Home | History | Annotate | Line # | Download | only in ic
arn9003.c revision 1.2
      1 /*	$NetBSD: arn9003.c,v 1.2 2013/04/03 14:20:02 christos Exp $	*/
      2 /*	$OpenBSD: ar9003.c,v 1.25 2012/10/20 09:53:32 stsp Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2010 Damien Bergamini <damien.bergamini (at) free.fr>
      6  * Copyright (c) 2010 Atheros Communications Inc.
      7  *
      8  * Permission to use, copy, modify, and/or distribute this software for any
      9  * purpose with or without fee is hereby granted, provided that the above
     10  * copyright notice and this permission notice appear in all copies.
     11  *
     12  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
     13  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
     14  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
     15  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
     16  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
     17  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
     18  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
     19  */
     20 
     21 /*
     22  * Driver for Atheros 802.11a/g/n chipsets.
     23  * Routines for AR9003 family.
     24  */
     25 
     26 #include <sys/cdefs.h>
     27 __KERNEL_RCSID(0, "$NetBSD: arn9003.c,v 1.2 2013/04/03 14:20:02 christos Exp $");
     28 
     29 #include <sys/param.h>
     30 #include <sys/sockio.h>
     31 #include <sys/mbuf.h>
     32 #include <sys/kernel.h>
     33 #include <sys/socket.h>
     34 #include <sys/systm.h>
     35 #include <sys/malloc.h>
     36 #include <sys/queue.h>
     37 #include <sys/callout.h>
     38 #include <sys/conf.h>
     39 #include <sys/device.h>
     40 
     41 #include <sys/bus.h>
     42 #include <sys/endian.h>
     43 #include <sys/intr.h>
     44 
     45 #include <net/bpf.h>
     46 #include <net/if.h>
     47 #include <net/if_arp.h>
     48 #include <net/if_dl.h>
     49 #include <net/if_ether.h>
     50 #include <net/if_media.h>
     51 #include <net/if_types.h>
     52 
     53 #include <netinet/in.h>
     54 #include <netinet/in_systm.h>
     55 #include <netinet/in_var.h>
     56 #include <netinet/ip.h>
     57 
     58 #include <net80211/ieee80211_var.h>
     59 #include <net80211/ieee80211_amrr.h>
     60 #include <net80211/ieee80211_radiotap.h>
     61 
     62 #include <dev/ic/athnreg.h>
     63 #include <dev/ic/athnvar.h>
     64 #include <dev/ic/arn9003reg.h>
     65 #include <dev/ic/arn9003.h>
     66 
     67 #define Static static
     68 
     69 Static void	ar9003_calib_iq(struct athn_softc *);
     70 Static int	ar9003_calib_tx_iq(struct athn_softc *);
     71 Static int	ar9003_compute_predistortion(struct athn_softc *,
     72 		    const uint32_t *, const uint32_t *);
     73 Static void	ar9003_disable_ofdm_weak_signal(struct athn_softc *);
     74 Static void	ar9003_disable_phy(struct athn_softc *);
     75 Static int	ar9003_dma_alloc(struct athn_softc *);
     76 Static void	ar9003_dma_free(struct athn_softc *);
     77 Static void	ar9003_do_calib(struct athn_softc *);
     78 Static void	ar9003_do_noisefloor_calib(struct athn_softc *);
     79 Static void	ar9003_enable_antenna_diversity(struct athn_softc *);
     80 Static void	ar9003_enable_ofdm_weak_signal(struct athn_softc *);
     81 Static void	ar9003_enable_predistorter(struct athn_softc *, int);
     82 Static int	ar9003_find_rom(struct athn_softc *);
     83 Static void	ar9003_force_txgain(struct athn_softc *, uint32_t);
     84 Static int	ar9003_get_desired_txgain(struct athn_softc *, int, int);
     85 Static int	ar9003_get_iq_corr(struct athn_softc *, int32_t[], int32_t[]);
     86 Static void	ar9003_gpio_config_input(struct athn_softc *, int);
     87 Static void	ar9003_gpio_config_output(struct athn_softc *, int, int);
     88 Static int	ar9003_gpio_read(struct athn_softc *, int);
     89 Static void	ar9003_gpio_write(struct athn_softc *, int, int);
     90 Static void	ar9003_hw_init(struct athn_softc *, struct ieee80211_channel *,
     91 		    struct ieee80211_channel *);
     92 Static void	ar9003_init_baseband(struct athn_softc *);
     93 Static void	ar9003_init_chains(struct athn_softc *);
     94 Static int	ar9003_intr(struct athn_softc *);
     95 Static void	ar9003_next_calib(struct athn_softc *);
     96 Static void	ar9003_paprd_enable(struct athn_softc *);
     97 Static int	ar9003_paprd_tx_tone(struct athn_softc *);
     98 Static void	ar9003_paprd_tx_tone_done(struct athn_softc *);
     99 Static int	ar9003_read_eep_data(struct athn_softc *, uint32_t, void *,
    100 		    int);
    101 Static int	ar9003_read_eep_word(struct athn_softc *, uint32_t,
    102 		    uint16_t *);
    103 Static int	ar9003_read_otp_data(struct athn_softc *, uint32_t, void *,
    104 		    int);
    105 Static int	ar9003_read_otp_word(struct athn_softc *, uint32_t,
    106 		    uint32_t *);
    107 Static int	ar9003_read_rom(struct athn_softc *);
    108 Static void	ar9003_reset_rx_gain(struct athn_softc *,
    109 		    struct ieee80211_channel *);
    110 Static void	ar9003_reset_tx_gain(struct athn_softc *,
    111 		    struct ieee80211_channel *);
    112 Static int	ar9003_restore_rom_block(struct athn_softc *, uint8_t,
    113 		    uint8_t, const uint8_t *, size_t);
    114 Static void	ar9003_rf_bus_release(struct athn_softc *);
    115 Static int	ar9003_rf_bus_request(struct athn_softc *);
    116 Static void	ar9003_rfsilent_init(struct athn_softc *);
    117 Static int	ar9003_rx_alloc(struct athn_softc *, int, int);
    118 Static void	ar9003_rx_enable(struct athn_softc *);
    119 Static void	ar9003_rx_free(struct athn_softc *, int);
    120 Static void	ar9003_rx_intr(struct athn_softc *, int);
    121 Static int	ar9003_rx_process(struct athn_softc *, int);
    122 Static void	ar9003_rx_radiotap(struct athn_softc *, struct mbuf *,
    123 		    struct ar_rx_status *);
    124 Static void	ar9003_set_cck_weak_signal(struct athn_softc *, int);
    125 Static void	ar9003_set_delta_slope(struct athn_softc *,
    126 		    struct ieee80211_channel *, struct ieee80211_channel *);
    127 Static void	ar9003_set_firstep_level(struct athn_softc *, int);
    128 Static void	ar9003_set_noise_immunity_level(struct athn_softc *, int);
    129 Static void	ar9003_set_phy(struct athn_softc *, struct ieee80211_channel *,
    130 		    struct ieee80211_channel *);
    131 Static void	ar9003_set_rf_mode(struct athn_softc *,
    132 		    struct ieee80211_channel *);
    133 Static void	ar9003_set_rxchains(struct athn_softc *);
    134 Static void	ar9003_set_spur_immunity_level(struct athn_softc *, int);
    135 Static void	ar9003_set_training_gain(struct athn_softc *, int);
    136 Static int	ar9003_swba_intr(struct athn_softc *);
    137 Static int	ar9003_tx(struct athn_softc *, struct mbuf *,
    138 		    struct ieee80211_node *, int);
    139 Static int	ar9003_tx_alloc(struct athn_softc *);
    140 Static void	ar9003_tx_free(struct athn_softc *);
    141 Static void	ar9003_tx_intr(struct athn_softc *);
    142 Static int	ar9003_tx_process(struct athn_softc *);
    143 
    144 #ifdef notused
    145 Static void	ar9003_bb_load_noisefloor(struct athn_softc *);
    146 Static void	ar9003_get_noisefloor(struct athn_softc *,
    147 		    struct ieee80211_channel *);
    148 Static void	ar9003_paprd_calib(struct athn_softc *,
    149 		    struct ieee80211_channel *);
    150 Static void	ar9003_read_noisefloor(struct athn_softc *, int16_t *,
    151 		    int16_t *);
    152 Static void	ar9003_write_noisefloor(struct athn_softc *, int16_t *,
    153 		    int16_t *);
    154 Static void	ar9300_noisefloor_calib(struct athn_softc *);
    155 #endif /* notused */
    156 
    157 /*
    158  * XXX: See if_iwn.c:MCLGETIalt() for a better solution.
    159  * XXX: Put this in a header or in athn.c so it can be shared between
    160  *      ar5008.c and ar9003.c?
    161  */
    162 static struct mbuf *
    163 MCLGETI(struct athn_softc *sc __unused, int how,
    164     struct ifnet *ifp __unused, u_int size)
    165 {
    166 	struct mbuf *m;
    167 
    168 	MGETHDR(m, how, MT_DATA);
    169 	if (m == NULL)
    170 		return NULL;
    171 
    172 	MEXTMALLOC(m, size, how);
    173 	if ((m->m_flags & M_EXT) == 0) {
    174 		m_freem(m);
    175 		return NULL;
    176 	}
    177 	return m;
    178 }
    179 
    180 PUBLIC int
    181 ar9003_attach(struct athn_softc *sc)
    182 {
    183 	struct athn_ops *ops = &sc->sc_ops;
    184 	int error;
    185 
    186 	/* Set callbacks for AR9003 family. */
    187 	ops->gpio_read = ar9003_gpio_read;
    188 	ops->gpio_write = ar9003_gpio_write;
    189 	ops->gpio_config_input = ar9003_gpio_config_input;
    190 	ops->gpio_config_output = ar9003_gpio_config_output;
    191 	ops->rfsilent_init = ar9003_rfsilent_init;
    192 
    193 	ops->dma_alloc = ar9003_dma_alloc;
    194 	ops->dma_free = ar9003_dma_free;
    195 	ops->rx_enable = ar9003_rx_enable;
    196 	ops->intr = ar9003_intr;
    197 	ops->tx = ar9003_tx;
    198 
    199 	ops->set_rf_mode = ar9003_set_rf_mode;
    200 	ops->rf_bus_request = ar9003_rf_bus_request;
    201 	ops->rf_bus_release = ar9003_rf_bus_release;
    202 	ops->set_phy = ar9003_set_phy;
    203 	ops->set_delta_slope = ar9003_set_delta_slope;
    204 	ops->enable_antenna_diversity = ar9003_enable_antenna_diversity;
    205 	ops->init_baseband = ar9003_init_baseband;
    206 	ops->disable_phy = ar9003_disable_phy;
    207 	ops->set_rxchains = ar9003_set_rxchains;
    208 	ops->noisefloor_calib = ar9003_do_noisefloor_calib;
    209 	ops->do_calib = ar9003_do_calib;
    210 	ops->next_calib = ar9003_next_calib;
    211 	ops->hw_init = ar9003_hw_init;
    212 
    213 	ops->set_noise_immunity_level = ar9003_set_noise_immunity_level;
    214 	ops->enable_ofdm_weak_signal = ar9003_enable_ofdm_weak_signal;
    215 	ops->disable_ofdm_weak_signal = ar9003_disable_ofdm_weak_signal;
    216 	ops->set_cck_weak_signal = ar9003_set_cck_weak_signal;
    217 	ops->set_firstep_level = ar9003_set_firstep_level;
    218 	ops->set_spur_immunity_level = ar9003_set_spur_immunity_level;
    219 
    220 	/* Set MAC registers offsets. */
    221 	sc->sc_obs_off = AR_OBS;
    222 	sc->sc_gpio_input_en_off = AR_GPIO_INPUT_EN_VAL;
    223 
    224 	if (!(sc->sc_flags & ATHN_FLAG_PCIE))
    225 		athn_config_nonpcie(sc);
    226 	else
    227 		athn_config_pcie(sc);
    228 
    229 	/* Determine ROM type and location. */
    230 	if ((error = ar9003_find_rom(sc)) != 0) {
    231 		printf("%s: could not find ROM\n", device_xname(sc->sc_dev));
    232 		return error;
    233 	}
    234 	/* Read entire ROM content in memory. */
    235 	if ((error = ar9003_read_rom(sc)) != 0) {
    236 		printf("%s: could not read ROM\n", device_xname(sc->sc_dev));
    237 		return error;
    238 	}
    239 
    240 	/* Determine if it is a non-enterprise AR9003 card. */
    241 	if (AR_READ(sc, AR_ENT_OTP) & AR_ENT_OTP_MPSD)
    242 		sc->sc_flags |= ATHN_FLAG_NON_ENTERPRISE;
    243 
    244 	ops->setup(sc);
    245 	return 0;
    246 }
    247 
    248 /*
    249  * Read 16-bit word from EEPROM.
    250  */
    251 Static int
    252 ar9003_read_eep_word(struct athn_softc *sc, uint32_t addr, uint16_t *val)
    253 {
    254 	uint32_t reg;
    255 	int ntries;
    256 
    257 	reg = AR_READ(sc, AR_EEPROM_OFFSET(addr));
    258 	for (ntries = 0; ntries < 1000; ntries++) {
    259 		reg = AR_READ(sc, AR_EEPROM_STATUS_DATA);
    260 		if (!(reg & (AR_EEPROM_STATUS_DATA_BUSY |
    261 		    AR_EEPROM_STATUS_DATA_PROT_ACCESS))) {
    262 			*val = MS(reg, AR_EEPROM_STATUS_DATA_VAL);
    263 			return 0;
    264 		}
    265 		DELAY(10);
    266 	}
    267 	*val = 0xffff;
    268 	return ETIMEDOUT;
    269 }
    270 
    271 /*
    272  * Read an arbitrary number of bytes at a specified address in EEPROM.
    273  * NB: The address may not be 16-bit aligned.
    274  */
    275 Static int
    276 ar9003_read_eep_data(struct athn_softc *sc, uint32_t addr, void *buf, int len)
    277 {
    278 	uint8_t *dst = buf;
    279 	uint16_t val;
    280 	int error;
    281 
    282 	if (len > 0 && (addr & 1)) {
    283 		/* Deal with non-aligned reads. */
    284 		addr >>= 1;
    285 		error = ar9003_read_eep_word(sc, addr, &val);
    286 		if (error != 0)
    287 			return error;
    288 		*dst++ = val & 0xff;
    289 		addr--;
    290 		len--;
    291 	}
    292 	else
    293 		addr >>= 1;
    294 	for (; len >= 2; addr--, len -= 2) {
    295 		error = ar9003_read_eep_word(sc, addr, &val);
    296 		if (error != 0)
    297 			return error;
    298 		*dst++ = val >> 8;
    299 		*dst++ = val & 0xff;
    300 	}
    301 	if (len > 0) {
    302 		error = ar9003_read_eep_word(sc, addr, &val);
    303 		if (error != 0)
    304 			return error;
    305 		*dst++ = val >> 8;
    306 	}
    307 	return 0;
    308 }
    309 
    310 /*
    311  * Read 32-bit word from OTPROM.
    312  */
    313 Static int
    314 ar9003_read_otp_word(struct athn_softc *sc, uint32_t addr, uint32_t *val)
    315 {
    316 	uint32_t reg;
    317 	int ntries;
    318 
    319 	reg = AR_READ(sc, AR_OTP_BASE(addr));
    320 	for (ntries = 0; ntries < 1000; ntries++) {
    321 		reg = AR_READ(sc, AR_OTP_STATUS);
    322 		if (MS(reg, AR_OTP_STATUS_TYPE) == AR_OTP_STATUS_VALID) {
    323 			*val = AR_READ(sc, AR_OTP_READ_DATA);
    324 			return 0;
    325 		}
    326 		DELAY(10);
    327 	}
    328 	return ETIMEDOUT;
    329 }
    330 
    331 /*
    332  * Read an arbitrary number of bytes at a specified address in OTPROM.
    333  * NB: The address may not be 32-bit aligned.
    334  */
    335 Static int
    336 ar9003_read_otp_data(struct athn_softc *sc, uint32_t addr, void *buf, int len)
    337 {
    338 	uint8_t *dst = buf;
    339 	uint32_t val;
    340 	int error;
    341 
    342 	/* NB: not optimal for non-aligned reads, but correct. */
    343 	for (; len > 0; addr--, len--) {
    344 		error = ar9003_read_otp_word(sc, addr >> 2, &val);
    345 		if (error != 0)
    346 			return error;
    347 		*dst++ = (val >> ((addr & 3) * 8)) & 0xff;
    348 	}
    349 	return 0;
    350 }
    351 
    352 /*
    353  * Determine if the chip has an external EEPROM or an OTPROM and its size.
    354  */
    355 Static int
    356 ar9003_find_rom(struct athn_softc *sc)
    357 {
    358 	struct athn_ops *ops = &sc->sc_ops;
    359 	uint32_t hdr;
    360 	int error;
    361 
    362 	/* Try EEPROM. */
    363 	ops->read_rom_data = ar9003_read_eep_data;
    364 
    365 	sc->sc_eep_size = AR_SREV_9485(sc) ? 4096 : 1024;
    366 	sc->sc_eep_base = sc->sc_eep_size - 1;
    367 	error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
    368 	if (error == 0 && hdr != 0 && hdr != 0xffffffff)
    369 		return 0;
    370 
    371 	sc->sc_eep_size = 512;
    372 	sc->sc_eep_base = sc->sc_eep_size - 1;
    373 	error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
    374 	if (error == 0 && hdr != 0 && hdr != 0xffffffff)
    375 		return 0;
    376 
    377 	/* Try OTPROM. */
    378 	ops->read_rom_data = ar9003_read_otp_data;
    379 
    380 	sc->sc_eep_size = 1024;
    381 	sc->sc_eep_base = sc->sc_eep_size - 1;
    382 	error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
    383 	if (error == 0 && hdr != 0 && hdr != 0xffffffff)
    384 		return 0;
    385 
    386 	sc->sc_eep_size = 512;
    387 	sc->sc_eep_base = sc->sc_eep_size - 1;
    388 	error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
    389 	if (error == 0 && hdr != 0 && hdr != 0xffffffff)
    390 		return 0;
    391 
    392 	return EIO;	/* Not found. */
    393 }
    394 
    395 Static int
    396 ar9003_restore_rom_block(struct athn_softc *sc, uint8_t alg, uint8_t ref,
    397     const uint8_t *buf, size_t len)
    398 {
    399 	const uint8_t *def, *ptr, *end;
    400 	uint8_t *eep = sc->sc_eep;
    401 	size_t off, clen;
    402 
    403 	if (alg == AR_EEP_COMPRESS_BLOCK) {
    404 		/* Block contains chunks that shadow ROM template. */
    405 		def = sc->sc_ops.get_rom_template(sc, ref);
    406 		if (def == NULL) {
    407 			DPRINTFN(DBG_INIT, sc, "unknown template image %d\n",
    408 			    ref);
    409 			return EINVAL;
    410 		}
    411 		/* Start with template. */
    412 		memcpy(eep, def, sc->sc_eep_size);
    413 		/* Shadow template with chunks. */
    414 		off = 0;	/* Offset in ROM image. */
    415 		ptr = buf;	/* Offset in block. */
    416 		end = buf + len;
    417 		/* Process chunks. */
    418 		while (ptr + 2 <= end) {
    419 			off += *ptr++;	/* Gap with previous chunk. */
    420 			clen = *ptr++;	/* Chunk length. */
    421 			/* Make sure block is large enough. */
    422 			if (ptr + clen > end)
    423 				return EINVAL;
    424 			/* Make sure chunk fits in ROM image. */
    425 			if (off + clen > sc->sc_eep_size)
    426 				return EINVAL;
    427 			/* Restore chunk. */
    428 			DPRINTFN(DBG_INIT, sc, "ROM chunk @%zd/%zd\n",
    429 			    off, clen);
    430 			memcpy(&eep[off], ptr, clen);
    431 			ptr += clen;
    432 			off += clen;
    433 		}
    434 	}
    435 	else if (alg == AR_EEP_COMPRESS_NONE) {
    436 		/* Block contains full ROM image. */
    437 		if (len != sc->sc_eep_size) {
    438 			DPRINTFN(DBG_INIT, sc, "block length mismatch %zd\n",
    439 			    len);
    440 			return EINVAL;
    441 		}
    442 		memcpy(eep, buf, len);
    443 	}
    444 	return 0;
    445 }
    446 
    447 Static int
    448 ar9003_read_rom(struct athn_softc *sc)
    449 {
    450 	struct athn_ops *ops = &sc->sc_ops;
    451 	uint8_t *buf, *ptr, alg, ref;
    452 	uint16_t sum, rsum;
    453 	uint32_t hdr;
    454 	int error, addr;
    455 	size_t len, i, j;
    456 
    457 	/* Allocate space to store ROM in host memory. */
    458 	sc->sc_eep = malloc(sc->sc_eep_size, M_DEVBUF, M_NOWAIT);
    459 	if (sc->sc_eep == NULL)
    460 		return ENOMEM;
    461 
    462 	/* Allocate temporary buffer to store ROM blocks. */
    463 	buf = malloc(2048, M_DEVBUF, M_NOWAIT);
    464 	if (buf == NULL)
    465 		return ENOMEM;
    466 
    467 	/* Restore vendor-specified ROM blocks. */
    468 	addr = sc->sc_eep_base;
    469 	for (i = 0; i < 100; i++) {
    470 		/* Read block header. */
    471 		error = ops->read_rom_data(sc, addr, &hdr, sizeof(hdr));
    472 		if (error != 0)
    473 			break;
    474 		if (hdr == 0 || hdr == 0xffffffff)
    475 			break;
    476 		addr -= sizeof(hdr);
    477 
    478 		/* Extract bits from header. */
    479 		ptr = (uint8_t *)&hdr;
    480 		alg = (ptr[0] & 0xe0) >> 5;
    481 		ref = (ptr[1] & 0x80) >> 2 | (ptr[0] & 0x1f);
    482 		len = (ptr[1] & 0x7f) << 4 | (ptr[2] & 0xf0) >> 4;
    483 		DPRINTFN(DBG_INIT, sc,
    484 		    "ROM block %zd: alg=%d ref=%d len=%zd\n",
    485 		    i, alg, ref, len);
    486 
    487 		/* Read block data (len <= 0x7ff). */
    488 		error = ops->read_rom_data(sc, addr, buf, len);
    489 		if (error != 0)
    490 			break;
    491 		addr -= len;
    492 
    493 		/* Read block checksum. */
    494 		error = ops->read_rom_data(sc, addr, &sum, sizeof(sum));
    495 		if (error != 0)
    496 			break;
    497 		addr -= sizeof(sum);
    498 
    499 		/* Compute block checksum. */
    500 		rsum = 0;
    501 		for (j = 0; j < len; j++)
    502 			rsum += buf[j];
    503 		/* Compare to that in ROM. */
    504 		if (le16toh(sum) != rsum) {
    505 			DPRINTFN(DBG_INIT, sc,
    506 			    "bad block checksum 0x%x/0x%x\n",
    507 			    le16toh(sum), rsum);
    508 			continue;	/* Skip bad block. */
    509 		}
    510 		/* Checksum is correct, restore block. */
    511 		ar9003_restore_rom_block(sc, alg, ref, buf, len);
    512 	}
    513 #if BYTE_ORDER == BIG_ENDIAN
    514 	/* NB: ROM is always little endian. */
    515 	if (error == 0)
    516 		ops->swap_rom(sc);
    517 #endif
    518 	free(buf, M_DEVBUF);
    519 	return error;
    520 }
    521 
    522 /*
    523  * Access to General Purpose Input/Output ports.
