arn9003.c revision 1.6.8.5 1 /* $NetBSD: arn9003.c,v 1.6.8.5 2017/08/28 17:52:03 skrll Exp $ */
2 /* $OpenBSD: ar9003.c,v 1.25 2012/10/20 09:53:32 stsp Exp $ */
3
4 /*-
5 * Copyright (c) 2010 Damien Bergamini <damien.bergamini (at) free.fr>
6 * Copyright (c) 2010 Atheros Communications Inc.
7 *
8 * Permission to use, copy, modify, and/or distribute this software for any
9 * purpose with or without fee is hereby granted, provided that the above
10 * copyright notice and this permission notice appear in all copies.
11 *
12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 */
20
21 /*
22 * Driver for Atheros 802.11a/g/n chipsets.
23 * Routines for AR9003 family.
24 */
25
26 #include <sys/cdefs.h>
27 __KERNEL_RCSID(0, "$NetBSD: arn9003.c,v 1.6.8.5 2017/08/28 17:52:03 skrll Exp $");
28
29 #include <sys/param.h>
30 #include <sys/sockio.h>
31 #include <sys/mbuf.h>
32 #include <sys/kernel.h>
33 #include <sys/socket.h>
34 #include <sys/systm.h>
35 #include <sys/malloc.h>
36 #include <sys/queue.h>
37 #include <sys/callout.h>
38 #include <sys/conf.h>
39 #include <sys/device.h>
40
41 #include <sys/bus.h>
42 #include <sys/endian.h>
43 #include <sys/intr.h>
44
45 #include <net/bpf.h>
46 #include <net/if.h>
47 #include <net/if_arp.h>
48 #include <net/if_dl.h>
49 #include <net/if_ether.h>
50 #include <net/if_media.h>
51 #include <net/if_types.h>
52
53 #include <netinet/in.h>
54 #include <netinet/in_systm.h>
55 #include <netinet/in_var.h>
56 #include <netinet/ip.h>
57
58 #include <net80211/ieee80211_var.h>
59 #include <net80211/ieee80211_amrr.h>
60 #include <net80211/ieee80211_radiotap.h>
61
62 #include <dev/ic/athnreg.h>
63 #include <dev/ic/athnvar.h>
64 #include <dev/ic/arn9003reg.h>
65 #include <dev/ic/arn9003.h>
66
67 #define Static static
68
69 Static void ar9003_calib_iq(struct athn_softc *);
70 Static int ar9003_calib_tx_iq(struct athn_softc *);
71 Static int ar9003_compute_predistortion(struct athn_softc *,
72 const uint32_t *, const uint32_t *);
73 Static void ar9003_disable_ofdm_weak_signal(struct athn_softc *);
74 Static void ar9003_disable_phy(struct athn_softc *);
75 Static int ar9003_dma_alloc(struct athn_softc *);
76 Static void ar9003_dma_free(struct athn_softc *);
77 Static void ar9003_do_calib(struct athn_softc *);
78 Static void ar9003_do_noisefloor_calib(struct athn_softc *);
79 Static void ar9003_enable_antenna_diversity(struct athn_softc *);
80 Static void ar9003_enable_ofdm_weak_signal(struct athn_softc *);
81 Static void ar9003_enable_predistorter(struct athn_softc *, int);
82 Static int ar9003_find_rom(struct athn_softc *);
83 Static void ar9003_force_txgain(struct athn_softc *, uint32_t);
84 Static int ar9003_get_desired_txgain(struct athn_softc *, int, int);
85 Static int ar9003_get_iq_corr(struct athn_softc *, int32_t[], int32_t[]);
86 Static void ar9003_gpio_config_input(struct athn_softc *, int);
87 Static void ar9003_gpio_config_output(struct athn_softc *, int, int);
88 Static int ar9003_gpio_read(struct athn_softc *, int);
89 Static void ar9003_gpio_write(struct athn_softc *, int, int);
90 Static void ar9003_hw_init(struct athn_softc *, struct ieee80211_channel *,
91 struct ieee80211_channel *);
92 Static void ar9003_init_baseband(struct athn_softc *);
93 Static void ar9003_init_chains(struct athn_softc *);
94 Static int ar9003_intr_status(struct athn_softc *);
95 Static int ar9003_intr(struct athn_softc *);
96 Static void ar9003_next_calib(struct athn_softc *);
97 Static void ar9003_paprd_enable(struct athn_softc *);
98 Static int ar9003_paprd_tx_tone(struct athn_softc *);
99 Static void ar9003_paprd_tx_tone_done(struct athn_softc *);
100 Static int ar9003_read_eep_data(struct athn_softc *, uint32_t, void *,
101 int);
102 Static int ar9003_read_eep_word(struct athn_softc *, uint32_t,
103 uint16_t *);
104 Static int ar9003_read_otp_data(struct athn_softc *, uint32_t, void *,
105 int);
106 Static int ar9003_read_otp_word(struct athn_softc *, uint32_t,
107 uint32_t *);
108 Static int ar9003_read_rom(struct athn_softc *);
109 Static void ar9003_reset_rx_gain(struct athn_softc *,
110 struct ieee80211_channel *);
111 Static void ar9003_reset_tx_gain(struct athn_softc *,
112 struct ieee80211_channel *);
113 Static int ar9003_restore_rom_block(struct athn_softc *, uint8_t,
114 uint8_t, const uint8_t *, size_t);
115 Static void ar9003_rf_bus_release(struct athn_softc *);
116 Static int ar9003_rf_bus_request(struct athn_softc *);
117 Static void ar9003_rfsilent_init(struct athn_softc *);
118 Static int ar9003_rx_alloc(struct athn_softc *, int, int);
119 Static void ar9003_rx_enable(struct athn_softc *);
120 Static void ar9003_rx_free(struct athn_softc *, int);
121 Static void ar9003_rx_intr(struct athn_softc *, int);
122 Static int ar9003_rx_process(struct athn_softc *, int);
123 Static void ar9003_rx_radiotap(struct athn_softc *, struct mbuf *,
124 struct ar_rx_status *);
125 Static void ar9003_set_cck_weak_signal(struct athn_softc *, int);
126 Static void ar9003_set_delta_slope(struct athn_softc *,
127 struct ieee80211_channel *, struct ieee80211_channel *);
128 Static void ar9003_set_firstep_level(struct athn_softc *, int);
129 Static void ar9003_set_noise_immunity_level(struct athn_softc *, int);
130 Static void ar9003_set_phy(struct athn_softc *, struct ieee80211_channel *,
131 struct ieee80211_channel *);
132 Static void ar9003_set_rf_mode(struct athn_softc *,
133 struct ieee80211_channel *);
134 Static void ar9003_set_rxchains(struct athn_softc *);
135 Static void ar9003_set_spur_immunity_level(struct athn_softc *, int);
136 Static void ar9003_set_training_gain(struct athn_softc *, int);
137 Static int ar9003_swba_intr(struct athn_softc *);
138 Static int ar9003_tx(struct athn_softc *, struct mbuf *,
139 struct ieee80211_node *, int);
140 Static int ar9003_tx_alloc(struct athn_softc *);
141 Static void ar9003_tx_free(struct athn_softc *);
142 Static void ar9003_tx_intr(struct athn_softc *);
143 Static int ar9003_tx_process(struct athn_softc *);
144
145 #ifdef notused
146 Static void ar9003_bb_load_noisefloor(struct athn_softc *);
147 Static void ar9003_get_noisefloor(struct athn_softc *,
148 struct ieee80211_channel *);
149 Static void ar9003_paprd_calib(struct athn_softc *,
150 struct ieee80211_channel *);
151 Static void ar9003_read_noisefloor(struct athn_softc *, int16_t *,
152 int16_t *);
153 Static void ar9003_write_noisefloor(struct athn_softc *, int16_t *,
154 int16_t *);
155 Static void ar9300_noisefloor_calib(struct athn_softc *);
156 #endif /* notused */
157
158 /*
159 * XXX: See if_iwn.c:MCLGETIalt() for a better solution.
160 * XXX: Put this in a header or in athn.c so it can be shared between
161 * ar5008.c and ar9003.c?
162 */
163 static struct mbuf *
164 MCLGETI(struct athn_softc *sc __unused, int how,
165 struct ifnet *ifp __unused, u_int size)
166 {
167 struct mbuf *m;
168
169 MGETHDR(m, how, MT_DATA);
170 if (m == NULL)
171 return NULL;
172
173 MEXTMALLOC(m, size, how);
174 if ((m->m_flags & M_EXT) == 0) {
175 m_freem(m);
176 return NULL;
177 }
178 return m;
179 }
180
181 PUBLIC int
182 ar9003_attach(struct athn_softc *sc)
183 {
184 struct athn_ops *ops = &sc->sc_ops;
185 int error;
186
187 /* Set callbacks for AR9003 family. */
188 ops->gpio_read = ar9003_gpio_read;
189 ops->gpio_write = ar9003_gpio_write;
190 ops->gpio_config_input = ar9003_gpio_config_input;
191 ops->gpio_config_output = ar9003_gpio_config_output;
192 ops->rfsilent_init = ar9003_rfsilent_init;
193
194 ops->dma_alloc = ar9003_dma_alloc;
195 ops->dma_free = ar9003_dma_free;
196 ops->rx_enable = ar9003_rx_enable;
197 ops->intr_status = ar9003_intr_status;
198 ops->intr = ar9003_intr;
199 ops->tx = ar9003_tx;
200
201 ops->set_rf_mode = ar9003_set_rf_mode;
202 ops->rf_bus_request = ar9003_rf_bus_request;
203 ops->rf_bus_release = ar9003_rf_bus_release;
204 ops->set_phy = ar9003_set_phy;
205 ops->set_delta_slope = ar9003_set_delta_slope;
206 ops->enable_antenna_diversity = ar9003_enable_antenna_diversity;
207 ops->init_baseband = ar9003_init_baseband;
208 ops->disable_phy = ar9003_disable_phy;
209 ops->set_rxchains = ar9003_set_rxchains;
210 ops->noisefloor_calib = ar9003_do_noisefloor_calib;
211 ops->do_calib = ar9003_do_calib;
212 ops->next_calib = ar9003_next_calib;
213 ops->hw_init = ar9003_hw_init;
214
215 ops->set_noise_immunity_level = ar9003_set_noise_immunity_level;
216 ops->enable_ofdm_weak_signal = ar9003_enable_ofdm_weak_signal;
217 ops->disable_ofdm_weak_signal = ar9003_disable_ofdm_weak_signal;
218 ops->set_cck_weak_signal = ar9003_set_cck_weak_signal;
219 ops->set_firstep_level = ar9003_set_firstep_level;
220 ops->set_spur_immunity_level = ar9003_set_spur_immunity_level;
221
222 /* Set MAC registers offsets. */
223 sc->sc_obs_off = AR_OBS;
224 sc->sc_gpio_input_en_off = AR_GPIO_INPUT_EN_VAL;
225
226 if (!(sc->sc_flags & ATHN_FLAG_PCIE))
227 athn_config_nonpcie(sc);
228 else
229 athn_config_pcie(sc);
230
231 /* Determine ROM type and location. */
232 if ((error = ar9003_find_rom(sc)) != 0) {
233 aprint_error_dev(sc->sc_dev, "could not find ROM\n");
234 return error;
235 }
236 /* Read entire ROM content in memory. */
237 if ((error = ar9003_read_rom(sc)) != 0) {
238 aprint_error_dev(sc->sc_dev, "could not read ROM\n");
239 return error;
240 }
241
242 /* Determine if it is a non-enterprise AR9003 card. */
243 if (AR_READ(sc, AR_ENT_OTP) & AR_ENT_OTP_MPSD)
244 sc->sc_flags |= ATHN_FLAG_NON_ENTERPRISE;
245
246 ops->setup(sc);
247 return 0;
248 }
249
250 /*
251 * Read 16-bit word from EEPROM.
