHY_TPC_1_FORCE_DAC_GAIN;
2698 AR_WRITE(sc, AR_PHY_TPC_1, reg);
2699 AR_WRITE_BARRIER(sc);
2700 }
2701
2702 Static void
2703 ar9003_set_training_gain(struct athn_softc *sc, int chain)
2704 {
2705 size_t i;
2706 int gain;
2707
2708 /*
2709 * Get desired gain for training signal power (take into account
2710 * current temperature/voltage).
2711 */
2712 gain = ar9003_get_desired_txgain(sc, chain, sc->sc_trainpow);
2713 /* Find entry in table. */
2714 for (i = 0; i < AR9003_TX_GAIN_TABLE_SIZE - 1; i++)
2715 if ((int)MS(sc->sc_txgain[i], AR_PHY_TXGAIN_INDEX) >= gain)
2716 break;
2717 ar9003_force_txgain(sc, sc->sc_txgain[i]);
2718 }
2719
2720 Static int
2721 ar9003_paprd_tx_tone(struct athn_softc *sc)
2722 {
2723 #define TONE_LEN 1800
2724 struct ieee80211com *ic = &sc->sc_ic;
2725 struct ieee80211_frame *wh;
2726 struct ieee80211_node *ni;
2727 struct mbuf *m;
2728 int error;
2729
2730 /* Build a Null (no data) frame of TONE_LEN bytes. */
2731 m = MCLGETI(NULL, M_DONTWAIT, NULL, TONE_LEN);
2732 if (m == NULL)
2733 return ENOBUFS;
2734 memset(mtod(m, void *), 0, TONE_LEN);
2735 wh = mtod(m, struct ieee80211_frame *);
2736 wh->i_fc[0] = IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA;
2737 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2738 *(uint16_t *)wh->i_dur = htole16(10); /* XXX */
2739 IEEE80211_ADDR_COPY(wh->i_addr1, ic->ic_myaddr);
2740 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2741 IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_myaddr);
2742 m->m_pkthdr.len = m->m_len = TONE_LEN;
2743
2744 /* Set gain of training signal. */
2745 ar9003_set_training_gain(sc, sc->sc_paprd_curchain);
2746
2747 /* Transmit training signal. */
2748 ni = ieee80211_ref_node(ic->ic_bss);
2749 if ((error = ar9003_tx(sc, m, ni, ATHN_TXFLAG_PAPRD)) != 0)
2750 ieee80211_free_node(ni);
2751 return error;
2752 #undef TONE_LEN
2753 }
2754
2755 static __inline int
2756 get_scale(int val)
2757 {
2758 int log = 0;
2759
2760 /* Find the log base 2 (position of highest bit set). */
2761 while (val >>= 1)
2762 log++;
2763
2764 return (log > 10) ? log - 10 : 0;
2765 }
2766
2767 /*
2768 * Compute predistortion function to linearize power amplifier output based
2769 * on feedback from training signal.
2770 */
2771 Static int
2772 ar9003_compute_predistortion(struct athn_softc *sc, const uint32_t *lo,
2773 const uint32_t *hi)
2774 {
2775 #define NBINS 23
2776 int chain = sc->sc_paprd_curchain;
2777 int x[NBINS + 1], y[NBINS + 1], t[NBINS + 1];
2778 int b1[NBINS + 1], b2[NBINS + 1], xtilde[NBINS + 1];
2779 int nsamples, txsum, rxsum, rosum, maxidx;
2780 int order, order5x, order5xrem, order3x, order3xrem, y5, y3;
2781 int icept, G, I, L, M, angle, xnonlin, y2, y4, sumy2, sumy4;
2782 int alpha, beta, scale, Qalpha, Qbeta, Qscale, Qx, Qb1, Qb2;
2783 int tavg, ttilde, maxb1abs, maxb2abs, maxxtildeabs, in;
2784 int tmp, i;
2785
2786 /* Set values at origin. */
2787 x[0] = y[0] = t[0] = 0;
2788
2789 #define SCALE 32
2790 maxidx = 0;
2791 for (i = 0; i < NBINS; i++) {
2792 nsamples = lo[i] & 0xffff;