    524  */
    525 Static int
    526 ar9003_gpio_read(struct athn_softc *sc, int pin)
    527 {
    528 
    529 	KASSERT(pin < sc->sc_ngpiopins);
    530 	return ((AR_READ(sc, AR_GPIO_IN) & AR9300_GPIO_IN_VAL) &
    531 	    (1 << pin)) != 0;
    532 }
    533 
    534 Static void
    535 ar9003_gpio_write(struct athn_softc *sc, int pin, int set)
    536 {
    537 	uint32_t reg;
    538 
    539 	KASSERT(pin < sc->sc_ngpiopins);
    540 	reg = AR_READ(sc, AR_GPIO_IN_OUT);
    541 	if (set)
    542 		reg |= 1 << pin;
    543 	else
    544 		reg &= ~(1 << pin);
    545 	AR_WRITE(sc, AR_GPIO_IN_OUT, reg);
    546 	AR_WRITE_BARRIER(sc);
    547 }
    548 
    549 Static void
    550 ar9003_gpio_config_input(struct athn_softc *sc, int pin)
    551 {
    552 	uint32_t reg;
    553 
    554 	reg = AR_READ(sc, AR_GPIO_OE_OUT);
    555 	reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2));
    556 	reg |= AR_GPIO_OE_OUT_DRV_NO << (pin * 2);
    557 	AR_WRITE(sc, AR_GPIO_OE_OUT, reg);
    558 	AR_WRITE_BARRIER(sc);
    559 }
    560 
    561 Static void
    562 ar9003_gpio_config_output(struct athn_softc *sc, int pin, int type)
    563 {
    564 	uint32_t reg;
    565 	int mux, off;
    566 
    567 	mux = pin / 6;
    568 	off = pin % 6;
    569 
    570 	reg = AR_READ(sc, AR_GPIO_OUTPUT_MUX(mux));
    571 	reg &= ~(0x1f << (off * 5));
    572 	reg |= (type & 0x1f) << (off * 5);
    573 	AR_WRITE(sc, AR_GPIO_OUTPUT_MUX(mux), reg);
    574 
    575 	reg = AR_READ(sc, AR_GPIO_OE_OUT);
    576 	reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2));
    577 	reg |= AR_GPIO_OE_OUT_DRV_ALL << (pin * 2);
    578 	AR_WRITE(sc, AR_GPIO_OE_OUT, reg);
    579 	AR_WRITE_BARRIER(sc);
    580 }
    581 
    582 Static void
    583 ar9003_rfsilent_init(struct athn_softc *sc)
    584 {
    585 	uint32_t reg;
    586 
    587 	/* Configure hardware radio switch. */
    588 	AR_SETBITS(sc, AR_GPIO_INPUT_EN_VAL, AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
    589 	reg = AR_READ(sc, AR_GPIO_INPUT_MUX2);
    590 	reg = RW(reg, AR_GPIO_INPUT_MUX2_RFSILENT, 0);
    591 	AR_WRITE(sc, AR_GPIO_INPUT_MUX2, reg);
    592 	ar9003_gpio_config_input(sc, sc->sc_rfsilent_pin);
    593 	AR_SETBITS(sc, AR_PHY_TEST, AR_PHY_TEST_RFSILENT_BB);
    594 	if (!(sc->sc_flags & ATHN_FLAG_RFSILENT_REVERSED)) {
    595 		AR_SETBITS(sc, AR_GPIO_INTR_POL,
    596 		    AR_GPIO_INTR_POL_PIN(sc->sc_rfsilent_pin));
    597 	}
    598 	AR_WRITE_BARRIER(sc);
    599 }
    600 
    601 Static int
    602 ar9003_dma_alloc(struct athn_softc *sc)
    603 {
    604 	int error;
    605 
    606 	error = ar9003_tx_alloc(sc);
    607 	if (error != 0)
    608 		return error;
    609 
    610 	error = ar9003_rx_alloc(sc, ATHN_QID_LP, AR9003_RX_LP_QDEPTH);
    611 	if (error != 0)
    612 		return error;
    613 
    614 	error = ar9003_rx_alloc(sc, ATHN_QID_HP, AR9003_RX_HP_QDEPTH);
    615 	if (error != 0)
    616 		return error;
    617 
    618 	return 0;
    619 }
    620 
    621 Static void
    622 ar9003_dma_free(struct athn_softc *sc)
    623 {
    624 
    625 	ar9003_tx_free(sc);
    626 	ar9003_rx_free(sc, ATHN_QID_LP);
    627 	ar9003_rx_free(sc, ATHN_QID_HP);
    628 }
    629 
    630 Static int
    631 ar9003_tx_alloc(struct athn_softc *sc)
    632 {
    633 	struct athn_tx_buf *bf;
    634 	bus_size_t size;
    635 	int error, nsegs, i;
    636 
    637 	/*
    638 	 * Allocate Tx status ring.
    639 	 */
    640 	size = AR9003_NTXSTATUS * sizeof(struct ar_tx_status);
    641 
    642 	error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
    643 	    BUS_DMA_NOWAIT, &sc->sc_txsmap);
    644 	if (error != 0)
    645 		goto fail;
    646 
    647 	error = bus_dmamem_alloc(sc->sc_dmat, size, 4, 0, &sc->sc_txsseg, 1,
    648 // XXX	    &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
    649 	    &nsegs, BUS_DMA_NOWAIT);
    650 	if (error != 0)
    651 		goto fail;
    652 
    653 	error = bus_dmamem_map(sc->sc_dmat, &sc->sc_txsseg, 1, size,
    654 	    (void **)&sc->sc_txsring, BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    655 	if (error != 0)
    656 		goto fail;
    657 
    658 	error = bus_dmamap_load_raw(sc->sc_dmat, sc->sc_txsmap, &sc->sc_txsseg,
    659 	    1, size, BUS_DMA_NOWAIT | BUS_DMA_READ);
    660 	if (error != 0)
    661 		goto fail;
    662 
    663 	/*
    664 	 * Allocate a pool of Tx descriptors shared between all Tx queues.
    665 	 */
    666 	size = ATHN_NTXBUFS * sizeof(struct ar_tx_desc);
    667 
    668 	error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
    669 	    BUS_DMA_NOWAIT, &sc->sc_map);
    670 	if (error != 0)
    671 		goto fail;
    672 
    673 	error = bus_dmamem_alloc(sc->sc_dmat, size, 4, 0, &sc->sc_seg, 1,
    674 // XXX	    &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
    675 	    &nsegs, BUS_DMA_NOWAIT);
    676 	if (error != 0)
    677 		goto fail;
    678 
    679 	error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, 1, size,
    680 	    (void **)&sc->sc_descs, BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
    681 	if (error != 0)
    682 		goto fail;
    683 
    684 	error = bus_dmamap_load_raw(sc->sc_dmat, sc->sc_map, &sc->sc_seg, 1, size,
    685 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
    686 	if (error != 0)
    687 		goto fail;
    688 
    689 	SIMPLEQ_INIT(&sc->sc_txbufs);
    690 	for (i = 0; i < ATHN_NTXBUFS; i++) {
    691 		bf = &sc->sc_txpool[i];
    692 
    693 		error = bus_dmamap_create(sc->sc_dmat, ATHN_TXBUFSZ,
    694 		    AR9003_MAX_SCATTER, ATHN_TXBUFSZ, 0, BUS_DMA_NOWAIT,
    695 		    &bf->bf_map);
    696 		if (error != 0) {
    697 			printf("%s: could not create Tx buf DMA map\n",
    698 			    device_xname(sc->sc_dev));
    699 			goto fail;
    700 		}
    701 
    702 		bf->bf_descs = &((struct ar_tx_desc *)sc->sc_descs)[i];
    703 		bf->bf_daddr = sc->sc_map->dm_segs[0].ds_addr +
    704 		    i * sizeof(struct ar_tx_desc);
    705 
    706 		SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
    707 	}
    708 	return 0;
    709  fail:
    710 	ar9003_tx_free(sc);
    711 	return error;
    712 }
    713 
    714 Static void
    715 ar9003_tx_free(struct athn_softc *sc)
    716 {
    717 	struct athn_tx_buf *bf;
    718 	int i;
    719 
    720 	for (i = 0; i < ATHN_NTXBUFS; i++) {
    721 		bf = &sc->sc_txpool[i];
    722 
    723 		if (bf->bf_map != NULL)
    724 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_map);
    725 	}
    726 	/* Free Tx descriptors. */
    727 	if (sc->sc_map != NULL) {
    728 		if (sc->sc_descs != NULL) {
    729 			bus_dmamap_unload(sc->sc_dmat, sc->sc_map);
    730 			bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
    731 			    ATHN_NTXBUFS * sizeof(struct ar_tx_desc));
    732 			bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
    733 		}
    734 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_map);
    735 	}
    736 	/* Free Tx status ring. */
    737 	if (sc->sc_txsmap != NULL) {
    738 		if (sc->sc_txsring != NULL) {
    739 			bus_dmamap_unload(sc->sc_dmat, sc->sc_txsmap);
    740 			bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_txsring,
    741 			     AR9003_NTXSTATUS * sizeof(struct ar_tx_status));
    742 			bus_dmamem_free(sc->sc_dmat, &sc->sc_txsseg, 1);
    743 		}
    744 		bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsmap);
    745 	}
    746 }
    747 
    748 Static int
    749 ar9003_rx_alloc(struct athn_softc *sc, int qid, int count)
    750 {
    751 	struct athn_rxq *rxq = &sc->sc_rxq[qid];
    752 	struct athn_rx_buf *bf;
    753 	struct ar_rx_status *ds;
    754 	int error, i;
    755 
    756 	rxq->bf = malloc(count * sizeof(*bf), M_DEVBUF, M_NOWAIT | M_ZERO);
    757 	if (rxq->bf == NULL)
    758 		return ENOMEM;
    759 
    760 	rxq->count = count;
    761 
    762 	for (i = 0; i < rxq->count; i++) {
    763 		bf = &rxq->bf[i];
    764 
    765 		error = bus_dmamap_create(sc->sc_dmat, ATHN_RXBUFSZ, 1,
    766 		    ATHN_RXBUFSZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
    767 		    &bf->bf_map);
    768 		if (error != 0) {
    769 			printf("%s: could not create Rx buf DMA map\n",
    770 			    device_xname(sc->sc_dev));
    771 			goto fail;
    772 		}
    773 		/*
    774 		 * Assumes MCLGETI returns cache-line-size aligned buffers.
    775 		 */
    776 		bf->bf_m = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ);
    777 		if (bf->bf_m == NULL) {
    778 			printf("%s: could not allocate Rx mbuf\n",
    779 			    device_xname(sc->sc_dev));
    780 			error = ENOBUFS;
    781 			goto fail;
    782 		}
    783 
    784 		error = bus_dmamap_load(sc->sc_dmat, bf->bf_map,
    785 		    mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL,
    786 		    BUS_DMA_NOWAIT);
    787 		if (error != 0) {
    788 			printf("%s: could not DMA map Rx buffer\n",
    789 			    device_xname(sc->sc_dev));
    790 			goto fail;
    791 		}
    792 
    793 		ds = mtod(bf->bf_m, struct ar_rx_status *);
    794 		memset(ds, 0, sizeof(*ds));
    795 		bf->bf_desc = ds;
    796 		bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr;
    797 
    798 		bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
    799 		    BUS_DMASYNC_PREREAD);
    800 	}
    801 	return 0;
    802  fail:
    803 	ar9003_rx_free(sc, qid);
    804 	return error;
    805 }
    806 
    807 Static void
    808 ar9003_rx_free(struct athn_softc *sc, int qid)
    809 {
    810 	struct athn_rxq *rxq = &sc->sc_rxq[qid];
    811 	struct athn_rx_buf *bf;
    812 	int i;
    813 
    814 	if (rxq->bf == NULL)
    815 		return;
    816 	for (i = 0; i < rxq->count; i++) {
    817 		bf = &rxq->bf[i];
    818 
    819 		if (bf->bf_map != NULL)
    820 			bus_dmamap_destroy(sc->sc_dmat, bf->bf_map);
    821 		if (bf->bf_m != NULL)
    822 			m_freem(bf->bf_m);
    823 	}
    824 	free(rxq->bf, M_DEVBUF);
    825 }
    826 
    827 PUBLIC void
    828 ar9003_reset_txsring(struct athn_softc *sc)
    829 {
    830 
    831 	sc->sc_txscur = 0;
    832 	memset(sc->sc_txsring, 0, AR9003_NTXSTATUS * sizeof(struct ar_tx_status));
    833 	AR_WRITE(sc, AR_Q_STATUS_RING_START,
    834 	    sc->sc_txsmap->dm_segs[0].ds_addr);
    835 	AR_WRITE(sc, AR_Q_STATUS_RING_END,
    836 	    sc->sc_txsmap->dm_segs[0].ds_addr + sc->sc_txsmap->dm_segs[0].ds_len);
    837 	AR_WRITE_BARRIER(sc);
    838 }
    839 
    840 Static void
    841 ar9003_rx_enable(struct athn_softc *sc)
    842 {
    843 	struct athn_rxq *rxq;
    844 	struct athn_rx_buf *bf;
    845 	struct ar_rx_status *ds;
    846 	uint32_t reg;
    847 	int qid, i;
    848 
    849 	reg = AR_READ(sc, AR_RXBP_THRESH);
    850 	reg = RW(reg, AR_RXBP_THRESH_HP, 1);
    851 	reg = RW(reg, AR_RXBP_THRESH_LP, 1);
    852 	AR_WRITE(sc, AR_RXBP_THRESH, reg);
    853 
    854 	/* Set Rx buffer size. */
    855 	AR_WRITE(sc, AR_DATABUF_SIZE, ATHN_RXBUFSZ - sizeof(*ds));
    856 
    857 	for (qid = 0; qid < 2; qid++) {
    858 		rxq = &sc->sc_rxq[qid];
    859 
    860 		/* Setup Rx status descriptors. */
    861 		SIMPLEQ_INIT(&rxq->head);
    862 		for (i = 0; i < rxq->count; i++) {
    863 			bf = &rxq->bf[i];
    864 			ds = bf->bf_desc;
    865 
    866 			memset(ds, 0, sizeof(*ds));
    867 			if (qid == ATHN_QID_LP)
    868 				AR_WRITE(sc, AR_LP_RXDP, bf->bf_daddr);
    869 			else
    870 				AR_WRITE(sc, AR_HP_RXDP, bf->bf_daddr);
    871 			AR_WRITE_BARRIER(sc);
    872 			SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list);
    873 		}
    874 	}
    875 	/* Enable Rx. */
    876 	AR_WRITE(sc, AR_CR, 0);
    877 	AR_WRITE_BARRIER(sc);
    878 }
    879 
    880 Static void
    881 ar9003_rx_radiotap(struct athn_softc *sc, struct mbuf *m,
    882     struct ar_rx_status *ds)
    883 {
    884 	struct athn_rx_radiotap_header *tap = &sc->sc_rxtap;
    885 	struct ieee80211com *ic = &sc->sc_ic;
    886 	uint64_t tsf;
    887 	uint32_t tstamp;
    888 	uint8_t rate;
    889 
    890 	/* Extend the 15-bit timestamp from Rx status to 64-bit TSF. */
    891 	tstamp = ds->ds_status3;
    892 	tsf = AR_READ(sc, AR_TSF_U32);
    893 	tsf = tsf << 32 | AR_READ(sc, AR_TSF_L32);
    894 	if ((tsf & 0x7fff) < tstamp)
    895 		tsf -= 0x8000;
    896 	tsf = (tsf & ~0x7fff) | tstamp;
    897 
    898 	tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
    899 	tap->wr_tsft = htole64(tsf);
    900 	tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
    901 	tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
    902 	tap->wr_dbm_antsignal = MS(ds->ds_status5, AR_RXS5_RSSI_COMBINED);
    903 	/* XXX noise. */
    904 	tap->wr_antenna = MS(ds->ds_status4, AR_RXS4_ANTENNA);
    905 	tap->wr_rate = 0;	/* In case it can't be found below. */
    906 	rate = MS(ds->ds_status1, AR_RXS1_RATE);
    907 	if (rate & 0x80) {		/* HT. */
    908 		/* Bit 7 set means HT MCS instead of rate. */
    909 		tap->wr_rate = rate;
    910 		if (!(ds->ds_status4 & AR_RXS4_GI))
    911 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
    912 
    913 	}
    914 	else if (rate & 0x10) {	/* CCK. */
    915 		if (rate & 0x04)
    916 			tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
    917 		switch (rate & ~0x14) {
    918 		case 0xb: tap->wr_rate =   2; break;
    919 		case 0xa: tap->wr_rate =   4; break;
    920 		case 0x9: tap->wr_rate =  11; break;
    921 		case 0x8: tap->wr_rate =  22; break;
    922 		}
    923 	}
    924 	else {			/* OFDM. */
    925 		switch (rate) {
    926 		case 0xb: tap->wr_rate =  12; break;
    927 		case 0xf: tap->wr_rate =  18; break;
    928 		case 0xa: tap->wr_rate =  24; break;
    929 		case 0xe: tap->wr_rate =  36; break;
    930 		case 0x9: tap->wr_rate =  48; break;
    931 		case 0xd: tap->wr_rate =  72; break;
    932 		case 0x8: tap->wr_rate =  96; break;
    933 		case 0xc: tap->wr_rate = 108; break;
    934 		}
    935 	}
    936 	bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
    937 }
    938 
    939 Static int
    940 ar9003_rx_process(struct athn_softc *sc, int qid)
    941 {
    942 	struct ieee80211com *ic = &sc->sc_ic;
    943 	struct ifnet *ifp = &sc->sc_if;
    944 	struct athn_rxq *rxq = &sc->sc_rxq[qid];
    945 	struct athn_rx_buf *bf;
    946 	struct ar_rx_status *ds;
    947 	struct ieee80211_frame *wh;
    948 	struct ieee80211_node *ni;
    949 	struct mbuf *m, *m1;
    950 	size_t len;
    951 	u_int32_t rstamp;
    952 	int error, rssi;
    953 
    954 	bf = SIMPLEQ_FIRST(&rxq->head);
    955 	if (__predict_false(bf == NULL)) {	/* Should not happen. */
    956 		printf("%s: Rx queue is empty!\n", device_xname(sc->sc_dev));
    957 		return ENOENT;
    958 	}
    959 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
    960 	    BUS_DMASYNC_POSTREAD);
    961 
    962 	ds = mtod(bf->bf_m, struct ar_rx_status *);
    963 	if (!(ds->ds_status1 & AR_RXS1_DONE))
    964 		return EBUSY;
    965 
    966 	/* Check that it is a valid Rx status descriptor. */
    967 	if ((ds->ds_info & (AR_RXI_DESC_ID_M | AR_RXI_DESC_TX |
    968 	    AR_RXI_CTRL_STAT)) != SM(AR_RXI_DESC_ID, AR_VENDOR_ATHEROS))
    969 		goto skip;
    970 
    971 	if (!(ds->ds_status11 & AR_RXS11_FRAME_OK)) {
    972 		if (ds->ds_status11 & AR_RXS11_CRC_ERR)
    973 			DPRINTFN(DBG_RX, sc, "CRC error\n");
    974 		else if (ds->ds_status11 & AR_RXS11_PHY_ERR)
    975 			DPRINTFN(DBG_RX, sc, "PHY error=0x%x\n",
    976 			    MS(ds->ds_status11, AR_RXS11_PHY_ERR_CODE));
    977 		else if (ds->ds_status11 & AR_RXS11_DECRYPT_CRC_ERR)
    978 			DPRINTFN(DBG_RX, sc, "Decryption CRC error\n");
    979 		else if (ds->ds_status11 & AR_RXS11_MICHAEL_ERR) {