252 */
253 Static int
254 ar9003_read_eep_word(struct athn_softc *sc, uint32_t addr, uint16_t *val)
255 {
256 uint32_t reg;
257 int ntries;
258
259 reg = AR_READ(sc, AR_EEPROM_OFFSET(addr));
260 for (ntries = 0; ntries < 1000; ntries++) {
261 reg = AR_READ(sc, AR_EEPROM_STATUS_DATA);
262 if (!(reg & (AR_EEPROM_STATUS_DATA_BUSY |
263 AR_EEPROM_STATUS_DATA_PROT_ACCESS))) {
264 *val = MS(reg, AR_EEPROM_STATUS_DATA_VAL);
265 return 0;
266 }
267 DELAY(10);
268 }
269 *val = 0xffff;
270 return ETIMEDOUT;
271 }
272
273 /*
274 * Read an arbitrary number of bytes at a specified address in EEPROM.
275 * NB: The address may not be 16-bit aligned.
276 */
277 Static int
278 ar9003_read_eep_data(struct athn_softc *sc, uint32_t addr, void *buf, int len)
279 {
280 uint8_t *dst = buf;
281 uint16_t val;
282 int error;
283
284 if (len > 0 && (addr & 1)) {
285 /* Deal with non-aligned reads. */
286 addr >>= 1;
287 error = ar9003_read_eep_word(sc, addr, &val);
288 if (error != 0)
289 return error;
290 *dst++ = val & 0xff;
291 addr--;
292 len--;
293 }
294 else
295 addr >>= 1;
296 for (; len >= 2; addr--, len -= 2) {
297 error = ar9003_read_eep_word(sc, addr, &val);
298 if (error != 0)
299 return error;
300 *dst++ = val >> 8;
301 *dst++ = val & 0xff;
302 }
303 if (len > 0) {
304 error = ar9003_read_eep_word(sc, addr, &val);
305 if (error != 0)
306 return error;
307 *dst++ = val >> 8;
308 }
309 return 0;
310 }
311
312 /*
313 * Read 32-bit word from OTPROM.
314 */
315 Static int
316 ar9003_read_otp_word(struct athn_softc *sc, uint32_t addr, uint32_t *val)
317 {
318 uint32_t reg;
319 int ntries;
320
321 reg = AR_READ(sc, AR_OTP_BASE(addr));
322 for (ntries = 0; ntries < 1000; ntries++) {
323 reg = AR_READ(sc, AR_OTP_STATUS);
324 if (MS(reg, AR_OTP_STATUS_TYPE) == AR_OTP_STATUS_VALID) {
325 *val = AR_READ(sc, AR_OTP_READ_DATA);
326 return 0;
327 }
328 DELAY(10);
329 }
330 return ETIMEDOUT;
331 }
332
333 /*
334 * Read an arbitrary number of bytes at a specified address in OTPROM.
335 * NB: The address may not be 32-bit aligned.
336 */
337 Static int
338 ar9003_read_otp_data(struct athn_softc *sc, uint32_t addr, void *buf, int len)
339 {
340 uint8_t *dst = buf;
341 uint32_t val;
342 int error;
343
344 /* NB: not optimal for non-aligned reads, but correct. */
345 for (; len > 0; addr--, len--) {
346 error = ar9003_read_otp_word(sc, addr >> 2, &val);
347 if (error != 0)
348 return error;
349 *dst++ = (val >> ((addr & 3) * 8)) & 0xff;
350 }
351 return 0;
352 }
353
354 /*
355 * Determine if the chip has an external EEPROM or an OTPROM and its size.
356 */
357 Static int
358 ar9003_find_rom(struct athn_softc *sc)
359 {
360 struct athn_ops *ops = &sc->sc_ops;
361 uint32_t hdr;
362 int error;
363
364 /* Try EEPROM. */
365 ops->read_rom_data = ar9003_read_eep_data;
366
367 sc->sc_eep_size = AR_SREV_9485(sc) ? 4096 : 1024;
368 sc->sc_eep_base = sc->sc_eep_size - 1;
369 error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
370 if (error == 0 && hdr != 0 && hdr != 0xffffffff)
371 return 0;
372
373 sc->sc_eep_size = 512;
374 sc->sc_eep_base = sc->sc_eep_size - 1;
375 error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
376 if (error == 0 && hdr != 0 && hdr != 0xffffffff)
377 return 0;
378
379 /* Try OTPROM. */
380 ops->read_rom_data = ar9003_read_otp_data;
381
382 sc->sc_eep_size = 1024;
383 sc->sc_eep_base = sc->sc_eep_size - 1;
384 error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
385 if (error == 0 && hdr != 0 && hdr != 0xffffffff)
386 return 0;
387
388 sc->sc_eep_size = 512;
389 sc->sc_eep_base = sc->sc_eep_size - 1;
390 error = ops->read_rom_data(sc, sc->sc_eep_base, &hdr, sizeof(hdr));
391 if (error == 0 && hdr != 0 && hdr != 0xffffffff)
392 return 0;
393
394 return EIO; /* Not found. */
395 }
396
397 Static int
398 ar9003_restore_rom_block(struct athn_softc *sc, uint8_t alg, uint8_t ref,
399 const uint8_t *buf, size_t len)
400 {
401 const uint8_t *def, *ptr, *end;
402 uint8_t *eep = sc->sc_eep;
403 size_t off, clen;
404
405 if (alg == AR_EEP_COMPRESS_BLOCK) {
406 /* Block contains chunks that shadow ROM template. */
407 def = sc->sc_ops.get_rom_template(sc, ref);
408 if (def == NULL) {
409 DPRINTFN(DBG_INIT, sc, "unknown template image %d\n",
410 ref);
411 return EINVAL;
412 }
413 /* Start with template. */
414 memcpy(eep, def, sc->sc_eep_size);
415 /* Shadow template with chunks. */
416 off = 0; /* Offset in ROM image. */
417 ptr = buf; /* Offset in block. */
418 end = buf + len;
419 /* Process chunks. */
420 while (ptr + 2 <= end) {
421 off += *ptr++; /* Gap with previous chunk. */
422 clen = *ptr++; /* Chunk length. */
423 /* Make sure block is large enough. */
424 if (ptr + clen > end)
425 return EINVAL;
426 /* Make sure chunk fits in ROM image. */
427 if (off + clen > sc->sc_eep_size)
428 return EINVAL;
429 /* Restore chunk. */
430 DPRINTFN(DBG_INIT, sc, "ROM chunk @%zd/%zd\n",
431 off, clen);
432 memcpy(&eep[off], ptr, clen);
433 ptr += clen;
434 off += clen;
435 }
436 }
437 else if (alg == AR_EEP_COMPRESS_NONE) {
438 /* Block contains full ROM image. */
439 if (len != sc->sc_eep_size) {
440 DPRINTFN(DBG_INIT, sc, "block length mismatch %zd\n",
441 len);
442 return EINVAL;
443 }
444 memcpy(eep, buf, len);
445 }
446 return 0;
447 }
448
449 Static int
450 ar9003_read_rom(struct athn_softc *sc)
451 {
452 struct athn_ops *ops = &sc->sc_ops;
453 uint8_t *buf, *ptr, alg, ref;
454 uint16_t sum, rsum;
455 uint32_t hdr;
456 int error, addr;
457 size_t len, i, j;
458
459 /* Allocate space to store ROM in host memory. */
460 sc->sc_eep = malloc(sc->sc_eep_size, M_DEVBUF, M_NOWAIT);
461 if (sc->sc_eep == NULL)
462 return ENOMEM;
463
464 /* Allocate temporary buffer to store ROM blocks. */
465 buf = malloc(2048, M_DEVBUF, M_NOWAIT);
466 if (buf == NULL)
467 return ENOMEM;
468
469 /* Restore vendor-specified ROM blocks. */
470 addr = sc->sc_eep_base;
471 for (i = 0; i < 100; i++) {
472 /* Read block header. */
473 error = ops->read_rom_data(sc, addr, &hdr, sizeof(hdr));
474 if (error != 0)
475 break;
476 if (hdr == 0 || hdr == 0xffffffff)
477 break;
478 addr -= sizeof(hdr);
479
480 /* Extract bits from header. */
481 ptr = (uint8_t *)&hdr;
482 alg = (ptr[0] & 0xe0) >> 5;
483 ref = (ptr[1] & 0x80) >> 2 | (ptr[0] & 0x1f);
484 len = (ptr[1] & 0x7f) << 4 | (ptr[2] & 0xf0) >> 4;
485 DPRINTFN(DBG_INIT, sc,
486 "ROM block %zd: alg=%d ref=%d len=%zd\n",
487 i, alg, ref, len);
488
489 /* Read block data (len <= 0x7ff). */
490 error = ops->read_rom_data(sc, addr, buf, len);
491 if (error != 0)
492 break;
493 addr -= len;
494
495 /* Read block checksum. */
496 error = ops->read_rom_data(sc, addr, &sum, sizeof(sum));
497 if (error != 0)
498 break;
499 addr -= sizeof(sum);
500
501 /* Compute block checksum. */
502 rsum = 0;
503 for (j = 0; j < len; j++)
504 rsum += buf[j];
505 /* Compare to that in ROM. */
506 if (le16toh(sum) != rsum) {
507 DPRINTFN(DBG_INIT, sc,
508 "bad block checksum 0x%x/0x%x\n",
509 le16toh(sum), rsum);
510 continue; /* Skip bad block. */
511 }
512 /* Checksum is correct, restore block. */
513 ar9003_restore_rom_block(sc, alg, ref, buf, len);
514 }
515 #if BYTE_ORDER == BIG_ENDIAN
516 /* NB: ROM is always little endian. */
517 if (error == 0)
518 ops->swap_rom(sc);
519 #endif
520 free(buf, M_DEVBUF);
521 return error;
522 }
523
524 /*
525 * Access to General Purpose Input/Output ports.
