Home | History | Annotate | Line # | Download | only in ic
arn9003.c revision 1.14.2.1
      1 /*	$NetBSD: arn9003.c,v 1.14.2.1 2020/02/29 20:19:08 ad Exp $	*/
      2 /*	$OpenBSD: ar9003.c,v 1.25 2012/10/20 09:53:32 stsp Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2010 Damien Bergamini <damien.bergamini (at) free.fr>
      6  * Copyright (c) 2010 Atheros Communications Inc.
      7  *
      8  * Permission to use, copy, modify, and/or distribute this software for any
      9  * purpose with or without fee is hereby granted, provided that the above
     10  * copyright notice and this permission notice appear in all copies.
     11  *
     12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     19  */
     20 
     21 /*
     22  * Driver for Atheros 802.11a/g/n chipsets.
     23  * Routines for AR9003 family.
     24  */
     25 
     26 #include <sys/cdefs.h>
     27 __KERNEL_RCSID(0, "$NetBSD: arn9003.c,v 1.14.2.1 2020/02/29 20:19:08 ad Exp $");
     28 
     29 #include <sys/param.h>
     30 #include <sys/sockio.h>
     31 #include <sys/mbuf.h>
     32 #include <sys/kernel.h>
     33 #include <sys/socket.h>
     34 #include <sys/systm.h>
     35 #include <sys/malloc.h>
     36 #include <sys/queue.h>
     37 #include <sys/callout.h>
     38 #include <sys/conf.h>
     39 #include <sys/device.h>
     40 
     41 #include <sys/bus.h>
     42 #include <sys/endian.h>
     43 #include <sys/intr.h>
     44 
     45 #include <net/bpf.h>
     46 #include <net/if.h>
     47 #include <net/if_arp.h>
     48 #include <net/if_dl.h>
     49 #include <net/if_ether.h>
     50 #include <net/if_media.h>
     51 #include <net/if_types.h>
     52 
     53 #include <netinet/in.h>
     54 #include <netinet/in_systm.h>
     55 #include <netinet/in_var.h>
     56 #include <netinet/ip.h>
     57 
     58 #include <net80211/ieee80211_var.h>
     59 #include <net80211/ieee80211_amrr.h>
     60 #include <net80211/ieee80211_radiotap.h>
     61 
     62 #include <dev/ic/athnreg.h>
     63 #include <dev/ic/athnvar.h>
     64 #include <dev/ic/arn9003reg.h>
     65 #include <dev/ic/arn9003.h>
     66 
     67 #define Static static
     68 
     69 Static void	ar9003_calib_iq(struct athn_softc *);
     70 Static int	ar9003_calib_tx_iq(struct athn_softc *);
     71 Static int	ar9003_compute_predistortion(struct athn_softc *,
     72 		    const uint32_t *, const uint32_t *);
     73 Static void	ar9003_disable_ofdm_weak_signal(struct athn_softc *);
     74 Static void	ar9003_disable_phy(struct athn_softc *);
     75 Static int	ar9003_dma_alloc(struct athn_softc *);
     76 Static void	ar9003_dma_free(struct athn_softc *);
     77 Static void	ar9003_do_calib(struct athn_softc *);
     78 Static void	ar9003_do_noisefloor_calib(struct athn_softc *);
     79 Static void	ar9003_enable_antenna_diversity(struct athn_softc *);
     80 Static void	ar9003_enable_ofdm_weak_signal(struct athn_softc *);
     81 Static void	ar9003_enable_predistorter(struct athn_softc *, int);
     82 Static int	ar9003_find_rom(struct athn_softc *);
     83 Static void	ar9003_force_txgain(struct athn_softc *, uint32_t);
     84 Static int	ar9003_get_desired_txgain(struct athn_softc *, int, int);
     85 Static int	ar9003_get_iq_corr(struct athn_softc *, int32_t[], int32_t[]);
     86 Static void	ar9003_gpio_config_input(struct athn_softc *, int);
     87 Static void	ar9003_gpio_config_output(struct athn_softc *, int, int);
     88 Static int	ar9003_gpio_read(struct athn_softc *, int);
     89 Static void	ar9003_gpio_write(struct athn_softc *, int, int);
     90 Static void	ar9003_hw_init(struct athn_softc *, struct ieee80211_channel *,
     91 		    struct ieee80211_channel *);
     92 Static void	ar9003_init_baseband(struct athn_softc *);
     93 Static void	ar9003_init_chains(struct athn_softc *);
     94 Static int	ar9003_intr_status(struct athn_softc *);
     95 Static int	ar9003_intr(struct athn_softc *);
     96 Static void	ar9003_next_calib(struct athn_softc *);
     97 Static void	ar9003_paprd_enable(struct athn_softc *);
     98 Static int	ar9003_paprd_tx_tone(struct athn_softc *);
     99 Static void	ar9003_paprd_tx_tone_done(struct athn_softc *);
    100 Static int	ar9003_read_eep_data(struct athn_softc *, uint32_t, void *,
    101 		    int);
    102 Static int	ar9003_read_eep_word(struct athn_softc *, uint32_t,
    103 		    uint16_t *);
    104 Static int	ar9003_read_otp_data(struct athn_softc *, uint32_t, void *,
    105 		    int);
    106 Static int	ar9003_read_otp_word(struct athn_softc *, uint32_t,
    107 		    uint32_t *);
    108 Static int	ar9003_read_rom(struct athn_softc *);
    109 Static void	ar9003_reset_rx_gain(struct athn_softc *,
    110 		    struct ieee80211_channel *);
    111 Static void	ar9003_reset_tx_gain(struct athn_softc *,
    112 		    struct ieee80211_channel *);
    113 Static int	ar9003_restore_rom_block(struct athn_softc *, uint8_t,
    114 		    uint8_t, const uint8_t *, size_t);
    115 Static void	ar9003_rf_bus_release(struct athn_softc *);
    116 Static int	ar9003_rf_bus_request(struct athn_softc *);
    117 Static void	ar9003_rfsilent_init(struct athn_softc *);
    118 Static int	ar9003_rx_alloc(struct athn_softc *, int, int);
    119 Static void	ar9003_rx_enable(struct athn_softc *);
    120 Static void	ar9003_rx_free(struct athn_softc *, int);
    121 Static void	ar9003_rx_intr(struct athn_softc *, int);
    122 Static int	ar9003_rx_process(struct athn_softc *, int);
    123 Static void	ar9003_rx_radiotap(struct athn_softc *, struct mbuf *,
    124 		    struct ar_rx_status *);
    125 Static void	ar9003_set_cck_weak_signal(struct athn_softc *, int);
    126 Static void	ar9003_set_delta_slope(struct athn_softc *,
    127 		    struct ieee80211_channel *, struct ieee80211_channel *);
    128 Static void	ar9003_set_firstep_level(struct athn_softc *, int);
    129 Static void	ar9003_set_noise_immunity_level(struct athn_softc *, int);
    130 Static void	ar9003_set_phy(struct athn_softc *, struct ieee80211_channel *,
    131 		    struct ieee80211_channel *);
    132 Static void	ar9003_set_rf_mode(struct athn_softc *,
    133 		    struct ieee80211_channel *);
    134 Static void	ar9003_set_rxchains(struct athn_softc *);
    135 Static void	ar9003_set_spur_immunity_level(struct athn_softc *, int);
    136 Static void	ar9003_set_training_gain(struct athn_softc *, int);
    137 Static int	ar9003_swba_intr(struct athn_softc *);
    138 Static int	ar9003_tx(struct athn_softc *, struct mbuf *,
    139 		    struct ieee80211_node *, int);
    140 Static int	ar9003_tx_alloc(struct athn_softc *);
    141 Static void	ar9003_tx_free(struct athn_softc *);
    142 Static void	ar9003_tx_intr(struct athn_softc *);
    143 Static int	ar9003_tx_process(struct athn_softc *);
    144 
    145 #ifdef notused
    146 Static void	ar9003_bb_load_noisefloor(struct athn_softc *);
    147 Static void	ar9003_get_noisefloor(struct athn_softc *,
    148 		    struct ieee80211_channel *);
    149 Static void	ar9003_paprd_calib(struct athn_softc *,
    150 		    struct ieee80211_channel *);
    151 Static void	ar9003_read_noisefloor(struct athn_softc *, int16_t *,
    152 		    int16_t *);
    153 Static void	ar9003_write_noisefloor(struct athn_softc *, int16_t *,
    154 		    int16_t *);
    155 Static void	ar9300_noisefloor_calib(struct athn_softc *);
    156 #endif /* notused */
    157 
    158 /*
    159  * XXX: See if_iwn.c:MCLGETIalt() for a better solution.
    160  * XXX: Put this in a header or in athn.c so it can be shared between
    161  *      ar5008.c and ar9003.c?
    162  */
    163 static struct mbuf *
    164 MCLGETI(struct athn_softc *sc __unused, int how,
    165     struct ifnet *ifp __unused, u_int size)
    166 {
    167 	struct mbuf *m;
    168 
    169 	MGETHDR(m, how, MT_DATA);
    170 	if (m == NULL)
    171 		return NULL;
    172 
    173 	MEXTMALLOC(m, size, how);
    174 	if ((m->m_flags & M_EXT) == 0) {
    175 		m_freem(m);
    176 		return NULL;
    177 	}
    178 	return m;
    179 }
    180 
    181 PUBLIC int
    182 ar9003_attach(struct athn_softc *sc)
    183 {
    184 	struct athn_ops *ops = &sc->sc_ops;
    185 	int error;
    186 
    187 	/* Set callbacks for AR9003 family. */
    188 	ops->gpio_read = ar9003_gpio_read;
    189 	ops->gpio_write = ar9003_gpio_write;
    190 	ops->gpio_config_input = ar9003_gpio_config_input;
    191 	ops->gpio_config_output = ar9003_gpio_config_output;
    192 	ops->rfsilent_init = ar9003_rfsilent_init;
    193 
    194 	ops->dma_alloc = ar9003_dma_alloc;
    195 	ops->dma_free = ar9003_dma_free;
    196 	ops->rx_enable = ar9003_rx_enable;
    197 	ops->intr_status = ar9003_intr_status;
    198 	ops->intr = ar9003_intr;
    199 	ops->tx = ar9003_tx;
    200 
    201 	ops->set_rf_mode = ar9003_set_rf_mode;
    202 	ops->rf_bus_request = ar9003_rf_bus_request;
    203 	ops->rf_bus_release = ar9003_rf_bus_release;
    204 	ops->set_phy = ar9003_set_phy;
    205 	ops->set_delta_slope = ar9003_set_delta_slope;
    206 	ops->enable_antenna_diversity = ar9003_enable_antenna_diversity;
    207 	ops->init_baseband = ar9003_init_baseband;
    208 	ops->disable_phy = ar9003_disable_phy;
    209 	ops->set_rxchains = ar9003_set_rxchains;
    210 	ops->noisefloor_calib = ar9003_do_noisefloor_calib;
    211 	ops->do_calib = ar9003_do_calib;
    212 	ops->next_calib = ar9003_next_calib;
    213 	ops->hw_init = ar9003_hw_init;
    214 
    215 	ops->set_noise_immunity_level = ar9003_set_noise_immunity_level;
    216 	ops->enable_ofdm_weak_signal = ar9003_enable_ofdm_weak_signal;
    217 	ops->disable_ofdm_weak_signal = ar9003_disable_ofdm_weak_signal;
    218 	ops->set_cck_weak_signal = ar9003_set_cck_weak_signal;
    219 	ops->set_firstep_level = ar9003_set_firstep_level;
    220 	ops->set_spur_immunity_level = ar9003_set_spur_immunity_level;
    221 
    222 	/* Set MAC registers offsets. */
    223 	sc->sc_obs_off = AR_OBS;
    224 	sc->sc_gpio_input_en_off = AR_GPIO_INPUT_EN_VAL;
    225 
    226 	if (!(sc->sc_flags & ATHN_FLAG_PCIE))
    227 		athn_config_nonpcie(sc);
    228 	else
    229 		athn_config_pcie(sc);
    230 
    231 	/* Determine ROM type and location. */
    232 	if ((error = ar9003_find_rom(sc)) != 0) {
    233 		aprint_error_dev(sc->sc_dev, "could not find ROM\n");
    234 		return error;
    235 	}
    236 	/* Read entire ROM content in memory. */
    237 	if ((error = ar9003_read_rom(sc)) != 0) {
    238 		aprint_error_dev(sc->sc_dev, "could not read ROM\n");
    239 		return error;
    240 	}
    241 
    242 	/* Determine if it is a non-enterprise AR9003 card. */
    243 	if (AR_READ(sc, AR_ENT_OTP) & AR_ENT_OTP_MPSD)
    244 		sc->sc_flags |= ATHN_FLAG_NON_ENTERPRISE;
    245 
    246 	ops->setup(sc);
    247 	return 0;
    248 }
    249 
    250 /*
    251  * Read 16-bit word from EEPROM.
    252  */
    253 Static int
    254 ar9003_read_eep_word(struct athn_softc *sc, uint32_t addr, uint16_t *val)
    255 {
    256 	uint32_t reg;
    257 	int ntries;
    258 
    259 	reg = AR_READ(sc, AR_EEPROM_OFFSET(addr));
    260 	for (ntries = 0; ntries < 1000; ntries++) {
    261 		reg = AR_READ(sc, AR_EEPROM_STATUS_DATA);
    262 		if (!(reg & (AR_EEPROM_STATUS_DATA_BUSY |
    263 		    AR_EEPROM_STATUS_DATA_PROT_ACCESS))) {
    264 			*val = MS(reg, AR_EEPROM_STATUS_DATA_VAL);
    265 			return 0;
    266 		}
    267 		DELAY(10);
    268 	}
    269 	*val = 0xffff;
    270 	return ETIMEDOUT;
    271 }
    272 
    273 /*
    274  * Read an arbitrary number of bytes at a specified address in EEPROM.
    275  * NB: The address may not be 16-bit aligned.
    276  */
    277 Static int
    278 ar9003_read_eep_data(struct athn_softc *sc, uint32_t addr, void *buf, int len)
    279 {
    280 	uint8_t *dst = buf;
    281 	uint16_t val;
    282 	int error;
    283 
    284 	if (len > 0 && (addr & 1)) {
    285 		/* Deal with non-aligned reads. */
    286 		addr >>= 1;
    287 		error = ar9003_read_eep_word(sc, addr, &val);
    288 		if (error != 0)
    289 			return error;
    290 		*dst++ = val & 0xff;
    291 		addr--;
    292 		len--;
    293 	}
    294 	else
    295 		addr >>= 1;
    296 	for (; len >= 2; addr--, len -= 2) {
    297 		error = ar9003_read_eep_word(sc, addr, &val);
    298 		if (error != 0)
    299 			return error;
    300 		*dst++ = val >> 8;
    301 		*dst++ = val & 0xff;
    302 	}
    303 	if (len > 0) {
    304 		error = ar9003_read_eep_word(sc, addr, &val);
    305 		if (error != 0)
    306 			return error;
    307 		*dst++ = val >> 8;
    308 	}
    309 	return 0;
    310 }
    311 
    312 /*
    313  * Read 32-bit word from OTPROM.
    314  */
    315 Static int
    316 ar9003_read_otp_word(struct athn_softc *sc, uint32_t addr, uint32_t *val)
    317 {
    318 	uint32_t reg;
    319 	int ntries;
    320 
    321 	reg = AR_READ(sc, AR_OTP_BASE(addr));
    322 	for (ntries = 0; ntries < 1000; ntries++) {
    323 		reg = AR_READ(sc, AR_OTP_STATUS);
    324 		if (MS(reg, AR_OTP_STATUS_TYPE) == AR_OTP_STATUS_VALID) {
    325 			*val = AR_READ(sc, AR_OTP_READ_DATA);
    326 			return 0;
    327 		}
    328 		DELAY(10);
    329 	}
    330 	return ETIMEDOUT;
    331 }
    332 
    333 /*
    334  * Read an arbitrary number of bytes at a specified address in OTPROM.
    335  * NB: The address may not be 32-bit aligned.
    336  */
    337 Static int
    338 ar9003_read_otp_data(struct athn_softc *sc, uint32_t addr, void *buf, int len)
    339 {
    340 	uint8_t *dst = buf;
    341 	uint32_t val;
    342 	int error;
    343 
    344 	/* NB: not optimal for non-aligned reads, but correct. */
    345 	for (; len > 0; addr--, len--) {
    346 		error = ar9003_read_otp_word(sc, addr >> 2, &val);
    347 		if (error != 0)
    348 			return error;
    349 		*dst++ = (val >> ((addr & 3) * 8)) & 0xff;
    350 	}
    351 	return 0;
    352 }
    353 
    354 /*
    355  * Determine if the chip has an external EEPROM or an OTPROM and its size.
    356  */
    357 Static int
    358 ar9003_find_rom(struct athn_softc *sc)
    359 {
    360 	struct athn_ops *ops = &sc->sc_ops;
    361 	uint32_t hdr;
    362 	int error;
    363 
    364 	/* Try EEPROM. */
    365 	ops->read_rom_data = ar9003_read_eep_data;
    366 
    367 	sc->sc_eep_size = AR_SREV_9485(sc) ? 4096 : 1024;
    368 	sc->sc_eep_base = sc->sc_eep_size - 1;
    369 	error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
    370 	if (error == 0 && hdr != 0 && hdr != 0xffffffff)
    371 		return 0;
    372 
    373 	sc->sc_eep_size = 512;
    374 	sc->sc_eep_base = sc->sc_eep_size - 1;
    375 	error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
    376 	if (error == 0 && hdr != 0 && hdr != 0xffffffff)
    377 		return 0;
    378 
    379 	/* Try OTPROM. */
    380 	ops->read_rom_data = ar9003_read_otp_data;
    381 
    382 	sc->sc_eep_size = 1024;
    383 	sc->sc_eep_base = sc->sc_eep_size - 1;
    384 	error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
    385 	if (error == 0 && hdr != 0 && hdr != 0xffffffff)
    386 		return 0;
    387 
    388 	sc->sc_eep_size = 512;
    389 	sc->sc_eep_base = sc->sc_eep_size - 1;
    390 	error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
    391 	if (error == 0 && hdr != 0 && hdr != 0xffffffff)
    392 		return 0;
    393 
    394 	return EIO;	/* Not found. */
    395 }
    396 
    397 Static int
    398 ar9003_restore_rom_block(struct athn_softc *sc, uint8_t alg, uint8_t ref,
    399     const uint8_t *buf, size_t len)
    400 {
    401 	const uint8_t *def, *ptr, *end;
    402 	uint8_t *eep = sc->sc_eep;
    403 	size_t off, clen;
    404 
    405 	if (alg == AR_EEP_COMPRESS_BLOCK) {
    406 		/* Block contains chunks that shadow ROM template. */
    407 		def = sc->sc_ops.get_rom_template(sc, ref);
    408 		if (def == NULL) {
    409 			DPRINTFN(DBG_INIT, sc, "unknown template image %d\n",
    410 			    ref);
    411 			return EINVAL;
    412 		}
    413 		/* Start with template. */
    414 		memcpy(eep, def, sc->sc_eep_size);
    415 		/* Shadow template with chunks. */
    416 		off = 0;	/* Offset in ROM image. */
    417 		ptr = buf;	/* Offset in block. */
    418 		end = buf + len;
    419 		/* Process chunks. */
    420 		while (ptr + 2 <= end) {
    421 			off += *ptr++;	/* Gap with previous chunk. */
    422 			clen = *ptr++;	/* Chunk length. */
    423 			/* Make sure block is large enough. */
    424 			if (ptr + clen > end)
    425 				return EINVAL;
    426 			/* Make sure chunk fits in ROM image. */
    427 			if (off + clen > sc->sc_eep_size)
    428 				return EINVAL;
    429 			/* Restore chunk. */
    430 			DPRINTFN(DBG_INIT, sc, "ROM chunk @%zd/%zd\n",
    431 			    off, clen);
    432 			memcpy(&eep[off], ptr, clen);
    433 			ptr += clen;
    434 			off += clen;
    435 		}
    436 	}
    437 	else if (alg == AR_EEP_COMPRESS_NONE) {
    438 		/* Block contains full ROM image. */
    439 		if (len != sc->sc_eep_size) {
    440 			DPRINTFN(DBG_INIT, sc, "block length mismatch %zd\n",
    441 			    len);
    442 			return EINVAL;
    443 		}
    444 		memcpy(eep, buf, len);
    445 	}
    446 	return 0;
    447 }
    448 
    449 Static int
    450 ar9003_read_rom(struct athn_softc *sc)
    451 {
    452 	struct athn_ops *ops = &sc->sc_ops;
    453 	uint8_t *buf, *ptr, alg, ref;
    454 	uint16_t sum, rsum;
    455 	uint32_t hdr;
    456 	int error, addr;
    457 	size_t len, i, j;
    458 
    459 	/* Allocate space to store ROM in host memory. */
    460 	sc->sc_eep = malloc(sc->sc_eep_size, M_DEVBUF, M_WAITOK);
    461 
    462 	/* Allocate temporary buffer to store ROM blocks. */
    463 	buf = malloc(2048, M_DEVBUF, M_WAITOK);
    464 
    465 	/* Restore vendor-specified ROM blocks. */
    466 	addr = sc->sc_eep_base;
    467 	for (i = 0; i < 100; i++) {
    468 		/* Read block header. */
    469 		error = ops->read_rom_data(sc, addr, &hdr, sizeof(hdr));
    470 		if (error != 0)
    471 			break;
    472 		if (hdr == 0 || hdr == 0xffffffff)
    473 			break;
    474 		addr -= sizeof(hdr);
    475 
    476 		/* Extract bits from header. */
    477 		ptr = (uint8_t *)&hdr;
    478 		alg = (ptr[0] & 0xe0) >> 5;
    479 		ref = (ptr[1] & 0x80) >> 2 | (ptr[0] & 0x1f);
    480 		len = (ptr[1] & 0x7f) << 4 | (ptr[2] & 0xf0) >> 4;
    481 		DPRINTFN(DBG_INIT, sc,
    482 		    "ROM block %zd: alg=%d ref=%d len=%zd\n",
    483 		    i, alg, ref, len);
    484 
    485 		/* Read block data (len <= 0x7ff). */
    486 		error = ops->read_rom_data(sc, addr, buf, len);
    487 		if (error != 0)
    488 			break;
    489 		addr -= len;
    490 
    491 		/* Read block checksum. */
    492 		error = ops->read_rom_data(sc, addr, &sum, sizeof(sum));
    493 		if (error != 0)
    494 			break;
    495 		addr -= sizeof(sum);
    496 
    497 		/* Compute block checksum. */
    498 		rsum = 0;
    499 		for (j = 0; j < len; j++)
    500 			rsum += buf[j];
    501 		/* Compare to that in ROM. */
    502 		if (le16toh(sum) != rsum) {
    503 			DPRINTFN(DBG_INIT, sc,
    504 			    "bad block checksum 0x%x/0x%x\n",
    505 			    le16toh(sum), rsum);
    506 			continue;	/* Skip bad block. */
    507 		}
    508 		/* Checksum is correct, restore block. */
    509 		ar9003_restore_rom_block(sc, alg, ref, buf, len);
    510 	}
    511 #if BYTE_ORDER == BIG_ENDIAN
    512 	/* NB: ROM is always little endian. */
    513 	if (error == 0)
    514 		ops->swap_rom(sc);
    515 #endif
    516 	free(buf, M_DEVBUF);
    517 	return error;
    518 }
    519 
    520 /*
    521  * Access to General Purpose Input/Output ports.