2793 /* Skip bins that contain 16 or less samples. */
2794 if (nsamples <= 16) {
2795 x[i + 1] = y[i + 1] = t[i + 1] = 0;
2796 continue;
2797 }
2798 txsum = (hi[i] & 0x7ff) << 16 | lo[i] >> 16;
2799 rxsum = (lo[i + NBINS] & 0xffff) << 5 |
2800 ((hi[i] >> 11) & 0x1f);
2801 rosum = (hi[i + NBINS] & 0x7ff) << 16 | hi[i + NBINS] >> 16;
2802 /* Sign-extend 27-bit value. */
2803 rosum = (rosum ^ 0x4000000) - 0x4000000;
2804
2805 txsum *= SCALE;
2806 rxsum *= SCALE;
2807 rosum *= SCALE;
2808
2809 x[i + 1] = ((txsum + nsamples) / nsamples + SCALE) / SCALE;
2810 y[i + 1] = ((rxsum + nsamples) / nsamples + SCALE) / SCALE +
2811 SCALE * maxidx + SCALE / 2;
2812 t[i + 1] = (rosum + nsamples) / nsamples;
2813 maxidx++;
2814 }
2815 #undef SCALE
2816
2817 #define SCALE_LOG 8
2818 #define SCALE (1 << SCALE_LOG)
2819 if (x[6] == x[3])
2820 return 1; /* Prevent division by 0. */
2821 G = ((y[6] - y[3]) * SCALE + (x[6] - x[3])) / (x[6] - x[3]);
2822 if (G == 0)
2823 return 1; /* Prevent division by 0. */
2824
2825 sc->sc_gain1[chain] = G; /* Save low signal gain. */
2826
2827 /* Find interception point. */
2828 icept = (G * (x[0] - x[3]) + SCALE) / SCALE + y[3];
2829 for (i = 0; i <= 3; i++) {
2830 y[i] = i * 32;
2831 x[i] = (y[i] * SCALE + G) / G;
2832 }
2833 for (i = 4; i <= maxidx; i++)
2834 y[i] -= icept;
2835
2836 xnonlin = x[maxidx] - (y[maxidx] * SCALE + G) / G;
2837 order = (xnonlin + y[maxidx]) / y[maxidx];
2838 if (order == 0)
2839 M = 10;
2840 else if (order == 1)
2841 M = 9;
2842 else
2843 M = 8;
2844
2845 I = (maxidx >= 16) ? 7 : maxidx / 2;
2846 L = maxidx - I;
2847
2848 sumy2 = sumy4 = y2 = y4 = 0;
2849 for (i = 0; i <= L; i++) {
2850 if (y[i + I] == 0)
2851 return 1; /* Prevent division by 0. */
2852
2853 xnonlin = x[i + I] - ((y[i + I] * SCALE) + G) / G;
2854 xtilde[i] = ((xnonlin << M) + y[i + I]) / y[i + I];
2855 xtilde[i] = ((xtilde[i] << M) + y[i + I]) / y[i + I];
2856 xtilde[i] = ((xtilde[i] << M) + y[i + I]) / y[i + I];
2857
2858 y2 = (y[i + I] * y[i + I] + SCALE * SCALE) / (SCALE * SCALE);
2859
2860 sumy2 += y2;
2861 sumy4 += y2 * y2;
2862
2863 b1[i] = y2 * (L + 1);
2864 b2[i] = y2;
2865 }
2866 for (i = 0; i <= L; i++) {
2867 b1[i] -= sumy2;
2868 b2[i] = sumy4 - sumy2 * b2[i];
2869 }
2870
2871 maxxtildeabs = maxb1abs = maxb2abs = 0;
2872 for (i = 0; i <= L; i++) {
2873 tmp = abs(xtilde[i]);
2874 if (tmp > maxxtildeabs)
2875 maxxtildeabs = tmp;
2876
2877 tmp = abs(b1[i]);
2878 if (tmp > maxb1abs)
2879 maxb1abs = tmp;
2880
2881 tmp = abs(b2[i]);
2882 if (tmp > maxb2abs)
2883 maxb2abs = tmp;
2884 }
2885 Qx = get_scale(maxxtildeabs);
2886 Qb1 = get_scale(maxb1abs);
2887 Qb2 = get_scale(maxb2abs);
2888 for (i = 0; i <= L; i++) {
2889 xtilde[i] /= 1 << Qx;
2890 b1[i] /= 1 << Qb1;
2891 b2[i] /= 1 << Qb2;
2892 }
2893
2894 alpha = beta = 0;
2895 for (i = 0; i <= L; i++) {
2896 alpha += b1[i] * xtilde[i];
2897 beta += b2[i] * xtilde[i];
2898 }
2899
2900 scale = ((y4 / SCALE_LOG) * (L + 1) -
2901 (y2 / SCALE_LOG) * sumy2) * SCALE_LOG;
2902
2903 Qscale = get_scale(abs(scale));
2904 scale /= 1 << Qscale;