    980 			DPRINTFN(DBG_RX, sc, "Michael MIC failure\n");
    981 			/* Report Michael MIC failures to net80211. */
    982 
    983 			len = MS(ds->ds_status2, AR_RXS2_DATA_LEN);
    984 			m = bf->bf_m;
    985 			m->m_pkthdr.rcvif = ifp;
    986 			m->m_data = (void *)&ds[1];
    987 			m->m_pkthdr.len = m->m_len = len;
    988 			wh = mtod(m, struct ieee80211_frame *);
    989 
    990 			ieee80211_notify_michael_failure(ic, wh,
    991 			    0 /* XXX: keyix */);
    992 		}
    993 		ifp->if_ierrors++;
    994 		goto skip;
    995 	}
    996 
    997 	len = MS(ds->ds_status2, AR_RXS2_DATA_LEN);
    998 	if (__predict_false(len < IEEE80211_MIN_LEN ||
    999 	    len > ATHN_RXBUFSZ - sizeof(*ds))) {
   1000 		DPRINTFN(DBG_RX, sc, "corrupted descriptor length=%zd\n",
   1001 		    len);
   1002 		ifp->if_ierrors++;
   1003 		goto skip;
   1004 	}
   1005 
   1006 	/* Allocate a new Rx buffer. */
   1007 	m1 = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ);
   1008 	if (__predict_false(m1 == NULL)) {
   1009 		ic->ic_stats.is_rx_nobuf++;
   1010 		ifp->if_ierrors++;
   1011 		goto skip;
   1012 	}
   1013 
   1014 	/* Unmap the old Rx buffer. */
   1015 	bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
   1016 
   1017 	/* Map the new Rx buffer. */
   1018 	error = bus_dmamap_load(sc->sc_dmat, bf->bf_map, mtod(m1, void *),
   1019 	    ATHN_RXBUFSZ, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
   1020 	if (__predict_false(error != 0)) {
   1021 		m_freem(m1);
   1022 
   1023 		/* Remap the old Rx buffer or panic. */
   1024 		error = bus_dmamap_load(sc->sc_dmat, bf->bf_map,
   1025 		    mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL,
   1026 		    BUS_DMA_NOWAIT | BUS_DMA_READ);
   1027 		KASSERT(error != 0);
   1028 		bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr;
   1029 		ifp->if_ierrors++;
   1030 		goto skip;
   1031 	}
   1032 	bf->bf_desc = mtod(m1, struct ar_rx_status *);
   1033 	bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr;
   1034 
   1035 	m = bf->bf_m;
   1036 	bf->bf_m = m1;
   1037 
   1038 	/* Finalize mbuf. */
   1039 	m->m_pkthdr.rcvif = ifp;
   1040 	/* Strip Rx status descriptor from head. */
   1041 	m->m_data = (void *)&ds[1];
   1042 	m->m_pkthdr.len = m->m_len = len;
   1043 
   1044 	/* Grab a reference to the source node. */
   1045 	wh = mtod(m, struct ieee80211_frame *);
   1046 	ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
   1047 
   1048 	/* Remove any HW padding after the 802.11 header. */
   1049 	if (!(wh->i_fc[0] & IEEE80211_FC0_TYPE_CTL)) {
   1050 		u_int hdrlen = ieee80211_anyhdrsize(wh);
   1051 		if (hdrlen & 3) {
   1052 			ovbcopy(wh, (uint8_t *)wh + 2, hdrlen);
   1053 			m_adj(m, 2);
   1054 		}
   1055 	}
   1056 	if (__predict_false(sc->sc_drvbpf != NULL))
   1057 		ar9003_rx_radiotap(sc, m, ds);
   1058 	/* Trim 802.11 FCS after radiotap. */
   1059 	m_adj(m, -IEEE80211_CRC_LEN);
   1060 
   1061 	/* Send the frame to the 802.11 layer. */
   1062 	rssi = MS(ds->ds_status5, AR_RXS5_RSSI_COMBINED);
   1063 	rstamp = ds->ds_status3;
   1064 	ieee80211_input(ic, m, ni, rssi, rstamp);
   1065 
   1066 	/* Node is no longer needed. */
   1067 	ieee80211_free_node(ni);
   1068 
   1069  skip:
   1070 	/* Unlink this descriptor from head. */
   1071 	SIMPLEQ_REMOVE_HEAD(&rxq->head, bf_list);
   1072 	memset(bf->bf_desc, 0, sizeof(*ds));
   1073 
   1074 	/* Re-use this descriptor and link it to tail. */
   1075 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
   1076 	    BUS_DMASYNC_PREREAD);
   1077 
   1078 	if (qid == ATHN_QID_LP)
   1079 		AR_WRITE(sc, AR_LP_RXDP, bf->bf_daddr);
   1080 	else
   1081 		AR_WRITE(sc, AR_HP_RXDP, bf->bf_daddr);
   1082 	AR_WRITE_BARRIER(sc);
   1083 	SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list);
   1084 
   1085 	/* Re-enable Rx. */
   1086 	AR_WRITE(sc, AR_CR, 0);
   1087 	AR_WRITE_BARRIER(sc);
   1088 	return 0;
   1089 }
   1090 
   1091 Static void
   1092 ar9003_rx_intr(struct athn_softc *sc, int qid)
   1093 {
   1094 
   1095 	while (ar9003_rx_process(sc, qid) == 0)
   1096 		continue;
   1097 }
   1098 
   1099 Static int
   1100 ar9003_tx_process(struct athn_softc *sc)
   1101 {
   1102 	struct ifnet *ifp = &sc->sc_if;
   1103 	struct athn_txq *txq;
   1104 	struct athn_node *an;
   1105 	struct athn_tx_buf *bf;
   1106 	struct ar_tx_status *ds;
   1107 	uint8_t qid, failcnt;
   1108 
   1109 	ds = &((struct ar_tx_status *)sc->sc_txsring)[sc->sc_txscur];
   1110 	if (!(ds->ds_status8 & AR_TXS8_DONE))
   1111 		return EBUSY;
   1112 
   1113 	sc->sc_txscur = (sc->sc_txscur + 1) % AR9003_NTXSTATUS;
   1114 
   1115 	/* Check that it is a valid Tx status descriptor. */
   1116 	if ((ds->ds_info & (AR_TXI_DESC_ID_M | AR_TXI_DESC_TX)) !=
   1117 	    (SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) | AR_TXI_DESC_TX)) {
   1118 		memset(ds, 0, sizeof(*ds));
   1119 		return 0;
   1120 	}
   1121 	/* Retrieve the queue that was used to send this PDU. */
   1122 	qid = MS(ds->ds_info, AR_TXI_QCU_NUM);
   1123 	txq = &sc->sc_txq[qid];
   1124 
   1125 	bf = SIMPLEQ_FIRST(&txq->head);
   1126 	if (bf == NULL || bf == txq->wait) {
   1127 		memset(ds, 0, sizeof(*ds));
   1128 		return 0;
   1129 	}
   1130 	SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list);
   1131 	ifp->if_opackets++;
   1132 
   1133 	sc->sc_tx_timer = 0;
   1134 
   1135 	if (ds->ds_status3 & AR_TXS3_EXCESSIVE_RETRIES)
   1136 		ifp->if_oerrors++;
   1137 
   1138 	if (ds->ds_status3 & AR_TXS3_UNDERRUN)
   1139 		athn_inc_tx_trigger_level(sc);
   1140 
   1141 	/* Wakeup PA predistortion state machine. */
   1142 	if (bf->bf_txflags & ATHN_TXFLAG_PAPRD)
   1143 		ar9003_paprd_tx_tone_done(sc);
   1144 
   1145 	an = (struct athn_node *)bf->bf_ni;
   1146 	/*
   1147 	 * NB: the data fail count contains the number of un-acked tries
   1148 	 * for the final series used.  We must add the number of tries for
   1149 	 * each series that was fully processed.
   1150 	 */
   1151 	failcnt  = MS(ds->ds_status3, AR_TXS3_DATA_FAIL_CNT);
   1152 	/* NB: Assume two tries per series. */
   1153 	failcnt += MS(ds->ds_status8, AR_TXS8_FINAL_IDX) * 2;
   1154 
   1155 	/* Update rate control statistics. */
   1156 	an->amn.amn_txcnt++;
   1157 	if (failcnt > 0)
   1158 		an->amn.amn_retrycnt++;
   1159 
   1160 	DPRINTFN(DBG_TX, sc, "Tx done qid=%d status3=%d fail count=%d\n",
   1161 	    qid, ds->ds_status3, failcnt);
   1162 
   1163 	/* Reset Tx status descriptor. */
   1164 	memset(ds, 0, sizeof(*ds));
   1165 
   1166 	/* Unmap Tx buffer. */
   1167 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
   1168 	    BUS_DMASYNC_POSTWRITE);
   1169 	bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
   1170 
   1171 	m_freem(bf->bf_m);
   1172 	bf->bf_m = NULL;
   1173 	ieee80211_free_node(bf->bf_ni);
   1174 	bf->bf_ni = NULL;
   1175 
   1176 	/* Link Tx buffer back to global free list. */
   1177 	SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
   1178 
   1179 	/* Queue buffers that are waiting if there is new room. */
   1180 	if (--txq->queued < AR9003_TX_QDEPTH && txq->wait != NULL) {
   1181 		AR_WRITE(sc, AR_QTXDP(qid), txq->wait->bf_daddr);
   1182 		AR_WRITE_BARRIER(sc);
   1183 		txq->wait = SIMPLEQ_NEXT(txq->wait, bf_list);
   1184 	}
   1185 	return 0;
   1186 }
   1187 
   1188 Static void
   1189 ar9003_tx_intr(struct athn_softc *sc)
   1190 {
   1191 	struct ifnet *ifp = &sc->sc_if;
   1192 
   1193 	while (ar9003_tx_process(sc) == 0);
   1194 
   1195 	if (!SIMPLEQ_EMPTY(&sc->sc_txbufs)) {
   1196 		ifp->if_flags &= ~IFF_OACTIVE;
   1197 		ifp->if_start(ifp);
   1198 	}
   1199 }
   1200 
   1201 #ifndef IEEE80211_STA_ONLY
   1202 /*
   1203  * Process Software Beacon Alert interrupts.
   1204  */
   1205 Static int
   1206 ar9003_swba_intr(struct athn_softc *sc)
   1207 {
   1208 	struct ieee80211com *ic = &sc->sc_ic;
   1209 	struct ifnet *ifp = &sc->sc_if;
   1210 	struct ieee80211_node *ni = ic->ic_bss;
   1211 	struct athn_tx_buf *bf = sc->sc_bcnbuf;
   1212 	struct ieee80211_frame *wh;
   1213 	struct ieee80211_beacon_offsets bo;
   1214 	struct ar_tx_desc *ds;
   1215 	struct mbuf *m;
   1216 	uint32_t sum;
   1217 	uint8_t ridx, hwrate;
   1218 	int error, totlen;
   1219 
   1220 #if notyet
   1221 	if (ic->ic_tim_mcast_pending &&
   1222 	    IF_IS_EMPTY(&ni->ni_savedq) &&
   1223 	    SIMPLEQ_EMPTY(&sc->sc_txq[ATHN_QID_CAB].head))
   1224 		ic->ic_tim_mcast_pending = 0;
   1225 #endif
   1226 	if (ic->ic_dtim_count == 0)
   1227 		ic->ic_dtim_count = ic->ic_dtim_period - 1;
   1228 	else
   1229 		ic->ic_dtim_count--;
   1230 
   1231 	/* Make sure previous beacon has been sent. */
   1232 	if (athn_tx_pending(sc, ATHN_QID_BEACON)) {
   1233 		DPRINTFN(DBG_INTR, sc, "beacon stuck\n");
   1234 		return EBUSY;
   1235 	}
   1236 	/* Get new beacon. */
   1237 	m = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo);
   1238 	if (__predict_false(m == NULL))
   1239 		return ENOBUFS;
   1240 	/* Assign sequence number. */
   1241 	/* XXX: use non-QoS tid? */
   1242 	wh = mtod(m, struct ieee80211_frame *);
   1243 	*(uint16_t *)&wh->i_seq[0] =
   1244 	    htole16(ic->ic_bss->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
   1245 	ic->ic_bss->ni_txseqs[0]++;
   1246 
   1247 	/* Unmap and free old beacon if any. */
   1248 	if (__predict_true(bf->bf_m != NULL)) {
   1249 		bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0,
   1250 		    bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   1251 		bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
   1252 		m_freem(bf->bf_m);
   1253 		bf->bf_m = NULL;
   1254 	}
   1255 	/* DMA map new beacon. */
   1256 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
   1257 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   1258 	if (__predict_false(error != 0)) {
   1259 		m_freem(m);
   1260 		return error;
   1261 	}
   1262 	bf->bf_m = m;
   1263 
   1264 	/* Setup Tx descriptor (simplified ar9003_tx()). */
   1265 	ds = bf->bf_descs;
   1266 	memset(ds, 0, sizeof(*ds));
   1267 
   1268 	ds->ds_info =
   1269 	    SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) |
   1270 	    SM(AR_TXI_DESC_NDWORDS, 23) |
   1271 	    SM(AR_TXI_QCU_NUM, ATHN_QID_BEACON) |
   1272 	    AR_TXI_DESC_TX | AR_TXI_CTRL_STAT;
   1273 
   1274 	totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
   1275 	ds->ds_ctl11 = SM(AR_TXC11_FRAME_LEN, totlen);
   1276 	ds->ds_ctl11 |= SM(AR_TXC11_XMIT_POWER, AR_MAX_RATE_POWER);
   1277 	ds->ds_ctl12 = SM(AR_TXC12_FRAME_TYPE, AR_FRAME_TYPE_BEACON);
   1278 	ds->ds_ctl12 |= AR_TXC12_NO_ACK;
   1279 	ds->ds_ctl17 = SM(AR_TXC17_ENCR_TYPE, AR_ENCR_TYPE_CLEAR);
   1280 
   1281 	/* Write number of tries. */
   1282 	ds->ds_ctl13 = SM(AR_TXC13_XMIT_DATA_TRIES0, 1);
   1283 
   1284 	/* Write Tx rate. */
   1285 	ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   1286 	    ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1;
   1287 	hwrate = athn_rates[ridx].hwrate;
   1288 	ds->ds_ctl14 = SM(AR_TXC14_XMIT_RATE0, hwrate);
   1289 
   1290 	/* Write Tx chains. */
   1291 	ds->ds_ctl18 = SM(AR_TXC18_CHAIN_SEL0, sc->sc_txchainmask);
   1292 
   1293 	ds->ds_segs[0].ds_data = bf->bf_map->dm_segs[0].ds_addr;
   1294 	/* Segment length must be a multiple of 4. */
   1295 	ds->ds_segs[0].ds_ctl |= SM(AR_TXC_BUF_LEN,
   1296 	    (bf->bf_map->dm_segs[0].ds_len + 3) & ~3);
   1297 	/* Compute Tx descriptor checksum. */
   1298 	sum = ds->ds_info;
   1299 	sum += ds->ds_segs[0].ds_data;
   1300 	sum += ds->ds_segs[0].ds_ctl;
   1301 	sum = (sum >> 16) + (sum & 0xffff);
   1302 	ds->ds_ctl10 = SM(AR_TXC10_PTR_CHK_SUM, sum);
   1303 
   1304 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
   1305 	    BUS_DMASYNC_PREWRITE);
   1306 
   1307 	/* Stop Tx DMA before putting the new beacon on the queue. */
   1308 	athn_stop_tx_dma(sc, ATHN_QID_BEACON);
   1309 
   1310 	AR_WRITE(sc, AR_QTXDP(ATHN_QID_BEACON), bf->bf_daddr);
   1311 
   1312 	for(;;) {
   1313 		if (SIMPLEQ_EMPTY(&sc->sc_txbufs))
   1314 			break;
   1315 
   1316 		IF_DEQUEUE(&ni->ni_savedq, m);
   1317 		if (m == NULL)
   1318 			break;
   1319 		if (!IF_IS_EMPTY(&ni->ni_savedq)) {
   1320 			/* more queued frames, set the more data bit */
   1321 			wh = mtod(m, struct ieee80211_frame *);
   1322 			wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
   1323 		}
   1324 
   1325 		if (sc->sc_ops.tx(sc, m, ni, ATHN_TXFLAG_CAB) != 0) {
   1326 			ieee80211_free_node(ni);
   1327 			ifp->if_oerrors++;
   1328 			break;
   1329 		}
   1330 	}
   1331 
   1332 	/* Kick Tx. */
   1333 	AR_WRITE(sc, AR_Q_TXE, 1 << ATHN_QID_BEACON);
   1334 	AR_WRITE_BARRIER(sc);
   1335 	return 0;
   1336 }
   1337 #endif
   1338 
   1339 Static int
   1340 ar9003_intr(struct athn_softc *sc)
   1341 {
   1342 	uint32_t intr, intr2, intr5, sync;
   1343 
   1344 	/* Get pending interrupts. */
   1345 	intr = AR_READ(sc, AR_INTR_ASYNC_CAUSE);
   1346 	if (!(intr & AR_INTR_MAC_IRQ) || intr == AR_INTR_SPURIOUS) {
   1347 		intr = AR_READ(sc, AR_INTR_SYNC_CAUSE);
   1348 		if (intr == AR_INTR_SPURIOUS || (intr & sc->sc_isync) == 0)
   1349 			return 0;	/* Not for us. */
   1350 	}
   1351 
   1352 	if ((AR_READ(sc, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) &&
   1353 	    (AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_ON)
   1354 		intr = AR_READ(sc, AR_ISR);
   1355 	else
   1356 		intr = 0;
   1357 	sync = AR_READ(sc, AR_INTR_SYNC_CAUSE) & sc->sc_isync;
   1358 	if (intr == 0 && sync == 0)
   1359 		return 0;	/* Not for us. */
   1360 
   1361 	if (intr != 0) {
   1362 		if (intr & AR_ISR_BCNMISC) {
   1363 			intr2 = AR_READ(sc, AR_ISR_S2);
   1364 #ifdef notyet
   1365 			if (intr2 & AR_ISR_S2_TIM)
   1366 				/* TBD */;
   1367 			if (intr2 & AR_ISR_S2_TSFOOR)
   1368 				/* TBD */;
   1369 			if (intr2 & AR_ISR_S2_BB_WATCHDOG)
   1370 				/* TBD */;
   1371 #endif
   1372 		}
   1373 		intr = AR_READ(sc, AR_ISR_RAC);
   1374 		if (intr == AR_INTR_SPURIOUS)
   1375 			return 1;
   1376 
   1377 #ifndef IEEE80211_STA_ONLY
   1378 		if (intr & AR_ISR_SWBA)
   1379 			ar9003_swba_intr(sc);
   1380 #endif
   1381 		if (intr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
   1382 			ar9003_rx_intr(sc, ATHN_QID_LP);
   1383 		if (intr & (AR_ISR_LP_RXOK | AR_ISR_RXERR))
   1384 			ar9003_rx_intr(sc, ATHN_QID_LP);
   1385 		if (intr & AR_ISR_HP_RXOK)
   1386 			ar9003_rx_intr(sc, ATHN_QID_HP);
   1387 
   1388 		if (intr & (AR_ISR_TXMINTR | AR_ISR_TXINTM))
   1389 			ar9003_tx_intr(sc);
   1390 		if (intr & (AR_ISR_TXOK | AR_ISR_TXERR | AR_ISR_TXEOL))
   1391 			ar9003_tx_intr(sc);
   1392 
   1393 		if (intr & AR_ISR_GENTMR) {
   1394 			intr5 = AR_READ(sc, AR_ISR_S5_S);
   1395 			DPRINTFN(DBG_INTR, sc,
   1396 			    "GENTMR trigger=%d thresh=%d\n",
   1397 			    MS(intr5, AR_ISR_S5_GENTIMER_TRIG),
   1398 			    MS(intr5, AR_ISR_S5_GENTIMER_THRESH));
   1399 		}
   1400 	}
   1401 	if (sync != 0) {
   1402 		if (sync & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
   1403 			AR_WRITE(sc, AR_RC, AR_RC_HOSTIF);
   1404 			AR_WRITE(sc, AR_RC, 0);
   1405 		}
   1406 
   1407 		if ((sc->sc_flags & ATHN_FLAG_RFSILENT) &&
   1408 		    (sync & AR_INTR_SYNC_GPIO_PIN(sc->sc_rfsilent_pin))) {
   1409 			struct ifnet *ifp = &sc->sc_if;
   1410 
   1411 			printf("%s: radio switch turned off\n",
   1412 			    device_xname(sc->sc_dev));
   1413 			/* Turn the interface down. */
   1414 			ifp->if_flags &= ~IFF_UP;
   1415 			athn_stop(ifp, 1);
   1416 			return 1;
   1417 		}
   1418 
   1419 		AR_WRITE(sc, AR_INTR_SYNC_CAUSE, sync);