526 */
527 Static int
528 ar9003_gpio_read(struct athn_softc *sc, int pin)
529 {
530
531 KASSERT(pin < sc->sc_ngpiopins);
532 return ((AR_READ(sc, AR_GPIO_IN) & AR9300_GPIO_IN_VAL) &
533 (1 << pin)) != 0;
534 }
535
536 Static void
537 ar9003_gpio_write(struct athn_softc *sc, int pin, int set)
538 {
539 uint32_t reg;
540
541 KASSERT(pin < sc->sc_ngpiopins);
542 reg = AR_READ(sc, AR_GPIO_IN_OUT);
543 if (set)
544 reg |= 1 << pin;
545 else
546 reg &= ~(1 << pin);
547 AR_WRITE(sc, AR_GPIO_IN_OUT, reg);
548 AR_WRITE_BARRIER(sc);
549 }
550
551 Static void
552 ar9003_gpio_config_input(struct athn_softc *sc, int pin)
553 {
554 uint32_t reg;
555
556 reg = AR_READ(sc, AR_GPIO_OE_OUT);
557 reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2));
558 reg |= AR_GPIO_OE_OUT_DRV_NO << (pin * 2);
559 AR_WRITE(sc, AR_GPIO_OE_OUT, reg);
560 AR_WRITE_BARRIER(sc);
561 }
562
563 Static void
564 ar9003_gpio_config_output(struct athn_softc *sc, int pin, int type)
565 {
566 uint32_t reg;
567 int mux, off;
568
569 mux = pin / 6;
570 off = pin % 6;
571
572 reg = AR_READ(sc, AR_GPIO_OUTPUT_MUX(mux));
573 reg &= ~(0x1f << (off * 5));
574 reg |= (type & 0x1f) << (off * 5);
575 AR_WRITE(sc, AR_GPIO_OUTPUT_MUX(mux), reg);
576
577 reg = AR_READ(sc, AR_GPIO_OE_OUT);
578 reg &= ~(AR_GPIO_OE_OUT_DRV_M << (pin * 2));
579 reg |= AR_GPIO_OE_OUT_DRV_ALL << (pin * 2);
580 AR_WRITE(sc, AR_GPIO_OE_OUT, reg);
581 AR_WRITE_BARRIER(sc);
582 }
583
584 Static void
585 ar9003_rfsilent_init(struct athn_softc *sc)
586 {
587 uint32_t reg;
588
589 /* Configure hardware radio switch. */
590 AR_SETBITS(sc, AR_GPIO_INPUT_EN_VAL, AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
591 reg = AR_READ(sc, AR_GPIO_INPUT_MUX2);
592 reg = RW(reg, AR_GPIO_INPUT_MUX2_RFSILENT, 0);
593 AR_WRITE(sc, AR_GPIO_INPUT_MUX2, reg);
594 ar9003_gpio_config_input(sc, sc->sc_rfsilent_pin);
595 AR_SETBITS(sc, AR_PHY_TEST, AR_PHY_TEST_RFSILENT_BB);
596 if (!(sc->sc_flags & ATHN_FLAG_RFSILENT_REVERSED)) {
597 AR_SETBITS(sc, AR_GPIO_INTR_POL,
598 AR_GPIO_INTR_POL_PIN(sc->sc_rfsilent_pin));
599 }
600 AR_WRITE_BARRIER(sc);
601 }
602
603 Static int
604 ar9003_dma_alloc(struct athn_softc *sc)
605 {
606 int error;
607
608 error = ar9003_tx_alloc(sc);
609 if (error != 0)
610 return error;
611
612 error = ar9003_rx_alloc(sc, ATHN_QID_LP, AR9003_RX_LP_QDEPTH);
613 if (error != 0)
614 return error;
615
616 error = ar9003_rx_alloc(sc, ATHN_QID_HP, AR9003_RX_HP_QDEPTH);
617 if (error != 0)
618 return error;
619
620 return 0;
621 }
622
623 Static void
624 ar9003_dma_free(struct athn_softc *sc)
625 {
626
627 ar9003_tx_free(sc);
628 ar9003_rx_free(sc, ATHN_QID_LP);
629 ar9003_rx_free(sc, ATHN_QID_HP);
630 }
631
632 Static int
633 ar9003_tx_alloc(struct athn_softc *sc)
634 {
635 struct athn_tx_buf *bf;
636 bus_size_t size;
637 int error, nsegs, i;
638
639 /*
640 * Allocate Tx status ring.
641 */
642 size = AR9003_NTXSTATUS * sizeof(struct ar_tx_status);
643
644 error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
645 BUS_DMA_NOWAIT, &sc->sc_txsmap);
646 if (error != 0)
647 goto fail;
648
649 error = bus_dmamem_alloc(sc->sc_dmat, size, 4, 0, &sc->sc_txsseg, 1,
650 // XXX &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
651 &nsegs, BUS_DMA_NOWAIT);
652 if (error != 0)
653 goto fail;
654
655 error = bus_dmamem_map(sc->sc_dmat, &sc->sc_txsseg, 1, size,
656 (void **)&sc->sc_txsring, BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
657 if (error != 0)
658 goto fail;
659
660 error = bus_dmamap_load(sc->sc_dmat, sc->sc_txsmap, sc->sc_txsring,
661 size, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
662 if (error != 0)
663 goto fail;
664
665 /*
666 * Allocate a pool of Tx descriptors shared between all Tx queues.
667 */
668 size = ATHN_NTXBUFS * sizeof(struct ar_tx_desc);
669
670 error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
671 BUS_DMA_NOWAIT, &sc->sc_map);
672 if (error != 0)
673 goto fail;
674
675 error = bus_dmamem_alloc(sc->sc_dmat, size, 4, 0, &sc->sc_seg, 1,
676 // XXX &nsegs, BUS_DMA_NOWAIT | BUS_DMA_ZERO);
677 &nsegs, BUS_DMA_NOWAIT);
678 if (error != 0)
679 goto fail;
680
681 error = bus_dmamem_map(sc->sc_dmat, &sc->sc_seg, 1, size,
682 (void **)&sc->sc_descs, BUS_DMA_NOWAIT | BUS_DMA_COHERENT);
683 if (error != 0)
684 goto fail;
685
686 error = bus_dmamap_load(sc->sc_dmat, sc->sc_map, sc->sc_descs, size,
687 NULL, BUS_DMA_NOWAIT | BUS_DMA_WRITE);
688 if (error != 0)
689 goto fail;
690
691 SIMPLEQ_INIT(&sc->sc_txbufs);
692 for (i = 0; i < ATHN_NTXBUFS; i++) {
693 bf = &sc->sc_txpool[i];
694
695 error = bus_dmamap_create(sc->sc_dmat, ATHN_TXBUFSZ,
696 AR9003_MAX_SCATTER, ATHN_TXBUFSZ, 0, BUS_DMA_NOWAIT,
697 &bf->bf_map);
698 if (error != 0) {
699 aprint_error_dev(sc->sc_dev,
700 "could not create Tx buf DMA map\n");
701 goto fail;
702 }
703
704 bf->bf_descs = &((struct ar_tx_desc *)sc->sc_descs)[i];
705 bf->bf_daddr = sc->sc_map->dm_segs[0].ds_addr +
706 i * sizeof(struct ar_tx_desc);
707
708 SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
709 }
710 return 0;
711 fail:
712 ar9003_tx_free(sc);
713 return error;
714 }
715
716 Static void
717 ar9003_tx_free(struct athn_softc *sc)
718 {
719 struct athn_tx_buf *bf;
720 int i;
721
722 for (i = 0; i < ATHN_NTXBUFS; i++) {
723 bf = &sc->sc_txpool[i];
724
725 if (bf->bf_map != NULL)
726 bus_dmamap_destroy(sc->sc_dmat, bf->bf_map);
727 }
728 /* Free Tx descriptors. */
729 if (sc->sc_map != NULL) {
730 if (sc->sc_descs != NULL) {
731 bus_dmamap_unload(sc->sc_dmat, sc->sc_map);
732 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_descs,
733 ATHN_NTXBUFS * sizeof(struct ar_tx_desc));
734 bus_dmamem_free(sc->sc_dmat, &sc->sc_seg, 1);
735 }
736 bus_dmamap_destroy(sc->sc_dmat, sc->sc_map);
737 }
738 /* Free Tx status ring. */
739 if (sc->sc_txsmap != NULL) {
740 if (sc->sc_txsring != NULL) {
741 bus_dmamap_unload(sc->sc_dmat, sc->sc_txsmap);
742 bus_dmamem_unmap(sc->sc_dmat, (void *)sc->sc_txsring,
743 AR9003_NTXSTATUS * sizeof(struct ar_tx_status));
744 bus_dmamem_free(sc->sc_dmat, &sc->sc_txsseg, 1);
745 }
746 bus_dmamap_destroy(sc->sc_dmat, sc->sc_txsmap);
747 }
748 }
749
750 Static int
751 ar9003_rx_alloc(struct athn_softc *sc, int qid, int count)
752 {
753 struct athn_rxq *rxq = &sc->sc_rxq[qid];
754 struct athn_rx_buf *bf;
755 struct ar_rx_status *ds;
756 int error, i;
757
758 rxq->bf = malloc(count * sizeof(*bf), M_DEVBUF, M_NOWAIT | M_ZERO);
759 if (rxq->bf == NULL)
760 return ENOMEM;
761
762 rxq->count = count;
763
764 for (i = 0; i < rxq->count; i++) {
765 bf = &rxq->bf[i];
766
767 error = bus_dmamap_create(sc->sc_dmat, ATHN_RXBUFSZ, 1,
768 ATHN_RXBUFSZ, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
769 &bf->bf_map);
770 if (error != 0) {
771 aprint_error_dev(sc->sc_dev,
772 "could not create Rx buf DMA map\n");
773 goto fail;
774 }
775 /*
776 * Assumes MCLGETI returns cache-line-size aligned buffers.
777 */
778 bf->bf_m = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ);
779 if (bf->bf_m == NULL) {
780 aprint_error_dev(sc->sc_dev,
781 "could not allocate Rx mbuf\n");
782 error = ENOBUFS;
783 goto fail;
784 }
785
786 error = bus_dmamap_load(sc->sc_dmat, bf->bf_map,
787 mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL,
788 BUS_DMA_NOWAIT);
789 if (error != 0) {
790 aprint_error_dev(sc->sc_dev,
791 "could not DMA map Rx buffer\n");
792 goto fail;
793 }
794
795 ds = mtod(bf->bf_m, struct ar_rx_status *);
796 memset(ds, 0, sizeof(*ds));
797 bf->bf_desc = ds;
798 bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr;
799
800 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
801 BUS_DMASYNC_PREREAD);
802 }
803 return 0;
804 fail:
805 ar9003_rx_free(sc, qid);
806 return error;
807 }
808
809 Static void
810 ar9003_rx_free(struct athn_softc *sc, int qid)
811 {
812 struct athn_rxq *rxq = &sc->sc_rxq[qid];
813 struct athn_rx_buf *bf;
814 int i;
815
816 if (rxq->bf == NULL)
817 return;
818 for (i = 0; i < rxq->count; i++) {
819 bf = &rxq->bf[i];
820
821 if (bf->bf_map != NULL)
822 bus_dmamap_destroy(sc->sc_dmat, bf->bf_map);
823 if (bf->bf_m != NULL)
824 m_freem(bf->bf_m);
825 }
826 free(rxq->bf, M_DEVBUF);
827 }
828
829 PUBLIC void
830 ar9003_reset_txsring(struct athn_softc *sc)
831 {
832
833 sc->sc_txscur = 0;
834 memset(sc->sc_txsring, 0, AR9003_NTXSTATUS * sizeof(struct ar_tx_status));
835 AR_WRITE(sc, AR_Q_STATUS_RING_START,
836 sc->sc_txsmap->dm_segs[0].ds_addr);
837 AR_WRITE(sc, AR_Q_STATUS_RING_END,
838 sc->sc_txsmap->dm_segs[0].ds_addr + sc->sc_txsmap->dm_segs[0].ds_len);
839 AR_WRITE_BARRIER(sc);
840 }
841
842 Static void
843 ar9003_rx_enable(struct athn_softc *sc)
844 {
845 struct athn_rxq *rxq;
846 struct athn_rx_buf *bf;
847 struct ar_rx_status *ds;
848 uint32_t reg;
849 int qid, i;
850
851 reg = AR_READ(sc, AR_RXBP_THRESH);
852 reg = RW(reg, AR_RXBP_THRESH_HP, 1);
853 reg = RW(reg, AR_RXBP_THRESH_LP, 1);
854 AR_WRITE(sc, AR_RXBP_THRESH, reg);
855
856 /* Set Rx buffer size. */
857 AR_WRITE(sc, AR_DATABUF_SIZE, ATHN_RXBUFSZ - sizeof(*ds));
858
859 for (qid = 0; qid < 2; qid++) {
860 rxq = &sc->sc_rxq[qid];
861
862 /* Setup Rx status descriptors. */
863 SIMPLEQ_INIT(&rxq->head);