2905 Qalpha = get_scale(abs(alpha));
2906 alpha /= 1 << Qalpha;
2907 Qbeta = get_scale(abs(beta));
2908 beta /= 1 << Qbeta;
2909
2910 order = 3 * M - Qx - Qb1 - Qbeta + 10 + Qscale;
2911 order5x = 1 << (order / 5);
2912 order5xrem = 1 << (order % 5);
2913
2914 order = 3 * M - Qx - Qb2 - Qalpha + 10 + Qscale;
2915 order3x = 1 << (order / 3);
2916 order3xrem = 1 << (order % 3);
2917
2918 for (i = 0; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) {
2919 tmp = i * 32;
2920
2921 /* Fifth order. */
2922 y5 = ((beta * tmp) / 64) / order5x;
2923 y5 = (y5 * tmp) / order5x;
2924 y5 = (y5 * tmp) / order5x;
2925 y5 = (y5 * tmp) / order5x;
2926 y5 = (y5 * tmp) / order5x;
2927 y5 = y5 / order5xrem;
2928
2929 /* Third oder. */
2930 y3 = (alpha * tmp) / order3x;
2931 y3 = (y3 * tmp) / order3x;
2932 y3 = (y3 * tmp) / order3x;
2933 y3 = y3 / order3xrem;
2934
2935 in = y5 + y3 + (SCALE * tmp) / G;
2936 if (i >= 2 && in < sc->sc_pa_in[chain][i - 1]) {
2937 in = sc->sc_pa_in[chain][i - 1] +
2938 (sc->sc_pa_in[chain][i - 1] -
2939 sc->sc_pa_in[chain][i - 2]);
2940 }
2941 if (in > 1400)
2942 in = 1400;
2943 sc->sc_pa_in[chain][i] = in;
2944 }
2945
2946 /* Compute average theta of first 5 bins (linear region). */
2947 tavg = 0;
2948 for (i = 1; i <= 5; i++)
2949 tavg += t[i];
2950 tavg /= 5;
2951 for (i = 1; i <= 5; i++)
2952 t[i] = 0;
2953 for (i = 6; i <= maxidx; i++)
2954 t[i] -= tavg;
2955
2956 alpha = beta = 0;
2957 for (i = 0; i <= L; i++) {
2958 ttilde = ((t[i + I] << M) + y[i + I]) / y[i + I];
2959 ttilde = ((ttilde << M) + y[i + I]) / y[i + I];
2960 ttilde = ((ttilde << M) + y[i + I]) / y[i + I];
2961
2962 alpha += b2[i] * ttilde;
2963 beta += b1[i] * ttilde;
2964 }
2965
2966 Qalpha = get_scale(abs(alpha));
2967 alpha /= 1 << Qalpha;
2968 Qbeta = get_scale(abs(beta));
2969 beta /= 1 << Qbeta;
2970
2971 order = 3 * M - Qx - Qb1 - Qbeta + 10 + Qscale + 5;
2972 order5x = 1 << (order / 5);
2973 order5xrem = 1 << (order % 5);
2974
2975 order = 3 * M - Qx - Qb2 - Qalpha + 10 + Qscale + 5;
2976 order3x = 1 << (order / 3);
2977 order3xrem = 1 << (order % 3);
2978
2979 for (i = 0; i <= 4; i++)
2980 sc->sc_angle[chain][i] = 0; /* Linear at that range. */
2981 for (i = 5; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) {
2982 tmp = i * 32;
2983
2984 /* Fifth order. */
2985 if (beta > 0)
2986 y5 = (((beta * tmp - 64) / 64) - order5x) / order5x;
2987 else
2988 y5 = (((beta * tmp - 64) / 64) + order5x) / order5x;
2989 y5 = (y5 * tmp) / order5x;
2990 y5 = (y5 * tmp) / order5x;
2991 y5 = (y5 * tmp) / order5x;
2992 y5 = (y5 * tmp) / order5x;
2993 y5 = y5 / order5xrem;
2994
2995 /* Third oder. */
2996 if (beta > 0) /* XXX alpha? */
2997 y3 = (alpha * tmp - order3x) / order3x;
2998 else
2999 y3 = (alpha * tmp + order3x) / order3x;
3000 y3 = (y3 * tmp) / order3x;
3001 y3 = (y3 * tmp) / order3x;
3002 y3 = y3 / order3xrem;
3003
3004 angle = y5 + y3;
3005 if (angle < -150)
3006 angle = -150;
3007 else if (angle > 150)
3008 angle = 150;
3009 sc->sc_angle[chain][i] = angle;
3010 }
3011 /* Angle for entry 4 is derived from angle for entry 5. */