    522  */
    523 Static int
    524 ar9003_gpio_read(struct athn_softc *sc, int pin)
    525 {
    526 
    527 	KASSERT(pin < sc->sc_ngpiopins);
    528 	return ((AR_READ(sc, AR_GPIO_IN) & AR9300_GPIO_IN_VAL) &
    529 	    (1 << pin)) != 0;
    530 }
    531 
    532 Static void
    533 ar9003_gpio_write(struct athn_softc *sc, int pin, int set)
    534 {
    535 	uint32_t reg;
    536 
    537 	KASSERT(pin < sc->sc_ngpiopins);
    538 	reg = AR_READ(sc, AR_GPIO_IN_OUT);
    539 	if (set)
    540 		reg |= 1 << pin;
    541 	else
    542 		reg &= ~(1 << pin);
    543 	AR_WRITE(sc, AR_GPIO_IN_OUT, reg);
    544 	AR_WRITE_BARRIER(sc);
    545 }
    546 
    547 Static void
    548 ar9003_gpio_config_input(struct athn_softc *sc, int pin)
    549 {
    550 	uint32_t reg;
    551 
    552 	reg = AR_READ(sc, AR_GPIO_OE_OUT);
    553 	reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2));
    554 	reg |= AR_GPIO_OE_OUT_DRV_NO << (pin * 2);
    555 	AR_WRITE(sc, AR_GPIO_OE_OUT, reg);
    556 	AR_WRITE_BARRIER(sc);
    557 }
    558 
    559 Static void
    560 ar9003_gpio_config_output(struct athn_softc *sc, int pin, int type)
    561 {
    562 	uint32_t reg;
    563 	int mux, off;
    564 
    565 	mux = pin / 6;
    566 	off = pin % 6;
    567 
    568 	reg = AR_READ(sc, AR_GPIO_OUTPUT_MUX(mux));
    569 	reg &= ~(0x1f << (off * 5));
    570 	reg |= (type & 0x1f) << (off * 5);
    571 	AR_WRITE(sc, AR_GPIO_OUTPUT_MUX(mux), reg);
    572 
    573 	reg = AR_READ(sc, AR_GPIO_OE_OUT);
    574 	reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2));
    575 	reg |= AR_GPIO_OE_OUT_DRV_ALL << (pin * 2);
    576 	AR_WRITE(sc, AR_GPIO_OE_OUT, reg);
    577 	AR_WRITE_BARRIER(sc);
    578 }
    579 
    580 Static void
    581 ar9003_rfsilent_init(struct athn_softc *sc)
    582 {
    583 	uint32_t reg;
    584 
    585 	/* Configure hardware radio switch. */
    586 	AR_SETBITS(sc, AR_GPIO_INPUT_EN_VAL, AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
    587 	reg = AR_READ(sc, AR_GPIO_INPUT_MUX2);
    588 	reg = RW(reg, AR_GPIO_INPUT_MUX2_RFSILENT, 0);
    589 	AR_WRITE(sc, AR_GPIO_INPUT_MUX2, reg);
    590 	ar9003_gpio_config_input(sc, sc->sc_rfsilent_pin);
    591 	AR_SETBITS(sc, AR_PHY_TEST, AR_PHY_TEST_RFSILENT_BB);
    592 	if (!(sc->sc_flags & ATHN_FLAG_RFSILENT_REVERSED)) {
    593 		AR_SETBITS(sc, AR_GPIO_INTR_POL,
    594 		    AR_GPIO_INTR_POL_PIN(sc->sc_rfsilent_pin));
    595 	}
    596 	AR_WRITE_BARRIER(sc);
    597 }
    598 
    599 Static int
    600 ar9003_dma_alloc(struct athn_softc *sc)
    601 {
    602 	int error;
    603 
    604 	error = ar9003_tx_alloc(sc);
    605 	if (error != 0)
    606 		return error;
    607 
    608 	error = ar9003_rx_alloc(sc, ATHN_QID_LP, AR9003_RX_LP_QDEPTH);
    609 	if (error != 0)
    610 		return error;
    611 
    612 	error = ar9003_rx_alloc(sc, ATHN_QID_HP, AR9003_RX_HP_QDEPTH);
    613 	if (error != 0)
    614 		return error;
    615 
    616 	return 0;
    617 }
    618 
    619 Static void
    620 ar9003_dma_free(struct athn_softc *sc)
    621 {
    622 
    623 	ar9003_tx_free(sc);
    624 	ar9003_rx_free(sc, ATHN_QID_LP);
    625 	ar9003_rx_free(sc, ATHN_QID_HP);
    626 }
    627 
    628 Static int
    629 ar9003_tx_alloc(struct athn_softc *sc)
    630 {
    631 	struct athn_tx_buf *bf;
    632 	bus_size_t size;
    633 	int error, nsegs, i;
    634 
    635 	/*
    636 	 * Allocate Tx status ring.
    637 	 */
    638 	size = AR9003_NTXSTATUS * sizeof(struct ar_tx_status);
    639 
    640 	error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
    641 	    BUS_DMA_NOWAIT, &sc->sc_txsmap);
    642 	if (error != 0)
    643 		goto fail;
    644 
    645 	error = bus_dmamem_alloc(sc->sc_dmat, size, 4, 0, &sc->sc_txsseg, 1,
    646 // XXX	    &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
    647 	    &nsegs, BUS_DMA_NOWAIT);
    648 	if (error != 0)
    649 		goto fail;
    650 
    651 	error = bus_dmamem_map(sc->sc_dmat, &sc->sc_txsseg, 1, size,
    652 	    (void **)&sc->sc_txsring, BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    653 	if (error != 0)
    654 		goto fail;
    655 
    656 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_txsmap, sc->sc_txsring,
    657 	     size, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
    658 	if (error != 0)
    659 		goto fail;
    660 
    661 	/*
    662 	 * Allocate a pool of Tx descriptors shared between all Tx queues.
    663 	 */
    664 	size = ATHN_NTXBUFS * sizeof(struct ar_tx_desc);
    665 
    666 	error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
    667 	    BUS_DMA_NOWAIT, &sc->sc_map);
    668 	if (error != 0)
    669 		goto fail;
    670 
    671 	error = bus_dmamem_alloc(sc->sc_dmat, size, 4, 0, &sc->sc_seg, 1,
    672 // XXX	    &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
    673 	    &nsegs, BUS_DMA_NOWAIT);
    674 	if (error != 0)
    675 		goto fail;
    676 
    677 	error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, 1, size,
    678 	    (void **)&sc->sc_descs, BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    679 	if (error != 0)
    680 		goto fail;
    681 
    682 	error = bus_dmamap_load(sc->sc_dmat, sc->sc_map, sc->sc_descs, size,
    683 	    NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
    684 	if (error != 0)
    685 		goto fail;
    686 
    687 	SIMPLEQ_INIT(&sc->sc_txbufs);
    688 	for (i = 0; i < ATHN_NTXBUFS; i++) {
    689 		bf = &sc->sc_txpool[i];
    690 
    691 		error = bus_dmamap_create(sc->sc_dmat, ATHN_TXBUFSZ,
    692 		    AR9003_MAX_SCATTER, ATHN_TXBUFSZ, 0, BUS_DMA_NOWAIT,
    693 		    &bf->bf_map);
    694 		if (error != 0) {
    695 			aprint_error_dev(sc->sc_dev,
    696 			    "could not create Tx buf DMA map\n");
    697 			goto fail;
    698 		}
    699 
    700 		bf->bf_descs = &((struct ar_tx_desc *)sc->sc_descs)[i];
    701 		bf->bf_daddr = sc->sc_map->dm_segs[0].ds_addr +
    702 		    i * sizeof(struct ar_tx_desc);
    703 
    704 		SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
    705 	}
    706 	return 0;
    707  fail:
    708 	ar9003_tx_free(sc);
    709 	return error;
    710 }
    711 
    712 Static void
    713 ar9003_tx_free(struct athn_softc *sc)
    714 {
    715 	struct athn_tx_buf *bf;
    716 	int i;
    717 
    718 	for (i = 0; i < ATHN_NTXBUFS; i++) {
    719 		bf = &sc->sc_txpool[i];
    720 
    721 		if (bf->bf_map != NULL)
    722 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_map);
    723 	}
    724 	/* Free Tx descriptors. */
    725 	if (sc->sc_map != NULL) {
    726 		if (sc->sc_descs != NULL) {
    727 			bus_dmamap_unload(sc->sc_dmat, sc->sc_map);
    728 			bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
    729 			    ATHN_NTXBUFS * sizeof(struct ar_tx_desc));
    730 			bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
    731 		}
    732 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_map);
    733 	}
    734 	/* Free Tx status ring. */
    735 	if (sc->sc_txsmap != NULL) {
    736 		if (sc->sc_txsring != NULL) {
    737 			bus_dmamap_unload(sc->sc_dmat, sc->sc_txsmap);
    738 			bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_txsring,
    739 			     AR9003_NTXSTATUS * sizeof(struct ar_tx_status));
    740 			bus_dmamem_free(sc->sc_dmat, &sc->sc_txsseg, 1);
    741 		}
    742 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsmap);
    743 	}
    744 }
    745 
    746 Static int
    747 ar9003_rx_alloc(struct athn_softc *sc, int qid, int count)
    748 {
    749 	struct athn_rxq *rxq = &sc->sc_rxq[qid];
    750 	struct athn_rx_buf *bf;
    751 	struct ar_rx_status *ds;
    752 	int error, i;
    753 
    754 	rxq->bf = malloc(count * sizeof(*bf), M_DEVBUF, M_WAITOK | M_ZERO);
    755 	rxq->count = count;
    756 
    757 	for (i = 0; i < rxq->count; i++) {
    758 		bf = &rxq->bf[i];
    759 
    760 		error = bus_dmamap_create(sc->sc_dmat, ATHN_RXBUFSZ, 1,
    761 		    ATHN_RXBUFSZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    762 		    &bf->bf_map);
    763 		if (error != 0) {
    764 			aprint_error_dev(sc->sc_dev,
    765 			    "could not create Rx buf DMA map\n");
    766 			goto fail;
    767 		}
    768 		/*
    769 		 * Assumes MCLGETI returns cache-line-size aligned buffers.
    770 		 */
    771 		bf->bf_m = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ);
    772 		if (bf->bf_m == NULL) {
    773 			aprint_error_dev(sc->sc_dev,
    774 			    "could not allocate Rx mbuf\n");
    775 			error = ENOBUFS;
    776 			goto fail;
    777 		}
    778 
    779 		error = bus_dmamap_load(sc->sc_dmat, bf->bf_map,
    780 		    mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL,
    781 		    BUS_DMA_NOWAIT);
    782 		if (error != 0) {
    783 			aprint_error_dev(sc->sc_dev,
    784 			    "could not DMA map Rx buffer\n");
    785 			goto fail;
    786 		}
    787 
    788 		ds = mtod(bf->bf_m, struct ar_rx_status *);
    789 		memset(ds, 0, sizeof(*ds));
    790 		bf->bf_desc = ds;
    791 		bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr;
    792 
    793 		bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
    794 		    BUS_DMASYNC_PREREAD);
    795 	}
    796 	return 0;
    797  fail:
    798 	ar9003_rx_free(sc, qid);
    799 	return error;
    800 }
    801 
    802 Static void
    803 ar9003_rx_free(struct athn_softc *sc, int qid)
    804 {
    805 	struct athn_rxq *rxq = &sc->sc_rxq[qid];
    806 	struct athn_rx_buf *bf;
    807 	int i;
    808 
    809 	if (rxq->bf == NULL)
    810 		return;
    811 	for (i = 0; i < rxq->count; i++) {
    812 		bf = &rxq->bf[i];
    813 
    814 		if (bf->bf_map != NULL)
    815 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_map);
    816 		if (bf->bf_m != NULL)
    817 			m_freem(bf->bf_m);
    818 	}
    819 	free(rxq->bf, M_DEVBUF);
    820 }
    821 
    822 PUBLIC void
    823 ar9003_reset_txsring(struct athn_softc *sc)
    824 {
    825 
    826 	sc->sc_txscur = 0;
    827 	memset(sc->sc_txsring, 0, AR9003_NTXSTATUS * sizeof(struct ar_tx_status));
    828 	AR_WRITE(sc, AR_Q_STATUS_RING_START,
    829 	    sc->sc_txsmap->dm_segs[0].ds_addr);
    830 	AR_WRITE(sc, AR_Q_STATUS_RING_END,
    831 	    sc->sc_txsmap->dm_segs[0].ds_addr + sc->sc_txsmap->dm_segs[0].ds_len);
    832 	AR_WRITE_BARRIER(sc);
    833 }
    834 
    835 Static void
    836 ar9003_rx_enable(struct athn_softc *sc)
    837 {
    838 	struct athn_rxq *rxq;
    839 	struct athn_rx_buf *bf;
    840 	struct ar_rx_status *ds;
    841 	uint32_t reg;
    842 	int qid, i;
    843 
    844 	reg = AR_READ(sc, AR_RXBP_THRESH);
    845 	reg = RW(reg, AR_RXBP_THRESH_HP, 1);
    846 	reg = RW(reg, AR_RXBP_THRESH_LP, 1);
    847 	AR_WRITE(sc, AR_RXBP_THRESH, reg);
    848 
    849 	/* Set Rx buffer size. */
    850 	AR_WRITE(sc, AR_DATABUF_SIZE, ATHN_RXBUFSZ - sizeof(*ds));
    851 
    852 	for (qid = 0; qid < 2; qid++) {
    853 		rxq = &sc->sc_rxq[qid];
    854 
    855 		/* Setup Rx status descriptors. */
    856 		SIMPLEQ_INIT(&rxq->head);
    857 		for (i = 0; i < rxq->count; i++) {
    858 			bf = &rxq->bf[i];
    859 			ds = bf->bf_desc;
    860 
    861 			memset(ds, 0, sizeof(*ds));
    862 			if (qid == ATHN_QID_LP)
    863 				AR_WRITE(sc, AR_LP_RXDP, bf->bf_daddr);
    864 			else
    865 				AR_WRITE(sc, AR_HP_RXDP, bf->bf_daddr);
    866 			AR_WRITE_BARRIER(sc);
    867 			SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list);
    868 		}
    869 	}
    870 	/* Enable Rx. */
    871 	AR_WRITE(sc, AR_CR, 0);
    872 	AR_WRITE_BARRIER(sc);
    873 }
    874 
    875 Static void
    876 ar9003_rx_radiotap(struct athn_softc *sc, struct mbuf *m,
    877     struct ar_rx_status *ds)
    878 {
    879 	struct athn_rx_radiotap_header *tap = &sc->sc_rxtap;
    880 	struct ieee80211com *ic = &sc->sc_ic;
    881 	uint64_t tsf;
    882 	uint32_t tstamp;
    883 	uint8_t rate;
    884 
    885 	/* Extend the 15-bit timestamp from Rx status to 64-bit TSF. */
    886 	tstamp = ds->ds_status3;
    887 	tsf = AR_READ(sc, AR_TSF_U32);
    888 	tsf = tsf << 32 | AR_READ(sc, AR_TSF_L32);
    889 	if ((tsf & 0x7fff) < tstamp)
    890 		tsf -= 0x8000;
    891 	tsf = (tsf & ~0x7fff) | tstamp;
    892 
    893 	tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
    894 	tap->wr_tsft = htole64(tsf);
    895 	tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
    896 	tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
    897 	tap->wr_dbm_antsignal = MS(ds->ds_status5, AR_RXS5_RSSI_COMBINED);
    898 	/* XXX noise. */
    899 	tap->wr_antenna = MS(ds->ds_status4, AR_RXS4_ANTENNA);
    900 	tap->wr_rate = 0;	/* In case it can't be found below. */
    901 	rate = MS(ds->ds_status1, AR_RXS1_RATE);
    902 	if (rate & 0x80) {		/* HT. */
    903 		/* Bit 7 set means HT MCS instead of rate. */
    904 		tap->wr_rate = rate;
    905 		if (!(ds->ds_status4 & AR_RXS4_GI))
    906 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
    907 
    908 	}
    909 	else if (rate & 0x10) {	/* CCK. */
    910 		if (rate & 0x04)
    911 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
    912 		switch (rate & ~0x14) {
    913 		case 0xb: tap->wr_rate =   2; break;
    914 		case 0xa: tap->wr_rate =   4; break;
    915 		case 0x9: tap->wr_rate =  11; break;
    916 		case 0x8: tap->wr_rate =  22; break;
    917 		}
    918 	}
    919 	else {			/* OFDM. */
    920 		switch (rate) {
    921 		case 0xb: tap->wr_rate =  12; break;
    922 		case 0xf: tap->wr_rate =  18; break;
    923 		case 0xa: tap->wr_rate =  24; break;
    924 		case 0xe: tap->wr_rate =  36; break;
    925 		case 0x9: tap->wr_rate =  48; break;
    926 		case 0xd: tap->wr_rate =  72; break;
    927 		case 0x8: tap->wr_rate =  96; break;
    928 		case 0xc: tap->wr_rate = 108; break;
    929 		}
    930 	}
    931 	bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m, BPF_D_IN);
    932 }
    933 
    934 Static int
    935 ar9003_rx_process(struct athn_softc *sc, int qid)
    936 {
    937 	struct ieee80211com *ic = &sc->sc_ic;
    938 	struct ifnet *ifp = &sc->sc_if;
    939 	struct athn_rxq *rxq = &sc->sc_rxq[qid];
    940 	struct athn_rx_buf *bf;
    941 	struct ar_rx_status *ds;
    942 	struct ieee80211_frame *wh;
    943 	struct ieee80211_node *ni;
    944 	struct mbuf *m, *m1;
    945 	size_t len;
    946 	u_int32_t rstamp;
    947 	int error, rssi, s;
    948 
    949 	bf = SIMPLEQ_FIRST(&rxq->head);
    950 	if (__predict_false(bf == NULL)) {	/* Should not happen. */
    951 		aprint_error_dev(sc->sc_dev, "Rx queue is empty!\n");
    952 		return ENOENT;
    953 	}
    954 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
    955 	    BUS_DMASYNC_POSTREAD);
    956 
    957 	ds = mtod(bf->bf_m, struct ar_rx_status *);
    958 	if (!(ds->ds_status1 & AR_RXS1_DONE))
    959 		return EBUSY;
    960 
    961 	/* Check that it is a valid Rx status descriptor. */
    962 	if ((ds->ds_info & (AR_RXI_DESC_ID_M | AR_RXI_DESC_TX |
    963 	    AR_RXI_CTRL_STAT)) != SM(AR_RXI_DESC_ID, AR_VENDOR_ATHEROS))
    964 		goto skip;
    965 
    966 	if (!(ds->ds_status11 & AR_RXS11_FRAME_OK)) {
    967 		if (ds->ds_status11 & AR_RXS11_CRC_ERR)
    968 			DPRINTFN(DBG_RX, sc, "CRC error\n");
    969 		else if (ds->ds_status11 & AR_RXS11_PHY_ERR)
    970 			DPRINTFN(DBG_RX, sc, "PHY error=0x%x\n",
    971 			    MS(ds->ds_status11, AR_RXS11_PHY_ERR_CODE));
    972 		else if (ds->ds_status11 & AR_RXS11_DECRYPT_CRC_ERR)
    973 			DPRINTFN(DBG_RX, sc, "Decryption CRC error\n");
    974 		else if (ds->ds_status11 & AR_RXS11_MICHAEL_ERR) {
    975 			DPRINTFN(DBG_RX, sc, "Michael MIC failure\n");
    976 			/* Report Michael MIC failures to net80211. */
    977 
    978 			len = MS(ds->ds_status2, AR_RXS2_DATA_LEN);
    979 			m = bf->bf_m;
    980 			m_set_rcvif(m, ifp);
    981 			m->m_data = (void *)&ds[1];
    982 			m->m_pkthdr.len = m->m_len = len;