   1420 		(void)AR_READ(sc, AR_INTR_SYNC_CAUSE);
   1421 	}
   1422 	return 1;
   1423 }
   1424 
   1425 Static int
   1426 ar9003_tx(struct athn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
   1427     int txflags)
   1428 {
   1429 	struct ieee80211com *ic = &sc->sc_ic;
   1430 	struct ieee80211_key *k = NULL;
   1431 	struct ieee80211_frame *wh;
   1432 	struct athn_series series[4];
   1433 	struct ar_tx_desc *ds;
   1434 	struct athn_txq *txq;
   1435 	struct athn_tx_buf *bf;
   1436 	struct athn_node *an = (void *)ni;
   1437 	struct mbuf *m1;
   1438 	uint32_t sum;
   1439 	uint16_t qos;
   1440 	uint8_t txpower, type, encrtype, ridx[4];
   1441 	int i, error, totlen, hasqos, qid;
   1442 
   1443 	/* Grab a Tx buffer from our global free list. */
   1444 	bf = SIMPLEQ_FIRST(&sc->sc_txbufs);
   1445 	KASSERT(bf != NULL);
   1446 
   1447 	/* Map 802.11 frame type to hardware frame type. */
   1448 	wh = mtod(m, struct ieee80211_frame *);
   1449 	if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
   1450 	    IEEE80211_FC0_TYPE_MGT) {
   1451 		/* NB: Beacons do not use ar9003_tx(). */
   1452 		if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1453 		    IEEE80211_FC0_SUBTYPE_PROBE_RESP)
   1454 			type = AR_FRAME_TYPE_PROBE_RESP;
   1455 		else if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
   1456 		    IEEE80211_FC0_SUBTYPE_ATIM)
   1457 			type = AR_FRAME_TYPE_ATIM;
   1458 		else
   1459 			type = AR_FRAME_TYPE_NORMAL;
   1460 	}
   1461 	else if ((wh->i_fc[0] &
   1462 	    (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
   1463 	    (IEEE80211_FC0_TYPE_CTL  | IEEE80211_FC0_SUBTYPE_PS_POLL)) {
   1464 		type = AR_FRAME_TYPE_PSPOLL;
   1465 	}
   1466 	else
   1467 		type = AR_FRAME_TYPE_NORMAL;
   1468 
   1469 	if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
   1470 		k = ieee80211_crypto_encap(ic, ni, m);
   1471 		if (k == NULL)
   1472 			return ENOBUFS;
   1473 
   1474 		/* packet header may have moved, reset our local pointer */
   1475 		wh = mtod(m, struct ieee80211_frame *);
   1476 	}
   1477 
   1478 	/* XXX 2-byte padding for QoS and 4-addr headers. */
   1479 
   1480 	/* Select the HW Tx queue to use for this frame. */
   1481 	if ((hasqos = ieee80211_has_qos(wh))) {
   1482 #ifdef notyet_edca
   1483 		uint8_t tid;
   1484 
   1485 		qos = ieee80211_get_qos(wh);
   1486 		tid = qos & IEEE80211_QOS_TID;
   1487 		qid = athn_ac2qid[ieee80211_up_to_ac(ic, tid)];
   1488 #else
   1489 		qos = ieee80211_get_qos(wh);
   1490 		qid = ATHN_QID_AC_BE;
   1491 #endif /* notyet_edca */
   1492 	}
   1493 	else if (type == AR_FRAME_TYPE_PSPOLL) {
   1494 		qos = 0;
   1495 		qid = ATHN_QID_PSPOLL;
   1496 	}
   1497 	else if (txflags & ATHN_TXFLAG_CAB) {
   1498 		qos = 0;
   1499 		qid = ATHN_QID_CAB;
   1500 	}
   1501 	else {
   1502 		qos = 0;
   1503 		qid = ATHN_QID_AC_BE;
   1504 	}
   1505 	txq = &sc->sc_txq[qid];
   1506 
   1507 	/* Select the transmit rates to use for this frame. */
   1508 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   1509 	    (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
   1510 	    IEEE80211_FC0_TYPE_DATA) {
   1511 		/* Use lowest rate for all tries. */
   1512 		ridx[0] = ridx[1] = ridx[2] = ridx[3] =
   1513 		    (ic->ic_curmode == IEEE80211_MODE_11A) ?
   1514 			ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1;
   1515 	}
   1516 	else if (ic->ic_fixed_rate != -1) {
   1517 		/* Use same fixed rate for all tries. */
   1518 		ridx[0] = ridx[1] = ridx[2] = ridx[3] =
   1519 		    sc->sc_fixed_ridx;
   1520 	}
   1521 	else {
   1522 		int txrate = ni->ni_txrate;
   1523 		/* Use fallback table of the node. */
   1524 		for (i = 0; i < 4; i++) {
   1525 			ridx[i] = an->ridx[txrate];
   1526 			txrate = an->fallback[txrate];
   1527 		}
   1528 	}
   1529 
   1530 	if (__predict_false(sc->sc_drvbpf != NULL)) {
   1531 		struct athn_tx_radiotap_header *tap = &sc->sc_txtap;
   1532 
   1533 		tap->wt_flags = 0;
   1534 		/* Use initial transmit rate. */
   1535 		tap->wt_rate = athn_rates[ridx[0]].rate;
   1536 		tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
   1537 		tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
   1538 // XXX		tap->wt_hwqueue = qid;
   1539 		if (ridx[0] != ATHN_RIDX_CCK1 &&
   1540 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
   1541 			tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
   1542 
   1543 		bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
   1544 	}
   1545 
   1546 	/* DMA map mbuf. */
   1547 	error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
   1548 	    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   1549 	if (__predict_false(error != 0)) {
   1550 		if (error != EFBIG) {
   1551 			printf("%s: can't map mbuf (error %d)\n",
   1552 			    device_xname(sc->sc_dev), error);
   1553 			m_freem(m);
   1554 			return error;
   1555 		}
   1556 		/*
   1557 		 * DMA mapping requires too many DMA segments; linearize
   1558 		 * mbuf in kernel virtual address space and retry.
   1559 		 */
   1560 		MGETHDR(m1, M_DONTWAIT, MT_DATA);
   1561 		if (m1 == NULL) {
   1562 			m_freem(m);
   1563 			return ENOBUFS;
   1564 		}
   1565 		if (m->m_pkthdr.len > (int)MHLEN) {
   1566 			MCLGET(m1, M_DONTWAIT);
   1567 			if (!(m1->m_flags & M_EXT)) {
   1568 				m_freem(m);
   1569 				m_freem(m1);
   1570 				return ENOBUFS;
   1571 			}
   1572 		}
   1573 		m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
   1574 		m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
   1575 		m_freem(m);
   1576 		m = m1;
   1577 
   1578 		error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
   1579 		    BUS_DMA_NOWAIT | BUS_DMA_WRITE);
   1580 		if (error != 0) {
   1581 			printf("%s: can't map mbuf (error %d)\n",
   1582 			    device_xname(sc->sc_dev), error);
   1583 			m_freem(m);
   1584 			return error;
   1585 		}
   1586 	}
   1587 	bf->bf_m = m;
   1588 	bf->bf_ni = ni;
   1589 	bf->bf_txflags = txflags;
   1590 
   1591 	wh = mtod(m, struct ieee80211_frame *);
   1592 
   1593 	totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
   1594 
   1595 	/* Setup Tx descriptor. */
   1596 	ds = bf->bf_descs;
   1597 	memset(ds, 0, sizeof(*ds));
   1598 
   1599 	ds->ds_info =
   1600 	    SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) |
   1601 	    SM(AR_TXI_DESC_NDWORDS, 23) |
   1602 	    SM(AR_TXI_QCU_NUM, qid) |
   1603 	    AR_TXI_DESC_TX | AR_TXI_CTRL_STAT;
   1604 
   1605 	ds->ds_ctl11 = AR_TXC11_CLR_DEST_MASK;
   1606 	txpower = AR_MAX_RATE_POWER;	/* Get from per-rate registers. */
   1607 	ds->ds_ctl11 |= SM(AR_TXC11_XMIT_POWER, txpower);
   1608 
   1609 	ds->ds_ctl12 = SM(AR_TXC12_FRAME_TYPE, type);
   1610 
   1611 	if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
   1612 	    (hasqos && (qos & IEEE80211_QOS_ACKPOLICY_MASK) ==
   1613 	     IEEE80211_QOS_ACKPOLICY_NOACK))
   1614 		ds->ds_ctl12 |= AR_TXC12_NO_ACK;
   1615 
   1616 #if notyet
   1617 	if (0 && k != NULL) {
   1618 		uintptr_t entry;
   1619 
   1620 		/*
   1621 		 * Map 802.11 cipher to hardware encryption type and
   1622 		 * compute MIC+ICV overhead.
   1623 		 */
   1624 		switch (k->k_cipher) {
   1625 		case IEEE80211_CIPHER_WEP40:
   1626 		case IEEE80211_CIPHER_WEP104:
   1627 			encrtype = AR_ENCR_TYPE_WEP;
   1628 			totlen += 4;
   1629 			break;
   1630 		case IEEE80211_CIPHER_TKIP:
   1631 			encrtype = AR_ENCR_TYPE_TKIP;
   1632 			totlen += 12;
   1633 			break;
   1634 		case IEEE80211_CIPHER_CCMP:
   1635 			encrtype = AR_ENCR_TYPE_AES;
   1636 			totlen += 8;
   1637 			break;
   1638 		default:
   1639 			panic("unsupported cipher");
   1640 		}
   1641 		/*
   1642 		 * NB: The key cache entry index is stored in the key
   1643 		 * private field when the key is installed.
   1644 		 */
   1645 		entry = (uintptr_t)k->k_priv;
   1646 		ds->ds_ctl12 |= SM(AR_TXC12_DEST_IDX, entry);
   1647 		ds->ds_ctl11 |= AR_TXC11_DEST_IDX_VALID;
   1648 	}
   1649 	else
   1650 #endif
   1651 		encrtype = AR_ENCR_TYPE_CLEAR;
   1652 	ds->ds_ctl17 = SM(AR_TXC17_ENCR_TYPE, encrtype);
   1653 
   1654 	/* Check if frame must be protected using RTS/CTS or CTS-to-self. */
   1655 	if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
   1656 		/* NB: Group frames are sent using CCK in 802.11b/g. */
   1657 		if (totlen > ic->ic_rtsthreshold) {
   1658 			ds->ds_ctl11 |= AR_TXC11_RTS_ENABLE;
   1659 		}
   1660 		else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
   1661 		    athn_rates[ridx[0]].phy == IEEE80211_T_OFDM) {
   1662 			if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
   1663 				ds->ds_ctl11 |= AR_TXC11_RTS_ENABLE;
   1664 			else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
   1665 				ds->ds_ctl11 |= AR_TXC11_CTS_ENABLE;
   1666 		}
   1667 	}
   1668 	if (ds->ds_ctl11 & (AR_TXC11_RTS_ENABLE | AR_TXC11_CTS_ENABLE)) {
   1669 		/* Disable multi-rate retries when protection is used. */
   1670 		ridx[1] = ridx[2] = ridx[3] = ridx[0];
   1671 	}
   1672 	/* Setup multi-rate retries. */
   1673 	for (i = 0; i < 4; i++) {
   1674 		series[i].hwrate = athn_rates[ridx[i]].hwrate;
   1675 		if (athn_rates[ridx[i]].phy == IEEE80211_T_DS &&
   1676 		    ridx[i] != ATHN_RIDX_CCK1 &&
   1677 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
   1678 			series[i].hwrate |= 0x04;
   1679 		series[i].dur = 0;
   1680 	}
   1681 	if (!(ds->ds_ctl12 & AR_TXC12_NO_ACK)) {
   1682 		/* Compute duration for each series. */
   1683 		for (i = 0; i < 4; i++) {
   1684 			series[i].dur = athn_txtime(sc, IEEE80211_ACK_LEN,
   1685 			    athn_rates[ridx[i]].rspridx, ic->ic_flags);
   1686 		}
   1687 	}
   1688 	/* If this is a PA training frame, select the Tx chain to use. */
   1689 	if (__predict_false(txflags & ATHN_TXFLAG_PAPRD)) {
   1690 		ds->ds_ctl12 |= SM(AR_TXC12_PAPRD_CHAIN_MASK,
   1691 		    1 << sc->sc_paprd_curchain);
   1692 	}
   1693 
   1694 	/* Write number of tries for each series. */
   1695 	ds->ds_ctl13 =
   1696 	    SM(AR_TXC13_XMIT_DATA_TRIES0, 2) |
   1697 	    SM(AR_TXC13_XMIT_DATA_TRIES1, 2) |
   1698 	    SM(AR_TXC13_XMIT_DATA_TRIES2, 2) |
   1699 	    SM(AR_TXC13_XMIT_DATA_TRIES3, 4);
   1700 
   1701 	/* Tell HW to update duration field in 802.11 header. */
   1702 	if (type != AR_FRAME_TYPE_PSPOLL)
   1703 		ds->ds_ctl13 |= AR_TXC13_DUR_UPDATE_ENA;
   1704 
   1705 	/* Write Tx rate for each series. */
   1706 	ds->ds_ctl14 =
   1707 	    SM(AR_TXC14_XMIT_RATE0, series[0].hwrate) |
   1708 	    SM(AR_TXC14_XMIT_RATE1, series[1].hwrate) |
   1709 	    SM(AR_TXC14_XMIT_RATE2, series[2].hwrate) |
   1710 	    SM(AR_TXC14_XMIT_RATE3, series[3].hwrate);
   1711 
   1712 	/* Write duration for each series. */
   1713 	ds->ds_ctl15 =
   1714 	    SM(AR_TXC15_PACKET_DUR0, series[0].dur) |
   1715 	    SM(AR_TXC15_PACKET_DUR1, series[1].dur);
   1716 	ds->ds_ctl16 =
   1717 	    SM(AR_TXC16_PACKET_DUR2, series[2].dur) |
   1718 	    SM(AR_TXC16_PACKET_DUR3, series[3].dur);
   1719 
   1720 	if ((sc->sc_flags & ATHN_FLAG_3TREDUCE_CHAIN) &&
   1721 	    ic->ic_curmode == IEEE80211_MODE_11A) {
   1722 		/*
   1723 		 * In order to not exceed PCIe power requirements, we only
   1724 		 * use two Tx chains for MCS0~15 on 5GHz band on these chips.
   1725 		 */
   1726 		ds->ds_ctl18 =
   1727 		    SM(AR_TXC18_CHAIN_SEL0,
   1728 			(ridx[0] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask) |
   1729 		    SM(AR_TXC18_CHAIN_SEL1,
   1730 			(ridx[1] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask) |
   1731 		    SM(AR_TXC18_CHAIN_SEL2,
   1732 			(ridx[2] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask) |
   1733 		    SM(AR_TXC18_CHAIN_SEL3,
   1734 			(ridx[3] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask);
   1735 	}
   1736 	else {
   1737 		/* Use the same Tx chains for all tries. */
   1738 		ds->ds_ctl18 =
   1739 		    SM(AR_TXC18_CHAIN_SEL0, sc->sc_txchainmask) |
   1740 		    SM(AR_TXC18_CHAIN_SEL1, sc->sc_txchainmask) |
   1741 		    SM(AR_TXC18_CHAIN_SEL2, sc->sc_txchainmask) |
   1742 		    SM(AR_TXC18_CHAIN_SEL3, sc->sc_txchainmask);
   1743 	}
   1744 #ifdef notyet
   1745 #ifndef IEEE80211_NO_HT
   1746 	/* Use the same short GI setting for all tries. */
   1747 	if (ic->ic_flags & IEEE80211_F_SHGI)
   1748 		ds->ds_ctl18 |= AR_TXC18_GI0123;
   1749 	/* Use the same channel width for all tries. */
   1750 	if (ic->ic_flags & IEEE80211_F_CBW40)
   1751 		ds->ds_ctl18 |= AR_TXC18_2040_0123;
   1752 #endif
   1753 #endif
   1754 
   1755 	if (ds->ds_ctl11 & (AR_TXC11_RTS_ENABLE | AR_TXC11_CTS_ENABLE)) {
   1756 		uint8_t protridx, hwrate;
   1757 		uint16_t dur = 0;
   1758 
   1759 		/* Use the same protection mode for all tries. */
   1760 		if (ds->ds_ctl11 & AR_TXC11_RTS_ENABLE) {
   1761 			ds->ds_ctl15 |= AR_TXC15_RTSCTS_QUAL01;
   1762 			ds->ds_ctl16 |= AR_TXC16_RTSCTS_QUAL23;
   1763 		}
   1764 		/* Select protection rate (suboptimal but ok). */
   1765 		protridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
   1766 		    ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK2;
   1767 		if (ds->ds_ctl11 & AR_TXC11_RTS_ENABLE) {
   1768 			/* Account for CTS duration. */
   1769 			dur += athn_txtime(sc, IEEE80211_ACK_LEN,
   1770 			    athn_rates[protridx].rspridx, ic->ic_flags);
   1771 		}
   1772 		dur += athn_txtime(sc, totlen, ridx[0], ic->ic_flags);
   1773 		if (!(ds->ds_ctl12 & AR_TXC12_NO_ACK)) {
   1774 			/* Account for ACK duration. */
   1775 			dur += athn_txtime(sc, IEEE80211_ACK_LEN,
   1776 			    athn_rates[ridx[0]].rspridx, ic->ic_flags);
   1777 		}
   1778 		/* Write protection frame duration and rate. */
   1779 		ds->ds_ctl13 |= SM(AR_TXC13_BURST_DUR, dur);
   1780 		hwrate = athn_rates[protridx].hwrate;
   1781 		if (protridx == ATHN_RIDX_CCK2 &&
   1782 		    (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
   1783 			hwrate |= 0x04;
   1784 		ds->ds_ctl18 |= SM(AR_TXC18_RTSCTS_RATE, hwrate);
   1785 	}
   1786 
   1787 	ds->ds_ctl11 |= SM(AR_TXC11_FRAME_LEN, totlen);
   1788 	ds->ds_ctl19 = AR_TXC19_NOT_SOUNDING;
   1789 
   1790 	for (i = 0; i < bf->bf_map->dm_nsegs; i++) {
   1791 		ds->ds_segs[i].ds_data = bf->bf_map->dm_segs[i].ds_addr;
   1792 		ds->ds_segs[i].ds_ctl = SM(AR_TXC_BUF_LEN,
   1793 		    bf->bf_map->dm_segs[i].ds_len);
   1794 	}
   1795 	/* Compute Tx descriptor checksum. */
   1796 	sum = ds->ds_info + ds->ds_link;
   1797 	for (i = 0; i < 4; i++) {
   1798 		sum += ds->ds_segs[i].ds_data;
   1799 		sum += ds->ds_segs[i].ds_ctl;
   1800 	}
   1801 	sum = (sum >> 16) + (sum & 0xffff);
   1802 	ds->ds_ctl10 = SM(AR_TXC10_PTR_CHK_SUM, sum);
   1803 
   1804 	bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
   1805 	    BUS_DMASYNC_PREWRITE);
   1806 
   1807 	DPRINTFN(DBG_TX, sc,
   1808 	    "Tx qid=%d nsegs=%d ctl11=0x%x ctl12=0x%x ctl14=0x%x\n",
   1809 	    qid, bf->bf_map->dm_nsegs, ds->ds_ctl11, ds->ds_ctl12,
   1810 	    ds->ds_ctl14);
   1811 
   1812 	SIMPLEQ_REMOVE_HEAD(&sc->sc_txbufs, bf_list);
   1813 	SIMPLEQ_INSERT_TAIL(&txq->head, bf, bf_list);
   1814 
   1815 	/* Queue buffer unless hardware FIFO is already full. */
   1816 	if (++txq->queued <= AR9003_TX_QDEPTH) {
   1817 		AR_WRITE(sc, AR_QTXDP(qid), bf->bf_daddr);
   1818 		AR_WRITE_BARRIER(sc);
   1819 	}
   1820 	else if (txq->wait == NULL)
   1821 		txq->wait = bf;
   1822 	return 0;
   1823 }
   1824 
   1825 Static void
   1826 ar9003_set_rf_mode(struct athn_softc *sc, struct ieee80211_channel *c)
   1827 {
   1828 	uint32_t reg;
   1829 
   1830 	reg = IEEE80211_IS_CHAN_2GHZ(c) ?