3012 sc->sc_angle[chain][4] = (sc->sc_angle[chain][5] + 2) / 2;
3013
3014 return 0;
3015 #undef SCALE
3016 #undef SCALE_LOG
3017 #undef NBINS
3018 }
3019
3020 Static void
3021 ar9003_enable_predistorter(struct athn_softc *sc, int chain)
3022 {
3023 uint32_t reg;
3024 int i;
3025
3026 /* Write digital predistorter lookup table. */
3027 for (i = 0; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) {
3028 AR_WRITE(sc, AR_PHY_PAPRD_MEM_TAB_B(chain, i),
3029 SM(AR_PHY_PAPRD_PA_IN, sc->sc_pa_in[chain][i]) |
3030 SM(AR_PHY_PAPRD_ANGLE, sc->sc_angle[chain][i]));
3031 }
3032
3033 reg = AR_READ(sc, AR_PHY_PA_GAIN123_B(chain));
3034 reg = RW(reg, AR_PHY_PA_GAIN123_PA_GAIN1, sc->sc_gain1[chain]);
3035 AR_WRITE(sc, AR_PHY_PA_GAIN123_B(chain), reg);
3036
3037 /* Indicate Tx power used for calibration (training signal). */
3038 reg = AR_READ(sc, AR_PHY_PAPRD_CTRL1_B(chain));
3039 reg = RW(reg, AR_PHY_PAPRD_CTRL1_POWER_AT_AM2AM_CAL, sc->sc_trainpow);
3040 AR_WRITE(sc, AR_PHY_PAPRD_CTRL1_B(chain), reg);
3041
3042 /* Enable digital predistorter for this chain. */
3043 AR_SETBITS(sc, AR_PHY_PAPRD_CTRL0_B(chain),
3044 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE);
3045 AR_WRITE_BARRIER(sc);
3046 }
3047
3048 Static void
3049 ar9003_paprd_enable(struct athn_softc *sc)
3050 {
3051 int i;
3052
3053 /* Enable digital predistorters for all Tx chains. */
3054 for (i = 0; i < AR9003_MAX_CHAINS; i++)
3055 if (sc->sc_txchainmask & (1 << i))
3056 ar9003_enable_predistorter(sc, i);
3057 }
3058
3059 /*
3060 * This function is called when our training signal has been sent.
3061 */
3062 Static void
3063 ar9003_paprd_tx_tone_done(struct athn_softc *sc)
3064 {
3065 uint32_t lo[48], hi[48];
3066 size_t i;
3067
3068 /* Make sure training is complete. */
3069 if (!(AR_READ(sc, AR_PHY_PAPRD_TRAINER_STAT1) &
3070 AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE))
3071 return;
3072
3073 /* Read feedback from training signal. */
3074 AR_CLRBITS(sc, AR_PHY_CHAN_INFO_MEMORY, AR_PHY_CHAN_INFO_TAB_S2_READ);
3075 for (i = 0; i < __arraycount(lo); i++)
3076 lo[i] = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(0, i));
3077 AR_SETBITS(sc, AR_PHY_CHAN_INFO_MEMORY, AR_PHY_CHAN_INFO_TAB_S2_READ);
3078 for (i = 0; i < __arraycount(hi); i++)
3079 hi[i] = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(0, i));
3080
3081 AR_CLRBITS(sc, AR_PHY_PAPRD_TRAINER_STAT1,
3082 AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE);
3083
3084 /* Compute predistortion function based on this feedback. */
3085 if (ar9003_compute_predistortion(sc, lo, hi) != 0)
3086 return;
3087
3088 /* Get next available Tx chain. */
3089 while (++sc->sc_paprd_curchain < AR9003_MAX_CHAINS)
3090 if (sc->sc_txchainmask & (1 << sc->sc_paprd_curchain))
3091 break;
3092 if (sc->sc_paprd_curchain == AR9003_MAX_CHAINS) {
3093 /* All Tx chains measured; enable digital predistortion. */
3094 ar9003_paprd_enable(sc);
3095 }
3096 else /* Measure next Tx chain. */
3097 ar9003_paprd_tx_tone(sc);
3098 }
3099
3100 PUBLIC void