    983 			wh = mtod(m, struct ieee80211_frame *);
    984 
    985 			ieee80211_notify_michael_failure(ic, wh,
    986 			    0 /* XXX: keyix */);
    987 		}
    988 		if_statinc(ifp, if_ierrors);
    989 		goto skip;
    990 	}
    991 
    992 	len = MS(ds->ds_status2, AR_RXS2_DATA_LEN);
    993 	if (__predict_false(len < IEEE80211_MIN_LEN ||
    994 	    len > ATHN_RXBUFSZ - sizeof(*ds))) {
    995 		DPRINTFN(DBG_RX, sc, "corrupted descriptor length=%zd\n",
    996 		    len);
    997 		if_statinc(ifp, if_ierrors);
    998 		goto skip;
    999 	}
   1000 
   1001 	/* Allocate a new Rx buffer. */
   1002 	m1 = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ);
   1003 	if (__predict_false(m1 == NULL)) {
   1004 		ic->ic_stats.is_rx_nobuf++;
   1005 		if_statinc(ifp, if_ierrors);
   1006 		goto skip;
   1007 	}
   1008 
   1009 	/* Unmap the old Rx buffer. */
   1010 	bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
   1011 
   1012 	/* Map the new Rx buffer. */
   1013 	error = bus_dmamap_load(sc->sc_dmat, bf->bf_map, mtod(m1, void *),
   1014 	    ATHN_RXBUFSZ, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
   1015 	if (__predict_false(error != 0)) {
   1016 		m_freem(m1);
   1017 
   1018 		/* Remap the old Rx buffer or panic. */
   1019 		error = bus_dmamap_load(sc->sc_dmat, bf->bf_map,
   1020 		    mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL,
   1021 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1022 		KASSERT(error != 0);
   1023 		bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr;
   1024 		if_statinc(ifp, if_ierrors);
   1025 		goto skip;
   1026 	}
   1027 	bf->bf_desc = mtod(m1, struct ar_rx_status *);
   1028 	bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr;
   1029 
   1030 	m = bf->bf_m;
   1031 	bf->bf_m = m1;
   1032 
   1033 	/* Finalize mbuf. */
   1034 	m_set_rcvif(m, ifp);
   1035 	/* Strip Rx status descriptor from head. */
   1036 	m->m_data = (void *)&ds[1];
   1037 	m->m_pkthdr.len = m->m_len = len;
   1038 
   1039 	s = splnet();
   1040 
   1041 	/* Grab a reference to the source node. */
   1042 	wh = mtod(m, struct ieee80211_frame *);
   1043 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   1044 
   1045 	/* Remove any HW padding after the 802.11 header. */
   1046 	if (!(wh->i_fc[0] & IEEE80211_FC0_TYPE_CTL)) {
   1047 		u_int hdrlen = ieee80211_anyhdrsize(wh);
   1048 		if (hdrlen & 3) {
   1049 			memmove((uint8_t *)wh + 2, wh, hdrlen);
   1050 			m_adj(m, 2);
   1051 		}
   1052 	}
   1053 	if (__predict_false(sc->sc_drvbpf != NULL))
   1054 		ar9003_rx_radiotap(sc, m, ds);
   1055 	/* Trim 802.11 FCS after radiotap. */
   1056 	m_adj(m, -IEEE80211_CRC_LEN);
   1057 
   1058 	/* Send the frame to the 802.11 layer. */
   1059 	rssi = MS(ds->ds_status5, AR_RXS5_RSSI_COMBINED);
   1060 	rstamp = ds->ds_status3;
   1061 	ieee80211_input(ic, m, ni, rssi, rstamp);
   1062 
   1063 	/* Node is no longer needed. */
   1064 	ieee80211_free_node(ni);
   1065 
   1066 	splx(s);
   1067 
   1068  skip:
   1069 	/* Unlink this descriptor from head. */
   1070 	SIMPLEQ_REMOVE_HEAD(&rxq->head, bf_list);
   1071 	memset(bf->bf_desc, 0, sizeof(*ds));
   1072 
   1073 	/* Re-use this descriptor and link it to tail. */
   1074 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
   1075 	    BUS_DMASYNC_PREREAD);
   1076 
   1077 	if (qid == ATHN_QID_LP)
   1078 		AR_WRITE(sc, AR_LP_RXDP, bf->bf_daddr);
   1079 	else
   1080 		AR_WRITE(sc, AR_HP_RXDP, bf->bf_daddr);
   1081 	AR_WRITE_BARRIER(sc);
   1082 	SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list);
   1083 
   1084 	/* Re-enable Rx. */
   1085 	AR_WRITE(sc, AR_CR, 0);
   1086 	AR_WRITE_BARRIER(sc);
   1087 	return 0;
   1088 }
   1089 
   1090 Static void
   1091 ar9003_rx_intr(struct athn_softc *sc, int qid)
   1092 {
   1093 
   1094 	while (ar9003_rx_process(sc, qid) == 0)
   1095 		continue;
   1096 }
   1097 
   1098 Static int
   1099 ar9003_tx_process(struct athn_softc *sc)
   1100 {
   1101 	struct ifnet *ifp = &sc->sc_if;
   1102 	struct athn_txq *txq;
   1103 	struct athn_node *an;
   1104 	struct athn_tx_buf *bf;
   1105 	struct ar_tx_status *ds;
   1106 	uint8_t qid, failcnt;
   1107 
   1108 	ds = &((struct ar_tx_status *)sc->sc_txsring)[sc->sc_txscur];
   1109 	if (!(ds->ds_status8 & AR_TXS8_DONE))
   1110 		return EBUSY;
   1111 
   1112 	sc->sc_txscur = (sc->sc_txscur + 1) % AR9003_NTXSTATUS;
   1113 
   1114 	/* Check that it is a valid Tx status descriptor. */
   1115 	if ((ds->ds_info & (AR_TXI_DESC_ID_M | AR_TXI_DESC_TX)) !=
   1116 	    (SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) | AR_TXI_DESC_TX)) {
   1117 		memset(ds, 0, sizeof(*ds));
   1118 		return 0;
   1119 	}
   1120 	/* Retrieve the queue that was used to send this PDU. */
   1121 	qid = MS(ds->ds_info, AR_TXI_QCU_NUM);
   1122 	txq = &sc->sc_txq[qid];
   1123 
   1124 	bf = SIMPLEQ_FIRST(&txq->head);
   1125 	if (bf == NULL || bf == txq->wait) {
   1126 		memset(ds, 0, sizeof(*ds));
   1127 		return 0;
   1128 	}
   1129 	SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list);
   1130 	if_statinc(ifp, if_opackets);
   1131 
   1132 	sc->sc_tx_timer = 0;
   1133 
   1134 	if (ds->ds_status3 & AR_TXS3_EXCESSIVE_RETRIES)
   1135 		if_statinc(ifp, if_oerrors);
   1136 
   1137 	if (ds->ds_status3 & AR_TXS3_UNDERRUN)
   1138 		athn_inc_tx_trigger_level(sc);
   1139 
   1140 	/* Wakeup PA predistortion state machine. */
   1141 	if (bf->bf_txflags & ATHN_TXFLAG_PAPRD)
   1142 		ar9003_paprd_tx_tone_done(sc);
   1143 
   1144 	an = (struct athn_node *)bf->bf_ni;
   1145 	/*
   1146 	 * NB: the data fail count contains the number of un-acked tries
   1147 	 * for the final series used.  We must add the number of tries for
   1148 	 * each series that was fully processed.
   1149 	 */
   1150 	failcnt  = MS(ds->ds_status3, AR_TXS3_DATA_FAIL_CNT);
   1151 	/* NB: Assume two tries per series. */
   1152 	failcnt += MS(ds->ds_status8, AR_TXS8_FINAL_IDX) * 2;
   1153 
   1154 	/* Update rate control statistics. */
   1155 	an->amn.amn_txcnt++;
   1156 	if (failcnt > 0)
   1157 		an->amn.amn_retrycnt++;
   1158 
   1159 	DPRINTFN(DBG_TX, sc, "Tx done qid=%d status3=%d fail count=%d\n",
   1160 	    qid, ds->ds_status3, failcnt);
   1161 
   1162 	/* Reset Tx status descriptor. */
   1163 	memset(ds, 0, sizeof(*ds));
   1164 
   1165 	/* Unmap Tx buffer. */
   1166 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
   1167 	    BUS_DMASYNC_POSTWRITE);
   1168 	bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
   1169 
   1170 	m_freem(bf->bf_m);
   1171 	bf->bf_m = NULL;
   1172 	ieee80211_free_node(bf->bf_ni);
   1173 	bf->bf_ni = NULL;
   1174 
   1175 	/* Link Tx buffer back to global free list. */
   1176 	SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
   1177 
   1178 	/* Queue buffers that are waiting if there is new room. */
   1179 	if (--txq->queued < AR9003_TX_QDEPTH && txq->wait != NULL) {
   1180 		AR_WRITE(sc, AR_QTXDP(qid), txq->wait->bf_daddr);
   1181 		AR_WRITE_BARRIER(sc);
   1182 		txq->wait = SIMPLEQ_NEXT(txq->wait, bf_list);
   1183 	}
   1184 	return 0;
   1185 }
   1186 
   1187 Static void
   1188 ar9003_tx_intr(struct athn_softc *sc)
   1189 {
   1190 	struct ifnet *ifp = &sc->sc_if;
   1191 	int s;
   1192 
   1193 	s = splnet();
   1194 
   1195 	while (ar9003_tx_process(sc) == 0)
   1196 		continue;
   1197 
   1198 	if (!SIMPLEQ_EMPTY(&sc->sc_txbufs)) {
   1199 		ifp->if_flags &= ~IFF_OACTIVE;
   1200 		ifp->if_start(ifp); /* in softint */
   1201 	}
   1202 
   1203 	splx(s);
   1204 }
   1205 
   1206 #ifndef IEEE80211_STA_ONLY
   1207 /*
   1208  * Process Software Beacon Alert interrupts.
   1209  */
   1210 Static int
   1211 ar9003_swba_intr(struct athn_softc *sc)
   1212 {
   1213 	struct ieee80211com *ic = &sc->sc_ic;
   1214 	struct ifnet *ifp = &sc->sc_if;
   1215 	struct ieee80211_node *ni = ic->ic_bss;
   1216 	struct athn_tx_buf *bf = sc->sc_bcnbuf;
   1217 	struct ieee80211_frame *wh;
   1218 	struct ieee80211_beacon_offsets bo;
   1219 	struct ar_tx_desc *ds;
   1220 	struct mbuf *m;
   1221 	uint32_t sum;
   1222 	uint8_t ridx, hwrate;
   1223 	int error, totlen;
   1224 
   1225 #if notyet
   1226 	if (ic->ic_tim_mcast_pending &&
   1227 	    IF_IS_EMPTY(&ni->ni_savedq) &&
   1228 	    SIMPLEQ_EMPTY(&sc->sc_txq[ATHN_QID_CAB].head))
   1229 		ic->ic_tim_mcast_pending = 0;
   1230 #endif
   1231 	if (ic->ic_dtim_count == 0)
   1232 		ic->ic_dtim_count = ic->ic_dtim_period - 1;
   1233 	else
   1234 		ic->ic_dtim_count--;
   1235 
   1236 	/* Make sure previous beacon has been sent. */
   1237 	if (athn_tx_pending(sc, ATHN_QID_BEACON)) {
   1238 		DPRINTFN(DBG_INTR, sc, "beacon stuck\n");
   1239 		return EBUSY;
   1240 	}
   1241 	/* Get new beacon. */
   1242 	m = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo);
   1243 	if (__predict_false(m == NULL))
   1244 		return ENOBUFS;
   1245 	/* Assign sequence number. */
   1246 	/* XXX: use non-QoS tid? */
   1247 	wh = mtod(m, struct ieee80211_frame *);
   1248 	*(uint16_t *)&wh->i_seq[0] =
   1249 	    htole16(ic->ic_bss->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
   1250 	ic->ic_bss->ni_txseqs[0]++;
   1251 
   1252 	/* Unmap and free old beacon if any. */
   1253 	if (__predict_true(bf->bf_m != NULL)) {
   1254 		bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0,
   1255 		    bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1256 		bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
   1257 		m_freem(bf->bf_m);
   1258 		bf->bf_m = NULL;
   1259 	}
   1260 	/* DMA map new beacon. */
   1261 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
   1262 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   1263 	if (__predict_false(error != 0)) {
   1264 		m_freem(m);
   1265 		return error;
   1266 	}
   1267 	bf->bf_m = m;
   1268 
   1269 	/* Setup Tx descriptor (simplified ar9003_tx()). */
   1270 	ds = bf->bf_descs;
   1271 	memset(ds, 0, sizeof(*ds));
   1272 
   1273 	ds->ds_info =
   1274 	    SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) |
   1275 	    SM(AR_TXI_DESC_NDWORDS, 23) |
   1276 	    SM(AR_TXI_QCU_NUM, ATHN_QID_BEACON) |
   1277 	    AR_TXI_DESC_TX | AR_TXI_CTRL_STAT;
   1278 
   1279 	totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
   1280 	ds->ds_ctl11 = SM(AR_TXC11_FRAME_LEN, totlen);
   1281 	ds->ds_ctl11 |= SM(AR_TXC11_XMIT_POWER, AR_MAX_RATE_POWER);
   1282 	ds->ds_ctl12 = SM(AR_TXC12_FRAME_TYPE, AR_FRAME_TYPE_BEACON);
   1283 	ds->ds_ctl12 |= AR_TXC12_NO_ACK;
   1284 	ds->ds_ctl17 = SM(AR_TXC17_ENCR_TYPE, AR_ENCR_TYPE_CLEAR);
   1285 
   1286 	/* Write number of tries. */
   1287 	ds->ds_ctl13 = SM(AR_TXC13_XMIT_DATA_TRIES0, 1);
   1288 
   1289 	/* Write Tx rate. */
   1290 	ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   1291 	    ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1;
   1292 	hwrate = athn_rates[ridx].hwrate;
   1293 	ds->ds_ctl14 = SM(AR_TXC14_XMIT_RATE0, hwrate);
   1294 
   1295 	/* Write Tx chains. */
   1296 	ds->ds_ctl18 = SM(AR_TXC18_CHAIN_SEL0, sc->sc_txchainmask);
   1297 
   1298 	ds->ds_segs[0].ds_data = bf->bf_map->dm_segs[0].ds_addr;
   1299 	/* Segment length must be a multiple of 4. */
   1300 	ds->ds_segs[0].ds_ctl |= SM(AR_TXC_BUF_LEN,
   1301 	    (bf->bf_map->dm_segs[0].ds_len + 3) & ~3);
   1302 	/* Compute Tx descriptor checksum. */
   1303 	sum = ds->ds_info;
   1304 	sum += ds->ds_segs[0].ds_data;
   1305 	sum += ds->ds_segs[0].ds_ctl;
   1306 	sum = (sum >> 16) + (sum & 0xffff);
   1307 	ds->ds_ctl10 = SM(AR_TXC10_PTR_CHK_SUM, sum);
   1308 
   1309 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
   1310 	    BUS_DMASYNC_PREWRITE);
   1311 
   1312 	/* Stop Tx DMA before putting the new beacon on the queue. */
   1313 	athn_stop_tx_dma(sc, ATHN_QID_BEACON);
   1314 
   1315 	AR_WRITE(sc, AR_QTXDP(ATHN_QID_BEACON), bf->bf_daddr);
   1316 
   1317 	for(;;) {
   1318 		if (SIMPLEQ_EMPTY(&sc->sc_txbufs))
   1319 			break;
   1320 
   1321 		IF_DEQUEUE(&ni->ni_savedq, m);
   1322 		if (m == NULL)
   1323 			break;
   1324 		if (!IF_IS_EMPTY(&ni->ni_savedq)) {
   1325 			/* more queued frames, set the more data bit */
   1326 			wh = mtod(m, struct ieee80211_frame *);
   1327 			wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
   1328 		}
   1329 
   1330 		if (sc->sc_ops.tx(sc, m, ni, ATHN_TXFLAG_CAB) != 0) {
   1331 			ieee80211_free_node(ni);
   1332 			if_statinc(ifp, if_oerrors);
   1333 			break;
   1334 		}
   1335 	}
   1336 
   1337 	/* Kick Tx. */
   1338 	AR_WRITE(sc, AR_Q_TXE, 1 << ATHN_QID_BEACON);
   1339 	AR_WRITE_BARRIER(sc);
   1340 	return 0;
   1341 }
   1342 #endif
   1343 
   1344 static int
   1345 ar9003_get_intr_status(struct athn_softc *sc, uint32_t *intrp, uint32_t *syncp)
   1346 {
   1347 	uint32_t intr, sync;
   1348 
   1349 	/* Get pending interrupts. */
   1350 	intr = AR_READ(sc, AR_INTR_ASYNC_CAUSE);
   1351 	if (!(intr & AR_INTR_MAC_IRQ) || intr == AR_INTR_SPURIOUS) {
   1352 		intr = AR_READ(sc, AR_INTR_SYNC_CAUSE);
   1353 		if (intr == AR_INTR_SPURIOUS || (intr & sc->sc_isync) == 0)
   1354 			return 0;	/* Not for us. */
   1355 	}
   1356 
   1357 	if ((AR_READ(sc, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) &&
   1358 	    (AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_ON)
   1359 		intr = AR_READ(sc, AR_ISR);
   1360 	else
   1361 		intr = 0;
   1362 	sync = AR_READ(sc, AR_INTR_SYNC_CAUSE) & sc->sc_isync;
   1363 	if (intr == 0 && sync == 0)
   1364 		return 0;	/* Not for us. */
   1365 
   1366 	*intrp = intr;
   1367 	*syncp = sync;
   1368 	return 1;
   1369 }
   1370 
   1371 Static int
   1372 ar9003_intr_status(struct athn_softc *sc)
   1373 {
   1374 	uint32_t intr, sync;
   1375 
   1376 	return ar9003_get_intr_status(sc, &intr, &sync);
   1377 }
   1378 
   1379 Static int
   1380 ar9003_intr(struct athn_softc *sc)
   1381 {
   1382 	uint32_t intr, sync;
   1383 #ifndef IEEE80211_STA_ONLY
   1384 	int s;
   1385 #endif
   1386 
   1387 	if (!ar9003_get_intr_status(sc, &intr, &sync))
   1388 		return 0;
   1389 
   1390 	if (intr != 0) {
   1391 		if (intr & AR_ISR_BCNMISC) {
   1392 			uint32_t intr2 = AR_READ(sc, AR_ISR_S2);
   1393 #ifdef notyet
   1394 			if (intr2 & AR_ISR_S2_TIM)
   1395 				/* TBD */;
   1396 			if (intr2 & AR_ISR_S2_TSFOOR)
   1397 				/* TBD */;
   1398 			if (intr2 & AR_ISR_S2_BB_WATCHDOG)
   1399 				/* TBD */;
   1400 #else
   1401 			__USE(intr2);
   1402 #endif
   1403 		}
   1404 		intr = AR_READ(sc, AR_ISR_RAC);
   1405 		if (intr == AR_INTR_SPURIOUS)
   1406 			return 1;
   1407 
   1408 #ifndef IEEE80211_STA_ONLY
   1409 		if (intr & AR_ISR_SWBA) {
   1410 			s = splnet();
   1411 			ar9003_swba_intr(sc);
   1412 			splx(s);
   1413 		}
   1414 #endif
   1415 		if (intr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
   1416 			ar9003_rx_intr(sc, ATHN_QID_LP);
   1417 		if (intr & (AR_ISR_LP_RXOK | AR_ISR_RXERR))
   1418 			ar9003_rx_intr(sc, ATHN_QID_LP);
   1419 		if (intr & AR_ISR_HP_RXOK)
   1420 			ar9003_rx_intr(sc, ATHN_QID_HP);
   1421 
   1422 		if (intr & (AR_ISR_TXMINTR | AR_ISR_TXINTM))
   1423 			ar9003_tx_intr(sc);
   1424 		if (intr & (AR_ISR_TXOK | AR_ISR_TXERR | AR_ISR_TXEOL))
   1425 			ar9003_tx_intr(sc);
   1426 
   1427 		if (intr & AR_ISR_GENTMR) {
   1428 			uint32_t intr5 = AR_READ(sc, AR_ISR_S5_S);
   1429 #ifdef ATHN_DEBUG
   1430 			DPRINTFN(DBG_INTR, sc,
   1431 			    "GENTMR trigger=%d thresh=%d\n",
   1432 			    MS(intr5, AR_ISR_S5_GENTIMER_TRIG),
   1433 			    MS(intr5, AR_ISR_S5_GENTIMER_THRESH));
   1434 #else
   1435 			__USE(intr5);
   1436 #endif
   1437 		}
   1438 	}
   1439 	if (sync != 0) {
   1440 		if (sync & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
   1441 			AR_WRITE(sc, AR_RC, AR_RC_HOSTIF);