864 for (i = 0; i < rxq->count; i++) {
865 bf = &rxq->bf[i];
866 ds = bf->bf_desc;
867
868 memset(ds, 0, sizeof(*ds));
869 if (qid == ATHN_QID_LP)
870 AR_WRITE(sc, AR_LP_RXDP, bf->bf_daddr);
871 else
872 AR_WRITE(sc, AR_HP_RXDP, bf->bf_daddr);
873 AR_WRITE_BARRIER(sc);
874 SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list);
875 }
876 }
877 /* Enable Rx. */
878 AR_WRITE(sc, AR_CR, 0);
879 AR_WRITE_BARRIER(sc);
880 }
881
882 Static void
883 ar9003_rx_radiotap(struct athn_softc *sc, struct mbuf *m,
884 struct ar_rx_status *ds)
885 {
886 struct athn_rx_radiotap_header *tap = &sc->sc_rxtap;
887 struct ieee80211com *ic = &sc->sc_ic;
888 uint64_t tsf;
889 uint32_t tstamp;
890 uint8_t rate;
891
892 /* Extend the 15-bit timestamp from Rx status to 64-bit TSF. */
893 tstamp = ds->ds_status3;
894 tsf = AR_READ(sc, AR_TSF_U32);
895 tsf = tsf << 32 | AR_READ(sc, AR_TSF_L32);
896 if ((tsf & 0x7fff) < tstamp)
897 tsf -= 0x8000;
898 tsf = (tsf & ~0x7fff) | tstamp;
899
900 tap->wr_flags = IEEE80211_RADIOTAP_F_FCS;
901 tap->wr_tsft = htole64(tsf);
902 tap->wr_chan_freq = htole16(ic->ic_curchan->ic_freq);
903 tap->wr_chan_flags = htole16(ic->ic_curchan->ic_flags);
904 tap->wr_dbm_antsignal = MS(ds->ds_status5, AR_RXS5_RSSI_COMBINED);
905 /* XXX noise. */
906 tap->wr_antenna = MS(ds->ds_status4, AR_RXS4_ANTENNA);
907 tap->wr_rate = 0; /* In case it can't be found below. */
908 rate = MS(ds->ds_status1, AR_RXS1_RATE);
909 if (rate & 0x80) { /* HT. */
910 /* Bit 7 set means HT MCS instead of rate. */
911 tap->wr_rate = rate;
912 if (!(ds->ds_status4 & AR_RXS4_GI))
913 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTGI;
914
915 }
916 else if (rate & 0x10) { /* CCK. */
917 if (rate & 0x04)
918 tap->wr_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
919 switch (rate & ~0x14) {
920 case 0xb: tap->wr_rate = 2; break;
921 case 0xa: tap->wr_rate = 4; break;
922 case 0x9: tap->wr_rate = 11; break;
923 case 0x8: tap->wr_rate = 22; break;
924 }
925 }
926 else { /* OFDM. */
927 switch (rate) {
928 case 0xb: tap->wr_rate = 12; break;
929 case 0xf: tap->wr_rate = 18; break;
930 case 0xa: tap->wr_rate = 24; break;
931 case 0xe: tap->wr_rate = 36; break;
932 case 0x9: tap->wr_rate = 48; break;
933 case 0xd: tap->wr_rate = 72; break;
934 case 0x8: tap->wr_rate = 96; break;
935 case 0xc: tap->wr_rate = 108; break;
936 }
937 }
938 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_rxtap_len, m);
939 }
940
941 Static int
942 ar9003_rx_process(struct athn_softc *sc, int qid)
943 {
944 struct ieee80211com *ic = &sc->sc_ic;
945 struct ifnet *ifp = &sc->sc_if;
946 struct athn_rxq *rxq = &sc->sc_rxq[qid];
947 struct athn_rx_buf *bf;
948 struct ar_rx_status *ds;
949 struct ieee80211_frame *wh;
950 struct ieee80211_node *ni;
951 struct mbuf *m, *m1;
952 size_t len;
953 u_int32_t rstamp;
954 int error, rssi, s;
955
956 bf = SIMPLEQ_FIRST(&rxq->head);
957 if (__predict_false(bf == NULL)) { /* Should not happen. */
958 aprint_error_dev(sc->sc_dev, "Rx queue is empty!\n");
959 return ENOENT;
960 }
961 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
962 BUS_DMASYNC_POSTREAD);
963
964 ds = mtod(bf->bf_m, struct ar_rx_status *);
965 if (!(ds->ds_status1 & AR_RXS1_DONE))
966 return EBUSY;
967
968 /* Check that it is a valid Rx status descriptor. */
969 if ((ds->ds_info & (AR_RXI_DESC_ID_M | AR_RXI_DESC_TX |
970 AR_RXI_CTRL_STAT)) != SM(AR_RXI_DESC_ID, AR_VENDOR_ATHEROS))
971 goto skip;
972
973 if (!(ds->ds_status11 & AR_RXS11_FRAME_OK)) {
974 if (ds->ds_status11 & AR_RXS11_CRC_ERR)
975 DPRINTFN(DBG_RX, sc, "CRC error\n");
976 else if (ds->ds_status11 & AR_RXS11_PHY_ERR)
977 DPRINTFN(DBG_RX, sc, "PHY error=0x%x\n",
978 MS(ds->ds_status11, AR_RXS11_PHY_ERR_CODE));
979 else if (ds->ds_status11 & AR_RXS11_DECRYPT_CRC_ERR)
980 DPRINTFN(DBG_RX, sc, "Decryption CRC error\n");
981 else if (ds->ds_status11 & AR_RXS11_MICHAEL_ERR) {
982 DPRINTFN(DBG_RX, sc, "Michael MIC failure\n");
983 /* Report Michael MIC failures to net80211. */
984
985 len = MS(ds->ds_status2, AR_RXS2_DATA_LEN);
986 m = bf->bf_m;
987 m_set_rcvif(m, ifp);
988 m->m_data = (void *)&ds[1];
989 m->m_pkthdr.len = m->m_len = len;
990 wh = mtod(m, struct ieee80211_frame *);
991
992 ieee80211_notify_michael_failure(ic, wh,
993 0 /* XXX: keyix */);
994 }
995 ifp->if_ierrors++;
996 goto skip;
997 }
998
999 len = MS(ds->ds_status2, AR_RXS2_DATA_LEN);
1000 if (__predict_false(len < IEEE80211_MIN_LEN ||
1001 len > ATHN_RXBUFSZ - sizeof(*ds))) {
1002 DPRINTFN(DBG_RX, sc, "corrupted descriptor length=%zd\n",
1003 len);
1004 ifp->if_ierrors++;
1005 goto skip;
1006 }
1007
1008 /* Allocate a new Rx buffer. */
1009 m1 = MCLGETI(NULL, M_DONTWAIT, NULL, ATHN_RXBUFSZ);
1010 if (__predict_false(m1 == NULL)) {
1011 ic->ic_stats.is_rx_nobuf++;
1012 ifp->if_ierrors++;
1013 goto skip;
1014 }
1015
1016 /* Unmap the old Rx buffer. */
1017 bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
1018
1019 /* Map the new Rx buffer. */
1020 error = bus_dmamap_load(sc->sc_dmat, bf->bf_map, mtod(m1, void *),
1021 ATHN_RXBUFSZ, NULL, BUS_DMA_NOWAIT | BUS_DMA_READ);
1022 if (__predict_false(error != 0)) {
1023 m_freem(m1);
1024
1025 /* Remap the old Rx buffer or panic. */
1026 error = bus_dmamap_load(sc->sc_dmat, bf->bf_map,
1027 mtod(bf->bf_m, void *), ATHN_RXBUFSZ, NULL,
1028 BUS_DMA_NOWAIT | BUS_DMA_READ);
1029 KASSERT(error != 0);
1030 bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr;
1031 ifp->if_ierrors++;
1032 goto skip;
1033 }
1034 bf->bf_desc = mtod(m1, struct ar_rx_status *);
1035 bf->bf_daddr = bf->bf_map->dm_segs[0].ds_addr;
1036
1037 m = bf->bf_m;
1038 bf->bf_m = m1;
1039
1040 /* Finalize mbuf. */
1041 m_set_rcvif(m, ifp);
1042 /* Strip Rx status descriptor from head. */
1043 m->m_data = (void *)&ds[1];
1044 m->m_pkthdr.len = m->m_len = len;
1045
1046 s = splnet();
1047
1048 /* Grab a reference to the source node. */
1049 wh = mtod(m, struct ieee80211_frame *);
1050 ni = ieee80211_find_rxnode(ic, (struct ieee80211_frame_min *)wh);
1051
1052 /* Remove any HW padding after the 802.11 header. */
1053 if (!(wh->i_fc[0] & IEEE80211_FC0_TYPE_CTL)) {
1054 u_int hdrlen = ieee80211_anyhdrsize(wh);
1055 if (hdrlen & 3) {
1056 ovbcopy(wh, (uint8_t *)wh + 2, hdrlen);
1057 m_adj(m, 2);
1058 }
1059 }
1060 if (__predict_false(sc->sc_drvbpf != NULL))
1061 ar9003_rx_radiotap(sc, m, ds);
1062 /* Trim 802.11 FCS after radiotap. */
1063 m_adj(m, -IEEE80211_CRC_LEN);
1064
1065 /* Send the frame to the 802.11 layer. */
1066 rssi = MS(ds->ds_status5, AR_RXS5_RSSI_COMBINED);
1067 rstamp = ds->ds_status3;
1068 ieee80211_input(ic, m, ni, rssi, rstamp);
1069
1070 /* Node is no longer needed. */
1071 ieee80211_free_node(ni);
1072
1073 splx(s);
1074
1075 skip:
1076 /* Unlink this descriptor from head. */
1077 SIMPLEQ_REMOVE_HEAD(&rxq->head, bf_list);
1078 memset(bf->bf_desc, 0, sizeof(*ds));
1079
1080 /* Re-use this descriptor and link it to tail. */
1081 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, ATHN_RXBUFSZ,
1082 BUS_DMASYNC_PREREAD);
1083
1084 if (qid == ATHN_QID_LP)
1085 AR_WRITE(sc, AR_LP_RXDP, bf->bf_daddr);
1086 else
1087 AR_WRITE(sc, AR_HP_RXDP, bf->bf_daddr);
1088 AR_WRITE_BARRIER(sc);
1089 SIMPLEQ_INSERT_TAIL(&rxq->head, bf, bf_list);
1090
1091 /* Re-enable Rx. */
1092 AR_WRITE(sc, AR_CR, 0);
1093 AR_WRITE_BARRIER(sc);
1094 return 0;
1095 }
1096
1097 Static void
1098 ar9003_rx_intr(struct athn_softc *sc, int qid)
1099 {
1100
1101 while (ar9003_rx_process(sc, qid) == 0)
1102 continue;
1103 }
1104
1105 Static int
1106 ar9003_tx_process(struct athn_softc *sc)
1107 {
1108 struct ifnet *ifp = &sc->sc_if;
1109 struct athn_txq *txq;
1110 struct athn_node *an;
1111 struct athn_tx_buf *bf;
1112 struct ar_tx_status *ds;
1113 uint8_t qid, failcnt;
1114
1115 ds = &((struct ar_tx_status *)sc->sc_txsring)[sc->sc_txscur];
1116 if (!(ds->ds_status8 & AR_TXS8_DONE))
1117 return EBUSY;
1118
1119 sc->sc_txscur = (sc->sc_txscur + 1) % AR9003_NTXSTATUS;
1120
1121 /* Check that it is a valid Tx status descriptor. */
1122 if ((ds->ds_info & (AR_TXI_DESC_ID_M | AR_TXI_DESC_TX)) !=
1123 (SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) | AR_TXI_DESC_TX)) {
1124 memset(ds, 0, sizeof(*ds));
1125 return 0;
1126 }
1127 /* Retrieve the queue that was used to send this PDU. */
1128 qid = MS(ds->ds_info, AR_TXI_QCU_NUM);
1129 txq = &sc->sc_txq[qid];
1130
1131 bf = SIMPLEQ_FIRST(&txq->head);
1132 if (bf == NULL || bf == txq->wait) {
1133 memset(ds, 0, sizeof(*ds));
1134 return 0;
1135 }
1136 SIMPLEQ_REMOVE_HEAD(&txq->head, bf_list);
1137 ifp->if_opackets++;
1138
1139 sc->sc_tx_timer = 0;
1140
1141 if (ds->ds_status3 & AR_TXS3_EXCESSIVE_RETRIES)
1142 ifp->if_oerrors++;
1143
1144 if (ds->ds_status3 & AR_TXS3_UNDERRUN)
1145 athn_inc_tx_trigger_level(sc);
1146
1147 /* Wakeup PA predistortion state machine. */
1148 if (bf->bf_txflags & ATHN_TXFLAG_PAPRD)
1149 ar9003_paprd_tx_tone_done(sc);
1150
1151 an = (struct athn_node *)bf->bf_ni;
1152 /*
1153 * NB: the data fail count contains the number of un-acked tries
1154 * for the final series used. We must add the number of tries for
1155 * each series that was fully processed.