   1831 	    AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
   1832 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
   1833 	    (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)) {
   1834 		reg |= AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE;
   1835 	}
   1836 	AR_WRITE(sc, AR_PHY_MODE, reg);
   1837 	AR_WRITE_BARRIER(sc);
   1838 }
   1839 
   1840 static __inline uint32_t
   1841 ar9003_synth_delay(struct athn_softc *sc)
   1842 {
   1843 	uint32_t delay;
   1844 
   1845 	delay = MS(AR_READ(sc, AR_PHY_RX_DELAY), AR_PHY_RX_DELAY_DELAY);
   1846 	if (sc->sc_ic.ic_curmode == IEEE80211_MODE_11B)
   1847 		delay = (delay * 4) / 22;
   1848 	else
   1849 		delay = delay / 10;	/* in 100ns steps */
   1850 	return delay;
   1851 }
   1852 
   1853 Static int
   1854 ar9003_rf_bus_request(struct athn_softc *sc)
   1855 {
   1856 	int ntries;
   1857 
   1858 	/* Request RF Bus grant. */
   1859 	AR_WRITE(sc, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
   1860 	for (ntries = 0; ntries < 10000; ntries++) {
   1861 		if (AR_READ(sc, AR_PHY_RFBUS_GRANT) & AR_PHY_RFBUS_GRANT_EN)
   1862 			return 0;
   1863 		DELAY(10);
   1864 	}
   1865 	DPRINTFN(DBG_RF, sc, "could not kill baseband Rx");
   1866 	return ETIMEDOUT;
   1867 }
   1868 
   1869 Static void
   1870 ar9003_rf_bus_release(struct athn_softc *sc)
   1871 {
   1872 	/* Wait for the synthesizer to settle. */
   1873 	DELAY(AR_BASE_PHY_ACTIVE_DELAY + ar9003_synth_delay(sc));
   1874 
   1875 	/* Release the RF Bus grant. */
   1876 	AR_WRITE(sc, AR_PHY_RFBUS_REQ, 0);
   1877 	AR_WRITE_BARRIER(sc);
   1878 }
   1879 
   1880 Static void
   1881 ar9003_set_phy(struct athn_softc *sc, struct ieee80211_channel *c,
   1882     struct ieee80211_channel *extc)
   1883 {
   1884 	uint32_t phy;
   1885 
   1886 	phy = AR_READ(sc, AR_PHY_GEN_CTRL);
   1887 	phy |= AR_PHY_GC_HT_EN | AR_PHY_GC_SHORT_GI_40 |
   1888 	    AR_PHY_GC_SINGLE_HT_LTF1 | AR_PHY_GC_WALSH;
   1889 #ifndef IEEE80211_NO_HT
   1890 	if (extc != NULL) {
   1891 		phy |= AR_PHY_GC_DYN2040_EN;
   1892 		if (extc > c)	/* XXX */
   1893 			phy |= AR_PHY_GC_DYN2040_PRI_CH;
   1894 	}
   1895 #endif
   1896 	/* Turn off Green Field detection for now. */
   1897 	phy &= ~AR_PHY_GC_GF_DETECT_EN;
   1898 	AR_WRITE(sc, AR_PHY_GEN_CTRL, phy);
   1899 
   1900 	AR_WRITE(sc, AR_2040_MODE,
   1901 	    (extc != NULL) ? AR_2040_JOINED_RX_CLEAR : 0);
   1902 
   1903 	/* Set global transmit timeout. */
   1904 	AR_WRITE(sc, AR_GTXTO, SM(AR_GTXTO_TIMEOUT_LIMIT, 25));
   1905 	/* Set carrier sense timeout. */
   1906 	AR_WRITE(sc, AR_CST, SM(AR_CST_TIMEOUT_LIMIT, 15));
   1907 	AR_WRITE_BARRIER(sc);
   1908 }
   1909 
   1910 Static void
   1911 ar9003_set_delta_slope(struct athn_softc *sc, struct ieee80211_channel *c,
   1912     struct ieee80211_channel *extc)
   1913 {
   1914 	uint32_t coeff, exp, man, reg;
   1915 
   1916 	/* Set Delta Slope (exponent and mantissa). */
   1917 	coeff = (100 << 24) / c->ic_freq;
   1918 	athn_get_delta_slope(coeff, &exp, &man);
   1919 	DPRINTFN(DBG_RF, sc, "delta slope coeff exp=%u man=%u\n", exp, man);
   1920 
   1921 	reg = AR_READ(sc, AR_PHY_TIMING3);
   1922 	reg = RW(reg, AR_PHY_TIMING3_DSC_EXP, exp);
   1923 	reg = RW(reg, AR_PHY_TIMING3_DSC_MAN, man);
   1924 	AR_WRITE(sc, AR_PHY_TIMING3, reg);
   1925 
   1926 	/* For Short GI, coeff is 9/10 that of normal coeff. */
   1927 	coeff = (9 * coeff) / 10;
   1928 	athn_get_delta_slope(coeff, &exp, &man);
   1929 	DPRINTFN(DBG_RF, sc, "delta slope coeff exp=%u man=%u\n", exp, man);
   1930 
   1931 	reg = AR_READ(sc, AR_PHY_SGI_DELTA);
   1932 	reg = RW(reg, AR_PHY_SGI_DSC_EXP, exp);
   1933 	reg = RW(reg, AR_PHY_SGI_DSC_MAN, man);
   1934 	AR_WRITE(sc, AR_PHY_SGI_DELTA, reg);
   1935 	AR_WRITE_BARRIER(sc);
   1936 }
   1937 
   1938 Static void
   1939 ar9003_enable_antenna_diversity(struct athn_softc *sc)
   1940 {
   1941 	AR_SETBITS(sc, AR_PHY_CCK_DETECT,
   1942 	    AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
   1943 	AR_WRITE_BARRIER(sc);
   1944 }
   1945 
   1946 Static void
   1947 ar9003_init_baseband(struct athn_softc *sc)
   1948 {
   1949 	uint32_t synth_delay;
   1950 
   1951 	synth_delay = ar9003_synth_delay(sc);
   1952 	/* Activate the PHY (includes baseband activate and synthesizer on). */
   1953 	AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
   1954 	AR_WRITE_BARRIER(sc);
   1955 	DELAY(AR_BASE_PHY_ACTIVE_DELAY + synth_delay);
   1956 }
   1957 
   1958 Static void
   1959 ar9003_disable_phy(struct athn_softc *sc)
   1960 {
   1961 	AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
   1962 	AR_WRITE_BARRIER(sc);
   1963 }
   1964 
   1965 Static void
   1966 ar9003_init_chains(struct athn_softc *sc)
   1967 {
   1968 	if (sc->sc_rxchainmask == 0x5 || sc->sc_txchainmask == 0x5)
   1969 		AR_SETBITS(sc, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
   1970 
   1971 	/* Setup chain masks. */
   1972 	AR_WRITE(sc, AR_PHY_RX_CHAINMASK,  sc->sc_rxchainmask);
   1973 	AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->sc_rxchainmask);
   1974 
   1975 	if (sc->sc_flags & ATHN_FLAG_3TREDUCE_CHAIN) {
   1976 		/*
   1977 		 * All self-generated frames are sent using two Tx chains
   1978 		 * on these chips to not exceed PCIe power requirements.
   1979 		 */
   1980 		AR_WRITE(sc, AR_SELFGEN_MASK, 0x3);
   1981 	}
   1982 	else
   1983 		AR_WRITE(sc, AR_SELFGEN_MASK, sc->sc_txchainmask);
   1984 	AR_WRITE_BARRIER(sc);
   1985 }
   1986 
   1987 Static void
   1988 ar9003_set_rxchains(struct athn_softc *sc)
   1989 {
   1990 	if (sc->sc_rxchainmask == 0x3 || sc->sc_rxchainmask == 0x5) {
   1991 		AR_WRITE(sc, AR_PHY_RX_CHAINMASK,  sc->sc_rxchainmask);
   1992 		AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->sc_rxchainmask);
   1993 		AR_WRITE_BARRIER(sc);
   1994 	}
   1995 }
   1996 
   1997 #ifdef notused
   1998 Static void
   1999 ar9003_read_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext)
   2000 {
   2001 /* Sign-extends 9-bit value (assumes upper bits are zeroes). */
   2002 #define SIGN_EXT(v)	(((v) ^ 0x100) - 0x100)
   2003 	uint32_t reg;
   2004 	int i;
   2005 
   2006 	for (i = 0; i < sc->sc_nrxchains; i++) {
   2007 		reg = AR_READ(sc, AR_PHY_CCA(i));
   2008 		nf[i] = MS(reg, AR_PHY_MINCCA_PWR);
   2009 		nf[i] = SIGN_EXT(nf[i]);
   2010 
   2011 		reg = AR_READ(sc, AR_PHY_EXT_CCA(i));
   2012 		nf_ext[i] = MS(reg, AR_PHY_EXT_MINCCA_PWR);
   2013 		nf_ext[i] = SIGN_EXT(nf_ext[i]);
   2014 	}
   2015 #undef SIGN_EXT
   2016 }
   2017 #endif /* notused */
   2018 
   2019 #ifdef notused
   2020 Static void
   2021 ar9003_write_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext)
   2022 {
   2023 	uint32_t reg;
   2024 	int i;
   2025 
   2026 	for (i = 0; i < sc->sc_nrxchains; i++) {
   2027 		reg = AR_READ(sc, AR_PHY_CCA(i));
   2028 		reg = RW(reg, AR_PHY_MAXCCA_PWR, nf[i]);
   2029 		AR_WRITE(sc, AR_PHY_CCA(i), reg);
   2030 
   2031 		reg = AR_READ(sc, AR_PHY_EXT_CCA(i));
   2032 		reg = RW(reg, AR_PHY_EXT_MAXCCA_PWR, nf_ext[i]);
   2033 		AR_WRITE(sc, AR_PHY_EXT_CCA(i), reg);
   2034 	}
   2035 	AR_WRITE_BARRIER(sc);
   2036 }
   2037 #endif /* notused */
   2038 
   2039 #ifdef notused
   2040 Static void
   2041 ar9003_get_noisefloor(struct athn_softc *sc, struct ieee80211_channel *c)
   2042 {
   2043 	int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS];
   2044 	int16_t cca_min, cca_max;
   2045 	int i;
   2046 
   2047 	if (AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
   2048 		/* Noisefloor calibration not finished. */
   2049 		return;
   2050 	}
   2051 	/* Noisefloor calibration is finished. */
   2052 	ar9003_read_noisefloor(sc, nf, nf_ext);
   2053 
   2054 	if (IEEE80211_IS_CHAN_2GHZ(c)) {
   2055 		cca_min = sc->sc_cca_min_2g;
   2056 		cca_max = sc->sc_cca_max_2g;
   2057 	}
   2058 	else {
   2059 		cca_min = sc->sc_cca_min_5g;
   2060 		cca_max = sc->sc_cca_max_5g;
   2061 	}
   2062 	/* Update noisefloor history. */
   2063 	for (i = 0; i < sc->sc_nrxchains; i++) {
   2064 		if (nf[i] < cca_min)
   2065 			nf[i] = cca_min;
   2066 		else if (nf[i] > cca_max)
   2067 			nf[i] = cca_max;
   2068 		if (nf_ext[i] < cca_min)
   2069 			nf_ext[i] = cca_min;
   2070 		else if (nf_ext[i] > cca_max)
   2071 			nf_ext[i] = cca_max;
   2072 
   2073 		sc->sc_nf_hist[sc->sc_nf_hist_cur].nf[i] = nf[i];
   2074 		sc->sc_nf_hist[sc->sc_nf_hist_cur].nf_ext[i] = nf_ext[i];
   2075 	}
   2076 	if (++sc->sc_nf_hist_cur >= ATHN_NF_CAL_HIST_MAX)
   2077 		sc->sc_nf_hist_cur = 0;
   2078 }
   2079 #endif /* notused */
   2080 
   2081 #ifdef notused
   2082 Static void
   2083 ar9003_bb_load_noisefloor(struct athn_softc *sc)
   2084 {
   2085 	int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS];
   2086 	int i, ntries;
   2087 
   2088 	/* Write filtered noisefloor values. */
   2089 	for (i = 0; i < sc->sc_nrxchains; i++) {
   2090 		nf[i] = sc->sc_nf_priv[i] * 2;
   2091 		nf_ext[i] = sc->sc_nf_ext_priv[i] * 2;
   2092 	}
   2093 	ar9003_write_noisefloor(sc, nf, nf_ext);
   2094 
   2095 	/* Load filtered noisefloor values into baseband. */
   2096 	AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
   2097 	AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
   2098 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
   2099 	/* Wait for load to complete. */
   2100 	for (ntries = 0; ntries < 1000; ntries++) {
   2101 		if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF))
   2102 			break;
   2103 		DELAY(10);
   2104 	}
   2105 	if (ntries == 1000) {
   2106 		DPRINTFN(DBG_RF, sc, "failed to load noisefloor values\n");
   2107 		return;
   2108 	}
   2109 
   2110 	/* Restore noisefloor values to initial (max) values. */
   2111 	for (i = 0; i < AR_MAX_CHAINS; i++)
   2112 		nf[i] = nf_ext[i] = -50 * 2;
   2113 	ar9003_write_noisefloor(sc, nf, nf_ext);
   2114 }
   2115 #endif /* notused */
   2116 
   2117 #ifdef notused
   2118 Static void
   2119 ar9300_noisefloor_calib(struct athn_softc *sc)
   2120 {
   2121 
   2122 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
   2123 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
   2124 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
   2125 }
   2126 #endif /* notused */
   2127 
   2128 Static void
   2129 ar9003_do_noisefloor_calib(struct athn_softc *sc)
   2130 {
   2131 
   2132 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
   2133 }
   2134 
   2135 PUBLIC int
   2136 ar9003_init_calib(struct athn_softc *sc)
   2137 {
   2138 	uint8_t txchainmask, rxchainmask;
   2139 	uint32_t reg;
   2140 	int ntries;
   2141 
   2142 	/* Save chains masks. */
   2143 	txchainmask = sc->sc_txchainmask;
   2144 	rxchainmask = sc->sc_rxchainmask;
   2145 	/* Configure hardware before calibration. */
   2146 	if (AR_READ(sc, AR_ENT_OTP) & AR_ENT_OTP_CHAIN2_DISABLE)
   2147 		txchainmask = rxchainmask = 0x3;
   2148 	else
   2149 		txchainmask = rxchainmask = 0x7;
   2150 	ar9003_init_chains(sc);
   2151 
   2152 	/* Perform Tx IQ calibration. */
   2153 	ar9003_calib_tx_iq(sc);
   2154 	/* Disable and re-enable the PHY chips. */
   2155 	AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
   2156 	AR_WRITE_BARRIER(sc);
   2157 	DELAY(5);
   2158 	AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
   2159 
   2160 	/* Calibrate the AGC. */
   2161 	AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL);
   2162 	/* Poll for offset calibration completion. */
   2163 	for (ntries = 0; ntries < 10000; ntries++) {
   2164 		reg = AR_READ(sc, AR_PHY_AGC_CONTROL);
   2165 		if (!(reg & AR_PHY_AGC_CONTROL_CAL))
   2166 			break;
   2167 		DELAY(10);
   2168 	}
   2169 	if (ntries == 10000)
   2170 		return ETIMEDOUT;
   2171 
   2172 	/* Restore chains masks. */
   2173 	sc->sc_txchainmask = txchainmask;
   2174 	sc->sc_rxchainmask = rxchainmask;
   2175 	ar9003_init_chains(sc);
   2176 
   2177 	return 0;
   2178 }
   2179 
   2180 Static void
   2181 ar9003_do_calib(struct athn_softc *sc)
   2182 {
   2183 	uint32_t reg;
   2184 
   2185 	if (sc->sc_cur_calib_mask & ATHN_CAL_IQ) {
   2186 		reg = AR_READ(sc, AR_PHY_TIMING4);
   2187 		reg = RW(reg, AR_PHY_TIMING4_IQCAL_LOG_COUNT_MAX, 10);
   2188 		AR_WRITE(sc, AR_PHY_TIMING4, reg);
   2189 		AR_WRITE(sc, AR_PHY_CALMODE, AR_PHY_CALMODE_IQ);
   2190 		AR_SETBITS(sc, AR_PHY_TIMING4, AR_PHY_TIMING4_DO_CAL);
   2191 		AR_WRITE_BARRIER(sc);
   2192 	}
   2193 	else if (sc->sc_cur_calib_mask & ATHN_CAL_TEMP) {
   2194 		AR_SETBITS(sc, AR_PHY_65NM_CH0_THERM,
   2195 		    AR_PHY_65NM_CH0_THERM_LOCAL);
   2196 		AR_SETBITS(sc, AR_PHY_65NM_CH0_THERM,
   2197 		    AR_PHY_65NM_CH0_THERM_START);
   2198 		AR_WRITE_BARRIER(sc);
   2199 	}
   2200 }
   2201 
   2202 Static void
   2203 ar9003_next_calib(struct athn_softc *sc)
   2204 {
   2205 	/* Check if we have any calibration in progress. */
   2206 	if (sc->sc_cur_calib_mask != 0) {
   2207 		if (!(AR_READ(sc, AR_PHY_TIMING4) & AR_PHY_TIMING4_DO_CAL)) {
   2208 			/* Calibration completed for current sample. */
   2209 			ar9003_calib_iq(sc);
   2210 		}
   2211 	}
   2212 }
   2213 
   2214 Static void
   2215 ar9003_calib_iq(struct athn_softc *sc)
   2216 {
   2217 	struct athn_iq_cal *cal;
   2218 	uint32_t reg, i_coff_denom, q_coff_denom;
   2219 	int32_t i_coff, q_coff;
   2220 	int i, iq_corr_neg;
   2221 
   2222 	for (i = 0; i < AR_MAX_CHAINS; i++) {
   2223 		cal = &sc->sc_calib.iq[i];
   2224 
   2225 		/* Read IQ calibration measures (clear on read). */
   2226 		cal->pwr_meas_i = AR_READ(sc, AR_PHY_IQ_ADC_MEAS_0_B(i));
   2227 		cal->pwr_meas_q = AR_READ(sc, AR_PHY_IQ_ADC_MEAS_1_B(i));
   2228 		cal->iq_corr_meas =
   2229 		    (int32_t)AR_READ(sc, AR_PHY_IQ_ADC_MEAS_2_B(i));
   2230 	}
   2231 
   2232 	for (i = 0; i < sc->sc_nrxchains; i++) {
   2233 		cal = &sc->sc_calib.iq[i];
   2234 
   2235 		if (cal->pwr_meas_q == 0)
   2236 			continue;
   2237 
   2238 		if ((iq_corr_neg = cal->iq_corr_meas < 0))
   2239 			cal->iq_corr_meas = -cal->iq_corr_meas;
   2240 
   2241 		i_coff_denom =