   1442 			AR_WRITE(sc, AR_RC, 0);
   1443 		}
   1444 
   1445 		if ((sc->sc_flags & ATHN_FLAG_RFSILENT) &&
   1446 		    (sync & AR_INTR_SYNC_GPIO_PIN(sc->sc_rfsilent_pin))) {
   1447 			pmf_event_inject(sc->sc_dev, PMFE_RADIO_OFF);
   1448 			return 1;
   1449 		}
   1450 
   1451 		AR_WRITE(sc, AR_INTR_SYNC_CAUSE, sync);
   1452 		(void)AR_READ(sc, AR_INTR_SYNC_CAUSE);
   1453 	}
   1454 	return 1;
   1455 }
   1456 
   1457 Static int
   1458 ar9003_tx(struct athn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
   1459     int txflags)
   1460 {
   1461 	struct ieee80211com *ic = &sc->sc_ic;
   1462 	struct ieee80211_key *k = NULL;
   1463 	struct ieee80211_frame *wh;
   1464 	struct athn_series series[4];
   1465 	struct ar_tx_desc *ds;
   1466 	struct athn_txq *txq;
   1467 	struct athn_tx_buf *bf;
   1468 	struct athn_node *an = (void *)ni;
   1469 	struct mbuf *m1;
   1470 	uint32_t sum;
   1471 	uint16_t qos;
   1472 	uint8_t txpower, type, encrtype, ridx[4];
   1473 	int i, error, totlen, hasqos, qid;
   1474 
   1475 	/* Grab a Tx buffer from our global free list. */
   1476 	bf = SIMPLEQ_FIRST(&sc->sc_txbufs);
   1477 	KASSERT(bf != NULL);
   1478 
   1479 	/* Map 802.11 frame type to hardware frame type. */
   1480 	wh = mtod(m, struct ieee80211_frame *);
   1481 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1482 	    IEEE80211_FC0_TYPE_MGT) {
   1483 		/* NB: Beacons do not use ar9003_tx(). */
   1484 		if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1485 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   1486 			type = AR_FRAME_TYPE_PROBE_RESP;
   1487 		else if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1488 		    IEEE80211_FC0_SUBTYPE_ATIM)
   1489 			type = AR_FRAME_TYPE_ATIM;
   1490 		else
   1491 			type = AR_FRAME_TYPE_NORMAL;
   1492 	}
   1493 	else if ((wh->i_fc[0] &
   1494 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1495 	    (IEEE80211_FC0_TYPE_CTL  | IEEE80211_FC0_SUBTYPE_PS_POLL)) {
   1496 		type = AR_FRAME_TYPE_PSPOLL;
   1497 	}
   1498 	else
   1499 		type = AR_FRAME_TYPE_NORMAL;
   1500 
   1501 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
   1502 		k = ieee80211_crypto_encap(ic, ni, m);
   1503 		if (k == NULL)
   1504 			return ENOBUFS;
   1505 
   1506 		/* packet header may have moved, reset our local pointer */
   1507 		wh = mtod(m, struct ieee80211_frame *);
   1508 	}
   1509 
   1510 	/* XXX 2-byte padding for QoS and 4-addr headers. */
   1511 
   1512 	/* Select the HW Tx queue to use for this frame. */
   1513 	if ((hasqos = ieee80211_has_qos(wh))) {
   1514 #ifdef notyet_edca
   1515 		uint8_t tid;
   1516 
   1517 		qos = ieee80211_get_qos(wh);
   1518 		tid = qos & IEEE80211_QOS_TID;
   1519 		qid = athn_ac2qid[ieee80211_up_to_ac(ic, tid)];
   1520 #else
   1521 		qos = ieee80211_get_qos(wh);
   1522 		qid = ATHN_QID_AC_BE;
   1523 #endif /* notyet_edca */
   1524 	}
   1525 	else if (type == AR_FRAME_TYPE_PSPOLL) {
   1526 		qos = 0;
   1527 		qid = ATHN_QID_PSPOLL;
   1528 	}
   1529 	else if (txflags & ATHN_TXFLAG_CAB) {
   1530 		qos = 0;
   1531 		qid = ATHN_QID_CAB;
   1532 	}
   1533 	else {
   1534 		qos = 0;
   1535 		qid = ATHN_QID_AC_BE;
   1536 	}
   1537 	txq = &sc->sc_txq[qid];
   1538 
   1539 	/* Select the transmit rates to use for this frame. */
   1540 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   1541 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
   1542 	    IEEE80211_FC0_TYPE_DATA) {
   1543 		/* Use lowest rate for all tries. */
   1544 		ridx[0] = ridx[1] = ridx[2] = ridx[3] =
   1545 		    (ic->ic_curmode == IEEE80211_MODE_11A) ?
   1546 			ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1;
   1547 	}
   1548 	else if (ic->ic_fixed_rate != -1) {
   1549 		/* Use same fixed rate for all tries. */
   1550 		ridx[0] = ridx[1] = ridx[2] = ridx[3] =
   1551 		    sc->sc_fixed_ridx;
   1552 	}
   1553 	else {
   1554 		int txrate = ni->ni_txrate;
   1555 		/* Use fallback table of the node. */
   1556 		for (i = 0; i < 4; i++) {
   1557 			ridx[i] = an->ridx[txrate];
   1558 			txrate = an->fallback[txrate];
   1559 		}
   1560 	}
   1561 
   1562 	if (__predict_false(sc->sc_drvbpf != NULL)) {
   1563 		struct athn_tx_radiotap_header *tap = &sc->sc_txtap;
   1564 
   1565 		tap->wt_flags = 0;
   1566 		/* Use initial transmit rate. */
   1567 		tap->wt_rate = athn_rates[ridx[0]].rate;
   1568 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
   1569 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
   1570 // XXX		tap->wt_hwqueue = qid;
   1571 		if (ridx[0] != ATHN_RIDX_CCK1 &&
   1572 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
   1573 			tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   1574 
   1575 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m, BPF_D_OUT);
   1576 	}
   1577 
   1578 	/* DMA map mbuf. */
   1579 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
   1580 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   1581 	if (__predict_false(error != 0)) {
   1582 		if (error != EFBIG) {
   1583 			aprint_error_dev(sc->sc_dev,
   1584 			    "can't map mbuf (error %d)\n", error);
   1585 			m_freem(m);
   1586 			return error;
   1587 		}
   1588 		/*
   1589 		 * DMA mapping requires too many DMA segments; linearize
   1590 		 * mbuf in kernel virtual address space and retry.
   1591 		 */
   1592 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
   1593 		if (m1 == NULL) {
   1594 			m_freem(m);
   1595 			return ENOBUFS;
   1596 		}
   1597 		if (m->m_pkthdr.len > (int)MHLEN) {
   1598 			MCLGET(m1, M_DONTWAIT);
   1599 			if (!(m1->m_flags & M_EXT)) {
   1600 				m_freem(m);
   1601 				m_freem(m1);
   1602 				return ENOBUFS;
   1603 			}
   1604 		}
   1605 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
   1606 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
   1607 		m_freem(m);
   1608 		m = m1;
   1609 
   1610 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
   1611 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   1612 		if (error != 0) {
   1613 			aprint_error_dev(sc->sc_dev,
   1614 			    "can't map mbuf (error %d)\n", error);
   1615 			m_freem(m);
   1616 			return error;
   1617 		}
   1618 	}
   1619 	bf->bf_m = m;
   1620 	bf->bf_ni = ni;
   1621 	bf->bf_txflags = txflags;
   1622 
   1623 	wh = mtod(m, struct ieee80211_frame *);
   1624 
   1625 	totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
   1626 
   1627 	/* Setup Tx descriptor. */
   1628 	ds = bf->bf_descs;
   1629 	memset(ds, 0, sizeof(*ds));
   1630 
   1631 	ds->ds_info =
   1632 	    SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) |
   1633 	    SM(AR_TXI_DESC_NDWORDS, 23) |
   1634 	    SM(AR_TXI_QCU_NUM, qid) |
   1635 	    AR_TXI_DESC_TX | AR_TXI_CTRL_STAT;
   1636 
   1637 	ds->ds_ctl11 = AR_TXC11_CLR_DEST_MASK;
   1638 	txpower = AR_MAX_RATE_POWER;	/* Get from per-rate registers. */
   1639 	ds->ds_ctl11 |= SM(AR_TXC11_XMIT_POWER, txpower);
   1640 
   1641 	ds->ds_ctl12 = SM(AR_TXC12_FRAME_TYPE, type);
   1642 
   1643 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   1644 	    (hasqos && (qos & IEEE80211_QOS_ACKPOLICY_MASK) ==
   1645 	     IEEE80211_QOS_ACKPOLICY_NOACK))
   1646 		ds->ds_ctl12 |= AR_TXC12_NO_ACK;
   1647 
   1648 #if notyet
   1649 	if (0 && k != NULL) {
   1650 		uintptr_t entry;
   1651 
   1652 		/*
   1653 		 * Map 802.11 cipher to hardware encryption type and
   1654 		 * compute MIC+ICV overhead.
   1655 		 */
   1656 		switch (k->k_cipher) {
   1657 		case IEEE80211_CIPHER_WEP40:
   1658 		case IEEE80211_CIPHER_WEP104:
   1659 			encrtype = AR_ENCR_TYPE_WEP;
   1660 			totlen += 4;
   1661 			break;
   1662 		case IEEE80211_CIPHER_TKIP:
   1663 			encrtype = AR_ENCR_TYPE_TKIP;
   1664 			totlen += 12;
   1665 			break;
   1666 		case IEEE80211_CIPHER_CCMP:
   1667 			encrtype = AR_ENCR_TYPE_AES;
   1668 			totlen += 8;
   1669 			break;
   1670 		default:
   1671 			panic("unsupported cipher");
   1672 		}
   1673 		/*
   1674 		 * NB: The key cache entry index is stored in the key
   1675 		 * private field when the key is installed.
   1676 		 */
   1677 		entry = (uintptr_t)k->k_priv;
   1678 		ds->ds_ctl12 |= SM(AR_TXC12_DEST_IDX, entry);
   1679 		ds->ds_ctl11 |= AR_TXC11_DEST_IDX_VALID;
   1680 	}
   1681 	else
   1682 #endif
   1683 		encrtype = AR_ENCR_TYPE_CLEAR;
   1684 	ds->ds_ctl17 = SM(AR_TXC17_ENCR_TYPE, encrtype);
   1685 
   1686 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
   1687 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1688 		/* NB: Group frames are sent using CCK in 802.11b/g. */
   1689 		if (totlen > ic->ic_rtsthreshold) {
   1690 			ds->ds_ctl11 |= AR_TXC11_RTS_ENABLE;
   1691 		}
   1692 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   1693 		    athn_rates[ridx[0]].phy == IEEE80211_T_OFDM) {
   1694 			if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   1695 				ds->ds_ctl11 |= AR_TXC11_RTS_ENABLE;
   1696 			else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   1697 				ds->ds_ctl11 |= AR_TXC11_CTS_ENABLE;
   1698 		}
   1699 	}
   1700 	if (ds->ds_ctl11 & (AR_TXC11_RTS_ENABLE | AR_TXC11_CTS_ENABLE)) {
   1701 		/* Disable multi-rate retries when protection is used. */
   1702 		ridx[1] = ridx[2] = ridx[3] = ridx[0];
   1703 	}
   1704 	/* Setup multi-rate retries. */
   1705 	for (i = 0; i < 4; i++) {
   1706 		series[i].hwrate = athn_rates[ridx[i]].hwrate;
   1707 		if (athn_rates[ridx[i]].phy == IEEE80211_T_DS &&
   1708 		    ridx[i] != ATHN_RIDX_CCK1 &&
   1709 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
   1710 			series[i].hwrate |= 0x04;
   1711 		series[i].dur = 0;
   1712 	}
   1713 	if (!(ds->ds_ctl12 & AR_TXC12_NO_ACK)) {
   1714 		/* Compute duration for each series. */
   1715 		for (i = 0; i < 4; i++) {
   1716 			series[i].dur = athn_txtime(sc, IEEE80211_ACK_LEN,
   1717 			    athn_rates[ridx[i]].rspridx, ic->ic_flags);
   1718 		}
   1719 	}
   1720 	/* If this is a PA training frame, select the Tx chain to use. */
   1721 	if (__predict_false(txflags & ATHN_TXFLAG_PAPRD)) {
   1722 		ds->ds_ctl12 |= SM(AR_TXC12_PAPRD_CHAIN_MASK,
   1723 		    1 << sc->sc_paprd_curchain);
   1724 	}
   1725 
   1726 	/* Write number of tries for each series. */
   1727 	ds->ds_ctl13 =
   1728 	    SM(AR_TXC13_XMIT_DATA_TRIES0, 2) |
   1729 	    SM(AR_TXC13_XMIT_DATA_TRIES1, 2) |
   1730 	    SM(AR_TXC13_XMIT_DATA_TRIES2, 2) |
   1731 	    SM(AR_TXC13_XMIT_DATA_TRIES3, 4);
   1732 
   1733 	/* Tell HW to update duration field in 802.11 header. */
   1734 	if (type != AR_FRAME_TYPE_PSPOLL)
   1735 		ds->ds_ctl13 |= AR_TXC13_DUR_UPDATE_ENA;
   1736 
   1737 	/* Write Tx rate for each series. */
   1738 	ds->ds_ctl14 =
   1739 	    SM(AR_TXC14_XMIT_RATE0, series[0].hwrate) |
   1740 	    SM(AR_TXC14_XMIT_RATE1, series[1].hwrate) |
   1741 	    SM(AR_TXC14_XMIT_RATE2, series[2].hwrate) |
   1742 	    SM(AR_TXC14_XMIT_RATE3, series[3].hwrate);
   1743 
   1744 	/* Write duration for each series. */
   1745 	ds->ds_ctl15 =
   1746 	    SM(AR_TXC15_PACKET_DUR0, series[0].dur) |
   1747 	    SM(AR_TXC15_PACKET_DUR1, series[1].dur);
   1748 	ds->ds_ctl16 =
   1749 	    SM(AR_TXC16_PACKET_DUR2, series[2].dur) |
   1750 	    SM(AR_TXC16_PACKET_DUR3, series[3].dur);
   1751 
   1752 	if ((sc->sc_flags & ATHN_FLAG_3TREDUCE_CHAIN) &&
   1753 	    ic->ic_curmode == IEEE80211_MODE_11A) {
   1754 		/*
   1755 		 * In order to not exceed PCIe power requirements, we only
   1756 		 * use two Tx chains for MCS0~15 on 5GHz band on these chips.
   1757 		 */
   1758 		ds->ds_ctl18 =
   1759 		    SM(AR_TXC18_CHAIN_SEL0,
   1760 			(ridx[0] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask) |
   1761 		    SM(AR_TXC18_CHAIN_SEL1,
   1762 			(ridx[1] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask) |
   1763 		    SM(AR_TXC18_CHAIN_SEL2,
   1764 			(ridx[2] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask) |
   1765 		    SM(AR_TXC18_CHAIN_SEL3,
   1766 			(ridx[3] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask);
   1767 	}
   1768 	else {
   1769 		/* Use the same Tx chains for all tries. */
   1770 		ds->ds_ctl18 =
   1771 		    SM(AR_TXC18_CHAIN_SEL0, sc->sc_txchainmask) |
   1772 		    SM(AR_TXC18_CHAIN_SEL1, sc->sc_txchainmask) |
   1773 		    SM(AR_TXC18_CHAIN_SEL2, sc->sc_txchainmask) |
   1774 		    SM(AR_TXC18_CHAIN_SEL3, sc->sc_txchainmask);
   1775 	}
   1776 #ifdef notyet
   1777 #ifndef IEEE80211_NO_HT
   1778 	/* Use the same short GI setting for all tries. */
   1779 	if (ic->ic_flags & IEEE80211_F_SHGI)
   1780 		ds->ds_ctl18 |= AR_TXC18_GI0123;
   1781 	/* Use the same channel width for all tries. */
   1782 	if (ic->ic_flags & IEEE80211_F_CBW40)
   1783 		ds->ds_ctl18 |= AR_TXC18_2040_0123;
   1784 #endif
   1785 #endif
   1786 
   1787 	if (ds->ds_ctl11 & (AR_TXC11_RTS_ENABLE | AR_TXC11_CTS_ENABLE)) {
   1788 		uint8_t protridx, hwrate;
   1789 		uint16_t dur = 0;
   1790 
   1791 		/* Use the same protection mode for all tries. */
   1792 		if (ds->ds_ctl11 & AR_TXC11_RTS_ENABLE) {
   1793 			ds->ds_ctl15 |= AR_TXC15_RTSCTS_QUAL01;
   1794 			ds->ds_ctl16 |= AR_TXC16_RTSCTS_QUAL23;
   1795 		}
   1796 		/* Select protection rate (suboptimal but ok). */
   1797 		protridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   1798 		    ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK2;
   1799 		if (ds->ds_ctl11 & AR_TXC11_RTS_ENABLE) {
   1800 			/* Account for CTS duration. */
   1801 			dur += athn_txtime(sc, IEEE80211_ACK_LEN,
   1802 			    athn_rates[protridx].rspridx, ic->ic_flags);
   1803 		}
   1804 		dur += athn_txtime(sc, totlen, ridx[0], ic->ic_flags);
   1805 		if (!(ds->ds_ctl12 & AR_TXC12_NO_ACK)) {
   1806 			/* Account for ACK duration. */
   1807 			dur += athn_txtime(sc, IEEE80211_ACK_LEN,
   1808 			    athn_rates[ridx[0]].rspridx, ic->ic_flags);
   1809 		}
   1810 		/* Write protection frame duration and rate. */
   1811 		ds->ds_ctl13 |= SM(AR_TXC13_BURST_DUR, dur);
   1812 		hwrate = athn_rates[protridx].hwrate;
   1813 		if (protridx == ATHN_RIDX_CCK2 &&
   1814 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
   1815 			hwrate |= 0x04;
   1816 		ds->ds_ctl18 |= SM(AR_TXC18_RTSCTS_RATE, hwrate);
   1817 	}
   1818 
   1819 	ds->ds_ctl11 |= SM(AR_TXC11_FRAME_LEN, totlen);
   1820 	ds->ds_ctl19 = AR_TXC19_NOT_SOUNDING;
   1821 
   1822 	for (i = 0; i < bf->bf_map->dm_nsegs; i++) {
   1823 		ds->ds_segs[i].ds_data = bf->bf_map->dm_segs[i].ds_addr;
   1824 		ds->ds_segs[i].ds_ctl = SM(AR_TXC_BUF_LEN,
   1825 		    bf->bf_map->dm_segs[i].ds_len);
   1826 	}
   1827 	/* Compute Tx descriptor checksum. */
   1828 	sum = ds->ds_info + ds->ds_link;
   1829 	for (i = 0; i < 4; i++) {
   1830 		sum += ds->ds_segs[i].ds_data;
   1831 		sum += ds->ds_segs[i].ds_ctl;
   1832 	}
   1833 	sum = (sum >> 16) + (sum & 0xffff);
   1834 	ds->ds_ctl10 = SM(AR_TXC10_PTR_CHK_SUM, sum);
   1835 
   1836 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
   1837 	    BUS_DMASYNC_PREWRITE);
   1838 
   1839 	DPRINTFN(DBG_TX, sc,
   1840 	    "Tx qid=%d nsegs=%d ctl11=0x%x ctl12=0x%x ctl14=0x%x\n",
   1841 	    qid, bf->bf_map->dm_nsegs, ds->ds_ctl11, ds->ds_ctl12,
   1842 	    ds->ds_ctl14);
   1843 
   1844 	SIMPLEQ_REMOVE_HEAD(&sc->sc_txbufs, bf_list);
   1845 	SIMPLEQ_INSERT_TAIL(&txq->head, bf, bf_list);
   1846 
   1847 	/* Queue buffer unless hardware FIFO is already full. */
   1848 	if (++txq->queued <= AR9003_TX_QDEPTH) {
   1849 		AR_WRITE(sc, AR_QTXDP(qid), bf->bf_daddr);
   1850 		AR_WRITE_BARRIER(sc);
   1851 	}
   1852 	else if (txq->wait == NULL)
   1853 		txq->wait = bf;
   1854 	return 0;
   1855 }
   1856 
   1857 Static void
   1858 ar9003_set_rf_mode(struct athn_softc *sc, struct ieee80211_channel *c)
   1859 {
   1860 	uint32_t reg;
   1861 
   1862 	reg = IEEE80211_IS_CHAN_2GHZ(c) ?