1156 */
1157 failcnt = MS(ds->ds_status3, AR_TXS3_DATA_FAIL_CNT);
1158 /* NB: Assume two tries per series. */
1159 failcnt += MS(ds->ds_status8, AR_TXS8_FINAL_IDX) * 2;
1160
1161 /* Update rate control statistics. */
1162 an->amn.amn_txcnt++;
1163 if (failcnt > 0)
1164 an->amn.amn_retrycnt++;
1165
1166 DPRINTFN(DBG_TX, sc, "Tx done qid=%d status3=%d fail count=%d\n",
1167 qid, ds->ds_status3, failcnt);
1168
1169 /* Reset Tx status descriptor. */
1170 memset(ds, 0, sizeof(*ds));
1171
1172 /* Unmap Tx buffer. */
1173 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
1174 BUS_DMASYNC_POSTWRITE);
1175 bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
1176
1177 m_freem(bf->bf_m);
1178 bf->bf_m = NULL;
1179 ieee80211_free_node(bf->bf_ni);
1180 bf->bf_ni = NULL;
1181
1182 /* Link Tx buffer back to global free list. */
1183 SIMPLEQ_INSERT_TAIL(&sc->sc_txbufs, bf, bf_list);
1184
1185 /* Queue buffers that are waiting if there is new room. */
1186 if (--txq->queued < AR9003_TX_QDEPTH && txq->wait != NULL) {
1187 AR_WRITE(sc, AR_QTXDP(qid), txq->wait->bf_daddr);
1188 AR_WRITE_BARRIER(sc);
1189 txq->wait = SIMPLEQ_NEXT(txq->wait, bf_list);
1190 }
1191 return 0;
1192 }
1193
1194 Static void
1195 ar9003_tx_intr(struct athn_softc *sc)
1196 {
1197 struct ifnet *ifp = &sc->sc_if;
1198 int s;
1199
1200 s = splnet();
1201
1202 while (ar9003_tx_process(sc) == 0)
1203 continue;
1204
1205 if (!SIMPLEQ_EMPTY(&sc->sc_txbufs)) {
1206 ifp->if_flags &= ~IFF_OACTIVE;
1207 ifp->if_start(ifp); /* in softint */
1208 }
1209
1210 splx(s);
1211 }
1212
1213 #ifndef IEEE80211_STA_ONLY
1214 /*
1215 * Process Software Beacon Alert interrupts.
1216 */
1217 Static int
1218 ar9003_swba_intr(struct athn_softc *sc)
1219 {
1220 struct ieee80211com *ic = &sc->sc_ic;
1221 struct ifnet *ifp = &sc->sc_if;
1222 struct ieee80211_node *ni = ic->ic_bss;
1223 struct athn_tx_buf *bf = sc->sc_bcnbuf;
1224 struct ieee80211_frame *wh;
1225 struct ieee80211_beacon_offsets bo;
1226 struct ar_tx_desc *ds;
1227 struct mbuf *m;
1228 uint32_t sum;
1229 uint8_t ridx, hwrate;
1230 int error, totlen;
1231
1232 #if notyet
1233 if (ic->ic_tim_mcast_pending &&
1234 IF_IS_EMPTY(&ni->ni_savedq) &&
1235 SIMPLEQ_EMPTY(&sc->sc_txq[ATHN_QID_CAB].head))
1236 ic->ic_tim_mcast_pending = 0;
1237 #endif
1238 if (ic->ic_dtim_count == 0)
1239 ic->ic_dtim_count = ic->ic_dtim_period - 1;
1240 else
1241 ic->ic_dtim_count--;
1242
1243 /* Make sure previous beacon has been sent. */
1244 if (athn_tx_pending(sc, ATHN_QID_BEACON)) {
1245 DPRINTFN(DBG_INTR, sc, "beacon stuck\n");
1246 return EBUSY;
1247 }
1248 /* Get new beacon. */
1249 m = ieee80211_beacon_alloc(ic, ic->ic_bss, &bo);
1250 if (__predict_false(m == NULL))
1251 return ENOBUFS;
1252 /* Assign sequence number. */
1253 /* XXX: use non-QoS tid? */
1254 wh = mtod(m, struct ieee80211_frame *);
1255 *(uint16_t *)&wh->i_seq[0] =
1256 htole16(ic->ic_bss->ni_txseqs[0] << IEEE80211_SEQ_SEQ_SHIFT);
1257 ic->ic_bss->ni_txseqs[0]++;
1258
1259 /* Unmap and free old beacon if any. */
1260 if (__predict_true(bf->bf_m != NULL)) {
1261 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0,
1262 bf->bf_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
1263 bus_dmamap_unload(sc->sc_dmat, bf->bf_map);
1264 m_freem(bf->bf_m);
1265 bf->bf_m = NULL;
1266 }
1267 /* DMA map new beacon. */
1268 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
1269 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1270 if (__predict_false(error != 0)) {
1271 m_freem(m);
1272 return error;
1273 }
1274 bf->bf_m = m;
1275
1276 /* Setup Tx descriptor (simplified ar9003_tx()). */
1277 ds = bf->bf_descs;
1278 memset(ds, 0, sizeof(*ds));
1279
1280 ds->ds_info =
1281 SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) |
1282 SM(AR_TXI_DESC_NDWORDS, 23) |
1283 SM(AR_TXI_QCU_NUM, ATHN_QID_BEACON) |
1284 AR_TXI_DESC_TX | AR_TXI_CTRL_STAT;
1285
1286 totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1287 ds->ds_ctl11 = SM(AR_TXC11_FRAME_LEN, totlen);
1288 ds->ds_ctl11 |= SM(AR_TXC11_XMIT_POWER, AR_MAX_RATE_POWER);
1289 ds->ds_ctl12 = SM(AR_TXC12_FRAME_TYPE, AR_FRAME_TYPE_BEACON);
1290 ds->ds_ctl12 |= AR_TXC12_NO_ACK;
1291 ds->ds_ctl17 = SM(AR_TXC17_ENCR_TYPE, AR_ENCR_TYPE_CLEAR);
1292
1293 /* Write number of tries. */
1294 ds->ds_ctl13 = SM(AR_TXC13_XMIT_DATA_TRIES0, 1);
1295
1296 /* Write Tx rate. */
1297 ridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
1298 ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1;
1299 hwrate = athn_rates[ridx].hwrate;
1300 ds->ds_ctl14 = SM(AR_TXC14_XMIT_RATE0, hwrate);
1301
1302 /* Write Tx chains. */
1303 ds->ds_ctl18 = SM(AR_TXC18_CHAIN_SEL0, sc->sc_txchainmask);
1304
1305 ds->ds_segs[0].ds_data = bf->bf_map->dm_segs[0].ds_addr;
1306 /* Segment length must be a multiple of 4. */
1307 ds->ds_segs[0].ds_ctl |= SM(AR_TXC_BUF_LEN,
1308 (bf->bf_map->dm_segs[0].ds_len + 3) & ~3);
1309 /* Compute Tx descriptor checksum. */
1310 sum = ds->ds_info;
1311 sum += ds->ds_segs[0].ds_data;
1312 sum += ds->ds_segs[0].ds_ctl;
1313 sum = (sum >> 16) + (sum & 0xffff);
1314 ds->ds_ctl10 = SM(AR_TXC10_PTR_CHK_SUM, sum);
1315
1316 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
1317 BUS_DMASYNC_PREWRITE);
1318
1319 /* Stop Tx DMA before putting the new beacon on the queue. */
1320 athn_stop_tx_dma(sc, ATHN_QID_BEACON);
1321
1322 AR_WRITE(sc, AR_QTXDP(ATHN_QID_BEACON), bf->bf_daddr);
1323
1324 for(;;) {
1325 if (SIMPLEQ_EMPTY(&sc->sc_txbufs))
1326 break;
1327
1328 IF_DEQUEUE(&ni->ni_savedq, m);
1329 if (m == NULL)
1330 break;
1331 if (!IF_IS_EMPTY(&ni->ni_savedq)) {
1332 /* more queued frames, set the more data bit */
1333 wh = mtod(m, struct ieee80211_frame *);
1334 wh->i_fc[1] |= IEEE80211_FC1_MORE_DATA;
1335 }
1336
1337 if (sc->sc_ops.tx(sc, m, ni, ATHN_TXFLAG_CAB) != 0) {
1338 ieee80211_free_node(ni);
1339 ifp->if_oerrors++;
1340 break;
1341 }
1342 }
1343
1344 /* Kick Tx. */
1345 AR_WRITE(sc, AR_Q_TXE, 1 << ATHN_QID_BEACON);
1346 AR_WRITE_BARRIER(sc);
1347 return 0;
1348 }
1349 #endif
1350
1351 static int
1352 ar9003_get_intr_status(struct athn_softc *sc, uint32_t *intrp, uint32_t *syncp)
1353 {
1354 uint32_t intr, sync;
1355
1356 /* Get pending interrupts. */
1357 intr = AR_READ(sc, AR_INTR_ASYNC_CAUSE);
1358 if (!(intr & AR_INTR_MAC_IRQ) || intr == AR_INTR_SPURIOUS) {
1359 intr = AR_READ(sc, AR_INTR_SYNC_CAUSE);
1360 if (intr == AR_INTR_SPURIOUS || (intr & sc->sc_isync) == 0)
1361 return 0; /* Not for us. */
1362 }
1363
1364 if ((AR_READ(sc, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) &&
1365 (AR_READ(sc, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_ON)
1366 intr = AR_READ(sc, AR_ISR);
1367 else
1368 intr = 0;
1369 sync = AR_READ(sc, AR_INTR_SYNC_CAUSE) & sc->sc_isync;
1370 if (intr == 0 && sync == 0)
1371 return 0; /* Not for us. */
1372
1373 *intrp = intr;
1374 *syncp = sync;
1375 return 1;
1376 }
1377
1378 Static int
1379 ar9003_intr_status(struct athn_softc *sc)
1380 {
1381 uint32_t intr, sync;
1382
1383 return ar9003_get_intr_status(sc, &intr, &sync);
1384 }
1385
1386 Static int
1387 ar9003_intr(struct athn_softc *sc)
1388 {
1389 uint32_t intr, sync;
1390 #ifndef IEEE80211_STA_ONLY
1391 int s;
1392 #endif
1393
1394 if (!ar9003_get_intr_status(sc, &intr, &sync))
1395 return 0;
1396
1397 if (intr != 0) {
1398 if (intr & AR_ISR_BCNMISC) {
1399 uint32_t intr2 = AR_READ(sc, AR_ISR_S2);
1400 #ifdef notyet
1401 if (intr2 & AR_ISR_S2_TIM)
1402 /* TBD */;
1403 if (intr2 & AR_ISR_S2_TSFOOR)
1404 /* TBD */;
1405 if (intr2 & AR_ISR_S2_BB_WATCHDOG)
1406 /* TBD */;
1407 #else