   2242 		    (cal->pwr_meas_i / 2 + cal->pwr_meas_q / 2) / 256;
   2243 		q_coff_denom = cal->pwr_meas_q / 64;
   2244 
   2245 		if (i_coff_denom == 0 || q_coff_denom == 0)
   2246 			continue;	/* Prevents division by zero. */
   2247 
   2248 		i_coff = cal->iq_corr_meas / i_coff_denom;
   2249 		q_coff = (cal->pwr_meas_i / q_coff_denom) - 64;
   2250 
   2251 		if (i_coff > 63)
   2252 			i_coff = 63;
   2253 		else if (i_coff < -63)
   2254 			i_coff = -63;
   2255 		/* Negate i_coff if iq_corr_meas is positive. */
   2256 		if (!iq_corr_neg)
   2257 			i_coff = -i_coff;
   2258 		if (q_coff > 63)
   2259 			q_coff = 63;
   2260 		else if (q_coff < -63)
   2261 			q_coff = -63;
   2262 
   2263 		DPRINTFN(DBG_RF, sc, "IQ calibration for chain %d\n", i);
   2264 		reg = AR_READ(sc, AR_PHY_RX_IQCAL_CORR_B(i));
   2265 		reg = RW(reg, AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF, i_coff);
   2266 		reg = RW(reg, AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF, q_coff);
   2267 		AR_WRITE(sc, AR_PHY_RX_IQCAL_CORR_B(i), reg);
   2268 	}
   2269 
   2270 	/* Apply new settings. */
   2271 	AR_SETBITS(sc, AR_PHY_RX_IQCAL_CORR_B(0),
   2272 	    AR_PHY_RX_IQCAL_CORR_IQCORR_ENABLE);
   2273 	AR_WRITE_BARRIER(sc);
   2274 
   2275 	/* IQ calibration done. */
   2276 	sc->sc_cur_calib_mask &= ~ATHN_CAL_IQ;
   2277 	memset(&sc->sc_calib, 0, sizeof(sc->sc_calib));
   2278 }
   2279 
   2280 #define DELPT	32
   2281 Static int
   2282 ar9003_get_iq_corr(struct athn_softc *sc, int32_t res[6], int32_t coeff[2])
   2283 {
   2284 /* Sign-extends 12-bit value (assumes upper bits are zeroes). */
   2285 #define SIGN_EXT(v)	(((v) ^ 0x800) - 0x800)
   2286 #define SCALE		(1 << 15)
   2287 #define SHIFT		(1 <<  8)
   2288 	struct {
   2289 		int32_t	m, p, c;
   2290 	} val[2][2];
   2291 	int32_t mag[2][2], phs[2][2], cos[2], sin[2];
   2292 	int32_t div, f1, f2, f3, m, p, c;
   2293 	int32_t txmag, txphs, rxmag, rxphs;
   2294 	int32_t q_coff, i_coff;
   2295 	int i, j;
   2296 
   2297 	/* Extract our twelve signed 12-bit values from res[] array. */
   2298 	val[0][0].m = res[0] & 0xfff;
   2299 	val[0][0].p = (res[0] >> 12) & 0xfff;
   2300 	val[0][0].c = ((res[0] >> 24) & 0xff) | (res[1] & 0xf) << 8;
   2301 
   2302 	val[0][1].m = (res[1] >> 4) & 0xfff;
   2303 	val[0][1].p = res[2] & 0xfff;
   2304 	val[0][1].c = (res[2] >> 12) & 0xfff;
   2305 
   2306 	val[1][0].m = ((res[2] >> 24) & 0xff) | (res[3] & 0xf) << 8;
   2307 	val[1][0].p = (res[3] >> 4) & 0xfff;
   2308 	val[1][0].c = res[4] & 0xfff;
   2309 
   2310 	val[1][1].m = (res[4] >> 12) & 0xfff;
   2311 	val[1][1].p = ((res[4] >> 24) & 0xff) | (res[5] & 0xf) << 8;
   2312 	val[1][1].c = (res[5] >> 4) & 0xfff;
   2313 
   2314 	for (i = 0; i < 2; i++) {
   2315 		int32_t ymin, ymax;
   2316 		for (j = 0; j < 2; j++) {
   2317 			m = SIGN_EXT(val[i][j].m);
   2318 			p = SIGN_EXT(val[i][j].p);
   2319 			c = SIGN_EXT(val[i][j].c);
   2320 
   2321 			if (p == 0)
   2322 				return 1;	/* Prevent division by 0. */
   2323 
   2324 			mag[i][j] = (m * SCALE) / p;
   2325 			phs[i][j] = (c * SCALE) / p;
   2326 		}
   2327 		sin[i] = ((mag[i][0] - mag[i][1]) * SHIFT) / DELPT;
   2328 		cos[i] = ((phs[i][0] - phs[i][1]) * SHIFT) / DELPT;
   2329 		/* Find magnitude by approximation. */
   2330 		ymin = MIN(abs(sin[i]), abs(cos[i]));
   2331 		ymax = MAX(abs(sin[i]), abs(cos[i]));
   2332 		div = ymax - (ymax / 32) + (ymin / 8) + (ymin / 4);
   2333 		if (div == 0)
   2334 			return 1;	/* Prevent division by 0. */
   2335 		/* Normalize sin and cos by magnitude. */
   2336 		sin[i] = (sin[i] * SCALE) / div;
   2337 		cos[i] = (cos[i] * SCALE) / div;
   2338 	}
   2339 
   2340 	/* Compute IQ mismatch (solve 4x4 linear equation). */
   2341 	f1 = cos[0] - cos[1];
   2342 	f3 = sin[0] - sin[1];
   2343 	f2 = (f1 * f1 + f3 * f3) / SCALE;
   2344 	if (f2 == 0)
   2345 		return 1;	/* Prevent division by 0. */
   2346 
   2347 	/* Compute Tx magnitude mismatch. */
   2348 	txmag = (f1 * ( mag[0][0] - mag[1][0]) +
   2349 		 f3 * ( phs[0][0] - phs[1][0])) / f2;
   2350 	/* Compute Tx phase mismatch. */
   2351 	txphs = (f3 * (-mag[0][0] + mag[1][0]) +
   2352 		 f1 * ( phs[0][0] - phs[1][0])) / f2;
   2353 
   2354 	if (txmag == SCALE)
   2355 		return 1;	/* Prevent division by 0. */
   2356 
   2357 	/* Compute Rx magnitude mismatch. */
   2358 	rxmag = mag[0][0] - (cos[0] * txmag + sin[0] * txphs) / SCALE;
   2359 	/* Compute Rx phase mismatch. */
   2360 	rxphs = phs[0][0] + (sin[0] * txmag - cos[0] * txphs) / SCALE;
   2361 
   2362 	if (-rxmag == SCALE)
   2363 		return 1;	/* Prevent division by 0. */
   2364 
   2365 	txmag = (txmag * SCALE) / (SCALE - txmag);
   2366 	txphs = -txphs;
   2367 
   2368 	q_coff = (txmag * 128) / SCALE;
   2369 	if (q_coff < -63)
   2370 		q_coff = -63;
   2371 	else if (q_coff > 63)
   2372 		q_coff = 63;
   2373 	i_coff = (txphs * 256) / SCALE;
   2374 	if (i_coff < -63)
   2375 		i_coff = -63;
   2376 	else if (i_coff > 63)
   2377 		i_coff = 63;
   2378 	coeff[0] = q_coff * 128 + i_coff;
   2379 
   2380 	rxmag = (-rxmag * SCALE) / (SCALE + rxmag);
   2381 	rxphs = -rxphs;
   2382 
   2383 	q_coff = (rxmag * 128) / SCALE;
   2384 	if (q_coff < -63)
   2385 		q_coff = -63;
   2386 	else if (q_coff > 63)
   2387 		q_coff = 63;
   2388 	i_coff = (rxphs * 256) / SCALE;
   2389 	if (i_coff < -63)
   2390 		i_coff = -63;
   2391 	else if (i_coff > 63)
   2392 		i_coff = 63;
   2393 	coeff[1] = q_coff * 128 + i_coff;
   2394 
   2395 	return 0;
   2396 #undef SHIFT
   2397 #undef SCALE
   2398 #undef SIGN_EXT
   2399 }
   2400 
   2401 Static int
   2402 ar9003_calib_tx_iq(struct athn_softc *sc)
   2403 {
   2404 	uint32_t reg;
   2405 	int32_t res[6], coeff[2];
   2406 	int i, j, ntries;
   2407 
   2408 	reg = AR_READ(sc, AR_PHY_TX_IQCAL_CONTROL_1);
   2409 	reg = RW(reg, AR_PHY_TX_IQCAQL_CONTROL_1_IQCORR_I_Q_COFF_DELPT, DELPT);
   2410 	AR_WRITE(sc, AR_PHY_TX_IQCAL_CONTROL_1, reg);
   2411 
   2412 	/* Start Tx IQ calibration. */
   2413 	AR_SETBITS(sc, AR_PHY_TX_IQCAL_START, AR_PHY_TX_IQCAL_START_DO_CAL);
   2414 	/* Wait for completion. */
   2415 	for (ntries = 0; ntries < 10000; ntries++) {
   2416 		reg = AR_READ(sc, AR_PHY_TX_IQCAL_START);
   2417 		if (!(reg & AR_PHY_TX_IQCAL_START_DO_CAL))
   2418 			break;
   2419 		DELAY(10);
   2420 	}
   2421 	if (ntries == 10000)
   2422 		return ETIMEDOUT;
   2423 
   2424 	for (i = 0; i < sc->sc_ntxchains; i++) {
   2425 		/* Read Tx IQ calibration status for this chain. */
   2426 		reg = AR_READ(sc, AR_PHY_TX_IQCAL_STATUS_B(i));
   2427 		if (reg & AR_PHY_TX_IQCAL_STATUS_FAILED)
   2428 			return EIO;
   2429 		/*
   2430 		 * Read Tx IQ calibration results for this chain.
   2431 		 * This consists in twelve signed 12-bit values.
   2432 		 */
   2433 		for (j = 0; j < 3; j++) {
   2434 			AR_CLRBITS(sc, AR_PHY_CHAN_INFO_MEMORY,
   2435 			    AR_PHY_CHAN_INFO_TAB_S2_READ);
   2436 			reg = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(i, j));
   2437 			res[j * 2 + 0] = reg;
   2438 
   2439 			AR_SETBITS(sc, AR_PHY_CHAN_INFO_MEMORY,
   2440 			    AR_PHY_CHAN_INFO_TAB_S2_READ);
   2441 			reg = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(i, j));
   2442 			res[j * 2 + 1] = reg & 0xffff;
   2443 		}
   2444 
   2445 		/* Compute Tx IQ correction. */
   2446 		if (ar9003_get_iq_corr(sc, res, coeff) != 0)
   2447 			return EIO;
   2448 
   2449 		/* Write Tx IQ correction coefficients. */
   2450 		reg = AR_READ(sc, AR_PHY_TX_IQCAL_CORR_COEFF_01_B(i));
   2451 		reg = RW(reg, AR_PHY_TX_IQCAL_CORR_COEFF_01_COEFF_TABLE,
   2452 		    coeff[0]);
   2453 		AR_WRITE(sc, AR_PHY_TX_IQCAL_CORR_COEFF_01_B(i), reg);
   2454 
   2455 		reg = AR_READ(sc, AR_PHY_RX_IQCAL_CORR_B(i));
   2456 		reg = RW(reg, AR_PHY_RX_IQCAL_CORR_LOOPBACK_IQCORR_Q_Q_COFF,
   2457 		    coeff[1] >> 7);
   2458 		reg = RW(reg, AR_PHY_RX_IQCAL_CORR_LOOPBACK_IQCORR_Q_I_COFF,
   2459 		    coeff[1]);
   2460 		AR_WRITE(sc, AR_PHY_RX_IQCAL_CORR_B(i), reg);
   2461 		AR_WRITE_BARRIER(sc);
   2462 	}
   2463 
   2464 	/* Enable Tx IQ correction. */
   2465 	AR_SETBITS(sc, AR_PHY_TX_IQCAL_CONTROL_3,
   2466 	    AR_PHY_TX_IQCAL_CONTROL_3_IQCORR_EN);
   2467 	AR_SETBITS(sc, AR_PHY_RX_IQCAL_CORR_B(0),
   2468 	    AR_PHY_RX_IQCAL_CORR_B0_LOOPBACK_IQCORR_EN);
   2469 	AR_WRITE_BARRIER(sc);
   2470 	return 0;
   2471 }
   2472 #undef DELPT
   2473 
   2474 /*-
   2475  * The power amplifier predistortion state machine works as follows:
   2476  * 1) Disable digital predistorters for all Tx chains
   2477  * 2) Repeat steps 3~7 for all Tx chains
   2478  * 3)   Force Tx gain to that of training signal
   2479  * 4)   Send training signal (asynchronous)
   2480  * 5)   Wait for training signal to complete (asynchronous)
   2481  * 6)   Read PA measurements (input power, output power, output phase)
   2482  * 7)   Compute the predistortion function that linearizes PA output
   2483  * 8) Write predistortion functions to hardware tables for all Tx chains
   2484  * 9) Enable digital predistorters for all Tx chains
   2485  */
   2486 #ifdef notused
   2487 Static void
   2488 ar9003_paprd_calib(struct athn_softc *sc, struct ieee80211_channel *c)
   2489 {
   2490 	static const int scaling[] = {
   2491 		261376, 248079, 233759, 220464,
   2492 		208194, 196949, 185706, 175487
   2493 	};
   2494 	struct athn_ops *ops = &sc->sc_ops;
   2495 	uint32_t reg, ht20mask, ht40mask;
   2496 	int i;
   2497 
   2498 	/* Read PA predistortion masks from ROM. */
   2499 	ops->get_paprd_masks(sc, c, &ht20mask, &ht40mask);
   2500 
   2501 	/* AM-to-AM: amplifier's amplitude characteristic. */
   2502 	reg = AR_READ(sc, AR_PHY_PAPRD_AM2AM);
   2503 	reg = RW(reg, AR_PHY_PAPRD_AM2AM_MASK, ht20mask);
   2504 	AR_WRITE(sc, AR_PHY_PAPRD_AM2AM, reg);
   2505 
   2506 	/* AM-to-PM: amplifier's phase transfer characteristic. */
   2507 	reg = AR_READ(sc, AR_PHY_PAPRD_AM2PM);
   2508 	reg = RW(reg, AR_PHY_PAPRD_AM2PM_MASK, ht20mask);
   2509 	AR_WRITE(sc, AR_PHY_PAPRD_AM2PM, reg);
   2510 
   2511 	reg = AR_READ(sc, AR_PHY_PAPRD_HT40);
   2512 	reg = RW(reg, AR_PHY_PAPRD_HT40_MASK, ht40mask);
   2513 	AR_WRITE(sc, AR_PHY_PAPRD_HT40, reg);
   2514 
   2515 	for (i = 0; i < AR9003_MAX_CHAINS; i++) {
   2516 		AR_SETBITS(sc, AR_PHY_PAPRD_CTRL0_B(i),
   2517 		    AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE);
   2518 
   2519 		reg = AR_READ(sc, AR_PHY_PAPRD_CTRL1_B(i));
   2520 		reg = RW(reg, AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT, 181);
   2521 		reg = RW(reg, AR_PHY_PAPRD_CTRL1_MAG_SCALE_FACT, 361);
   2522 		reg &= ~AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA;
   2523 		reg |= AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENA;
   2524 		reg |= AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENA;
   2525 		AR_WRITE(sc, AR_PHY_PAPRD_CTRL1_B(i), reg);
   2526 
   2527 		reg = AR_READ(sc, AR_PHY_PAPRD_CTRL0_B(i));
   2528 		reg = RW(reg, AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3);
   2529 		AR_WRITE(sc, AR_PHY_PAPRD_CTRL0_B(i), reg);
   2530 	}
   2531 
   2532 	/* Disable all digital predistorters during calibration. */
   2533 	for (i = 0; i < AR9003_MAX_CHAINS; i++) {
   2534 		AR_CLRBITS(sc, AR_PHY_PAPRD_CTRL0_B(i),
   2535 		    AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE);
   2536 	}
   2537 	AR_WRITE_BARRIER(sc);
   2538 
   2539 	/*
   2540 	 * Configure training signal.
   2541 	 */
   2542 	reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL1);
   2543 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL1_AGC2_SETTLING, 28);
   2544 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL1_LB_SKIP, 0x30);
   2545 	reg &= ~AR_PHY_PAPRD_TRAINER_CNTL1_RX_BB_GAIN_FORCE;
   2546 	reg &= ~AR_PHY_PAPRD_TRAINER_CNTL1_IQCORR_ENABLE;
   2547 	reg |= AR_PHY_PAPRD_TRAINER_CNTL1_LB_ENABLE;
   2548 	reg |= AR_PHY_PAPRD_TRAINER_CNTL1_TX_GAIN_FORCE;
   2549 	reg |= AR_PHY_PAPRD_TRAINER_CNTL1_TRAIN_ENABLE;
   2550 	AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL1, reg);
   2551 
   2552 	AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL2, 147);
   2553 
   2554 	reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL3);
   2555 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_FINE_CORR_LEN, 4);
   2556 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_COARSE_CORR_LEN, 4);
   2557 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_NUM_CORR_STAGES, 7);
   2558 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_MIN_LOOPBACK_DEL, 1);
   2559 	if (AR_SREV_9485(sc))
   2560 		reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_QUICK_DROP, -3);
   2561 	else
   2562 		reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_QUICK_DROP, -6);
   2563 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_ADC_DESIRED_SIZE, -15);
   2564 	reg |= AR_PHY_PAPRD_TRAINER_CNTL3_BBTXMIX_DISABLE;
   2565 	AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL3, reg);
   2566 
   2567 	reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL4);
   2568 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_SAFETY_DELTA, 0);
   2569 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_MIN_CORR, 400);
   2570 	reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_NUM_TRAIN_SAMPLES, 100);
   2571 	AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL4, reg);
   2572 
   2573 	for (i = 0; i < __arraycount(scaling); i++) {
   2574 		reg = AR_READ(sc, AR_PHY_PAPRD_PRE_POST_SCALE_B0(i));
   2575 		reg = RW(reg, AR_PHY_PAPRD_PRE_POST_SCALING, scaling[i]);
   2576 		AR_WRITE(sc, AR_PHY_PAPRD_PRE_POST_SCALE_B0(i), reg);
   2577 	}
   2578 
   2579 	/* Save Tx gain table. */
   2580 	for (i = 0; i < AR9003_TX_GAIN_TABLE_SIZE; i++)
   2581 		sc->sc_txgain[i] = AR_READ(sc, AR_PHY_TXGAIN_TABLE(i));
   2582 
   2583 	/* Set Tx power of training signal (use setting for MCS0). */
   2584 	sc->sc_trainpow = MS(AR_READ(sc, AR_PHY_PWRTX_RATE5),
   2585 	    AR_PHY_PWRTX_RATE5_POWERTXHT20_0) - 4;
   2586 
   2587 	/*
   2588 	 * Start PA predistortion calibration state machine.