   1863 	    AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
   1864 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
   1865 	    (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)) {
   1866 		reg |= AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE;
   1867 	}
   1868 	AR_WRITE(sc, AR_PHY_MODE, reg);
   1869 	AR_WRITE_BARRIER(sc);
   1870 }
   1871 
   1872 static __inline uint32_t
   1873 ar9003_synth_delay(struct athn_softc *sc)
   1874 {
   1875 	uint32_t synth_delay;
   1876 
   1877 	synth_delay = MS(AR_READ(sc, AR_PHY_RX_DELAY), AR_PHY_RX_DELAY_DELAY);
   1878 	if (sc->sc_ic.ic_curmode == IEEE80211_MODE_11B)
   1879 		synth_delay = (synth_delay * 4) / 22;
   1880 	else
   1881 		synth_delay = synth_delay / 10;	/* in 100ns steps */
   1882 	return synth_delay;
   1883 }
   1884 
   1885 Static int
   1886 ar9003_rf_bus_request(struct athn_softc *sc)
   1887 {
   1888 	int ntries;
   1889 
   1890 	/* Request RF Bus grant. */
   1891 	AR_WRITE(sc, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
   1892 	for (ntries = 0; ntries < 10000; ntries++) {
   1893 		if (AR_READ(sc, AR_PHY_RFBUS_GRANT) & AR_PHY_RFBUS_GRANT_EN)
   1894 			return 0;
   1895 		DELAY(10);
   1896 	}
   1897 	DPRINTFN(DBG_RF, sc, "could not kill baseband Rx");
   1898 	return ETIMEDOUT;
   1899 }
   1900 
   1901 Static void
   1902 ar9003_rf_bus_release(struct athn_softc *sc)
   1903 {
   1904 	/* Wait for the synthesizer to settle. */
   1905 	DELAY(AR_BASE_PHY_ACTIVE_DELAY + ar9003_synth_delay(sc));
   1906 
   1907 	/* Release the RF Bus grant. */
   1908 	AR_WRITE(sc, AR_PHY_RFBUS_REQ, 0);
   1909 	AR_WRITE_BARRIER(sc);
   1910 }
   1911 
   1912 Static void
   1913 ar9003_set_phy(struct athn_softc *sc, struct ieee80211_channel *c,
   1914     struct ieee80211_channel *extc)
   1915 {
   1916 	uint32_t phy;
   1917 
   1918 	phy = AR_READ(sc, AR_PHY_GEN_CTRL);
   1919 	phy |= AR_PHY_GC_HT_EN | AR_PHY_GC_SHORT_GI_40 |
   1920 	    AR_PHY_GC_SINGLE_HT_LTF1 | AR_PHY_GC_WALSH;
   1921 #ifndef IEEE80211_NO_HT
   1922 	if (extc != NULL) {
   1923 		phy |= AR_PHY_GC_DYN2040_EN;
   1924 		if (extc > c)	/* XXX */
   1925 			phy |= AR_PHY_GC_DYN2040_PRI_CH;
   1926 	}
   1927 #endif
   1928 	/* Turn off Green Field detection for now. */
   1929 	phy &= ~AR_PHY_GC_GF_DETECT_EN;
   1930 	AR_WRITE(sc, AR_PHY_GEN_CTRL, phy);
   1931 
   1932 	AR_WRITE(sc, AR_2040_MODE,
   1933 	    (extc != NULL) ? AR_2040_JOINED_RX_CLEAR : 0);
   1934 
   1935 	/* Set global transmit timeout. */
   1936 	AR_WRITE(sc, AR_GTXTO, SM(AR_GTXTO_TIMEOUT_LIMIT, 25));
   1937 	/* Set carrier sense timeout. */
   1938 	AR_WRITE(sc, AR_CST, SM(AR_CST_TIMEOUT_LIMIT, 15));
   1939 	AR_WRITE_BARRIER(sc);
   1940 }
   1941 
   1942 Static void
   1943 ar9003_set_delta_slope(struct athn_softc *sc, struct ieee80211_channel *c,
   1944     struct ieee80211_channel *extc)
   1945 {
   1946 	uint32_t coeff, exp, man, reg;
   1947 
   1948 	/* Set Delta Slope (exponent and mantissa). */
   1949 	coeff = (100 << 24) / c->ic_freq;
   1950 	athn_get_delta_slope(coeff, &exp, &man);
   1951 	DPRINTFN(DBG_RF, sc, "delta slope coeff exp=%u man=%u\n", exp, man);
   1952 
   1953 	reg = AR_READ(sc, AR_PHY_TIMING3);
   1954 	reg = RW(reg, AR_PHY_TIMING3_DSC_EXP, exp);
   1955 	reg = RW(reg, AR_PHY_TIMING3_DSC_MAN, man);
   1956 	AR_WRITE(sc, AR_PHY_TIMING3, reg);
   1957 
   1958 	/* For Short GI, coeff is 9/10 that of normal coeff. */
   1959 	coeff = (9 * coeff) / 10;
   1960 	athn_get_delta_slope(coeff, &exp, &man);
   1961 	DPRINTFN(DBG_RF, sc, "delta slope coeff exp=%u man=%u\n", exp, man);
   1962 
   1963 	reg = AR_READ(sc, AR_PHY_SGI_DELTA);
   1964 	reg = RW(reg, AR_PHY_SGI_DSC_EXP, exp);
   1965 	reg = RW(reg, AR_PHY_SGI_DSC_MAN, man);
   1966 	AR_WRITE(sc, AR_PHY_SGI_DELTA, reg);
   1967 	AR_WRITE_BARRIER(sc);
   1968 }
   1969 
   1970 Static void
   1971 ar9003_enable_antenna_diversity(struct athn_softc *sc)
   1972 {
   1973 	AR_SETBITS(sc, AR_PHY_CCK_DETECT,
   1974 	    AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
   1975 	AR_WRITE_BARRIER(sc);
   1976 }
   1977 
   1978 Static void
   1979 ar9003_init_baseband(struct athn_softc *sc)
   1980 {
   1981 	uint32_t synth_delay;
   1982 
   1983 	synth_delay = ar9003_synth_delay(sc);
   1984 	/* Activate the PHY (includes baseband activate and synthesizer on). */
   1985 	AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
   1986 	AR_WRITE_BARRIER(sc);
   1987 	DELAY(AR_BASE_PHY_ACTIVE_DELAY + synth_delay);
   1988 }
   1989 
   1990 Static void
   1991 ar9003_disable_phy(struct athn_softc *sc)
   1992 {
   1993 	AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
   1994 	AR_WRITE_BARRIER(sc);
   1995 }
   1996 
   1997 Static void
   1998 ar9003_init_chains(struct athn_softc *sc)
   1999 {
   2000 	if (sc->sc_rxchainmask == 0x5 || sc->sc_txchainmask == 0x5)
   2001 		AR_SETBITS(sc, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
   2002 
   2003 	/* Setup chain masks. */
   2004 	AR_WRITE(sc, AR_PHY_RX_CHAINMASK,  sc->sc_rxchainmask);
   2005 	AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->sc_rxchainmask);
   2006 
   2007 	if (sc->sc_flags & ATHN_FLAG_3TREDUCE_CHAIN) {
   2008 		/*
   2009 		 * All self-generated frames are sent using two Tx chains
   2010 		 * on these chips to not exceed PCIe power requirements.
   2011 		 */
   2012 		AR_WRITE(sc, AR_SELFGEN_MASK, 0x3);
   2013 	}
   2014 	else
   2015 		AR_WRITE(sc, AR_SELFGEN_MASK, sc->sc_txchainmask);
   2016 	AR_WRITE_BARRIER(sc);
   2017 }
   2018 
   2019 Static void
   2020 ar9003_set_rxchains(struct athn_softc *sc)
   2021 {
   2022 	if (sc->sc_rxchainmask == 0x3 || sc->sc_rxchainmask == 0x5) {
   2023 		AR_WRITE(sc, AR_PHY_RX_CHAINMASK,  sc->sc_rxchainmask);
   2024 		AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->sc_rxchainmask);
   2025 		AR_WRITE_BARRIER(sc);
   2026 	}
   2027 }
   2028 
   2029 #ifdef notused
   2030 Static void
   2031 ar9003_read_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext)
   2032 {
   2033 /* Sign-extends 9-bit value (assumes upper bits are zeroes). */
   2034 #define SIGN_EXT(v)	(((v) ^ 0x100) - 0x100)
   2035 	uint32_t reg;
   2036 	int i;
   2037 
   2038 	for (i = 0; i < sc->sc_nrxchains; i++) {
   2039 		reg = AR_READ(sc, AR_PHY_CCA(i));
   2040 		nf[i] = MS(reg, AR_PHY_MINCCA_PWR);
   2041 		nf[i] = SIGN_EXT(nf[i]);
   2042 
   2043 		reg = AR_READ(sc, AR_PHY_EXT_CCA(i));
   2044 		nf_ext[i] = MS(reg, AR_PHY_EXT_MINCCA_PWR);
   2045 		nf_ext[i] = SIGN_EXT(nf_ext[i]);
   2046 	}
   2047 #undef SIGN_EXT
   2048 }
   2049 #endif /* notused */
   2050 
   2051 #ifdef notused
   2052 Static void
   2053 ar9003_write_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext)
   2054 {
   2055 	uint32_t reg;
   2056 	int i;
   2057 
   2058 	for (i = 0; i < sc->sc_nrxchains; i++) {
   2059 		reg = AR_READ(sc, AR_PHY_CCA(i));
   2060 		reg = RW(reg, AR_PHY_MAXCCA_PWR, nf[i]);
   2061 		AR_WRITE(sc, AR_PHY_CCA(i), reg);
   2062 
   2063 		reg = AR_READ(sc, AR_PHY_EXT_CCA(i));
   2064 		reg = RW(reg, AR_PHY_EXT_MAXCCA_PWR, nf_ext[i]);
   2065 		AR_WRITE(sc, AR_PHY_EXT_CCA(i), reg);
   2066 	}
   2067 	AR_WRITE_BARRIER(sc);
   2068 }
   2069 #endif /* notused */
   2070 
   2071 #ifdef notused
   2072 Static void
   2073 ar9003_get_noisefloor(struct athn_softc *sc, struct ieee80211_channel *c)
   2074 {
   2075 	int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS];
   2076 	int16_t cca_min, cca_max;
   2077 	int i;
   2078 
   2079 	if (AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
   2080 		/* Noisefloor calibration not finished. */
   2081 		return;
   2082 	}
   2083 	/* Noisefloor calibration is finished. */
   2084 	ar9003_read_noisefloor(sc, nf, nf_ext);
   2085 
   2086 	if (IEEE80211_IS_CHAN_2GHZ(c)) {
   2087 		cca_min = sc->sc_cca_min_2g;
   2088 		cca_max = sc->sc_cca_max_2g;
   2089 	}
   2090 	else {
   2091 		cca_min = sc->sc_cca_min_5g;
   2092 		cca_max = sc->sc_cca_max_5g;
   2093 	}
   2094 	/* Update noisefloor history. */
   2095 	for (i = 0; i < sc->sc_nrxchains; i++) {
   2096 		if (nf[i] < cca_min)
   2097 			nf[i] = cca_min;
   2098 		else if (nf[i] > cca_max)
   2099 			nf[i] = cca_max;
   2100 		if (nf_ext[i] < cca_min)
   2101 			nf_ext[i] = cca_min;
   2102 		else if (nf_ext[i] > cca_max)
   2103 			nf_ext[i] = cca_max;
   2104 
   2105 		sc->sc_nf_hist[sc->sc_nf_hist_cur].nf[i] = nf[i];
   2106 		sc->sc_nf_hist[sc->sc_nf_hist_cur].nf_ext[i] = nf_ext[i];
   2107 	}
   2108 	if (++sc->sc_nf_hist_cur >= ATHN_NF_CAL_HIST_MAX)
   2109 		sc->sc_nf_hist_cur = 0;
   2110 }
   2111 #endif /* notused */
   2112 
   2113 #ifdef notused
   2114 Static void
   2115 ar9003_bb_load_noisefloor(struct athn_softc *sc)
   2116 {
   2117 	int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS];
   2118 	int i, ntries;
   2119 
   2120 	/* Write filtered noisefloor values. */
   2121 	for (i = 0; i < sc->sc_nrxchains; i++) {
   2122 		nf[i] = sc->sc_nf_priv[i] * 2;
   2123 		nf_ext[i] = sc->sc_nf_ext_priv[i] * 2;
   2124 	}
   2125 	ar9003_write_noisefloor(sc, nf, nf_ext);
   2126 
   2127 	/* Load filtered noisefloor values into baseband. */
   2128 	AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
   2129 	AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
   2130 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
   2131 	/* Wait for load to complete. */
   2132 	for (ntries = 0; ntries < 1000; ntries++) {
   2133 		if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF))
   2134 			break;
   2135 		DELAY(10);
   2136 	}
   2137 	if (ntries == 1000) {
   2138 		DPRINTFN(DBG_RF, sc, "failed to load noisefloor values\n");
   2139 		return;
   2140 	}
   2141 
   2142 	/* Restore noisefloor values to initial (max) values. */
   2143 	for (i = 0; i < AR_MAX_CHAINS; i++)
   2144 		nf[i] = nf_ext[i] = -50 * 2;
   2145 	ar9003_write_noisefloor(sc, nf, nf_ext);
   2146 }
   2147 #endif /* notused */
   2148 
   2149 #ifdef notused
   2150 Static void
   2151 ar9300_noisefloor_calib(struct athn_softc *sc)
   2152 {
   2153 
   2154 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
   2155 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
   2156 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
   2157 }
   2158 #endif /* notused */
   2159 
   2160 Static void
   2161 ar9003_do_noisefloor_calib(struct athn_softc *sc)
   2162 {
   2163 
   2164 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
   2165 }
   2166 
   2167 PUBLIC int
   2168 ar9003_init_calib(struct athn_softc *sc)
   2169 {
   2170 	uint8_t txchainmask, rxchainmask;
   2171 	uint32_t reg;
   2172 	int ntries;
   2173 
   2174 	/* Save chains masks. */
   2175 	txchainmask = sc->sc_txchainmask;
   2176 	rxchainmask = sc->sc_rxchainmask;
   2177 	/* Configure hardware before calibration. */
   2178 	if (AR_READ(sc, AR_ENT_OTP) & AR_ENT_OTP_CHAIN2_DISABLE)
   2179 		txchainmask = rxchainmask = 0x3;
   2180 	else
   2181 		txchainmask = rxchainmask = 0x7;
   2182 	ar9003_init_chains(sc);
   2183 
   2184 	/* Perform Tx IQ calibration. */
   2185 	ar9003_calib_tx_iq(sc);
   2186 	/* Disable and re-enable the PHY chips. */
   2187 	AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
   2188 	AR_WRITE_BARRIER(sc);
   2189 	DELAY(5);
   2190 	AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
   2191 
   2192 	/* Calibrate the AGC. */
   2193 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL);
   2194 	/* Poll for offset calibration completion. */
   2195 	for (ntries = 0; ntries < 10000; ntries++) {
   2196 		reg = AR_READ(sc, AR_PHY_AGC_CONTROL);
   2197 		if (!(reg & AR_PHY_AGC_CONTROL_CAL))
   2198 			break;
   2199 		DELAY(10);
   2200 	}
   2201 	if (ntries == 10000)
   2202 		return ETIMEDOUT;
   2203 
   2204 	/* Restore chains masks. */
   2205 	sc->sc_txchainmask = txchainmask;
   2206 	sc->sc_rxchainmask = rxchainmask;
   2207 	ar9003_init_chains(sc);
   2208 
   2209 	return 0;
   2210 }
   2211 
   2212 Static void
   2213 ar9003_do_calib(struct athn_softc *sc)
   2214 {
   2215 	uint32_t reg;
   2216 
   2217 	if (sc->sc_cur_calib_mask & ATHN_CAL_IQ) {
   2218 		reg = AR_READ(sc, AR_PHY_TIMING4);
   2219 		reg = RW(reg, AR_PHY_TIMING4_IQCAL_LOG_COUNT_MAX, 10);
   2220 		AR_WRITE(sc, AR_PHY_TIMING4, reg);
   2221 		AR_WRITE(sc, AR_PHY_CALMODE, AR_PHY_CALMODE_IQ);
   2222 		AR_SETBITS(sc, AR_PHY_TIMING4, AR_PHY_TIMING4_DO_CAL);
   2223 		AR_WRITE_BARRIER(sc);
   2224 	}
   2225 	else if (sc->sc_cur_calib_mask & ATHN_CAL_TEMP) {
   2226 		AR_SETBITS(sc, AR_PHY_65NM_CH0_THERM,
   2227 		    AR_PHY_65NM_CH0_THERM_LOCAL);
   2228 		AR_SETBITS(sc, AR_PHY_65NM_CH0_THERM,
   2229 		    AR_PHY_65NM_CH0_THERM_START);
   2230 		AR_WRITE_BARRIER(sc);
   2231 	}
   2232 }
   2233 
   2234 Static void
   2235 ar9003_next_calib(struct athn_softc *sc)
   2236 {
   2237 	/* Check if we have any calibration in progress. */
   2238 	if (sc->sc_cur_calib_mask != 0) {
   2239 		if (!(AR_READ(sc, AR_PHY_TIMING4) & AR_PHY_TIMING4_DO_CAL)) {
   2240 			/* Calibration completed for current sample. */
   2241 			ar9003_calib_iq(sc);
   2242 		}
   2243 	}
   2244 }
   2245 
   2246 Static void
   2247 ar9003_calib_iq(struct athn_softc *sc)
   2248 {
   2249 	struct athn_iq_cal *cal;
   2250 	uint32_t reg, i_coff_denom, q_coff_denom;
   2251 	int32_t i_coff, q_coff;
   2252 	int i, iq_corr_neg;
   2253 
   2254 	for (i = 0; i < AR_MAX_CHAINS; i++) {
   2255 		cal = &sc->sc_calib.iq[i];
   2256 
   2257 		/* Read IQ calibration measures (clear on read). */
   2258 		cal->pwr_meas_i = AR_READ(sc, AR_PHY_IQ_ADC_MEAS_0_B(i));
   2259 		cal->pwr_meas_q = AR_READ(sc, AR_PHY_IQ_ADC_MEAS_1_B(i));
   2260 		cal->iq_corr_meas =
   2261 		    (int32_t)AR_READ(sc, AR_PHY_IQ_ADC_MEAS_2_B(i));
   2262 	}
   2263 
   2264 	for (i = 0; i < sc->sc_nrxchains; i++) {
   2265 		cal = &sc->sc_calib.iq[i];
   2266 
   2267 		if (cal->pwr_meas_q == 0)
   2268 			continue;
   2269 
   2270 		if ((iq_corr_neg = cal->iq_corr_meas) < 0)
   2271 			cal->iq_corr_meas = -cal->iq_corr_meas;
   2272 
   2273 		i_coff_denom =