1408 __USE(intr2);
1409 #endif
1410 }
1411 intr = AR_READ(sc, AR_ISR_RAC);
1412 if (intr == AR_INTR_SPURIOUS)
1413 return 1;
1414
1415 #ifndef IEEE80211_STA_ONLY
1416 if (intr & AR_ISR_SWBA) {
1417 s = splnet();
1418 ar9003_swba_intr(sc);
1419 splx(s);
1420 }
1421 #endif
1422 if (intr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
1423 ar9003_rx_intr(sc, ATHN_QID_LP);
1424 if (intr & (AR_ISR_LP_RXOK | AR_ISR_RXERR))
1425 ar9003_rx_intr(sc, ATHN_QID_LP);
1426 if (intr & AR_ISR_HP_RXOK)
1427 ar9003_rx_intr(sc, ATHN_QID_HP);
1428
1429 if (intr & (AR_ISR_TXMINTR | AR_ISR_TXINTM))
1430 ar9003_tx_intr(sc);
1431 if (intr & (AR_ISR_TXOK | AR_ISR_TXERR | AR_ISR_TXEOL))
1432 ar9003_tx_intr(sc);
1433
1434 if (intr & AR_ISR_GENTMR) {
1435 uint32_t intr5 = AR_READ(sc, AR_ISR_S5_S);
1436 #ifdef ATHN_DEBUG
1437 DPRINTFN(DBG_INTR, sc,
1438 "GENTMR trigger=%d thresh=%d\n",
1439 MS(intr5, AR_ISR_S5_GENTIMER_TRIG),
1440 MS(intr5, AR_ISR_S5_GENTIMER_THRESH));
1441 #else
1442 __USE(intr5);
1443 #endif
1444 }
1445 }
1446 if (sync != 0) {
1447 if (sync & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
1448 AR_WRITE(sc, AR_RC, AR_RC_HOSTIF);
1449 AR_WRITE(sc, AR_RC, 0);
1450 }
1451
1452 if ((sc->sc_flags & ATHN_FLAG_RFSILENT) &&
1453 (sync & AR_INTR_SYNC_GPIO_PIN(sc->sc_rfsilent_pin))) {
1454 pmf_event_inject(sc->sc_dev, PMFE_RADIO_OFF);
1455 return 1;
1456 }
1457
1458 AR_WRITE(sc, AR_INTR_SYNC_CAUSE, sync);
1459 (void)AR_READ(sc, AR_INTR_SYNC_CAUSE);
1460 }
1461 return 1;
1462 }
1463
1464 Static int
1465 ar9003_tx(struct athn_softc *sc, struct mbuf *m, struct ieee80211_node *ni,
1466 int txflags)
1467 {
1468 struct ieee80211com *ic = &sc->sc_ic;
1469 struct ieee80211_key *k = NULL;
1470 struct ieee80211_frame *wh;
1471 struct athn_series series[4];
1472 struct ar_tx_desc *ds;
1473 struct athn_txq *txq;
1474 struct athn_tx_buf *bf;
1475 struct athn_node *an = (void *)ni;
1476 struct mbuf *m1;
1477 uint32_t sum;
1478 uint16_t qos;
1479 uint8_t txpower, type, encrtype, ridx[4];
1480 int i, error, totlen, hasqos, qid;
1481
1482 /* Grab a Tx buffer from our global free list. */
1483 bf = SIMPLEQ_FIRST(&sc->sc_txbufs);
1484 KASSERT(bf != NULL);
1485
1486 /* Map 802.11 frame type to hardware frame type. */
1487 wh = mtod(m, struct ieee80211_frame *);
1488 if ((wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) ==
1489 IEEE80211_FC0_TYPE_MGT) {
1490 /* NB: Beacons do not use ar9003_tx(). */
1491 if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1492 IEEE80211_FC0_SUBTYPE_PROBE_RESP)
1493 type = AR_FRAME_TYPE_PROBE_RESP;
1494 else if ((wh->i_fc[0] & IEEE80211_FC0_SUBTYPE_MASK) ==
1495 IEEE80211_FC0_SUBTYPE_ATIM)
1496 type = AR_FRAME_TYPE_ATIM;
1497 else
1498 type = AR_FRAME_TYPE_NORMAL;
1499 }
1500 else if ((wh->i_fc[0] &
1501 (IEEE80211_FC0_TYPE_MASK | IEEE80211_FC0_SUBTYPE_MASK)) ==
1502 (IEEE80211_FC0_TYPE_CTL | IEEE80211_FC0_SUBTYPE_PS_POLL)) {
1503 type = AR_FRAME_TYPE_PSPOLL;
1504 }
1505 else
1506 type = AR_FRAME_TYPE_NORMAL;
1507
1508 if (wh->i_fc[1] & IEEE80211_FC1_PROTECTED) {
1509 k = ieee80211_crypto_encap(ic, ni, m);
1510 if (k == NULL)
1511 return ENOBUFS;
1512
1513 /* packet header may have moved, reset our local pointer */
1514 wh = mtod(m, struct ieee80211_frame *);
1515 }
1516
1517 /* XXX 2-byte padding for QoS and 4-addr headers. */
1518
1519 /* Select the HW Tx queue to use for this frame. */
1520 if ((hasqos = ieee80211_has_qos(wh))) {
1521 #ifdef notyet_edca
1522 uint8_t tid;
1523
1524 qos = ieee80211_get_qos(wh);
1525 tid = qos & IEEE80211_QOS_TID;
1526 qid = athn_ac2qid[ieee80211_up_to_ac(ic, tid)];
1527 #else
1528 qos = ieee80211_get_qos(wh);
1529 qid = ATHN_QID_AC_BE;
1530 #endif /* notyet_edca */
1531 }
1532 else if (type == AR_FRAME_TYPE_PSPOLL) {
1533 qos = 0;
1534 qid = ATHN_QID_PSPOLL;
1535 }
1536 else if (txflags & ATHN_TXFLAG_CAB) {
1537 qos = 0;
1538 qid = ATHN_QID_CAB;
1539 }
1540 else {
1541 qos = 0;
1542 qid = ATHN_QID_AC_BE;
1543 }
1544 txq = &sc->sc_txq[qid];
1545
1546 /* Select the transmit rates to use for this frame. */
1547 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1548 (wh->i_fc[0] & IEEE80211_FC0_TYPE_MASK) !=
1549 IEEE80211_FC0_TYPE_DATA) {
1550 /* Use lowest rate for all tries. */
1551 ridx[0] = ridx[1] = ridx[2] = ridx[3] =
1552 (ic->ic_curmode == IEEE80211_MODE_11A) ?
1553 ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK1;
1554 }
1555 else if (ic->ic_fixed_rate != -1) {
1556 /* Use same fixed rate for all tries. */
1557 ridx[0] = ridx[1] = ridx[2] = ridx[3] =
1558 sc->sc_fixed_ridx;
1559 }
1560 else {
1561 int txrate = ni->ni_txrate;
1562 /* Use fallback table of the node. */
1563 for (i = 0; i < 4; i++) {
1564 ridx[i] = an->ridx[txrate];
1565 txrate = an->fallback[txrate];
1566 }
1567 }
1568
1569 if (__predict_false(sc->sc_drvbpf != NULL)) {
1570 struct athn_tx_radiotap_header *tap = &sc->sc_txtap;
1571
1572 tap->wt_flags = 0;
1573 /* Use initial transmit rate. */
1574 tap->wt_rate = athn_rates[ridx[0]].rate;
1575 tap->wt_chan_freq = htole16(ic->ic_curchan->ic_freq);
1576 tap->wt_chan_flags = htole16(ic->ic_curchan->ic_flags);
1577 // XXX tap->wt_hwqueue = qid;
1578 if (ridx[0] != ATHN_RIDX_CCK1 &&
1579 (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1580 tap->wt_flags |= IEEE80211_RADIOTAP_F_SHORTPRE;
1581
1582 bpf_mtap2(sc->sc_drvbpf, tap, sc->sc_txtap_len, m);
1583 }
1584
1585 /* DMA map mbuf. */
1586 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
1587 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1588 if (__predict_false(error != 0)) {
1589 if (error != EFBIG) {
1590 aprint_error_dev(sc->sc_dev,
1591 "can't map mbuf (error %d)\n", error);
1592 m_freem(m);
1593 return error;
1594 }
1595 /*
1596 * DMA mapping requires too many DMA segments; linearize
1597 * mbuf in kernel virtual address space and retry.
1598 */
1599 MGETHDR(m1, M_DONTWAIT, MT_DATA);
1600 if (m1 == NULL) {
1601 m_freem(m);
1602 return ENOBUFS;
1603 }
1604 if (m->m_pkthdr.len > (int)MHLEN) {
1605 MCLGET(m1, M_DONTWAIT);
1606 if (!(m1->m_flags & M_EXT)) {
1607 m_freem(m);
1608 m_freem(m1);
1609 return ENOBUFS;
1610 }
1611 }
1612 m_copydata(m, 0, m->m_pkthdr.len, mtod(m1, void *));
1613 m1->m_pkthdr.len = m1->m_len = m->m_pkthdr.len;
1614 m_freem(m);
1615 m = m1;
1616
1617 error = bus_dmamap_load_mbuf(sc->sc_dmat, bf->bf_map, m,
1618 BUS_DMA_NOWAIT | BUS_DMA_WRITE);
1619 if (error != 0) {
1620 aprint_error_dev(sc->sc_dev,
1621 "can't map mbuf (error %d)\n", error);
1622 m_freem(m);
1623 return error;
1624 }
1625 }
1626 bf->bf_m = m;
1627 bf->bf_ni = ni;
1628 bf->bf_txflags = txflags;
1629
1630 wh = mtod(m, struct ieee80211_frame *);
1631
1632 totlen = m->m_pkthdr.len + IEEE80211_CRC_LEN;
1633
1634 /* Setup Tx descriptor. */
1635 ds = bf->bf_descs;
1636 memset(ds, 0, sizeof(*ds));
1637
1638 ds->ds_info =
1639 SM(AR_TXI_DESC_ID, AR_VENDOR_ATHEROS) |
1640 SM(AR_TXI_DESC_NDWORDS, 23) |
1641 SM(AR_TXI_QCU_NUM, qid) |
1642 AR_TXI_DESC_TX | AR_TXI_CTRL_STAT;
1643
1644 ds->ds_ctl11 = AR_TXC11_CLR_DEST_MASK;
1645 txpower = AR_MAX_RATE_POWER; /* Get from per-rate registers. */
1646 ds->ds_ctl11 |= SM(AR_TXC11_XMIT_POWER, txpower);
1647
1648 ds->ds_ctl12 = SM(AR_TXC12_FRAME_TYPE, type);
1649
1650 if (IEEE80211_IS_MULTICAST(wh->i_addr1) ||
1651 (hasqos && (qos & IEEE80211_QOS_ACKPOLICY_MASK) ==
1652 IEEE80211_QOS_ACKPOLICY_NOACK))
1653 ds->ds_ctl12 |= AR_TXC12_NO_ACK;
1654
1655 #if notyet
1656 if (0 && k != NULL) {
1657 uintptr_t entry;
1658
1659 /*
1660 * Map 802.11 cipher to hardware encryption type and
1661 * compute MIC+ICV overhead.