   2589 	 */
   2590 	/* Find first available Tx chain. */
   2591 	sc->sc_paprd_curchain = 0;
   2592 	while (!(sc->sc_txchainmask & (1 << sc->sc_paprd_curchain)))
   2593 		sc->sc_paprd_curchain++;
   2594 
   2595 	/* Make sure training done bit is clear. */
   2596 	AR_CLRBITS(sc, AR_PHY_PAPRD_TRAINER_STAT1,
   2597 	    AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE);
   2598 	AR_WRITE_BARRIER(sc);
   2599 
   2600 	/* Transmit training signal. */
   2601 	ar9003_paprd_tx_tone(sc);
   2602 }
   2603 #endif /* notused */
   2604 
   2605 Static int
   2606 ar9003_get_desired_txgain(struct athn_softc *sc, int chain, int pow)
   2607 {
   2608 	int32_t scale, atemp, avolt, tempcal, voltcal, temp, volt;
   2609 	int32_t tempcorr, voltcorr;
   2610 	uint32_t reg;
   2611 	int8_t delta;
   2612 
   2613 	scale = MS(AR_READ(sc, AR_PHY_TPC_12),
   2614 	    AR_PHY_TPC_12_DESIRED_SCALE_HT40_5);
   2615 
   2616 	reg = AR_READ(sc, AR_PHY_TPC_19);
   2617 	atemp = MS(reg, AR_PHY_TPC_19_ALPHA_THERM);
   2618 	avolt = MS(reg, AR_PHY_TPC_19_ALPHA_VOLT);
   2619 
   2620 	reg = AR_READ(sc, AR_PHY_TPC_18);
   2621 	tempcal = MS(reg, AR_PHY_TPC_18_THERM_CAL);
   2622 	voltcal = MS(reg, AR_PHY_TPC_18_VOLT_CAL);
   2623 
   2624 	reg = AR_READ(sc, AR_PHY_BB_THERM_ADC_4);
   2625 	temp = MS(reg, AR_PHY_BB_THERM_ADC_4_LATEST_THERM);
   2626 	volt = MS(reg, AR_PHY_BB_THERM_ADC_4_LATEST_VOLT);
   2627 
   2628 	delta = (int8_t)MS(AR_READ(sc, AR_PHY_TPC_11_B(chain)),
   2629 	    AR_PHY_TPC_11_OLPC_GAIN_DELTA);
   2630 
   2631 	/* Compute temperature and voltage correction. */
   2632 	tempcorr = (atemp * (temp - tempcal) + 128) / 256;
   2633 	voltcorr = (avolt * (volt - voltcal) + 64) / 128;
   2634 
   2635 	/* Compute desired Tx gain. */
   2636 	return pow - delta - tempcorr - voltcorr + scale;
   2637 }
   2638 
   2639 Static void
   2640 ar9003_force_txgain(struct athn_softc *sc, uint32_t txgain)
   2641 {
   2642 	uint32_t reg;
   2643 
   2644 	reg = AR_READ(sc, AR_PHY_TX_FORCED_GAIN);
   2645 	reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXBB1DBGAIN,
   2646 	    MS(txgain, AR_PHY_TXGAIN_TXBB1DBGAIN));
   2647 	reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXBB6DBGAIN,
   2648 	    MS(txgain, AR_PHY_TXGAIN_TXBB6DBGAIN));
   2649 	reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXMXRGAIN,
   2650 	    MS(txgain, AR_PHY_TXGAIN_TXMXRGAIN));
   2651 	reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNA,
   2652 	    MS(txgain, AR_PHY_TXGAIN_PADRVGNA));
   2653 	reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNB,
   2654 	    MS(txgain, AR_PHY_TXGAIN_PADRVGNB));
   2655 	reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNC,
   2656 	    MS(txgain, AR_PHY_TXGAIN_PADRVGNC));
   2657 	reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGND,
   2658 	    MS(txgain, AR_PHY_TXGAIN_PADRVGND));
   2659 	reg &= ~AR_PHY_TX_FORCED_GAIN_ENABLE_PAL;
   2660 	reg &= ~AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN;
   2661 	AR_WRITE(sc, AR_PHY_TX_FORCED_GAIN, reg);
   2662 
   2663 	reg = AR_READ(sc, AR_PHY_TPC_1);
   2664 	reg = RW(reg, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0);
   2665 	reg &= ~AR_PHY_TPC_1_FORCE_DAC_GAIN;
   2666 	AR_WRITE(sc, AR_PHY_TPC_1, reg);
   2667 	AR_WRITE_BARRIER(sc);
   2668 }
   2669 
   2670 Static void
   2671 ar9003_set_training_gain(struct athn_softc *sc, int chain)
   2672 {
   2673 	size_t i;
   2674 	int gain;
   2675 
   2676 	/*
   2677 	 * Get desired gain for training signal power (take into account
   2678 	 * current temperature/voltage).
   2679 	 */
   2680 	gain = ar9003_get_desired_txgain(sc, chain, sc->sc_trainpow);
   2681 	/* Find entry in table. */
   2682 	for (i = 0; i < AR9003_TX_GAIN_TABLE_SIZE - 1; i++)
   2683 		if ((int)MS(sc->sc_txgain[i], AR_PHY_TXGAIN_INDEX) >= gain)
   2684 			break;
   2685 	ar9003_force_txgain(sc, sc->sc_txgain[i]);
   2686 }
   2687 
   2688 Static int
   2689 ar9003_paprd_tx_tone(struct athn_softc *sc)
   2690 {
   2691 #define TONE_LEN	1800
   2692 	struct ieee80211com *ic = &sc->sc_ic;
   2693 	struct ieee80211_frame *wh;
   2694 	struct ieee80211_node *ni;
   2695 	struct mbuf *m;
   2696 	int error;
   2697 
   2698 	/* Build a Null (no data) frame of TONE_LEN bytes. */
   2699 	m = MCLGETI(NULL, M_DONTWAIT, NULL, TONE_LEN);
   2700 	if (m == NULL)
   2701 		return ENOBUFS;
   2702 	memset(mtod(m, void *), 0, TONE_LEN);
   2703 	wh = mtod(m, struct ieee80211_frame *);
   2704 	wh->i_fc[0] = IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA;
   2705 	wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
   2706 	*(uint16_t *)wh->i_dur = htole16(10);	/* XXX */
   2707 	IEEE80211_ADDR_COPY(wh->i_addr1, ic->ic_myaddr);
   2708 	IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
   2709 	IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_myaddr);
   2710 	m->m_pkthdr.len = m->m_len = TONE_LEN;
   2711 
   2712 	/* Set gain of training signal. */
   2713 	ar9003_set_training_gain(sc, sc->sc_paprd_curchain);
   2714 
   2715 	/* Transmit training signal. */
   2716 	ni = ieee80211_ref_node(ic->ic_bss);
   2717 	if ((error = ar9003_tx(sc, m, ni, ATHN_TXFLAG_PAPRD)) != 0)
   2718 		ieee80211_free_node(ni);
   2719 	return error;
   2720 #undef TONE_LEN
   2721 }
   2722 
   2723 static __inline int
   2724 get_scale(int val)
   2725 {
   2726 	int log = 0;
   2727 
   2728 	/* Find the log base 2 (position of highest bit set). */
   2729 	while (val >>= 1)
   2730 		log++;
   2731 
   2732 	return (log > 10) ? log - 10 : 0;
   2733 }
   2734 
   2735 /*
   2736  * Compute predistortion function to linearize power amplifier output based
   2737  * on feedback from training signal.
   2738  */
   2739 Static int
   2740 ar9003_compute_predistortion(struct athn_softc *sc, const uint32_t *lo,
   2741     const uint32_t *hi)
   2742 {
   2743 #define NBINS	23
   2744 	int chain = sc->sc_paprd_curchain;
   2745 	int x[NBINS + 1], y[NBINS + 1], t[NBINS + 1];
   2746 	int b1[NBINS + 1], b2[NBINS + 1], xtilde[NBINS + 1];
   2747 	int nsamples, txsum, rxsum, rosum, maxidx;
   2748 	int order, order5x, order5xrem, order3x, order3xrem, y5, y3;
   2749 	int icept, G, I, L, M, angle, xnonlin, y2, y4, sumy2, sumy4;
   2750 	int alpha, beta, scale, Qalpha, Qbeta, Qscale, Qx, Qb1, Qb2;
   2751 	int tavg, ttilde, maxb1abs, maxb2abs, maxxtildeabs, in;
   2752 	int tmp, i;
   2753 
   2754 	/* Set values at origin. */
   2755 	x[0] = y[0] = t[0] = 0;
   2756 
   2757 #define SCALE	32
   2758 	maxidx = 0;
   2759 	for (i = 0; i < NBINS; i++) {
   2760 		nsamples = lo[i] & 0xffff;
   2761 		/* Skip bins that contain 16 or less samples. */
   2762 		if (nsamples <= 16) {
   2763 			x[i + 1] = y[i + 1] = t[i + 1] = 0;
   2764 			continue;
   2765 		}
   2766 		txsum = (hi[i] & 0x7ff) << 16 | lo[i] >> 16;
   2767 		rxsum = (lo[i + NBINS] & 0xffff) << 5 |
   2768 		    ((hi[i] >> 11) & 0x1f);
   2769 		rosum = (hi[i + NBINS] & 0x7ff) << 16 | hi[i + NBINS] >> 16;
   2770 		/* Sign-extend 27-bit value. */
   2771 		rosum = (rosum ^ 0x4000000) - 0x4000000;
   2772 
   2773 		txsum *= SCALE;
   2774 		rxsum *= SCALE;
   2775 		rosum *= SCALE;
   2776 
   2777 		x[i + 1] = ((txsum + nsamples) / nsamples + SCALE) / SCALE;
   2778 		y[i + 1] = ((rxsum + nsamples) / nsamples + SCALE) / SCALE +
   2779 		    SCALE * maxidx + SCALE / 2;
   2780 		t[i + 1] = (rosum + nsamples) / nsamples;
   2781 		maxidx++;
   2782 	}
   2783 #undef SCALE
   2784 
   2785 #define SCALE_LOG	8
   2786 #define SCALE		(1 << SCALE_LOG)
   2787 	if (x[6] == x[3])
   2788 		return 1;	/* Prevent division by 0. */
   2789 	G = ((y[6] - y[3]) * SCALE + (x[6] - x[3])) / (x[6] - x[3]);
   2790 	if (G == 0)
   2791 		return 1;	/* Prevent division by 0. */
   2792 
   2793 	sc->sc_gain1[chain] = G;	/* Save low signal gain. */
   2794 
   2795 	/* Find interception point. */
   2796 	icept = (G * (x[0] - x[3]) + SCALE) / SCALE + y[3];
   2797 	for (i = 0; i <= 3; i++) {
   2798 		y[i] = i * 32;
   2799 		x[i] = (y[i] * SCALE + G) / G;
   2800 	}
   2801 	for (i = 4; i <= maxidx; i++)
   2802 		y[i] -= icept;
   2803 
   2804 	xnonlin = x[maxidx] - (y[maxidx] * SCALE + G) / G;
   2805 	order = (xnonlin + y[maxidx]) / y[maxidx];
   2806 	if (order == 0)
   2807 		M = 10;
   2808 	else if (order == 1)
   2809 		M = 9;
   2810 	else
   2811 		M = 8;
   2812 
   2813 	I = (maxidx >= 16) ? 7 : maxidx / 2;
   2814 	L = maxidx - I;
   2815 
   2816 	sumy2 = sumy4 = y2 = y4 = 0;
   2817 	for (i = 0; i <= L; i++) {
   2818 		if (y[i + I] == 0)
   2819 			return 1;	/* Prevent division by 0. */
   2820 
   2821 		xnonlin = x[i + I] - ((y[i + I] * SCALE) + G) / G;
   2822 		xtilde[i] = ((xnonlin << M) + y[i + I]) / y[i + I];
   2823 		xtilde[i] = ((xtilde[i] << M) + y[i + I]) / y[i + I];
   2824 		xtilde[i] = ((xtilde[i] << M) + y[i + I]) / y[i + I];
   2825 
   2826 		y2 = (y[i + I] * y[i + I] + SCALE * SCALE) / (SCALE * SCALE);
   2827 
   2828 		sumy2 += y2;
   2829 		sumy4 += y2 * y2;
   2830 
   2831 		b1[i] = y2 * (L + 1);
   2832 		b2[i] = y2;
   2833 	}
   2834 	for (i = 0; i <= L; i++) {
   2835 		b1[i] -= sumy2;
   2836 		b2[i] = sumy4 - sumy2 * b2[i];
   2837 	}
   2838 
   2839 	maxxtildeabs = maxb1abs = maxb2abs = 0;
   2840 	for (i = 0; i <= L; i++) {
   2841 		tmp = abs(xtilde[i]);
   2842 		if (tmp > maxxtildeabs)
   2843 			maxxtildeabs = tmp;
   2844 
   2845 		tmp = abs(b1[i]);
   2846 		if (tmp > maxb1abs)
   2847 			maxb1abs = tmp;
   2848 
   2849 		tmp = abs(b2[i]);
   2850 		if (tmp > maxb2abs)
   2851 			maxb2abs = tmp;
   2852 	}
   2853 	Qx  = get_scale(maxxtildeabs);
   2854 	Qb1 = get_scale(maxb1abs);
   2855 	Qb2 = get_scale(maxb2abs);
   2856 	for (i = 0; i <= L; i++) {
   2857 		xtilde[i] /= 1 << Qx;
   2858 		b1[i] /= 1 << Qb1;
   2859 		b2[i] /= 1 << Qb2;
   2860 	}
   2861 
   2862 	alpha = beta = 0;
   2863 	for (i = 0; i <= L; i++) {
   2864 		alpha += b1[i] * xtilde[i];
   2865 		beta  += b2[i] * xtilde[i];
   2866 	}
   2867 
   2868 	scale = ((y4 / SCALE_LOG) * (L + 1) -
   2869 		 (y2 / SCALE_LOG) * sumy2) * SCALE_LOG;
   2870 
   2871 	Qscale = get_scale(abs(scale));
   2872 	scale /= 1 << Qscale;
   2873 	Qalpha = get_scale(abs(alpha));
   2874 	alpha /= 1 << Qalpha;
   2875 	Qbeta  = get_scale(abs(beta));
   2876 	beta  /= 1 << Qbeta;
   2877 
   2878 	order = 3 * M - Qx - Qb1 - Qbeta + 10 + Qscale;
   2879 	order5x = 1 << (order / 5);
   2880 	order5xrem = 1 << (order % 5);
   2881 
   2882 	order = 3 * M - Qx - Qb2 - Qalpha + 10 + Qscale;
   2883 	order3x = 1 << (order / 3);
   2884 	order3xrem = 1 << (order % 3);
   2885 
   2886 	for (i = 0; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) {
   2887 		tmp = i * 32;
   2888 
   2889 		/* Fifth order. */
   2890 		y5 = ((beta * tmp) / 64) / order5x;
   2891 		y5 = (y5 * tmp) / order5x;
   2892 		y5 = (y5 * tmp) / order5x;
   2893 		y5 = (y5 * tmp) / order5x;
   2894 		y5 = (y5 * tmp) / order5x;
   2895 		y5 = y5 / order5xrem;
   2896 
   2897 		/* Third oder. */
   2898 		y3 = (alpha * tmp) / order3x;
   2899 		y3 = (y3 * tmp) / order3x;
   2900 		y3 = (y3 * tmp) / order3x;
   2901 		y3 = y3 / order3xrem;
   2902 
   2903 		in = y5 + y3 + (SCALE * tmp) / G;
   2904 		if (i >= 2 && in < sc->sc_pa_in[chain][i - 1]) {
   2905 			in = sc->sc_pa_in[chain][i - 1] +
   2906 			    (sc->sc_pa_in[chain][i - 1] -
   2907 			     sc->sc_pa_in[chain][i - 2]);
   2908 		}
   2909 		if (in > 1400)
   2910 			in = 1400;
   2911 		sc->sc_pa_in[chain][i] = in;
   2912 	}
   2913 
   2914 	/* Compute average theta of first 5 bins (linear region). */
   2915 	tavg = 0;
   2916 	for (i = 1; i <= 5; i++)
   2917 		tavg += t[i];
   2918 	tavg /= 5;
   2919 	for (i = 1; i <= 5; i++)
   2920 		t[i] = 0;
   2921 	for (i = 6; i <= maxidx; i++)
   2922 		t[i] -= tavg;
   2923 
   2924 	alpha = beta = 0;
   2925 	for (i = 0; i <= L; i++) {
   2926 		ttilde = ((t[i + I] << M) + y[i + I]) / y[i + I];
   2927 		ttilde = ((ttilde << M) +  y[i + I]) / y[i + I];
   2928 		ttilde = ((ttilde << M) +  y[i + I]) / y[i + I];
   2929 
   2930 		alpha += b2[i] * ttilde;
   2931 		beta  += b1[i] * ttilde;
   2932 	}
   2933 
   2934 	Qalpha = get_scale(abs(alpha));
   2935 	alpha /= 1 << Qalpha;
   2936 	Qbeta  = get_scale(abs(beta));
   2937 	beta  /= 1 << Qbeta;
   2938 
   2939 	order = 3 * M - Qx - Qb1 - Qbeta + 10 + Qscale + 5;
   2940 	order5x = 1 << (order / 5);
   2941 	order5xrem = 1 << (order % 5);
   2942 
   2943 	order = 3 * M - Qx - Qb2 - Qalpha + 10 + Qscale + 5;
   2944 	order3x = 1 << (order / 3);
   2945 	order3xrem = 1 << (order % 3);
   2946 
   2947 	for (i = 0; i <= 4; i++)
   2948 		sc->sc_angle[chain][i] = 0;	/* Linear at that range. */
   2949 	for (i = 5; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) {
   2950 		tmp = i * 32;
   2951 
   2952 		/* Fifth order. */
   2953 		if (beta > 0)
   2954 			y5 = (((beta * tmp - 64) / 64) - order5x) / order5x;
   2955 		else
   2956 			y5 = (((beta * tmp - 64) / 64) + order5x) / order5x;
   2957 		y5 = (y5 * tmp) / order5x;
   2958 		y5 = (y5 * tmp) / order5x;
   2959 		y5 = (y5 * tmp) / order5x;
   2960 		y5 = (y5 * tmp) / order5x;
   2961 		y5 = y5 / order5xrem;
   2962 
   2963 		/* Third oder. */
   2964 		if (beta > 0)	/* XXX alpha? */
   2965 			y3 = (alpha * tmp - order3x) / order3x;
   2966 		else
   2967 			y3 = (alpha * tmp + order3x) / order3x;
   2968 		y3 = (y3 * tmp) / order3x;
   2969 		y3 = (y3 * tmp) / order3x;
   2970 		y3 = y3 / order3xrem;
   2971 
   2972 		angle = y5 + y3;
   2973 		if (angle < -150)
   2974 			angle = -150;
   2975 		else if (angle > 150)
   2976 			angle = 150;
   2977 		sc->sc_angle[chain][i] = angle;
   2978 	}
   2979 	/* Angle for entry 4 is derived from angle for entry 5. */
   2980 	sc->sc_angle[chain][4] = (sc->sc_angle[chain][5] + 2) / 2;
   2981 
   2982 	return 0;
   2983 #undef SCALE
   2984 #undef SCALE_LOG
   2985 #undef NBINS
   2986 }
   2987 
   2988 Static void
   2989 ar9003_enable_predistorter(struct athn_softc *sc, int chain)
   2990 {
   2991 	uint32_t reg;
   2992 	int i;
   2993 
   2994 	/* Write digital predistorter lookup table. */
   2995 	for (i = 0; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) {
   2996 		AR_WRITE(sc, AR_PHY_PAPRD_MEM_TAB_B(chain, i),
   2997 		    SM(AR_PHY_PAPRD_PA_IN, sc->sc_pa_in[chain][i]) |
   2998 		    SM(AR_PHY_PAPRD_ANGLE, sc->sc_angle[chain][i]));
   2999 	}
   3000 
   3001 	reg = AR_READ(sc, AR_PHY_PA_GAIN123_B(chain));
   3002 	reg = RW(reg, AR_PHY_PA_GAIN123_PA_GAIN1, sc->sc_gain1[chain]);
   3003 	AR_WRITE(sc, AR_PHY_PA_GAIN123_B(chain), reg);
   3004 
   3005 	/* Indicate Tx power used for calibration (training signal). */
   3006 	reg = AR_READ(sc, AR_PHY_PAPRD_CTRL1_B(chain));
   3007 	reg = RW(reg, AR_PHY_PAPRD_CTRL1_POWER_AT_AM2AM_CAL, sc->sc_trainpow);
   3008 	AR_WRITE(sc, AR_PHY_PAPRD_CTRL1_B(chain), reg);
   3009 
   3010 	/* Enable digital predistorter for this chain. */
   3011 	AR_SETBITS(sc, AR_PHY_PAPRD_CTRL0_B(chain),
   3012 	    AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE);
   3013 	AR_WRITE_BARRIER(sc);
   3014 }
   3015 
   3016 Static void
   3017 ar9003_paprd_enable(struct athn_softc *sc)
   3018 {
   3019 	int i;
   3020 
   3021 	/* Enable digital predistorters for all Tx chains. */
   3022 	for (i = 0; i < AR9003_MAX_CHAINS; i++)
   3023 		if (sc->sc_txchainmask & (1 << i))
   3024 			ar9003_enable_predistorter(sc, i);
   3025 }
   3026 
   3027 /*
   3028  * This function is called when our training signal has been sent.