   2274 		    (cal->pwr_meas_i / 2 + cal->pwr_meas_q / 2) / 256;
   2275 		q_coff_denom = cal->pwr_meas_q / 64;
   2276 
   2277 		if (i_coff_denom == 0 || q_coff_denom == 0)
   2278 			continue;	/* Prevents division by zero. */
   2279 
   2280 		i_coff = cal->iq_corr_meas / i_coff_denom;
   2281 		q_coff = (cal->pwr_meas_i / q_coff_denom) - 64;
   2282 
   2283 		if (i_coff > 63)
   2284 			i_coff = 63;
   2285 		else if (i_coff < -63)
   2286 			i_coff = -63;
   2287 		/* Negate i_coff if iq_corr_meas is positive. */
   2288 		if (!iq_corr_neg)
   2289 			i_coff = -i_coff;
   2290 		if (q_coff > 63)
   2291 			q_coff = 63;
   2292 		else if (q_coff < -63)
   2293 			q_coff = -63;
   2294 
   2295 		DPRINTFN(DBG_RF, sc, "IQ calibration for chain %d\n", i);
   2296 		reg = AR_READ(sc, AR_PHY_RX_IQCAL_CORR_B(i));
   2297 		reg = RW(reg, AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF, i_coff);
   2298 		reg = RW(reg, AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF, q_coff);
   2299 		AR_WRITE(sc, AR_PHY_RX_IQCAL_CORR_B(i), reg);
   2300 	}
   2301 
   2302 	/* Apply new settings. */
   2303 	AR_SETBITS(sc, AR_PHY_RX_IQCAL_CORR_B(0),
   2304 	    AR_PHY_RX_IQCAL_CORR_IQCORR_ENABLE);
   2305 	AR_WRITE_BARRIER(sc);
   2306 
   2307 	/* IQ calibration done. */
   2308 	sc->sc_cur_calib_mask &= ~ATHN_CAL_IQ;
   2309 	memset(&sc->sc_calib, 0, sizeof(sc->sc_calib));
   2310 }
   2311 
   2312 #define DELPT	32
   2313 Static int
   2314 ar9003_get_iq_corr(struct athn_softc *sc, int32_t res[6], int32_t coeff[2])
   2315 {
   2316 /* Sign-extends 12-bit value (assumes upper bits are zeroes). */
   2317 #define SIGN_EXT(v)	(((v) ^ 0x800) - 0x800)
   2318 #define SCALE		(1 << 15)
   2319 #define SHIFT		(1 <<  8)
   2320 	struct {
   2321 		int32_t	m, p, c;
   2322 	} val[2][2];
   2323 	int32_t mag[2][2], phs[2][2], cos[2], sin[2];
   2324 	int32_t div, f1, f2, f3, m, p, c;
   2325 	int32_t txmag, txphs, rxmag, rxphs;
   2326 	int32_t q_coff, i_coff;
   2327 	int i, j;
   2328 
   2329 	/* Extract our twelve signed 12-bit values from res[] array. */
   2330 	val[0][0].m = res[0] & 0xfff;
   2331 	val[0][0].p = (res[0] >> 12) & 0xfff;
   2332 	val[0][0].c = ((res[0] >> 24) & 0xff) | (res[1] & 0xf) << 8;
   2333 
   2334 	val[0][1].m = (res[1] >> 4) & 0xfff;
   2335 	val[0][1].p = res[2] & 0xfff;
   2336 	val[0][1].c = (res[2] >> 12) & 0xfff;
   2337 
   2338 	val[1][0].m = ((res[2] >> 24) & 0xff) | (res[3] & 0xf) << 8;
   2339 	val[1][0].p = (res[3] >> 4) & 0xfff;
   2340 	val[1][0].c = res[4] & 0xfff;
   2341 
   2342 	val[1][1].m = (res[4] >> 12) & 0xfff;
   2343 	val[1][1].p = ((res[4] >> 24) & 0xff) | (res[5] & 0xf) << 8;
   2344 	val[1][1].c = (res[5] >> 4) & 0xfff;
   2345 
   2346 	for (i = 0; i < 2; i++) {
   2347 		int32_t ymin, ymax;
   2348 		for (j = 0; j < 2; j++) {
   2349 			m = SIGN_EXT(val[i][j].m);
   2350 			p = SIGN_EXT(val[i][j].p);
   2351 			c = SIGN_EXT(val[i][j].c);
   2352 
   2353 			if (p == 0)
   2354 				return 1;	/* Prevent division by 0. */
   2355 
   2356 			mag[i][j] = (m * SCALE) / p;
   2357 			phs[i][j] = (c * SCALE) / p;
   2358 		}
   2359 		sin[i] = ((mag[i][0] - mag[i][1]) * SHIFT) / DELPT;
   2360 		cos[i] = ((phs[i][0] - phs[i][1]) * SHIFT) / DELPT;
   2361 		/* Find magnitude by approximation. */
   2362 		ymin = MIN(abs(sin[i]), abs(cos[i]));
   2363 		ymax = MAX(abs(sin[i]), abs(cos[i]));
   2364 		div = ymax - (ymax / 32) + (ymin / 8) + (ymin / 4);
   2365 		if (div == 0)
   2366 			return 1;	/* Prevent division by 0. */
   2367 		/* Normalize sin and cos by magnitude. */
   2368 		sin[i] = (sin[i] * SCALE) / div;
   2369 		cos[i] = (cos[i] * SCALE) / div;
   2370 	}
   2371 
   2372 	/* Compute IQ mismatch (solve 4x4 linear equation). */
   2373 	f1 = cos[0] - cos[1];
   2374 	f3 = sin[0] - sin[1];
   2375 	f2 = (f1 * f1 + f3 * f3) / SCALE;
   2376 	if (f2 == 0)
   2377 		return 1;	/* Prevent division by 0. */
   2378 
   2379 	/* Compute Tx magnitude mismatch. */
   2380 	txmag = (f1 * ( mag[0][0] - mag[1][0]) +
   2381 		 f3 * ( phs[0][0] - phs[1][0])) / f2;
   2382 	/* Compute Tx phase mismatch. */
   2383 	txphs = (f3 * (-mag[0][0] + mag[1][0]) +
   2384 		 f1 * ( phs[0][0] - phs[1][0])) / f2;
   2385 
   2386 	if (txmag == SCALE)
   2387 		return 1;	/* Prevent division by 0. */
   2388 
   2389 	/* Compute Rx magnitude mismatch. */
   2390 	rxmag = mag[0][0] - (cos[0] * txmag + sin[0] * txphs) / SCALE;
   2391 	/* Compute Rx phase mismatch. */
   2392 	rxphs = phs[0][0] + (sin[0] * txmag - cos[0] * txphs) / SCALE;
   2393 
   2394 	if (-rxmag == SCALE)
   2395 		return 1;	/* Prevent division by 0. */
   2396 
   2397 	txmag = (txmag * SCALE) / (SCALE - txmag);
   2398 	txphs = -txphs;
   2399 
   2400 	q_coff = (txmag * 128) / SCALE;
   2401 	if (q_coff < -63)
   2402 		q_coff = -63;
   2403 	else if (q_coff > 63)
   2404 		q_coff = 63;
   2405 	i_coff = (txphs * 256) / SCALE;
   2406 	if (i_coff < -63)
   2407 		i_coff = -63;
   2408 	else if (i_coff > 63)
   2409 		i_coff = 63;
   2410 	coeff[0] = q_coff * 128 + i_coff;
   2411 
   2412 	rxmag = (-rxmag * SCALE) / (SCALE + rxmag);
   2413 	rxphs = -rxphs;
   2414 
   2415 	q_coff = (rxmag * 128) / SCALE;
   2416 	if (q_coff < -63)
   2417 		q_coff = -63;
   2418 	else if (q_coff > 63)
   2419 		q_coff = 63;
   2420 	i_coff = (rxphs * 256) / SCALE;
   2421 	if (i_coff < -63)
   2422 		i_coff = -63;
   2423 	else if (i_coff > 63)
   2424 		i_coff = 63;
   2425 	coeff[1] = q_coff * 128 + i_coff;
   2426 
   2427 	return 0;
   2428 #undef SHIFT
   2429 #undef SCALE
   2430 #undef SIGN_EXT
   2431 }
   2432 
   2433 Static int
   2434 ar9003_calib_tx_iq(struct athn_softc *sc)
   2435 {
   2436 	uint32_t reg;
   2437 	int32_t res[6], coeff[2];
   2438 	int i, j, ntries;
   2439 
   2440 	reg = AR_READ(sc, AR_PHY_TX_IQCAL_CONTROL_1);
   2441 	reg = RW(reg, AR_PHY_TX_IQCAQL_CONTROL_1_IQCORR_I_Q_COFF_DELPT, DELPT);
   2442 	AR_WRITE(sc, AR_PHY_TX_IQCAL_CONTROL_1, reg);
   2443 
   2444 	/* Start Tx IQ calibration. */
   2445 	AR_SETBITS(sc, AR_PHY_TX_IQCAL_START, AR_PHY_TX_IQCAL_START_DO_CAL);
   2446 	/* Wait for completion. */
   2447 	for (ntries = 0; ntries < 10000; ntries++) {
   2448 		reg = AR_READ(sc, AR_PHY_TX_IQCAL_START);
   2449 		if (!(reg & AR_PHY_TX_IQCAL_START_DO_CAL))
   2450 			break;
   2451 		DELAY(10);
   2452 	}
   2453 	if (ntries == 10000)
   2454 		return ETIMEDOUT;
   2455 
   2456 	for (i = 0; i < sc->sc_ntxchains; i++) {
   2457 		/* Read Tx IQ calibration status for this chain. */
   2458 		reg = AR_READ(sc, AR_PHY_TX_IQCAL_STATUS_B(i));
   2459 		if (reg & AR_PHY_TX_IQCAL_STATUS_FAILED)
   2460 			return EIO;
   2461 		/*
   2462 		 * Read Tx IQ calibration results for this chain.
   2463 		 * This consists in twelve signed 12-bit values.
   2464 		 */
   2465 		for (j = 0; j < 3; j++) {
   2466 			AR_CLRBITS(sc, AR_PHY_CHAN_INFO_MEMORY,
   2467 			    AR_PHY_CHAN_INFO_TAB_S2_READ);
   2468 			reg = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(i, j));
   2469 			res[j * 2 + 0] = reg;
   2470 
   2471 			AR_SETBITS(sc, AR_PHY_CHAN_INFO_MEMORY,
   2472 			    AR_PHY_CHAN_INFO_TAB_S2_READ);
   2473 			reg = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(i, j));
   2474 			res[j * 2 + 1] = reg & 0xffff;
   2475 		}
   2476 
   2477 		/* Compute Tx IQ correction. */
   2478 		if (ar9003_get_iq_corr(sc, res, coeff) != 0)
   2479 			return EIO;
   2480 
   2481 		/* Write Tx IQ correction coefficients. */
   2482 		reg = AR_READ(sc, AR_PHY_TX_IQCAL_CORR_COEFF_01_B(i));
   2483 		reg = RW(reg, AR_PHY_TX_IQCAL_CORR_COEFF_01_COEFF_TABLE,
   2484 		    coeff[0]);
   2485 		AR_WRITE(sc, AR_PHY_TX_IQCAL_CORR_COEFF_01_B(i), reg);
   2486 
   2487 		reg = AR_READ(sc, AR_PHY_RX_IQCAL_CORR_B(i));
   2488 		reg = RW(reg, AR_PHY_RX_IQCAL_CORR_LOOPBACK_IQCORR_Q_Q_COFF,
   2489 		    coeff[1] >> 7);
   2490 		reg = RW(reg, AR_PHY_RX_IQCAL_CORR_LOOPBACK_IQCORR_Q_I_COFF,
   2491 		    coeff[1]);
   2492 		AR_WRITE(sc, AR_PHY_RX_IQCAL_CORR_B(i), reg);
   2493 		AR_WRITE_BARRIER(sc);
   2494 	}
   2495 
   2496 	/* Enable Tx IQ correction. */
   2497 	AR_SETBITS(sc, AR_PHY_TX_IQCAL_CONTROL_3,
   2498 	    AR_PHY_TX_IQCAL_CONTROL_3_IQCORR_EN);
   2499 	AR_SETBITS(sc, AR_PHY_RX_IQCAL_CORR_B(0),
   2500 	    AR_PHY_RX_IQCAL_CORR_B0_LOOPBACK_IQCORR_EN);
   2501 	AR_WRITE_BARRIER(sc);
   2502 	return 0;
   2503 }
   2504 #undef DELPT
   2505 
   2506 /*-
   2507  * The power amplifier predistortion state machine works as follows:
   2508  * 1) Disable digital predistorters for all Tx chains
   2509  * 2) Repeat steps 3~7 for all Tx chains
   2510  * 3)   Force Tx gain to that of training signal
   2511  * 4)   Send training signal (asynchronous)
   2512  * 5)   Wait for training signal to complete (asynchronous)
   2513  * 6)   Read PA measurements (input power, output power, output phase)
   2514  * 7)   Compute the predistortion function that linearizes PA output
   2515  * 8) Write predistortion functions to hardware tables for all Tx chains
   2516  * 9) Enable digital predistorters for all Tx chains
   2517  */
   2518 #ifdef notused
   2519 Static void
   2520 ar9003_paprd_calib(struct athn_softc *sc, struct ieee80211_channel *c)
   2521 {
   2522 	static const int scaling[] = {
   2523 		261376, 248079, 233759, 220464,
   2524 		208194, 196949, 185706, 175487
   2525 	};
   2526 	struct athn_ops *ops = &sc->sc_ops;
   2527 	uint32_t reg, ht20mask, ht40mask;
   2528 	int i;
   2529 
   2530 	/* Read PA predistortion masks from ROM. */
   2531 	ops->get_paprd_masks(sc, c, &ht20mask, &ht40mask);
   2532 
   2533 	/* AM-to-AM: amplifier's amplitude characteristic. */
   2534 	reg = AR_READ(sc, AR_PHY_PAPRD_AM2AM);
   2535 	reg = RW(reg, AR_PHY_PAPRD_AM2AM_MASK, ht20mask);
   2536 	AR_WRITE(sc, AR_PHY_PAPRD_AM2AM, reg);
   2537 
   2538 	/* AM-to-PM: amplifier's phase transfer characteristic. */
   2539 	reg = AR_READ(sc, AR_PHY_PAPRD_AM2PM);
   2540 	reg = RW(reg, AR_PHY_PAPRD_AM2PM_MASK, ht20mask);
   2541 	AR_WRITE(sc, AR_PHY_PAPRD_AM2PM, reg);
   2542 
   2543 	reg = AR_READ(sc, AR_PHY_PAPRD_HT40);
   2544 	reg = RW(reg, AR_PHY_PAPRD_HT40_MASK, ht40mask);
   2545 	AR_WRITE(sc, AR_PHY_PAPRD_HT40, reg);
   2546 
   2547 	for (i = 0; i < AR9003_MAX_CHAINS; i++) {
   2548 		AR_SETBITS(sc, AR_PHY_PAPRD_CTRL0_B(i),
   2549 		    AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE);
   2550 
   2551 		reg = AR_READ(sc, AR_PHY_PAPRD_CTRL1_B(i));
   2552 		reg = RW(reg, AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT, 181);
   2553 		reg = RW(reg, AR_PHY_PAPRD_CTRL1_MAG_SCALE_FACT, 361);
   2554 		reg &= ~AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA;
   2555 		reg |= AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENA;
   2556 		reg |= AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENA;
   2557 		AR_WRITE(sc, AR_PHY_PAPRD_CTRL1_B(i), reg);
   2558 
   2559 		reg = AR_READ(sc, AR_PHY_PAPRD_CTRL0_B(i));
   2560 		reg = RW(reg, AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3);
   2561 		AR_WRITE(sc, AR_PHY_PAPRD_CTRL0_B(i), reg);
   2562 	}
   2563 
   2564 	/* Disable all digital predistorters during calibration. */
   2565 	for (i = 0; i < AR9003_MAX_CHAINS; i++) {
   2566 		AR_CLRBITS(sc, AR_PHY_PAPRD_CTRL0_B(i),
   2567 		    AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE);
   2568 	}
   2569 	AR_WRITE_BARRIER(sc);
   2570 
   2571 	/*
   2572 	 * Configure training signal.
   2573 	 */
   2574 	reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL1);
   2575 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL1_AGC2_SETTLING, 28);
   2576 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL1_LB_SKIP, 0x30);
   2577 	reg &= ~AR_PHY_PAPRD_TRAINER_CNTL1_RX_BB_GAIN_FORCE;
   2578 	reg &= ~AR_PHY_PAPRD_TRAINER_CNTL1_IQCORR_ENABLE;
   2579 	reg |= AR_PHY_PAPRD_TRAINER_CNTL1_LB_ENABLE;
   2580 	reg |= AR_PHY_PAPRD_TRAINER_CNTL1_TX_GAIN_FORCE;
   2581 	reg |= AR_PHY_PAPRD_TRAINER_CNTL1_TRAIN_ENABLE;
   2582 	AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL1, reg);
   2583 
   2584 	AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL2, 147);
   2585 
   2586 	reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL3);
   2587 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_FINE_CORR_LEN, 4);
   2588 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_COARSE_CORR_LEN, 4);
   2589 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_NUM_CORR_STAGES, 7);
   2590 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_MIN_LOOPBACK_DEL, 1);
   2591 	if (AR_SREV_9485(sc))
   2592 		reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_QUICK_DROP, -3);
   2593 	else
   2594 		reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_QUICK_DROP, -6);
   2595 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_ADC_DESIRED_SIZE, -15);
   2596 	reg |= AR_PHY_PAPRD_TRAINER_CNTL3_BBTXMIX_DISABLE;
   2597 	AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL3, reg);
   2598 
   2599 	reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL4);
   2600 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_SAFETY_DELTA, 0);
   2601 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_MIN_CORR, 400);
   2602 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_NUM_TRAIN_SAMPLES, 100);
   2603 	AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL4, reg);
   2604 
   2605 	for (i = 0; i < __arraycount(scaling); i++) {
   2606 		reg = AR_READ(sc, AR_PHY_PAPRD_PRE_POST_SCALE_B0(i));
   2607 		reg = RW(reg, AR_PHY_PAPRD_PRE_POST_SCALING, scaling[i]);
   2608 		AR_WRITE(sc, AR_PHY_PAPRD_PRE_POST_SCALE_B0(i), reg);
   2609 	}
   2610 
   2611 	/* Save Tx gain table. */
   2612 	for (i = 0; i < AR9003_TX_GAIN_TABLE_SIZE; i++)
   2613 		sc->sc_txgain[i] = AR_READ(sc, AR_PHY_TXGAIN_TABLE(i));
   2614 
   2615 	/* Set Tx power of training signal (use setting for MCS0). */
   2616 	sc->sc_trainpow = MS(AR_READ(sc, AR_PHY_PWRTX_RATE5),
   2617 	    AR_PHY_PWRTX_RATE5_POWERTXHT20_0) - 4;
   2618 
   2619 	/*
   2620 	 * Start PA predistortion calibration state machine.