3101 ar9003_write_txpower(struct athn_softc *sc, int16_t power[ATHN_POWER_COUNT])
3102 {
3103
3104 /* Make sure forced gain is disabled. */
3105 AR_WRITE(sc, AR_PHY_TX_FORCED_GAIN, 0);
3106
3107 AR_WRITE(sc, AR_PHY_PWRTX_RATE1,
3108 (power[ATHN_POWER_OFDM18 ] & 0x3f) << 24 |
3109 (power[ATHN_POWER_OFDM12 ] & 0x3f) << 16 |
3110 (power[ATHN_POWER_OFDM9 ] & 0x3f) << 8 |
3111 (power[ATHN_POWER_OFDM6 ] & 0x3f));
3112 AR_WRITE(sc, AR_PHY_PWRTX_RATE2,
3113 (power[ATHN_POWER_OFDM54 ] & 0x3f) << 24 |
3114 (power[ATHN_POWER_OFDM48 ] & 0x3f) << 16 |
3115 (power[ATHN_POWER_OFDM36 ] & 0x3f) << 8 |
3116 (power[ATHN_POWER_OFDM24 ] & 0x3f));
3117 AR_WRITE(sc, AR_PHY_PWRTX_RATE3,
3118 (power[ATHN_POWER_CCK2_SP ] & 0x3f) << 24 |
3119 (power[ATHN_POWER_CCK2_LP ] & 0x3f) << 16 |
3120 /* NB: No eXtended Range for AR9003. */
3121 (power[ATHN_POWER_CCK1_LP ] & 0x3f));
3122 AR_WRITE(sc, AR_PHY_PWRTX_RATE4,
3123 (power[ATHN_POWER_CCK11_SP] & 0x3f) << 24 |
3124 (power[ATHN_POWER_CCK11_LP] & 0x3f) << 16 |
3125 (power[ATHN_POWER_CCK55_SP] & 0x3f) << 8 |
3126 (power[ATHN_POWER_CCK55_LP] & 0x3f));
3127 /*
3128 * NB: AR_PHY_PWRTX_RATE5 needs to be written even if HT is disabled
3129 * because it is read by PA predistortion functions.
3130 */
3131 AR_WRITE(sc, AR_PHY_PWRTX_RATE5,
3132 (power[ATHN_POWER_HT20( 5)] & 0x3f) << 24 |
3133 (power[ATHN_POWER_HT20( 4)] & 0x3f) << 16 |
3134 (power[ATHN_POWER_HT20( 1)] & 0x3f) << 8 |
3135 (power[ATHN_POWER_HT20( 0)] & 0x3f));
3136 #ifndef IEEE80211_NO_HT
3137 AR_WRITE(sc, AR_PHY_PWRTX_RATE6,
3138 (power[ATHN_POWER_HT20(13)] & 0x3f) << 24 |
3139 (power[ATHN_POWER_HT20(12)] & 0x3f) << 16 |
3140 (power[ATHN_POWER_HT20( 7)] & 0x3f) << 8 |
3141 (power[ATHN_POWER_HT20( 6)] & 0x3f));
3142 AR_WRITE(sc, AR_PHY_PWRTX_RATE7,
3143 (power[ATHN_POWER_HT40( 5)] & 0x3f) << 24 |
3144 (power[ATHN_POWER_HT40( 4)] & 0x3f) << 16 |
3145 (power[ATHN_POWER_HT40( 1)] & 0x3f) << 8 |
3146 (power[ATHN_POWER_HT40( 0)] & 0x3f));
3147 AR_WRITE(sc, AR_PHY_PWRTX_RATE8,
3148 (power[ATHN_POWER_HT40(13)] & 0x3f) << 24 |
3149 (power[ATHN_POWER_HT40(12)] & 0x3f) << 16 |
3150 (power[ATHN_POWER_HT40( 7)] & 0x3f) << 8 |
3151 (power[ATHN_POWER_HT40( 6)] & 0x3f));
3152 AR_WRITE(sc, AR_PHY_PWRTX_RATE10,
3153 (power[ATHN_POWER_HT20(21)] & 0x3f) << 24 |
3154 (power[ATHN_POWER_HT20(20)] & 0x3f) << 16 |
3155 (power[ATHN_POWER_HT20(15)] & 0x3f) << 8 |
3156 (power[ATHN_POWER_HT20(14)] & 0x3f));
3157 AR_WRITE(sc, AR_PHY_PWRTX_RATE11,
3158 (power[ATHN_POWER_HT40(23)] & 0x3f) << 24 |
3159 (power[ATHN_POWER_HT40(22)] & 0x3f) << 16 |
3160 (power[ATHN_POWER_HT20(23)] & 0x3f) << 8 |
3161 (power[ATHN_POWER_HT20(22)] & 0x3f));
3162 AR_WRITE(sc, AR_PHY_PWRTX_RATE12,
3163 (power[ATHN_POWER_HT40(21)] & 0x3f) << 24 |
3164 (power[ATHN_POWER_HT40(20)] & 0x3f) << 16 |
3165 (power[ATHN_POWER_HT40(15)] & 0x3f) << 8 |
3166 (power[ATHN_POWER_HT40(14)] & 0x3f));
3167 #endif
3168 AR_WRITE_BARRIER(sc);
3169 }
3170
3171 Static void
3172 ar9003_reset_rx_gain(struct athn_softc *sc, struct ieee80211_channel *c)
3173 {
3174 #define X(x) ((uint32_t)(x) << 2)