   3029  */
   3030 Static void
   3031 ar9003_paprd_tx_tone_done(struct athn_softc *sc)
   3032 {
   3033 	uint32_t lo[48], hi[48];
   3034 	size_t i;
   3035 
   3036 	/* Make sure training is complete. */
   3037 	if (!(AR_READ(sc, AR_PHY_PAPRD_TRAINER_STAT1) &
   3038 	    AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE))
   3039 		return;
   3040 
   3041 	/* Read feedback from training signal. */
   3042 	AR_CLRBITS(sc, AR_PHY_CHAN_INFO_MEMORY, AR_PHY_CHAN_INFO_TAB_S2_READ);
   3043 	for (i = 0; i < __arraycount(lo); i++)
   3044 		lo[i] = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(0, i));
   3045 	AR_SETBITS(sc, AR_PHY_CHAN_INFO_MEMORY, AR_PHY_CHAN_INFO_TAB_S2_READ);
   3046 	for (i = 0; i < __arraycount(hi); i++)
   3047 		hi[i] = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(0, i));
   3048 
   3049 	AR_CLRBITS(sc, AR_PHY_PAPRD_TRAINER_STAT1,
   3050 	    AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE);
   3051 
   3052 	/* Compute predistortion function based on this feedback. */
   3053 	if (ar9003_compute_predistortion(sc, lo, hi) != 0)
   3054 		return;
   3055 
   3056 	/* Get next available Tx chain. */
   3057 	while (++sc->sc_paprd_curchain < AR9003_MAX_CHAINS)
   3058 		if (sc->sc_txchainmask & (1 << sc->sc_paprd_curchain))
   3059 			break;
   3060 	if (sc->sc_paprd_curchain == AR9003_MAX_CHAINS) {
   3061 		/* All Tx chains measured; enable digital predistortion. */
   3062 		ar9003_paprd_enable(sc);
   3063 	}
   3064 	else	/* Measure next Tx chain. */
   3065 		ar9003_paprd_tx_tone(sc);
   3066 }
   3067 
   3068 PUBLIC void
   3069 ar9003_write_txpower(struct athn_softc *sc, int16_t power[ATHN_POWER_COUNT])
   3070 {
   3071 
   3072 	/* Make sure forced gain is disabled. */
   3073 	AR_WRITE(sc, AR_PHY_TX_FORCED_GAIN, 0);
   3074 
   3075 	AR_WRITE(sc, AR_PHY_PWRTX_RATE1,
   3076 	    (power[ATHN_POWER_OFDM18  ] & 0x3f) << 24 |
   3077 	    (power[ATHN_POWER_OFDM12  ] & 0x3f) << 16 |
   3078 	    (power[ATHN_POWER_OFDM9   ] & 0x3f) <<  8 |
   3079 	    (power[ATHN_POWER_OFDM6   ] & 0x3f));
   3080 	AR_WRITE(sc, AR_PHY_PWRTX_RATE2,
   3081 	    (power[ATHN_POWER_OFDM54  ] & 0x3f) << 24 |
   3082 	    (power[ATHN_POWER_OFDM48  ] & 0x3f) << 16 |
   3083 	    (power[ATHN_POWER_OFDM36  ] & 0x3f) <<  8 |
   3084 	    (power[ATHN_POWER_OFDM24  ] & 0x3f));
   3085 	AR_WRITE(sc, AR_PHY_PWRTX_RATE3,
   3086 	    (power[ATHN_POWER_CCK2_SP ] & 0x3f) << 24 |
   3087 	    (power[ATHN_POWER_CCK2_LP ] & 0x3f) << 16 |
   3088 	    /* NB: No eXtended Range for AR9003. */
   3089 	    (power[ATHN_POWER_CCK1_LP ] & 0x3f));
   3090 	AR_WRITE(sc, AR_PHY_PWRTX_RATE4,
   3091 	    (power[ATHN_POWER_CCK11_SP] & 0x3f) << 24 |
   3092 	    (power[ATHN_POWER_CCK11_LP] & 0x3f) << 16 |
   3093 	    (power[ATHN_POWER_CCK55_SP] & 0x3f) <<  8 |
   3094 	    (power[ATHN_POWER_CCK55_LP] & 0x3f));
   3095 	/*
   3096 	 * NB: AR_PHY_PWRTX_RATE5 needs to be written even if HT is disabled
   3097 	 * because it is read by PA predistortion functions.
   3098 	 */
   3099 	AR_WRITE(sc, AR_PHY_PWRTX_RATE5,
   3100 	    (power[ATHN_POWER_HT20( 5)] & 0x3f) << 24 |
   3101 	    (power[ATHN_POWER_HT20( 4)] & 0x3f) << 16 |
   3102 	    (power[ATHN_POWER_HT20( 1)] & 0x3f) <<  8 |
   3103 	    (power[ATHN_POWER_HT20( 0)] & 0x3f));
   3104 #ifndef IEEE80211_NO_HT
   3105 	AR_WRITE(sc, AR_PHY_PWRTX_RATE6,
   3106 	    (power[ATHN_POWER_HT20(13)] & 0x3f) << 24 |
   3107 	    (power[ATHN_POWER_HT20(12)] & 0x3f) << 16 |
   3108 	    (power[ATHN_POWER_HT20( 7)] & 0x3f) <<  8 |
   3109 	    (power[ATHN_POWER_HT20( 6)] & 0x3f));
   3110 	AR_WRITE(sc, AR_PHY_PWRTX_RATE7,
   3111 	    (power[ATHN_POWER_HT40( 5)] & 0x3f) << 24 |
   3112 	    (power[ATHN_POWER_HT40( 4)] & 0x3f) << 16 |
   3113 	    (power[ATHN_POWER_HT40( 1)] & 0x3f) <<  8 |
   3114 	    (power[ATHN_POWER_HT40( 0)] & 0x3f));
   3115 	AR_WRITE(sc, AR_PHY_PWRTX_RATE8,
   3116 	    (power[ATHN_POWER_HT40(13)] & 0x3f) << 24 |
   3117 	    (power[ATHN_POWER_HT40(12)] & 0x3f) << 16 |
   3118 	    (power[ATHN_POWER_HT40( 7)] & 0x3f) <<  8 |
   3119 	    (power[ATHN_POWER_HT40( 6)] & 0x3f));
   3120 	AR_WRITE(sc, AR_PHY_PWRTX_RATE10,
   3121 	    (power[ATHN_POWER_HT20(21)] & 0x3f) << 24 |
   3122 	    (power[ATHN_POWER_HT20(20)] & 0x3f) << 16 |
   3123 	    (power[ATHN_POWER_HT20(15)] & 0x3f) <<  8 |
   3124 	    (power[ATHN_POWER_HT20(14)] & 0x3f));
   3125 	AR_WRITE(sc, AR_PHY_PWRTX_RATE11,
   3126 	    (power[ATHN_POWER_HT40(23)] & 0x3f) << 24 |
   3127 	    (power[ATHN_POWER_HT40(22)] & 0x3f) << 16 |
   3128 	    (power[ATHN_POWER_HT20(23)] & 0x3f) <<  8 |
   3129 	    (power[ATHN_POWER_HT20(22)] & 0x3f));
   3130 	AR_WRITE(sc, AR_PHY_PWRTX_RATE12,
   3131 	    (power[ATHN_POWER_HT40(21)] & 0x3f) << 24 |
   3132 	    (power[ATHN_POWER_HT40(20)] & 0x3f) << 16 |
   3133 	    (power[ATHN_POWER_HT40(15)] & 0x3f) <<  8 |
   3134 	    (power[ATHN_POWER_HT40(14)] & 0x3f));
   3135 #endif
   3136 	AR_WRITE_BARRIER(sc);
   3137 }
   3138 
   3139 Static void
   3140 ar9003_reset_rx_gain(struct athn_softc *sc, struct ieee80211_channel *c)
   3141 {
   3142 #define X(x)	((uint32_t)(x) << 2)
   3143 	const struct athn_gain *prog = sc->sc_rx_gain;
   3144 	const uint32_t *pvals;
   3145 	int i;
   3146 
   3147 	if (IEEE80211_IS_CHAN_2GHZ(c))
   3148 		pvals = prog->vals_2g;
   3149 	else
   3150 		pvals = prog->vals_5g;
   3151 	for (i = 0; i < prog->nregs; i++)
   3152 		AR_WRITE(sc, X(prog->regs[i]), pvals[i]);
   3153 	AR_WRITE_BARRIER(sc);
   3154 #undef X
   3155 }
   3156 
   3157 Static void
   3158 ar9003_reset_tx_gain(struct athn_softc *sc, struct ieee80211_channel *c)
   3159 {
   3160 #define X(x)	((uint32_t)(x) << 2)
   3161 	const struct athn_gain *prog = sc->sc_tx_gain;
   3162 	const uint32_t *pvals;
   3163 	int i;
   3164 
   3165 	if (IEEE80211_IS_CHAN_2GHZ(c))
   3166 		pvals = prog->vals_2g;
   3167 	else
   3168 		pvals = prog->vals_5g;
   3169 	for (i = 0; i < prog->nregs; i++)
   3170 		AR_WRITE(sc, X(prog->regs[i]), pvals[i]);
   3171 	AR_WRITE_BARRIER(sc);
   3172 #undef X
   3173 }
   3174 
   3175 Static void
   3176 ar9003_hw_init(struct athn_softc *sc, struct ieee80211_channel *c,
   3177     struct ieee80211_channel *extc)
   3178 {
   3179 #define X(x)	((uint32_t)(x) << 2)
   3180 	struct athn_ops *ops = &sc->sc_ops;
   3181 	const struct athn_ini *ini = sc->sc_ini;
   3182 	const uint32_t *pvals;
   3183 	uint32_t reg;
   3184 	int i;
   3185 
   3186 	/*
   3187 	 * The common init values include the pre and core phases for the
   3188 	 * SoC, MAC, BB and Radio subsystems.
   3189 	 */
   3190 	DPRINTFN(DBG_INIT, sc, "writing pre and core init vals\n");
   3191 	for (i = 0; i < ini->ncmregs; i++) {
   3192 		AR_WRITE(sc, X(ini->cmregs[i]), ini->cmvals[i]);
   3193 		if (AR_IS_ANALOG_REG(X(ini->cmregs[i])))
   3194 			DELAY(100);
   3195 		if ((i & 0x1f) == 0)
   3196 			DELAY(1);
   3197 	}
   3198 
   3199 	/*
   3200 	 * The modal init values include the post phase for the SoC, MAC,
   3201 	 * BB and Radio subsystems.
   3202 	 */
   3203 #ifndef IEEE80211_NO_HT
   3204 	if (extc != NULL) {
   3205 		if (IEEE80211_IS_CHAN_2GHZ(c))
   3206 			pvals = ini->vals_2g40;
   3207 		else
   3208 			pvals = ini->vals_5g40;
   3209 	}
   3210 	else
   3211 #endif
   3212 	{
   3213 		if (IEEE80211_IS_CHAN_2GHZ(c))
   3214 			pvals = ini->vals_2g20;
   3215 		else
   3216 			pvals = ini->vals_5g20;
   3217 	}
   3218 	DPRINTFN(DBG_INIT, sc, "writing post init vals\n");
   3219 	for (i = 0; i < ini->nregs; i++) {
   3220 		AR_WRITE(sc, X(ini->regs[i]), pvals[i]);
   3221 		if (AR_IS_ANALOG_REG(X(ini->regs[i])))
   3222 			DELAY(100);
   3223 		if ((i & 0x1f) == 0)
   3224 			DELAY(1);
   3225 	}
   3226 
   3227 	if (sc->sc_rx_gain != NULL)
   3228 		ar9003_reset_rx_gain(sc, c);
   3229 	if (sc->sc_tx_gain != NULL)
   3230 		ar9003_reset_tx_gain(sc, c);
   3231 
   3232 	if (IEEE80211_IS_CHAN_5GHZ(c) &&
   3233 	    (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)) {
   3234 		/* Update modal values for fast PLL clock. */
   3235 #ifndef IEEE80211_NO_HT
   3236 		if (extc != NULL)
   3237 			pvals = ini->fastvals_5g40;
   3238 		else
   3239 #endif
   3240 			pvals = ini->fastvals_5g20;
   3241 		DPRINTFN(DBG_INIT, sc, "writing fast pll clock init vals\n");
   3242 		for (i = 0; i < ini->nfastregs; i++) {
   3243 			AR_WRITE(sc, X(ini->fastregs[i]), pvals[i]);
   3244 			if (AR_IS_ANALOG_REG(X(ini->fastregs[i])))
   3245 				DELAY(100);
   3246 			if ((i & 0x1f) == 0)
   3247 				DELAY(1);
   3248 		}
   3249 	}
   3250 
   3251 	/*
   3252 	 * Set the RX_ABORT and RX_DIS bits to prevent frames with corrupted
   3253 	 * descriptor status.
   3254 	 */
   3255 	AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
   3256 
   3257 	reg = AR_READ(sc, AR_PCU_MISC_MODE2);
   3258 	reg &= ~AR_PCU_MISC_MODE2_ADHOC_MCAST_KEYID_ENABLE;
   3259 	reg |= AR_PCU_MISC_MODE2_AGG_WEP_ENABLE_FIX;
   3260 	reg |= AR_PCU_MISC_MODE2_ENABLE_AGGWEP;
   3261 	AR_WRITE(sc, AR_PCU_MISC_MODE2, reg);
   3262 	AR_WRITE_BARRIER(sc);
   3263 
   3264 	ar9003_set_phy(sc, c, extc);
   3265 	ar9003_init_chains(sc);
   3266 
   3267 	ops->set_txpower(sc, c, extc);
   3268 #undef X
   3269 }
   3270 
   3271 PUBLIC void
   3272 ar9003_get_lg_tpow(struct athn_softc *sc, struct ieee80211_channel *c,
   3273     uint8_t ctl, const uint8_t *fbins,
   3274     const struct ar_cal_target_power_leg *tgt, int nchans, uint8_t tpow[4])
   3275 {
   3276 	uint8_t fbin;
   3277 	int i, delta, lo, hi;
   3278 
   3279 	lo = hi = -1;
   3280 	fbin = athn_chan2fbin(c);
   3281 	for (i = 0; i < nchans; i++) {
   3282 		delta = fbin - fbins[i];
   3283 		/* Find the largest sample that is <= our frequency. */
   3284 		if (delta >= 0 && (lo == -1 || delta < fbin - fbins[lo]))
   3285 			lo = i;
   3286 		/* Find the smallest sample that is >= our frequency. */
   3287 		if (delta <= 0 && (hi == -1 || delta > fbin - fbins[hi]))
   3288 			hi = i;
   3289 	}
   3290 	if (lo == -1)
   3291 		lo = hi;
   3292 	else if (hi == -1)
   3293 		hi = lo;
   3294 	/* Interpolate values. */
   3295 	for (i = 0; i < 4; i++) {
   3296 		tpow[i] = athn_interpolate(fbin,
   3297 		    fbins[lo], tgt[lo].tPow2x[i],
   3298 		    fbins[hi], tgt[hi].tPow2x[i]);
   3299 	}
   3300 	/* XXX Apply conformance test limit. */
   3301 }
   3302 
   3303 PUBLIC void
   3304 ar9003_get_ht_tpow(struct athn_softc *sc, struct ieee80211_channel *c,
   3305     uint8_t ctl, const uint8_t *fbins,
   3306     const struct ar_cal_target_power_ht *tgt, int nchans, uint8_t tpow[14])
   3307 {
   3308 	uint8_t fbin;
   3309 	int i, delta, lo, hi;
   3310 
   3311 	lo = hi = -1;
   3312 	fbin = athn_chan2fbin(c);
   3313 	for (i = 0; i < nchans; i++) {
   3314 		delta = fbin - fbins[i];
   3315 		/* Find the largest sample that is <= our frequency. */
   3316 		if (delta >= 0 && (lo == -1 || delta < fbin - fbins[lo]))
   3317 			lo = i;
   3318 		/* Find the smallest sample that is >= our frequency. */
   3319 		if (delta <= 0 && (hi == -1 || delta > fbin - fbins[hi]))
   3320 			hi = i;
   3321 	}
   3322 	if (lo == -1)
   3323 		lo = hi;
   3324 	else if (hi == -1)
   3325 		hi = lo;
   3326 	/* Interpolate values. */
   3327 	for (i = 0; i < 14; i++) {
   3328 		tpow[i] = athn_interpolate(fbin,
   3329 		    fbins[lo], tgt[lo].tPow2x[i],
   3330 		    fbins[hi], tgt[hi].tPow2x[i]);
   3331 	}
   3332 	/* XXX Apply conformance test limit. */
   3333 }
   3334 
   3335 /*
   3336  * Adaptive noise immunity.
   3337  */
   3338 Static void
   3339 ar9003_set_noise_immunity_level(struct athn_softc *sc, int level)
   3340 {
   3341 	int high = level == 4;
   3342 	uint32_t reg;
   3343 
   3344 	reg = AR_READ(sc, AR_PHY_DESIRED_SZ);
   3345 	reg = RW(reg, AR_PHY_DESIRED_SZ_TOT_DES, high ? -62 : -55);
   3346 	AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg);
   3347 
   3348 	reg = AR_READ(sc, AR_PHY_AGC);
   3349 	reg = RW(reg, AR_PHY_AGC_COARSE_LOW, high ? -70 : -64);
   3350 	reg = RW(reg, AR_PHY_AGC_COARSE_HIGH, high ? -12 : -14);
   3351 	AR_WRITE(sc, AR_PHY_AGC, reg);
   3352 
   3353 	reg = AR_READ(sc, AR_PHY_FIND_SIG);
   3354 	reg = RW(reg, AR_PHY_FIND_SIG_FIRPWR, high ? -80 : -78);
   3355 	AR_WRITE(sc, AR_PHY_FIND_SIG, reg);
   3356 	AR_WRITE_BARRIER(sc);
   3357 }
   3358 
   3359 Static void
   3360 ar9003_enable_ofdm_weak_signal(struct athn_softc *sc)
   3361 {
   3362 	uint32_t reg;
   3363 
   3364 	reg = AR_READ(sc, AR_PHY_SFCORR_LOW);
   3365 	reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 50);
   3366 	reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 40);
   3367 	reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 48);
   3368 	AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg);
   3369 
   3370 	reg = AR_READ(sc, AR_PHY_SFCORR);
   3371 	reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 77);
   3372 	reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 64);
   3373 	reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 16);
   3374 	AR_WRITE(sc, AR_PHY_SFCORR, reg);
   3375 
   3376 	reg = AR_READ(sc, AR_PHY_SFCORR_EXT);
   3377 	reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 50);
   3378 	reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 40);
   3379 	reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 77);
   3380 	reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 64);
   3381 	AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg);
   3382 
   3383 	AR_SETBITS(sc, AR_PHY_SFCORR_LOW,
   3384 	    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
   3385 	AR_WRITE_BARRIER(sc);
   3386 }
   3387 
   3388 Static void
   3389 ar9003_disable_ofdm_weak_signal(struct athn_softc *sc)
   3390 {
   3391 	uint32_t reg;
   3392 
   3393 	reg = AR_READ(sc, AR_PHY_SFCORR_LOW);
   3394 	reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 127);
   3395 	reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 127);
   3396 	reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 63);
   3397 	AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg);
   3398 
   3399 	reg = AR_READ(sc, AR_PHY_SFCORR);
   3400 	reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 127);
   3401 	reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 127);
   3402 	reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 31);
   3403 	AR_WRITE(sc, AR_PHY_SFCORR, reg);
   3404 
   3405 	reg = AR_READ(sc, AR_PHY_SFCORR_EXT);
   3406 	reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 127);
   3407 	reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 127);
   3408 	reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 127);
   3409 	reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 127);
   3410 	AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg);
   3411 
   3412 	AR_CLRBITS(sc, AR_PHY_SFCORR_LOW,
   3413 	    AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
   3414 	AR_WRITE_BARRIER(sc);
   3415 }
   3416 
   3417 Static void
   3418 ar9003_set_cck_weak_signal(struct athn_softc *sc, int high)
   3419 {
   3420 	uint32_t reg;
   3421 
   3422 	reg = AR_READ(sc, AR_PHY_CCK_DETECT);
   3423 	reg = RW(reg, AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK, high ? 6 : 8);
   3424 	AR_WRITE(sc, AR_PHY_CCK_DETECT, reg);
   3425 	AR_WRITE_BARRIER(sc);
   3426 }
   3427 
   3428 Static void
   3429 ar9003_set_firstep_level(struct athn_softc *sc, int level)
   3430 {
   3431 	uint32_t reg;
   3432 
   3433 	reg = AR_READ(sc, AR_PHY_FIND_SIG);
   3434 	reg = RW(reg, AR_PHY_FIND_SIG_FIRSTEP, level * 4);
   3435 	AR_WRITE(sc, AR_PHY_FIND_SIG, reg);
   3436 	AR_WRITE_BARRIER(sc);
   3437 }
   3438 
   3439 Static void
   3440 ar9003_set_spur_immunity_level(struct athn_softc *sc, int level)
   3441 {
   3442 	uint32_t reg;
   3443 
   3444 	reg = AR_READ(sc, AR_PHY_TIMING5);
   3445 	reg = RW(reg, AR_PHY_TIMING5_CYCPWR_THR1, (level + 1) * 2);
   3446 	AR_WRITE(sc, AR_PHY_TIMING5, reg);
   3447 	AR_WRITE_BARRIER(sc);
   3448 }
   3449