1662 */
1663 switch (k->k_cipher) {
1664 case IEEE80211_CIPHER_WEP40:
1665 case IEEE80211_CIPHER_WEP104:
1666 encrtype = AR_ENCR_TYPE_WEP;
1667 totlen += 4;
1668 break;
1669 case IEEE80211_CIPHER_TKIP:
1670 encrtype = AR_ENCR_TYPE_TKIP;
1671 totlen += 12;
1672 break;
1673 case IEEE80211_CIPHER_CCMP:
1674 encrtype = AR_ENCR_TYPE_AES;
1675 totlen += 8;
1676 break;
1677 default:
1678 panic("unsupported cipher");
1679 }
1680 /*
1681 * NB: The key cache entry index is stored in the key
1682 * private field when the key is installed.
1683 */
1684 entry = (uintptr_t)k->k_priv;
1685 ds->ds_ctl12 |= SM(AR_TXC12_DEST_IDX, entry);
1686 ds->ds_ctl11 |= AR_TXC11_DEST_IDX_VALID;
1687 }
1688 else
1689 #endif
1690 encrtype = AR_ENCR_TYPE_CLEAR;
1691 ds->ds_ctl17 = SM(AR_TXC17_ENCR_TYPE, encrtype);
1692
1693 /* Check if frame must be protected using RTS/CTS or CTS-to-self. */
1694 if (!IEEE80211_IS_MULTICAST(wh->i_addr1)) {
1695 /* NB: Group frames are sent using CCK in 802.11b/g. */
1696 if (totlen > ic->ic_rtsthreshold) {
1697 ds->ds_ctl11 |= AR_TXC11_RTS_ENABLE;
1698 }
1699 else if ((ic->ic_flags & IEEE80211_F_USEPROT) &&
1700 athn_rates[ridx[0]].phy == IEEE80211_T_OFDM) {
1701 if (ic->ic_protmode == IEEE80211_PROT_RTSCTS)
1702 ds->ds_ctl11 |= AR_TXC11_RTS_ENABLE;
1703 else if (ic->ic_protmode == IEEE80211_PROT_CTSONLY)
1704 ds->ds_ctl11 |= AR_TXC11_CTS_ENABLE;
1705 }
1706 }
1707 if (ds->ds_ctl11 & (AR_TXC11_RTS_ENABLE | AR_TXC11_CTS_ENABLE)) {
1708 /* Disable multi-rate retries when protection is used. */
1709 ridx[1] = ridx[2] = ridx[3] = ridx[0];
1710 }
1711 /* Setup multi-rate retries. */
1712 for (i = 0; i < 4; i++) {
1713 series[i].hwrate = athn_rates[ridx[i]].hwrate;
1714 if (athn_rates[ridx[i]].phy == IEEE80211_T_DS &&
1715 ridx[i] != ATHN_RIDX_CCK1 &&
1716 (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1717 series[i].hwrate |= 0x04;
1718 series[i].dur = 0;
1719 }
1720 if (!(ds->ds_ctl12 & AR_TXC12_NO_ACK)) {
1721 /* Compute duration for each series. */
1722 for (i = 0; i < 4; i++) {
1723 series[i].dur = athn_txtime(sc, IEEE80211_ACK_LEN,
1724 athn_rates[ridx[i]].rspridx, ic->ic_flags);
1725 }
1726 }
1727 /* If this is a PA training frame, select the Tx chain to use. */
1728 if (__predict_false(txflags & ATHN_TXFLAG_PAPRD)) {
1729 ds->ds_ctl12 |= SM(AR_TXC12_PAPRD_CHAIN_MASK,
1730 1 << sc->sc_paprd_curchain);
1731 }
1732
1733 /* Write number of tries for each series. */
1734 ds->ds_ctl13 =
1735 SM(AR_TXC13_XMIT_DATA_TRIES0, 2) |
1736 SM(AR_TXC13_XMIT_DATA_TRIES1, 2) |
1737 SM(AR_TXC13_XMIT_DATA_TRIES2, 2) |
1738 SM(AR_TXC13_XMIT_DATA_TRIES3, 4);
1739
1740 /* Tell HW to update duration field in 802.11 header. */
1741 if (type != AR_FRAME_TYPE_PSPOLL)
1742 ds->ds_ctl13 |= AR_TXC13_DUR_UPDATE_ENA;
1743
1744 /* Write Tx rate for each series. */
1745 ds->ds_ctl14 =
1746 SM(AR_TXC14_XMIT_RATE0, series[0].hwrate) |
1747 SM(AR_TXC14_XMIT_RATE1, series[1].hwrate) |
1748 SM(AR_TXC14_XMIT_RATE2, series[2].hwrate) |
1749 SM(AR_TXC14_XMIT_RATE3, series[3].hwrate);
1750
1751 /* Write duration for each series. */
1752 ds->ds_ctl15 =
1753 SM(AR_TXC15_PACKET_DUR0, series[0].dur) |
1754 SM(AR_TXC15_PACKET_DUR1, series[1].dur);
1755 ds->ds_ctl16 =
1756 SM(AR_TXC16_PACKET_DUR2, series[2].dur) |
1757 SM(AR_TXC16_PACKET_DUR3, series[3].dur);
1758
1759 if ((sc->sc_flags & ATHN_FLAG_3TREDUCE_CHAIN) &&
1760 ic->ic_curmode == IEEE80211_MODE_11A) {
1761 /*
1762 * In order to not exceed PCIe power requirements, we only
1763 * use two Tx chains for MCS0~15 on 5GHz band on these chips.
1764 */
1765 ds->ds_ctl18 =
1766 SM(AR_TXC18_CHAIN_SEL0,
1767 (ridx[0] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask) |
1768 SM(AR_TXC18_CHAIN_SEL1,
1769 (ridx[1] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask) |
1770 SM(AR_TXC18_CHAIN_SEL2,
1771 (ridx[2] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask) |
1772 SM(AR_TXC18_CHAIN_SEL3,
1773 (ridx[3] <= ATHN_RIDX_MCS15) ? 0x3 : sc->sc_txchainmask);
1774 }
1775 else {
1776 /* Use the same Tx chains for all tries. */
1777 ds->ds_ctl18 =
1778 SM(AR_TXC18_CHAIN_SEL0, sc->sc_txchainmask) |
1779 SM(AR_TXC18_CHAIN_SEL1, sc->sc_txchainmask) |
1780 SM(AR_TXC18_CHAIN_SEL2, sc->sc_txchainmask) |
1781 SM(AR_TXC18_CHAIN_SEL3, sc->sc_txchainmask);
1782 }
1783 #ifdef notyet
1784 #ifndef IEEE80211_NO_HT
1785 /* Use the same short GI setting for all tries. */
1786 if (ic->ic_flags & IEEE80211_F_SHGI)
1787 ds->ds_ctl18 |= AR_TXC18_GI0123;
1788 /* Use the same channel width for all tries. */
1789 if (ic->ic_flags & IEEE80211_F_CBW40)
1790 ds->ds_ctl18 |= AR_TXC18_2040_0123;
1791 #endif
1792 #endif
1793
1794 if (ds->ds_ctl11 & (AR_TXC11_RTS_ENABLE | AR_TXC11_CTS_ENABLE)) {
1795 uint8_t protridx, hwrate;
1796 uint16_t dur = 0;
1797
1798 /* Use the same protection mode for all tries. */
1799 if (ds->ds_ctl11 & AR_TXC11_RTS_ENABLE) {
1800 ds->ds_ctl15 |= AR_TXC15_RTSCTS_QUAL01;
1801 ds->ds_ctl16 |= AR_TXC16_RTSCTS_QUAL23;
1802 }
1803 /* Select protection rate (suboptimal but ok). */
1804 protridx = (ic->ic_curmode == IEEE80211_MODE_11A) ?
1805 ATHN_RIDX_OFDM6 : ATHN_RIDX_CCK2;
1806 if (ds->ds_ctl11 & AR_TXC11_RTS_ENABLE) {
1807 /* Account for CTS duration. */
1808 dur += athn_txtime(sc, IEEE80211_ACK_LEN,
1809 athn_rates[protridx].rspridx, ic->ic_flags);
1810 }
1811 dur += athn_txtime(sc, totlen, ridx[0], ic->ic_flags);
1812 if (!(ds->ds_ctl12 & AR_TXC12_NO_ACK)) {
1813 /* Account for ACK duration. */
1814 dur += athn_txtime(sc, IEEE80211_ACK_LEN,
1815 athn_rates[ridx[0]].rspridx, ic->ic_flags);
1816 }
1817 /* Write protection frame duration and rate. */
1818 ds->ds_ctl13 |= SM(AR_TXC13_BURST_DUR, dur);
1819 hwrate = athn_rates[protridx].hwrate;
1820 if (protridx == ATHN_RIDX_CCK2 &&
1821 (ic->ic_flags & IEEE80211_F_SHPREAMBLE))
1822 hwrate |= 0x04;
1823 ds->ds_ctl18 |= SM(AR_TXC18_RTSCTS_RATE, hwrate);
1824 }
1825
1826 ds->ds_ctl11 |= SM(AR_TXC11_FRAME_LEN, totlen);
1827 ds->ds_ctl19 = AR_TXC19_NOT_SOUNDING;
1828
1829 for (i = 0; i < bf->bf_map->dm_nsegs; i++) {
1830 ds->ds_segs[i].ds_data = bf->bf_map->dm_segs[i].ds_addr;
1831 ds->ds_segs[i].ds_ctl = SM(AR_TXC_BUF_LEN,
1832 bf->bf_map->dm_segs[i].ds_len);
1833 }
1834 /* Compute Tx descriptor checksum. */
1835 sum = ds->ds_info + ds->ds_link;
1836 for (i = 0; i < 4; i++) {
1837 sum += ds->ds_segs[i].ds_data;
1838 sum += ds->ds_segs[i].ds_ctl;
1839 }
1840 sum = (sum >> 16) + (sum & 0xffff);
1841 ds->ds_ctl10 = SM(AR_TXC10_PTR_CHK_SUM, sum);
1842
1843 bus_dmamap_sync(sc->sc_dmat, bf->bf_map, 0, bf->bf_map->dm_mapsize,
1844 BUS_DMASYNC_PREWRITE);
1845
1846 DPRINTFN(DBG_TX, sc,
1847 "Tx qid=%d nsegs=%d ctl11=0x%x ctl12=0x%x ctl14=0x%x\n",
1848 qid, bf->bf_map->dm_nsegs, ds->ds_ctl11, ds->ds_ctl12,
1849 ds->ds_ctl14);
1850
1851 SIMPLEQ_REMOVE_HEAD(&sc->sc_txbufs, bf_list);
1852 SIMPLEQ_INSERT_TAIL(&txq->head, bf, bf_list);
1853
1854 /* Queue buffer unless hardware FIFO is already full. */
1855 if (++txq->queued <= AR9003_TX_QDEPTH) {
1856 AR_WRITE(sc, AR_QTXDP(qid), bf->bf_daddr);
1857 AR_WRITE_BARRIER(sc);
1858 }
1859 else if (txq->wait == NULL)
1860 txq->wait = bf;
1861 return 0;
1862 }
1863
1864 Static void
1865 ar9003_set_rf_mode(struct athn_softc *sc, struct ieee80211_channel *c)
1866 {
1867 uint32_t reg;
1868
1869 reg = IEEE80211_IS_CHAN_2GHZ(c) ?