3175 const struct athn_gain *prog = sc->sc_rx_gain;
3176 const uint32_t *pvals;
3177 int i;
3178
3179 if (IEEE80211_IS_CHAN_2GHZ(c))
3180 pvals = prog->vals_2g;
3181 else
3182 pvals = prog->vals_5g;
3183 for (i = 0; i < prog->nregs; i++)
3184 AR_WRITE(sc, X(prog->regs[i]), pvals[i]);
3185 AR_WRITE_BARRIER(sc);
3186 #undef X
3187 }
3188
3189 Static void
3190 ar9003_reset_tx_gain(struct athn_softc *sc, struct ieee80211_channel *c)
3191 {
3192 #define X(x) ((uint32_t)(x) << 2)
3193 const struct athn_gain *prog = sc->sc_tx_gain;
3194 const uint32_t *pvals;
3195 int i;
3196
3197 if (IEEE80211_IS_CHAN_2GHZ(c))
3198 pvals = prog->vals_2g;
3199 else
3200 pvals = prog->vals_5g;
3201 for (i = 0; i < prog->nregs; i++)
3202 AR_WRITE(sc, X(prog->regs[i]), pvals[i]);
3203 AR_WRITE_BARRIER(sc);
3204 #undef X
3205 }
3206
3207 Static void
3208 ar9003_hw_init(struct athn_softc *sc, struct ieee80211_channel *c,
3209 struct ieee80211_channel *extc)
3210 {
3211 #define X(x) ((uint32_t)(x) << 2)
3212 struct athn_ops *ops = &sc->sc_ops;
3213 const struct athn_ini *ini = sc->sc_ini;
3214 const uint32_t *pvals;
3215 uint32_t reg;
3216 int i;
3217
3218 /*
3219 * The common init values include the pre and core phases for the
3220 * SoC, MAC, BB and Radio subsystems.
3221 */
3222 DPRINTFN(DBG_INIT, sc, "writing pre and core init vals\n");
3223 for (i = 0; i < ini->ncmregs; i++) {
3224 AR_WRITE(sc, X(ini->cmregs[i]), ini->cmvals[i]);
3225 if (AR_IS_ANALOG_REG(X(ini->cmregs[i])))
3226 DELAY(100);
3227 if ((i & 0x1f) == 0)
3228 DELAY(1);
3229 }
3230
3231 /*
3232 * The modal init values include the post phase for the SoC, MAC,
3233 * BB and Radio subsystems.
3234 */
3235 #ifndef IEEE80211_NO_HT
3236 if (extc != NULL) {
3237 if (IEEE80211_IS_CHAN_2GHZ(c))
3238 pvals = ini->vals_2g40;
3239 else
3240 pvals = ini->vals_5g40;
3241 }
3242 else
3243 #endif
3244 {
3245 if (IEEE80211_IS_CHAN_2GHZ(c))
3246 pvals = ini->vals_2g20;
3247 else
3248 pvals = ini->vals_5g20;
3249 }
3250 DPRINTFN(DBG_INIT, sc, "writing post init vals\n");
3251 for (i = 0; i < ini->nregs; i++) {
3252 AR_WRITE(sc, X(ini->regs[i]), pvals[i]);
3253 if (AR_IS_ANALOG_REG(X(ini->regs[i])))
3254 DELAY(100);
3255 if ((i & 0x1f) == 0)
3256 DELAY(1);
3257 }
3258
3259 if (sc->sc_rx_gain != NULL)
3260 ar9003_reset_rx_gain(sc, c);
3261 if (sc->sc_tx_gain != NULL)
3262 ar9003_reset_tx_gain(sc, c);
3263
3264 if (IEEE80211_IS_CHAN_5GHZ(c) &&
3265 (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)) {
3266 /* Update modal values for fast PLL clock. */
3267 #ifndef IEEE80211_NO_HT
3268 if (extc != NULL)
3269 pvals = ini->fastvals_5g40;
3270 else
3271 #endif
3272 pvals = ini->fastvals_5g20;
3273 DPRINTFN(DBG_INIT, sc, "writing fast pll clock init vals\n");
3274 for (i = 0; i < ini->nfastregs; i++) {
3275 AR_WRITE(sc, X(ini->fastregs[i]), pvals[i]);
3276 if (AR_IS_ANALOG_REG(X(ini->fastregs[i])))
3277 DELAY(100);
3278 if ((i & 0x1f) == 0)
3279 DELAY(1);
3280 }
3281 }
3282
3283 /*
3284 * Set the RX_ABORT and RX_DIS bits to prevent frames with corrupted
3285 * descriptor status.