   2621 	 */
   2622 	/* Find first available Tx chain. */
   2623 	sc->sc_paprd_curchain = 0;
   2624 	while (!(sc->sc_txchainmask & (1 << sc->sc_paprd_curchain)))
   2625 		sc->sc_paprd_curchain++;
   2626 
   2627 	/* Make sure training done bit is clear. */
   2628 	AR_CLRBITS(sc, AR_PHY_PAPRD_TRAINER_STAT1,
   2629 	    AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE);
   2630 	AR_WRITE_BARRIER(sc);
   2631 
   2632 	/* Transmit training signal. */
   2633 	ar9003_paprd_tx_tone(sc);
   2634 }
   2635 #endif /* notused */
   2636 
   2637 Static int
   2638 ar9003_get_desired_txgain(struct athn_softc *sc, int chain, int pow)
   2639 {
   2640 	int32_t scale, atemp, avolt, tempcal, voltcal, temp, volt;
   2641 	int32_t tempcorr, voltcorr;
   2642 	uint32_t reg;
   2643 	int8_t delta;
   2644 
   2645 	scale = MS(AR_READ(sc, AR_PHY_TPC_12),
   2646 	    AR_PHY_TPC_12_DESIRED_SCALE_HT40_5);
   2647 
   2648 	reg = AR_READ(sc, AR_PHY_TPC_19);
   2649 	atemp = MS(reg, AR_PHY_TPC_19_ALPHA_THERM);
   2650 	avolt = MS(reg, AR_PHY_TPC_19_ALPHA_VOLT);
   2651 
   2652 	reg = AR_READ(sc, AR_PHY_TPC_18);
   2653 	tempcal = MS(reg, AR_PHY_TPC_18_THERM_CAL);
   2654 	voltcal = MS(reg, AR_PHY_TPC_18_VOLT_CAL);
   2655 
   2656 	reg = AR_READ(sc, AR_PHY_BB_THERM_ADC_4);
   2657 	temp = MS(reg, AR_PHY_BB_THERM_ADC_4_LATEST_THERM);
   2658 	volt = MS(reg, AR_PHY_BB_THERM_ADC_4_LATEST_VOLT);
   2659 
   2660 	delta = (int8_t)MS(AR_READ(sc, AR_PHY_TPC_11_B(chain)),
   2661 	    AR_PHY_TPC_11_OLPC_GAIN_DELTA);
   2662 
   2663 	/* Compute temperature and voltage correction. */
   2664 	tempcorr = (atemp * (temp - tempcal) + 128) / 256;
   2665 	voltcorr = (avolt * (volt - voltcal) + 64) / 128;
   2666 
   2667 	/* Compute desired Tx gain. */
   2668 	return pow - delta - tempcorr - voltcorr + scale;
   2669 }
   2670 
   2671 Static void
   2672 ar9003_force_txgain(struct athn_softc *sc, uint32_t txgain)
   2673 {
   2674 	uint32_t reg;
   2675 
   2676 	reg = AR_READ(sc, AR_PHY_TX_FORCED_GAIN);
   2677 	reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXBB1DBGAIN,
   2678 	    MS(txgain, AR_PHY_TXGAIN_TXBB1DBGAIN));
   2679 	reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXBB6DBGAIN,
   2680 	    MS(txgain, AR_PHY_TXGAIN_TXBB6DBGAIN));
   2681 	reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXMXRGAIN,
   2682 	    MS(txgain, AR_PHY_TXGAIN_TXMXRGAIN));
   2683 	reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNA,
   2684 	    MS(txgain, AR_PHY_TXGAIN_PADRVGNA));
   2685 	reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNB,
   2686 	    MS(txgain, AR_PHY_TXGAIN_PADRVGNB));
   2687 	reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNC,
   2688 	    MS(txgain, AR_PHY_TXGAIN_PADRVGNC));
   2689 	reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGND,
   2690 	    MS(txgain, AR_PHY_TXGAIN_PADRVGND));
   2691 	reg &= ~AR_PHY_TX_FORCED_GAIN_ENABLE_PAL;
   2692 	reg &= ~AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN;
   2693 	AR_WRITE(sc, AR_PHY_TX_FORCED_GAIN, reg);
   2694 
   2695 	reg = AR_READ(sc, AR_PHY_TPC_1);
   2696 	reg = RW(reg, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0);
   2697 	reg &= ~AR_PHY_TPC_1_FORCE_DAC_GAIN;
   2698 	AR_WRITE(sc, AR_PHY_TPC_1, reg);
   2699 	AR_WRITE_BARRIER(sc);
   2700 }
   2701 
   2702 Static void
   2703 ar9003_set_training_gain(struct athn_softc *sc, int chain)
   2704 {
   2705 	size_t i;
   2706 	int gain;
   2707 
   2708 	/*
   2709 	 * Get desired gain for training signal power (take into account
   2710 	 * current temperature/voltage).
   2711 	 */
   2712 	gain = ar9003_get_desired_txgain(sc, chain, sc->sc_trainpow);
   2713 	/* Find entry in table. */
   2714 	for (i = 0; i < AR9003_TX_GAIN_TABLE_SIZE - 1; i++)
   2715 		if ((int)MS(sc->sc_txgain[i], AR_PHY_TXGAIN_INDEX) >= gain)
   2716 			break;
   2717 	ar9003_force_txgain(sc, sc->sc_txgain[i]);
   2718 }
   2719 
   2720 Static int
   2721 ar9003_paprd_tx_tone(struct athn_softc *sc)
   2722 {
   2723 #define TONE_LEN	1800
   2724 	struct ieee80211com *ic = &sc->sc_ic;
   2725 	struct ieee80211_frame *wh;
   2726 	struct ieee80211_node *ni;
   2727 	struct mbuf *m;
   2728 	int error;
   2729 
   2730 	/* Build a Null (no data) frame of TONE_LEN bytes. */
   2731 	m = MCLGETI(NULL, M_DONTWAIT, NULL, TONE_LEN);
   2732 	if (m == NULL)
   2733 		return ENOBUFS;
   2734 	memset(mtod(m, void *), 0, TONE_LEN);
   2735 	wh = mtod(m, struct ieee80211_frame *);
   2736 	wh->i_fc[0] = IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA;
   2737 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   2738 	*(uint16_t *)wh->i_dur = htole16(10);	/* XXX */
   2739 	IEEE80211_ADDR_COPY(wh->i_addr1, ic->ic_myaddr);
   2740 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   2741 	IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_myaddr);
   2742 	m->m_pkthdr.len = m->m_len = TONE_LEN;
   2743 
   2744 	/* Set gain of training signal. */
   2745 	ar9003_set_training_gain(sc, sc->sc_paprd_curchain);
   2746 
   2747 	/* Transmit training signal. */
   2748 	ni = ieee80211_ref_node(ic->ic_bss);
   2749 	if ((error = ar9003_tx(sc, m, ni, ATHN_TXFLAG_PAPRD)) != 0)
   2750 		ieee80211_free_node(ni);
   2751 	return error;
   2752 #undef TONE_LEN
   2753 }
   2754 
   2755 static __inline int
   2756 get_scale(int val)
   2757 {
   2758 	int log = 0;
   2759 
   2760 	/* Find the log base 2 (position of highest bit set). */
   2761 	while (val >>= 1)
   2762 		log++;
   2763 
   2764 	return (log > 10) ? log - 10 : 0;
   2765 }
   2766 
   2767 /*
   2768  * Compute predistortion function to linearize power amplifier output based
   2769  * on feedback from training signal.
   2770  */
   2771 Static int
   2772 ar9003_compute_predistortion(struct athn_softc *sc, const uint32_t *lo,
   2773     const uint32_t *hi)
   2774 {
   2775 #define NBINS	23
   2776 	int chain = sc->sc_paprd_curchain;
   2777 	int x[NBINS + 1], y[NBINS + 1], t[NBINS + 1];
   2778 	int b1[NBINS + 1], b2[NBINS + 1], xtilde[NBINS + 1];
   2779 	int nsamples, txsum, rxsum, rosum, maxidx;
   2780 	int order, order5x, order5xrem, order3x, order3xrem, y5, y3;
   2781 	int icept, G, I, L, M, angle, xnonlin, y2, y4, sumy2, sumy4;
   2782 	int alpha, beta, scale, Qalpha, Qbeta, Qscale, Qx, Qb1, Qb2;
   2783 	int tavg, ttilde, maxb1abs, maxb2abs, maxxtildeabs, in;
   2784 	int tmp, i;
   2785 
   2786 	/* Set values at origin. */
   2787 	x[0] = y[0] = t[0] = 0;
   2788 
   2789 #define SCALE	32
   2790 	maxidx = 0;
   2791 	for (i = 0; i < NBINS; i++) {
   2792 		nsamples = lo[i] & 0xffff;
   2793 		/* Skip bins that contain 16 or less samples. */
   2794 		if (nsamples <= 16) {
   2795 			x[i + 1] = y[i + 1] = t[i + 1] = 0;
   2796 			continue;
   2797 		}
   2798 		txsum = (hi[i] & 0x7ff) << 16 | lo[i] >> 16;
   2799 		rxsum = (lo[i + NBINS] & 0xffff) << 5 |
   2800 		    ((hi[i] >> 11) & 0x1f);
   2801 		rosum = (hi[i + NBINS] & 0x7ff) << 16 | hi[i + NBINS] >> 16;
   2802 		/* Sign-extend 27-bit value. */
   2803 		rosum = (rosum ^ 0x4000000) - 0x4000000;
   2804 
   2805 		txsum *= SCALE;
   2806 		rxsum *= SCALE;
   2807 		rosum *= SCALE;
   2808 
   2809 		x[i + 1] = ((txsum + nsamples) / nsamples + SCALE) / SCALE;
   2810 		y[i + 1] = ((rxsum + nsamples) / nsamples + SCALE) / SCALE +
   2811 		    SCALE * maxidx + SCALE / 2;
   2812 		t[i + 1] = (rosum + nsamples) / nsamples;
   2813 		maxidx++;
   2814 	}
   2815 #undef SCALE
   2816 
   2817 #define SCALE_LOG	8
   2818 #define SCALE		(1 << SCALE_LOG)
   2819 	if (x[6] == x[3])
   2820 		return 1;	/* Prevent division by 0. */
   2821 	G = ((y[6] - y[3]) * SCALE + (x[6] - x[3])) / (x[6] - x[3]);
   2822 	if (G == 0)
   2823 		return 1;	/* Prevent division by 0. */
   2824 
   2825 	sc->sc_gain1[chain] = G;	/* Save low signal gain. */
   2826 
   2827 	/* Find interception point. */
   2828 	icept = (G * (x[0] - x[3]) + SCALE) / SCALE + y[3];
   2829 	for (i = 0; i <= 3; i++) {
   2830 		y[i] = i * 32;
   2831 		x[i] = (y[i] * SCALE + G) / G;
   2832 	}
   2833 	for (i = 4; i <= maxidx; i++)
   2834 		y[i] -= icept;
   2835 
   2836 	xnonlin = x[maxidx] - (y[maxidx] * SCALE + G) / G;
   2837 	order = (xnonlin + y[maxidx]) / y[maxidx];
   2838 	if (order == 0)
   2839 		M = 10;
   2840 	else if (order == 1)
   2841 		M = 9;
   2842 	else
   2843 		M = 8;
   2844 
   2845 	I = (maxidx >= 16) ? 7 : maxidx / 2;
   2846 	L = maxidx - I;
   2847 
   2848 	sumy2 = sumy4 = y2 = y4 = 0;
   2849 	for (i = 0; i <= L; i++) {
   2850 		if (y[i + I] == 0)
   2851 			return 1;	/* Prevent division by 0. */
   2852 
   2853 		xnonlin = x[i + I] - ((y[i + I] * SCALE) + G) / G;
   2854 		xtilde[i] = ((xnonlin << M) + y[i + I]) / y[i + I];
   2855 		xtilde[i] = ((xtilde[i] << M) + y[i + I]) / y[i + I];
   2856 		xtilde[i] = ((xtilde[i] << M) + y[i + I]) / y[i + I];
   2857 
   2858 		y2 = (y[i + I] * y[i + I] + SCALE * SCALE) / (SCALE * SCALE);
   2859 
   2860 		sumy2 += y2;
   2861 		sumy4 += y2 * y2;
   2862 
   2863 		b1[i] = y2 * (L + 1);
   2864 		b2[i] = y2;
   2865 	}
   2866 	for (i = 0; i <= L; i++) {
   2867 		b1[i] -= sumy2;
   2868 		b2[i] = sumy4 - sumy2 * b2[i];
   2869 	}
   2870 
   2871 	maxxtildeabs = maxb1abs = maxb2abs = 0;
   2872 	for (i = 0; i <= L; i++) {
   2873 		tmp = abs(xtilde[i]);
   2874 		if (tmp > maxxtildeabs)
   2875 			maxxtildeabs = tmp;
   2876 
   2877 		tmp = abs(b1[i]);
   2878 		if (tmp > maxb1abs)
   2879 			maxb1abs = tmp;
   2880 
   2881 		tmp = abs(b2[i]);
   2882 		if (tmp > maxb2abs)
   2883 			maxb2abs = tmp;
   2884 	}
   2885 	Qx  = get_scale(maxxtildeabs);
   2886 	Qb1 = get_scale(maxb1abs);
   2887 	Qb2 = get_scale(maxb2abs);
   2888 	for (i = 0; i <= L; i++) {
   2889 		xtilde[i] /= 1 << Qx;
   2890 		b1[i] /= 1 << Qb1;
   2891 		b2[i] /= 1 << Qb2;
   2892 	}
   2893 
   2894 	alpha = beta = 0;
   2895 	for (i = 0; i <= L; i++) {
   2896 		alpha += b1[i] * xtilde[i];
   2897 		beta  += b2[i] * xtilde[i];
   2898 	}
   2899 
   2900 	scale = ((y4 / SCALE_LOG) * (L + 1) -
   2901 		 (y2 / SCALE_LOG) * sumy2) * SCALE_LOG;
   2902 
   2903 	Qscale = get_scale(abs(scale));
   2904 	scale /= 1 << Qscale;
   2905 	Qalpha = get_scale(abs(alpha));
   2906 	alpha /= 1 << Qalpha;
   2907 	Qbeta  = get_scale(abs(beta));
   2908 	beta  /= 1 << Qbeta;
   2909 
   2910 	order = 3 * M - Qx - Qb1 - Qbeta + 10 + Qscale;
   2911 	order5x = 1 << (order / 5);
   2912 	order5xrem = 1 << (order % 5);
   2913 
   2914 	order = 3 * M - Qx - Qb2 - Qalpha + 10 + Qscale;
   2915 	order3x = 1 << (order / 3);
   2916 	order3xrem = 1 << (order % 3);
   2917 
   2918 	for (i = 0; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) {
   2919 		tmp = i * 32;
   2920 
   2921 		/* Fifth order. */
   2922 		y5 = ((beta * tmp) / 64) / order5x;
   2923 		y5 = (y5 * tmp) / order5x;
   2924 		y5 = (y5 * tmp) / order5x;
   2925 		y5 = (y5 * tmp) / order5x;
   2926 		y5 = (y5 * tmp) / order5x;
   2927 		y5 = y5 / order5xrem;
   2928 
   2929 		/* Third oder. */
   2930 		y3 = (alpha * tmp) / order3x;
   2931 		y3 = (y3 * tmp) / order3x;
   2932 		y3 = (y3 * tmp) / order3x;
   2933 		y3 = y3 / order3xrem;
   2934 
   2935 		in = y5 + y3 + (SCALE * tmp) / G;
   2936 		if (i >= 2 && in < sc->sc_pa_in[chain][i - 1]) {
   2937 			in = sc->sc_pa_in[chain][i - 1] +
   2938 			    (sc->sc_pa_in[chain][i - 1] -
   2939 			     sc->sc_pa_in[chain][i - 2]);
   2940 		}
   2941 		if (in > 1400)
   2942 			in = 1400;
   2943 		sc->sc_pa_in[chain][i] = in;
   2944 	}
   2945 
   2946 	/* Compute average theta of first 5 bins (linear region). */
   2947 	tavg = 0;
   2948 	for (i = 1; i <= 5; i++)
   2949 		tavg += t[i];
   2950 	tavg /= 5;
   2951 	for (i = 1; i <= 5; i++)
   2952 		t[i] = 0;
   2953 	for (i = 6; i <= maxidx; i++)
   2954 		t[i] -= tavg;
   2955 
   2956 	alpha = beta = 0;
   2957 	for (i = 0; i <= L; i++) {
   2958 		ttilde = ((t[i + I] << M) + y[i + I]) / y[i + I];
   2959 		ttilde = ((ttilde << M) +  y[i + I]) / y[i + I];
   2960 		ttilde = ((ttilde << M) +  y[i + I]) / y[i + I];
   2961 
   2962 		alpha += b2[i] * ttilde;
   2963 		beta  += b1[i] * ttilde;
   2964 	}
   2965 
   2966 	Qalpha = get_scale(abs(alpha));
   2967 	alpha /= 1 << Qalpha;
   2968 	Qbeta  = get_scale(abs(beta));
   2969 	beta  /= 1 << Qbeta;
   2970 
   2971 	order = 3 * M - Qx - Qb1 - Qbeta + 10 + Qscale + 5;
   2972 	order5x = 1 << (order / 5);
   2973 	order5xrem = 1 << (order % 5);
   2974 
   2975 	order = 3 * M - Qx - Qb2 - Qalpha + 10 + Qscale + 5;
   2976 	order3x = 1 << (order / 3);
   2977 	order3xrem = 1 << (order % 3);
   2978 
   2979 	for (i = 0; i <= 4; i++)
   2980 		sc->sc_angle[chain][i] = 0;	/* Linear at that range. */
   2981 	for (i = 5; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) {
   2982 		tmp = i * 32;
   2983 
   2984 		/* Fifth order. */
   2985 		if (beta > 0)
   2986 			y5 = (((beta * tmp - 64) / 64) - order5x) / order5x;
   2987 		else
   2988 			y5 = (((beta * tmp - 64) / 64) + order5x) / order5x;
   2989 		y5 = (y5 * tmp) / order5x;
   2990 		y5 = (y5 * tmp) / order5x;
   2991 		y5 = (y5 * tmp) / order5x;
   2992 		y5 = (y5 * tmp) / order5x;
   2993 		y5 = y5 / order5xrem;
   2994 
   2995 		/* Third oder. */
   2996 		if (beta > 0)	/* XXX alpha? */
   2997 			y3 = (alpha * tmp - order3x) / order3x;
   2998 		else
   2999 			y3 = (alpha * tmp + order3x) / order3x;
   3000 		y3 = (y3 * tmp) / order3x;
   3001 		y3 = (y3 * tmp) / order3x;
   3002 		y3 = y3 / order3xrem;
   3003 
   3004 		angle = y5 + y3;
   3005 		if (angle < -150)
   3006 			angle = -150;
   3007 		else if (angle > 150)
   3008 			angle = 150;
   3009 		sc->sc_angle[chain][i] = angle;
   3010 	}
   3011 	/* Angle for entry 4 is derived from angle for entry 5. */
   3012 	sc->sc_angle[chain][4] = (sc->sc_angle[chain][5] + 2) / 2;
   3013 
   3014 	return 0;
   3015 #undef SCALE
   3016 #undef SCALE_LOG
   3017 #undef NBINS
   3018 }
   3019 
   3020 Static void
   3021 ar9003_enable_predistorter(struct athn_softc *sc, int chain)
   3022 {
   3023 	uint32_t reg;
   3024 	int i;
   3025 
   3026 	/* Write digital predistorter lookup table. */
   3027 	for (i = 0; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) {
   3028 		AR_WRITE(sc, AR_PHY_PAPRD_MEM_TAB_B(chain, i),
   3029 		    SM(AR_PHY_PAPRD_PA_IN, sc->sc_pa_in[chain][i]) |
   3030 		    SM(AR_PHY_PAPRD_ANGLE, sc->sc_angle[chain][i]));
   3031 	}
   3032 
   3033 	reg = AR_READ(sc, AR_PHY_PA_GAIN123_B(chain));
   3034 	reg = RW(reg, AR_PHY_PA_GAIN123_PA_GAIN1, sc->sc_gain1[chain]);
   3035 	AR_WRITE(sc, AR_PHY_PA_GAIN123_B(chain), reg);
   3036 
   3037 	/* Indicate Tx power used for calibration (training signal). */
   3038 	reg = AR_READ(sc, AR_PHY_PAPRD_CTRL1_B(chain));
   3039 	reg = RW(reg, AR_PHY_PAPRD_CTRL1_POWER_AT_AM2AM_CAL, sc->sc_trainpow);
   3040 	AR_WRITE(sc, AR_PHY_PAPRD_CTRL1_B(chain), reg);
   3041 
   3042 	/* Enable digital predistorter for this chain. */
   3043 	AR_SETBITS(sc, AR_PHY_PAPRD_CTRL0_B(chain),
   3044 	    AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE);
   3045 	AR_WRITE_BARRIER(sc);
   3046 }
   3047 
   3048 Static void
   3049 ar9003_paprd_enable(struct athn_softc *sc)
   3050 {
   3051 	int i;
   3052 
   3053 	/* Enable digital predistorters for all Tx chains. */
   3054 	for (i = 0; i < AR9003_MAX_CHAINS; i++)
   3055 		if (sc->sc_txchainmask & (1 << i))
   3056 			ar9003_enable_predistorter(sc, i);
   3057 }
   3058 
   3059 /*
   3060  * This function is called when our training signal has been sent.