3286 */
3287 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
3288
3289 reg = AR_READ(sc, AR_PCU_MISC_MODE2);
3290 reg &= ~AR_PCU_MISC_MODE2_ADHOC_MCAST_KEYID_ENABLE;
3291 reg |= AR_PCU_MISC_MODE2_AGG_WEP_ENABLE_FIX;
3292 reg |= AR_PCU_MISC_MODE2_ENABLE_AGGWEP;
3293 AR_WRITE(sc, AR_PCU_MISC_MODE2, reg);
3294 AR_WRITE_BARRIER(sc);
3295
3296 ar9003_set_phy(sc, c, extc);
3297 ar9003_init_chains(sc);
3298
3299 ops->set_txpower(sc, c, extc);
3300 #undef X
3301 }
3302
3303 PUBLIC void
3304 ar9003_get_lg_tpow(struct athn_softc *sc, struct ieee80211_channel *c,
3305 uint8_t ctl, const uint8_t *fbins,
3306 const struct ar_cal_target_power_leg *tgt, int nchans, uint8_t tpow[4])
3307 {
3308 uint8_t fbin;
3309 int i, delta, lo, hi;
3310
3311 lo = hi = -1;
3312 fbin = athn_chan2fbin(c);
3313 for (i = 0; i < nchans; i++) {
3314 delta = fbin - fbins[i];
3315 /* Find the largest sample that is <= our frequency. */
3316 if (delta >= 0 && (lo == -1 || delta < fbin - fbins[lo]))
3317 lo = i;
3318 /* Find the smallest sample that is >= our frequency. */
3319 if (delta <= 0 && (hi == -1 || delta > fbin - fbins[hi]))
3320 hi = i;
3321 }
3322 if (lo == -1)
3323 lo = hi;
3324 else if (hi == -1)
3325 hi = lo;
3326 /* Interpolate values. */
3327 for (i = 0; i < 4; i++) {
3328 tpow[i] = athn_interpolate(fbin,
3329 fbins[lo], tgt[lo].tPow2x[i],
3330 fbins[hi], tgt[hi].tPow2x[i]);
3331 }
3332 /* XXX Apply conformance test limit. */
3333 }
3334
3335 PUBLIC void
3336 ar9003_get_ht_tpow(struct athn_softc *sc, struct ieee80211_channel *c,
3337 uint8_t ctl, const uint8_t *fbins,
3338 const struct ar_cal_target_power_ht *tgt, int nchans, uint8_t tpow[14])
3339 {
3340 uint8_t fbin;
3341 int i, delta, lo, hi;
3342
3343 lo = hi = -1;
3344 fbin = athn_chan2fbin(c);
3345 for (i = 0; i < nchans; i++) {
3346 delta = fbin - fbins[i];
3347 /* Find the largest sample that is <= our frequency. */
3348 if (delta >= 0 && (lo == -1 || delta < fbin - fbins[lo]))
3349 lo = i;
3350 /* Find the smallest sample that is >= our frequency. */
3351 if (delta <= 0 && (hi == -1 || delta > fbin - fbins[hi]))
3352 hi = i;
3353 }
3354 if (lo == -1)
3355 lo = hi;
3356 else if (hi == -1)
3357 hi = lo;
3358 /* Interpolate values. */
3359 for (i = 0; i < 14; i++) {
3360 tpow[i] = athn_interpolate(fbin,
3361 fbins[lo], tgt[lo].tPow2x[i],
3362 fbins[hi], tgt[hi].tPow2x[i]);
3363 }
3364 /* XXX Apply conformance test limit. */
3365 }
3366
3367 /*
3368 * Adaptive noise immunity.
3369 */
3370 Static void
3371 ar9003_set_noise_immunity_level(struct athn_softc *sc, int level)
3372 {
3373 int high = level == 4;
3374 uint32_t reg;
3375
3376 reg = AR_READ(sc, AR_PHY_DESIRED_SZ);
3377 reg = RW(reg, AR_PHY_DESIRED_SZ_TOT_DES, high ? -62 : -55);
3378 AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg);
3379
3380 reg = AR_READ(sc, AR_PHY_AGC);
3381 reg = RW(reg, AR_PHY_AGC_COARSE_LOW, high ? -70 : -64);
3382 reg = RW(reg, AR_PHY_AGC_COARSE_HIGH, high ? -12 : -14);
3383 AR_WRITE(sc, AR_PHY_AGC, reg);
3384
3385 reg = AR_READ(sc, AR_PHY_FIND_SIG);
3386 reg = RW(reg, AR_PHY_FIND_SIG_FIRPWR, high ? -80 : -78);
3387 AR_WRITE(sc, AR_PHY_FIND_SIG, reg);
3388 AR_WRITE_BARRIER(sc);
3389 }
3390
3391 Static void
3392 ar9003_enable_ofdm_weak_signal(struct athn_softc *sc)
3393 {
3394 uint32_t reg;
3395
3396 reg = AR_READ(sc, AR_PHY_SFCORR_LOW);
3397 reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 50);
3398 reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 40);
3399 reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 48);
3400 AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg);
3401
3402 reg = AR_READ(sc, AR_PHY_SFCORR);
3403 reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 77);
3404 reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 64);
3405 reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 16);
3406 AR_WRITE(sc, AR_PHY_SFCORR, reg);
3407
3408 reg = AR_READ(sc, AR_PHY_SFCORR_EXT);
3409 reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 50);
3410 reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 40);
3411 reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 77);
3412 reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 64);
3413 AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg);
3414
3415 AR_SETBITS(sc, AR_PHY_SFCORR_LOW,
3416 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
3417 AR_WRITE_BARRIER(sc);
3418 }
3419
3420 Static void
3421 ar9003_disable_ofdm_weak_signal(struct athn_softc *sc)
3422 {
3423 uint32_t reg;
3424
3425 reg = AR_READ(sc, AR_PHY_SFCORR_LOW);
3426 reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 127);
3427 reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 127);
3428 reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 63);
3429 AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg);
3430
3431 reg = AR_READ(sc, AR_PHY_SFCORR);
3432 reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 127);
3433 reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 127);
3434 reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 31);
3435 AR_WRITE(sc, AR_PHY_SFCORR, reg);
3436
3437 reg = AR_READ(sc, AR_PHY_SFCORR_EXT);
3438 reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 127);
3439 reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 127);
3440 reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 127);
3441 reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 127);
3442 AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg);
3443
3444 AR_CLRBITS(sc, AR_PHY_SFCORR_LOW,
3445 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
3446 AR_WRITE_BARRIER(sc);
3447 }
3448
3449 Static void
3450 ar9003_set_cck_weak_signal(struct athn_softc *sc, int high)
3451 {
3452 uint32_t reg;
3453
3454 reg = AR_READ(sc, AR_PHY_CCK_DETECT);
3455 reg = RW(reg, AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK, high ? 6 : 8);
3456 AR_WRITE(sc, AR_PHY_CCK_DETECT, reg);
3457 AR_WRITE_BARRIER(sc);
3458 }
3459
3460 Static void
3461 ar9003_set_firstep_level(struct athn_softc *sc, int level)
3462 {
3463 uint32_t reg;
3464
3465 reg = AR_READ(sc, AR_PHY_FIND_SIG);
3466 reg = RW(reg, AR_PHY_FIND_SIG_FIRSTEP, level * 4);
3467 AR_WRITE(sc, AR_PHY_FIND_SIG, reg);
3468 AR_WRITE_BARRIER(sc);
3469 }
3470
3471 Static void
3472 ar9003_set_spur_immunity_level(struct athn_softc *sc, int level)
3473 {
3474 uint32_t reg;
3475
3476 reg = AR_READ(sc, AR_PHY_TIMING5);
3477 reg = RW(reg, AR_PHY_TIMING5_CYCPWR_THR1, (level + 1) * 2);
3478 AR_WRITE(sc, AR_PHY_TIMING5, reg);
3479 AR_WRITE_BARRIER(sc);
3480 }
3481