   3061  */
   3062 Static void
   3063 ar9003_paprd_tx_tone_done(struct athn_softc *sc)
   3064 {
   3065 	uint32_t lo[48], hi[48];
   3066 	size_t i;
   3067 
   3068 	/* Make sure training is complete. */
   3069 	if (!(AR_READ(sc, AR_PHY_PAPRD_TRAINER_STAT1) &
   3070 	    AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE))
   3071 		return;
   3072 
   3073 	/* Read feedback from training signal. */
   3074 	AR_CLRBITS(sc, AR_PHY_CHAN_INFO_MEMORY, AR_PHY_CHAN_INFO_TAB_S2_READ);
   3075 	for (i = 0; i < __arraycount(lo); i++)
   3076 		lo[i] = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(0, i));
   3077 	AR_SETBITS(sc, AR_PHY_CHAN_INFO_MEMORY, AR_PHY_CHAN_INFO_TAB_S2_READ);
   3078 	for (i = 0; i < __arraycount(hi); i++)
   3079 		hi[i] = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(0, i));
   3080 
   3081 	AR_CLRBITS(sc, AR_PHY_PAPRD_TRAINER_STAT1,
   3082 	    AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE);
   3083 
   3084 	/* Compute predistortion function based on this feedback. */
   3085 	if (ar9003_compute_predistortion(sc, lo, hi) != 0)
   3086 		return;
   3087 
   3088 	/* Get next available Tx chain. */
   3089 	while (++sc->sc_paprd_curchain < AR9003_MAX_CHAINS)
   3090 		if (sc->sc_txchainmask & (1 << sc->sc_paprd_curchain))
   3091 			break;
   3092 	if (sc->sc_paprd_curchain == AR9003_MAX_CHAINS) {
   3093 		/* All Tx chains measured; enable digital predistortion. */
   3094 		ar9003_paprd_enable(sc);
   3095 	}
   3096 	else	/* Measure next Tx chain. */
   3097 		ar9003_paprd_tx_tone(sc);
   3098 }
   3099 
   3100 PUBLIC void
   3101 ar9003_write_txpower(struct athn_softc *sc, int16_t power[ATHN_POWER_COUNT])
   3102 {
   3103 
   3104 	/* Make sure forced gain is disabled. */
   3105 	AR_WRITE(sc, AR_PHY_TX_FORCED_GAIN, 0);
   3106 
   3107 	AR_WRITE(sc, AR_PHY_PWRTX_RATE1,
   3108 	    (power[ATHN_POWER_OFDM18  ] & 0x3f) << 24 |
   3109 	    (power[ATHN_POWER_OFDM12  ] & 0x3f) << 16 |
   3110 	    (power[ATHN_POWER_OFDM9   ] & 0x3f) <<  8 |
   3111 	    (power[ATHN_POWER_OFDM6   ] & 0x3f));
   3112 	AR_WRITE(sc, AR_PHY_PWRTX_RATE2,
   3113 	    (power[ATHN_POWER_OFDM54  ] & 0x3f) << 24 |
   3114 	    (power[ATHN_POWER_OFDM48  ] & 0x3f) << 16 |
   3115 	    (power[ATHN_POWER_OFDM36  ] & 0x3f) <<  8 |
   3116 	    (power[ATHN_POWER_OFDM24  ] & 0x3f));
   3117 	AR_WRITE(sc, AR_PHY_PWRTX_RATE3,
   3118 	    (power[ATHN_POWER_CCK2_SP ] & 0x3f) << 24 |
   3119 	    (power[ATHN_POWER_CCK2_LP ] & 0x3f) << 16 |
   3120 	    /* NB: No eXtended Range for AR9003. */
   3121 	    (power[ATHN_POWER_CCK1_LP ] & 0x3f));
   3122 	AR_WRITE(sc, AR_PHY_PWRTX_RATE4,
   3123 	    (power[ATHN_POWER_CCK11_SP] & 0x3f) << 24 |
   3124 	    (power[ATHN_POWER_CCK11_LP] & 0x3f) << 16 |
   3125 	    (power[ATHN_POWER_CCK55_SP] & 0x3f) <<  8 |
   3126 	    (power[ATHN_POWER_CCK55_LP] & 0x3f));
   3127 	/*
   3128 	 * NB: AR_PHY_PWRTX_RATE5 needs to be written even if HT is disabled
   3129 	 * because it is read by PA predistortion functions.
   3130 	 */
   3131 	AR_WRITE(sc, AR_PHY_PWRTX_RATE5,
   3132 	    (power[ATHN_POWER_HT20( 5)] & 0x3f) << 24 |
   3133 	    (power[ATHN_POWER_HT20( 4)] & 0x3f) << 16 |
   3134 	    (power[ATHN_POWER_HT20( 1)] & 0x3f) <<  8 |
   3135 	    (power[ATHN_POWER_HT20( 0)] & 0x3f));
   3136 #ifndef IEEE80211_NO_HT
   3137 	AR_WRITE(sc, AR_PHY_PWRTX_RATE6,
   3138 	    (power[ATHN_POWER_HT20(13)] & 0x3f) << 24 |
   3139 	    (power[ATHN_POWER_HT20(12)] & 0x3f) << 16 |
   3140 	    (power[ATHN_POWER_HT20( 7)] & 0x3f) <<  8 |
   3141 	    (power[ATHN_POWER_HT20( 6)] & 0x3f));
   3142 	AR_WRITE(sc, AR_PHY_PWRTX_RATE7,
   3143 	    (power[ATHN_POWER_HT40( 5)] & 0x3f) << 24 |
   3144 	    (power[ATHN_POWER_HT40( 4)] & 0x3f) << 16 |
   3145 	    (power[ATHN_POWER_HT40( 1)] & 0x3f) <<  8 |
   3146 	    (power[ATHN_POWER_HT40( 0)] & 0x3f));
   3147 	AR_WRITE(sc, AR_PHY_PWRTX_RATE8,
   3148 	    (power[ATHN_POWER_HT40(13)] & 0x3f) << 24 |
   3149 	    (power[ATHN_POWER_HT40(12)] & 0x3f) << 16 |
   3150 	    (power[ATHN_POWER_HT40( 7)] & 0x3f) <<  8 |
   3151 	    (power[ATHN_POWER_HT40( 6)] & 0x3f));
   3152 	AR_WRITE(sc, AR_PHY_PWRTX_RATE10,
   3153 	    (power[ATHN_POWER_HT20(21)] & 0x3f) << 24 |
   3154 	    (power[ATHN_POWER_HT20(20)] & 0x3f) << 16 |
   3155 	    (power[ATHN_POWER_HT20(15)] & 0x3f) <<  8 |
   3156 	    (power[ATHN_POWER_HT20(14)] & 0x3f));
   3157 	AR_WRITE(sc, AR_PHY_PWRTX_RATE11,
   3158 	    (power[ATHN_POWER_HT40(23)] & 0x3f) << 24 |
   3159 	    (power[ATHN_POWER_HT40(22)] & 0x3f) << 16 |
   3160 	    (power[ATHN_POWER_HT20(23)] & 0x3f) <<  8 |
   3161 	    (power[ATHN_POWER_HT20(22)] & 0x3f));
   3162 	AR_WRITE(sc, AR_PHY_PWRTX_RATE12,
   3163 	    (power[ATHN_POWER_HT40(21)] & 0x3f) << 24 |
   3164 	    (power[ATHN_POWER_HT40(20)] & 0x3f) << 16 |
   3165 	    (power[ATHN_POWER_HT40(15)] & 0x3f) <<  8 |
   3166 	    (power[ATHN_POWER_HT40(14)] & 0x3f));
   3167 #endif
   3168 	AR_WRITE_BARRIER(sc);
   3169 }
   3170 
   3171 Static void
   3172 ar9003_reset_rx_gain(struct athn_softc *sc, struct ieee80211_channel *c)
   3173 {
   3174 #define X(x)	((uint32_t)(x) << 2)
   3175 	const struct athn_gain *prog = sc->sc_rx_gain;
   3176 	const uint32_t *pvals;
   3177 	int i;
   3178 
   3179 	if (IEEE80211_IS_CHAN_2GHZ(c))
   3180 		pvals = prog->vals_2g;
   3181 	else
   3182 		pvals = prog->vals_5g;
   3183 	for (i = 0; i < prog->nregs; i++)
   3184 		AR_WRITE(sc, X(prog->regs[i]), pvals[i]);
   3185 	AR_WRITE_BARRIER(sc);
   3186 #undef X
   3187 }
   3188 
   3189 Static void
   3190 ar9003_reset_tx_gain(struct athn_softc *sc, struct ieee80211_channel *c)
   3191 {
   3192 #define X(x)	((uint32_t)(x) << 2)
   3193 	const struct athn_gain *prog = sc->sc_tx_gain;
   3194 	const uint32_t *pvals;
   3195 	int i;
   3196 
   3197 	if (IEEE80211_IS_CHAN_2GHZ(c))
   3198 		pvals = prog->vals_2g;
   3199 	else
   3200 		pvals = prog->vals_5g;
   3201 	for (i = 0; i < prog->nregs; i++)
   3202 		AR_WRITE(sc, X(prog->regs[i]), pvals[i]);
   3203 	AR_WRITE_BARRIER(sc);
   3204 #undef X
   3205 }
   3206 
   3207 Static void
   3208 ar9003_hw_init(struct athn_softc *sc, struct ieee80211_channel *c,
   3209     struct ieee80211_channel *extc)
   3210 {
   3211 #define X(x)	((uint32_t)(x) << 2)
   3212 	struct athn_ops *ops = &sc->sc_ops;
   3213 	const struct athn_ini *ini = sc->sc_ini;
   3214 	const uint32_t *pvals;
   3215 	uint32_t reg;
   3216 	int i;
   3217 
   3218 	/*
   3219 	 * The common init values include the pre and core phases for the
   3220 	 * SoC, MAC, BB and Radio subsystems.
   3221 	 */
   3222 	DPRINTFN(DBG_INIT, sc, "writing pre and core init vals\n");
   3223 	for (i = 0; i < ini->ncmregs; i++) {
   3224 		AR_WRITE(sc, X(ini->cmregs[i]), ini->cmvals[i]);
   3225 		if (AR_IS_ANALOG_REG(X(ini->cmregs[i])))
   3226 			DELAY(100);
   3227 		if ((i & 0x1f) == 0)
   3228 			DELAY(1);
   3229 	}
   3230 
   3231 	/*
   3232 	 * The modal init values include the post phase for the SoC, MAC,
   3233 	 * BB and Radio subsystems.
   3234 	 */
   3235 #ifndef IEEE80211_NO_HT
   3236 	if (extc != NULL) {
   3237 		if (IEEE80211_IS_CHAN_2GHZ(c))
   3238 			pvals = ini->vals_2g40;
   3239 		else
   3240 			pvals = ini->vals_5g40;
   3241 	}
   3242 	else
   3243 #endif
   3244 	{
   3245 		if (IEEE80211_IS_CHAN_2GHZ(c))
   3246 			pvals = ini->vals_2g20;
   3247 		else
   3248 			pvals = ini->vals_5g20;
   3249 	}
   3250 	DPRINTFN(DBG_INIT, sc, "writing post init vals\n");
   3251 	for (i = 0; i < ini->nregs; i++) {
   3252 		AR_WRITE(sc, X(ini->regs[i]), pvals[i]);
   3253 		if (AR_IS_ANALOG_REG(X(ini->regs[i])))
   3254 			DELAY(100);
   3255 		if ((i & 0x1f) == 0)
   3256 			DELAY(1);
   3257 	}
   3258 
   3259 	if (sc->sc_rx_gain != NULL)
   3260 		ar9003_reset_rx_gain(sc, c);
   3261 	if (sc->sc_tx_gain != NULL)
   3262 		ar9003_reset_tx_gain(sc, c);
   3263 
   3264 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
   3265 	    (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)) {
   3266 		/* Update modal values for fast PLL clock. */
   3267 #ifndef IEEE80211_NO_HT
   3268 		if (extc != NULL)
   3269 			pvals = ini->fastvals_5g40;
   3270 		else
   3271 #endif
   3272 			pvals = ini->fastvals_5g20;
   3273 		DPRINTFN(DBG_INIT, sc, "writing fast pll clock init vals\n");
   3274 		for (i = 0; i < ini->nfastregs; i++) {
   3275 			AR_WRITE(sc, X(ini->fastregs[i]), pvals[i]);
   3276 			if (AR_IS_ANALOG_REG(X(ini->fastregs[i])))
   3277 				DELAY(100);
   3278 			if ((i & 0x1f) == 0)
   3279 				DELAY(1);
   3280 		}
   3281 	}
   3282 
   3283 	/*
   3284 	 * Set the RX_ABORT and RX_DIS bits to prevent frames with corrupted
   3285 	 * descriptor status.
   3286 	 */
   3287 	AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
   3288 
   3289 	reg = AR_READ(sc, AR_PCU_MISC_MODE2);
   3290 	reg &= ~AR_PCU_MISC_MODE2_ADHOC_MCAST_KEYID_ENABLE;
   3291 	reg |= AR_PCU_MISC_MODE2_AGG_WEP_ENABLE_FIX;
   3292 	reg |= AR_PCU_MISC_MODE2_ENABLE_AGGWEP;
   3293 	AR_WRITE(sc, AR_PCU_MISC_MODE2, reg);
   3294 	AR_WRITE_BARRIER(sc);
   3295 
   3296 	ar9003_set_phy(sc, c, extc);
   3297 	ar9003_init_chains(sc);
   3298 
   3299 	ops->set_txpower(sc, c, extc);
   3300 #undef X
   3301 }
   3302 
   3303 PUBLIC void
   3304 ar9003_get_lg_tpow(struct athn_softc *sc, struct ieee80211_channel *c,
   3305     uint8_t ctl, const uint8_t *fbins,
   3306     const struct ar_cal_target_power_leg *tgt, int nchans, uint8_t tpow[4])
   3307 {
   3308 	uint8_t fbin;
   3309 	int i, delta, lo, hi;
   3310 
   3311 	lo = hi = -1;
   3312 	fbin = athn_chan2fbin(c);
   3313 	for (i = 0; i < nchans; i++) {
   3314 		delta = fbin - fbins[i];
   3315 		/* Find the largest sample that is <= our frequency. */
   3316 		if (delta >= 0 && (lo == -1 || delta < fbin - fbins[lo]))
   3317 			lo = i;
   3318 		/* Find the smallest sample that is >= our frequency. */
   3319 		if (delta <= 0 && (hi == -1 || delta > fbin - fbins[hi]))
   3320 			hi = i;
   3321 	}
   3322 	if (lo == -1)
   3323 		lo = hi;
   3324 	else if (hi == -1)
   3325 		hi = lo;
   3326 	/* Interpolate values. */
   3327 	for (i = 0; i < 4; i++) {
   3328 		tpow[i] = athn_interpolate(fbin,
   3329 		    fbins[lo], tgt[lo].tPow2x[i],
   3330 		    fbins[hi], tgt[hi].tPow2x[i]);
   3331 	}
   3332 	/* XXX Apply conformance test limit. */
   3333 }
   3334 
   3335 PUBLIC void
   3336 ar9003_get_ht_tpow(struct athn_softc *sc, struct ieee80211_channel *c,
   3337     uint8_t ctl, const uint8_t *fbins,
   3338     const struct ar_cal_target_power_ht *tgt, int nchans, uint8_t tpow[14])
   3339 {
   3340 	uint8_t fbin;
   3341 	int i, delta, lo, hi;
   3342 
   3343 	lo = hi = -1;
   3344 	fbin = athn_chan2fbin(c);
   3345 	for (i = 0; i < nchans; i++) {
   3346 		delta = fbin - fbins[i];
   3347 		/* Find the largest sample that is <= our frequency. */
   3348 		if (delta >= 0 && (lo == -1 || delta < fbin - fbins[lo]))
   3349 			lo = i;
   3350 		/* Find the smallest sample that is >= our frequency. */
   3351 		if (delta <= 0 && (hi == -1 || delta > fbin - fbins[hi]))
   3352 			hi = i;
   3353 	}
   3354 	if (lo == -1)
   3355 		lo = hi;
   3356 	else if (hi == -1)
   3357 		hi = lo;
   3358 	/* Interpolate values. */
   3359 	for (i = 0; i < 14; i++) {
   3360 		tpow[i] = athn_interpolate(fbin,
   3361 		    fbins[lo], tgt[lo].tPow2x[i],
   3362 		    fbins[hi], tgt[hi].tPow2x[i]);
   3363 	}
   3364 	/* XXX Apply conformance test limit. */
   3365 }
   3366 
   3367 /*
   3368  * Adaptive noise immunity.
   3369  */
   3370 Static void
   3371 ar9003_set_noise_immunity_level(struct athn_softc *sc, int level)
   3372 {
   3373 	int high = level == 4;
   3374 	uint32_t reg;
   3375 
   3376 	reg = AR_READ(sc, AR_PHY_DESIRED_SZ);
   3377 	reg = RW(reg, AR_PHY_DESIRED_SZ_TOT_DES, high ? -62 : -55);
   3378 	AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg);
   3379 
   3380 	reg = AR_READ(sc, AR_PHY_AGC);
   3381 	reg = RW(reg, AR_PHY_AGC_COARSE_LOW, high ? -70 : -64);
   3382 	reg = RW(reg, AR_PHY_AGC_COARSE_HIGH, high ? -12 : -14);
   3383 	AR_WRITE(sc, AR_PHY_AGC, reg);
   3384 
   3385 	reg = AR_READ(sc, AR_PHY_FIND_SIG);
   3386 	reg = RW(reg, AR_PHY_FIND_SIG_FIRPWR, high ? -80 : -78);
   3387 	AR_WRITE(sc, AR_PHY_FIND_SIG, reg);
   3388 	AR_WRITE_BARRIER(sc);
   3389 }
   3390 
   3391 Static void
   3392 ar9003_enable_ofdm_weak_signal(struct athn_softc *sc)
   3393 {
   3394 	uint32_t reg;
   3395 
   3396 	reg = AR_READ(sc, AR_PHY_SFCORR_LOW);
   3397 	reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 50);
   3398 	reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 40);
   3399 	reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 48);
   3400 	AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg);
   3401 
   3402 	reg = AR_READ(sc, AR_PHY_SFCORR);
   3403 	reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 77);
   3404 	reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 64);
   3405 	reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 16);
   3406 	AR_WRITE(sc, AR_PHY_SFCORR, reg);
   3407 
   3408 	reg = AR_READ(sc, AR_PHY_SFCORR_EXT);
   3409 	reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 50);
   3410 	reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 40);
   3411 	reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 77);
   3412 	reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 64);
   3413 	AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg);
   3414 
   3415 	AR_SETBITS(sc, AR_PHY_SFCORR_LOW,
   3416 	    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
   3417 	AR_WRITE_BARRIER(sc);
   3418 }
   3419 
   3420 Static void
   3421 ar9003_disable_ofdm_weak_signal(struct athn_softc *sc)
   3422 {
   3423 	uint32_t reg;
   3424 
   3425 	reg = AR_READ(sc, AR_PHY_SFCORR_LOW);
   3426 	reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 127);
   3427 	reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 127);
   3428 	reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 63);
   3429 	AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg);
   3430 
   3431 	reg = AR_READ(sc, AR_PHY_SFCORR);
   3432 	reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 127);
   3433 	reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 127);
   3434 	reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 31);
   3435 	AR_WRITE(sc, AR_PHY_SFCORR, reg);
   3436 
   3437 	reg = AR_READ(sc, AR_PHY_SFCORR_EXT);
   3438 	reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 127);
   3439 	reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 127);
   3440 	reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 127);
   3441 	reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 127);
   3442 	AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg);
   3443 
   3444 	AR_CLRBITS(sc, AR_PHY_SFCORR_LOW,
   3445 	    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
   3446 	AR_WRITE_BARRIER(sc);
   3447 }
   3448 
   3449 Static void
   3450 ar9003_set_cck_weak_signal(struct athn_softc *sc, int high)
   3451 {
   3452 	uint32_t reg;
   3453 
   3454 	reg = AR_READ(sc, AR_PHY_CCK_DETECT);
   3455 	reg = RW(reg, AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK, high ? 6 : 8);
   3456 	AR_WRITE(sc, AR_PHY_CCK_DETECT, reg);
   3457 	AR_WRITE_BARRIER(sc);
   3458 }
   3459 
   3460 Static void
   3461 ar9003_set_firstep_level(struct athn_softc *sc, int level)
   3462 {
   3463 	uint32_t reg;
   3464 
   3465 	reg = AR_READ(sc, AR_PHY_FIND_SIG);
   3466 	reg = RW(reg, AR_PHY_FIND_SIG_FIRSTEP, level * 4);
   3467 	AR_WRITE(sc, AR_PHY_FIND_SIG, reg);
   3468 	AR_WRITE_BARRIER(sc);
   3469 }
   3470 
   3471 Static void
   3472 ar9003_set_spur_immunity_level(struct athn_softc *sc, int level)
   3473 {
   3474 	uint32_t reg;
   3475 
   3476 	reg = AR_READ(sc, AR_PHY_TIMING5);
   3477 	reg = RW(reg, AR_PHY_TIMING5_CYCPWR_THR1, (level + 1) * 2);
   3478 	AR_WRITE(sc, AR_PHY_TIMING5, reg);
   3479 	AR_WRITE_BARRIER(sc);
   3480 }
   3481