1870 AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1871 if (IEEE80211_IS_CHAN_5GHZ(c) &&
1872 (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)) {
1873 reg |= AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE;
1874 }
1875 AR_WRITE(sc, AR_PHY_MODE, reg);
1876 AR_WRITE_BARRIER(sc);
1877 }
1878
1879 static __inline uint32_t
1880 ar9003_synth_delay(struct athn_softc *sc)
1881 {
1882 uint32_t synth_delay;
1883
1884 synth_delay = MS(AR_READ(sc, AR_PHY_RX_DELAY), AR_PHY_RX_DELAY_DELAY);
1885 if (sc->sc_ic.ic_curmode == IEEE80211_MODE_11B)
1886 synth_delay = (synth_delay * 4) / 22;
1887 else
1888 synth_delay = synth_delay / 10; /* in 100ns steps */
1889 return synth_delay;
1890 }
1891
1892 Static int
1893 ar9003_rf_bus_request(struct athn_softc *sc)
1894 {
1895 int ntries;
1896
1897 /* Request RF Bus grant. */
1898 AR_WRITE(sc, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1899 for (ntries = 0; ntries < 10000; ntries++) {
1900 if (AR_READ(sc, AR_PHY_RFBUS_GRANT) & AR_PHY_RFBUS_GRANT_EN)
1901 return 0;
1902 DELAY(10);
1903 }
1904 DPRINTFN(DBG_RF, sc, "could not kill baseband Rx");
1905 return ETIMEDOUT;
1906 }
1907
1908 Static void
1909 ar9003_rf_bus_release(struct athn_softc *sc)
1910 {
1911 /* Wait for the synthesizer to settle. */
1912 DELAY(AR_BASE_PHY_ACTIVE_DELAY + ar9003_synth_delay(sc));
1913
1914 /* Release the RF Bus grant. */
1915 AR_WRITE(sc, AR_PHY_RFBUS_REQ, 0);
1916 AR_WRITE_BARRIER(sc);
1917 }
1918
1919 Static void
1920 ar9003_set_phy(struct athn_softc *sc, struct ieee80211_channel *c,
1921 struct ieee80211_channel *extc)
1922 {
1923 uint32_t phy;
1924
1925 phy = AR_READ(sc, AR_PHY_GEN_CTRL);
1926 phy |= AR_PHY_GC_HT_EN | AR_PHY_GC_SHORT_GI_40 |
1927 AR_PHY_GC_SINGLE_HT_LTF1 | AR_PHY_GC_WALSH;
1928 #ifndef IEEE80211_NO_HT
1929 if (extc != NULL) {
1930 phy |= AR_PHY_GC_DYN2040_EN;
1931 if (extc > c) /* XXX */
1932 phy |= AR_PHY_GC_DYN2040_PRI_CH;
1933 }
1934 #endif
1935 /* Turn off Green Field detection for now. */
1936 phy &= ~AR_PHY_GC_GF_DETECT_EN;
1937 AR_WRITE(sc, AR_PHY_GEN_CTRL, phy);
1938
1939 AR_WRITE(sc, AR_2040_MODE,
1940 (extc != NULL) ? AR_2040_JOINED_RX_CLEAR : 0);
1941
1942 /* Set global transmit timeout. */
1943 AR_WRITE(sc, AR_GTXTO, SM(AR_GTXTO_TIMEOUT_LIMIT, 25));
1944 /* Set carrier sense timeout. */
1945 AR_WRITE(sc, AR_CST, SM(AR_CST_TIMEOUT_LIMIT, 15));
1946 AR_WRITE_BARRIER(sc);
1947 }
1948
1949 Static void
1950 ar9003_set_delta_slope(struct athn_softc *sc, struct ieee80211_channel *c,
1951 struct ieee80211_channel *extc)
1952 {
1953 uint32_t coeff, exp, man, reg;
1954
1955 /* Set Delta Slope (exponent and mantissa). */
1956 coeff = (100 << 24) / c->ic_freq;
1957 athn_get_delta_slope(coeff, &exp, &man);
1958 DPRINTFN(DBG_RF, sc, "delta slope coeff exp=%u man=%u\n", exp, man);
1959
1960 reg = AR_READ(sc, AR_PHY_TIMING3);
1961 reg = RW(reg, AR_PHY_TIMING3_DSC_EXP, exp);
1962 reg = RW(reg, AR_PHY_TIMING3_DSC_MAN, man);
1963 AR_WRITE(sc, AR_PHY_TIMING3, reg);
1964
1965 /* For Short GI, coeff is 9/10 that of normal coeff. */
1966 coeff = (9 * coeff) / 10;
1967 athn_get_delta_slope(coeff, &exp, &man);
1968 DPRINTFN(DBG_RF, sc, "delta slope coeff exp=%u man=%u\n", exp, man);
1969
1970 reg = AR_READ(sc, AR_PHY_SGI_DELTA);
1971 reg = RW(reg, AR_PHY_SGI_DSC_EXP, exp);
1972 reg = RW(reg, AR_PHY_SGI_DSC_MAN, man);
1973 AR_WRITE(sc, AR_PHY_SGI_DELTA, reg);
1974 AR_WRITE_BARRIER(sc);
1975 }
1976
1977 Static void
1978 ar9003_enable_antenna_diversity(struct athn_softc *sc)
1979 {
1980 AR_SETBITS(sc, AR_PHY_CCK_DETECT,
1981 AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
1982 AR_WRITE_BARRIER(sc);
1983 }
1984
1985 Static void
1986 ar9003_init_baseband(struct athn_softc *sc)
1987 {
1988 uint32_t synth_delay;
1989
1990 synth_delay = ar9003_synth_delay(sc);
1991 /* Activate the PHY (includes baseband activate and synthesizer on). */
1992 AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
1993 AR_WRITE_BARRIER(sc);
1994 DELAY(AR_BASE_PHY_ACTIVE_DELAY + synth_delay);
1995 }
1996
1997 Static void
1998 ar9003_disable_phy(struct athn_softc *sc)
1999 {
2000 AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
2001 AR_WRITE_BARRIER(sc);
2002 }
2003
2004 Static void
2005 ar9003_init_chains(struct athn_softc *sc)
2006 {
2007 if (sc->sc_rxchainmask == 0x5 || sc->sc_txchainmask == 0x5)
2008 AR_SETBITS(sc, AR_PHY_ANALOG_SWAP, AR_PHY_SWAP_ALT_CHAIN);
2009
2010 /* Setup chain masks. */
2011 AR_WRITE(sc, AR_PHY_RX_CHAINMASK, sc->sc_rxchainmask);
2012 AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->sc_rxchainmask);
2013
2014 if (sc->sc_flags & ATHN_FLAG_3TREDUCE_CHAIN) {
2015 /*
2016 * All self-generated frames are sent using two Tx chains
2017 * on these chips to not exceed PCIe power requirements.
2018 */
2019 AR_WRITE(sc, AR_SELFGEN_MASK, 0x3);
2020 }
2021 else
2022 AR_WRITE(sc, AR_SELFGEN_MASK, sc->sc_txchainmask);
2023 AR_WRITE_BARRIER(sc);
2024 }
2025
2026 Static void
2027 ar9003_set_rxchains(struct athn_softc *sc)
2028 {
2029 if (sc->sc_rxchainmask == 0x3 || sc->sc_rxchainmask == 0x5) {
2030 AR_WRITE(sc, AR_PHY_RX_CHAINMASK, sc->sc_rxchainmask);
2031 AR_WRITE(sc, AR_PHY_CAL_CHAINMASK, sc->sc_rxchainmask);
2032 AR_WRITE_BARRIER(sc);
2033 }
2034 }
2035
2036 #ifdef notused
2037 Static void
2038 ar9003_read_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext)
2039 {
2040 /* Sign-extends 9-bit value (assumes upper bits are zeroes). */
2041 #define SIGN_EXT(v) (((v) ^ 0x100) - 0x100)
2042 uint32_t reg;
2043 int i;
2044
2045 for (i = 0; i < sc->sc_nrxchains; i++) {
2046 reg = AR_READ(sc, AR_PHY_CCA(i));
2047 nf[i] = MS(reg, AR_PHY_MINCCA_PWR);
2048 nf[i] = SIGN_EXT(nf[i]);
2049
2050 reg = AR_READ(sc, AR_PHY_EXT_CCA(i));
2051 nf_ext[i] = MS(reg, AR_PHY_EXT_MINCCA_PWR);
2052 nf_ext[i] = SIGN_EXT(nf_ext[i]);
2053 }
2054 #undef SIGN_EXT
2055 }
2056 #endif /* notused */
2057
2058 #ifdef notused
2059 Static void
2060 ar9003_write_noisefloor(struct athn_softc *sc, int16_t *nf, int16_t *nf_ext)
2061 {
2062 uint32_t reg;
2063 int i;
2064
2065 for (i = 0; i < sc->sc_nrxchains; i++) {
2066 reg = AR_READ(sc, AR_PHY_CCA(i));
2067 reg = RW(reg, AR_PHY_MAXCCA_PWR, nf[i]);
2068 AR_WRITE(sc, AR_PHY_CCA(i), reg);
2069
2070 reg = AR_READ(sc, AR_PHY_EXT_CCA(i));
2071 reg = RW(reg, AR_PHY_EXT_MAXCCA_PWR, nf_ext[i]);
2072 AR_WRITE(sc, AR_PHY_EXT_CCA(i), reg);
2073 }
2074 AR_WRITE_BARRIER(sc);
2075 }
2076 #endif /* notused */
2077
2078 #ifdef notused
2079 Static void
2080 ar9003_get_noisefloor(struct athn_softc *sc, struct ieee80211_channel *c)
2081 {
2082 int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS];
2083 int16_t cca_min, cca_max;
2084 int i;
2085
2086 if (AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF) {
2087 /* Noisefloor calibration not finished. */
2088 return;
2089 }
2090 /* Noisefloor calibration is finished. */
2091 ar9003_read_noisefloor(sc, nf, nf_ext);
2092
2093 if (IEEE80211_IS_CHAN_2GHZ(c)) {
2094 cca_min = sc->sc_cca_min_2g;
2095 cca_max = sc->sc_cca_max_2g;
2096 }
2097 else {
2098 cca_min = sc->sc_cca_min_5g;
2099 cca_max = sc->sc_cca_max_5g;
2100 }
2101 /* Update noisefloor history. */
2102 for (i = 0; i < sc->sc_nrxchains; i++) {
2103 if (nf[i] < cca_min)
2104 nf[i] = cca_min;
2105 else if (nf[i] > cca_max)
2106 nf[i] = cca_max;
2107 if (nf_ext[i] < cca_min)
2108 nf_ext[i] = cca_min;
2109 else if (nf_ext[i] > cca_max)
2110 nf_ext[i] = cca_max;
2111
2112 sc->sc_nf_hist[sc->sc_nf_hist_cur].nf[i] = nf[i];
2113 sc->sc_nf_hist[sc->sc_nf_hist_cur].nf_ext[i] = nf_ext[i];
2114 }
2115 if (++sc->sc_nf_hist_cur >= ATHN_NF_CAL_HIST_MAX)
2116 sc->sc_nf_hist_cur = 0;
2117 }
2118 #endif /* notused */
2119
2120 #ifdef notused
2121 Static void
2122 ar9003_bb_load_noisefloor(struct athn_softc *sc)
2123 {
2124 int16_t nf[AR_MAX_CHAINS], nf_ext[AR_MAX_CHAINS];
2125 int i, ntries;
2126
2127 /* Write filtered noisefloor values. */
2128 for (i = 0; i < sc->sc_nrxchains; i++) {
2129 nf[i] = sc->sc_nf_priv[i] * 2;
2130 nf_ext[i] = sc->sc_nf_ext_priv[i] * 2;
2131 }
2132 ar9003_write_noisefloor(sc, nf, nf_ext);
2133
2134 /* Load filtered noisefloor values into baseband. */
2135 AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
2136 AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
2137 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
2138 /* Wait for load to complete. */
2139 for (ntries = 0; ntries < 1000; ntries++) {
2140 if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) & AR_PHY_AGC_CONTROL_NF))
2141 break;
2142 DELAY(10);
2143 }
2144 if (ntries == 1000) {
2145 DPRINTFN(DBG_RF, sc, "failed to load noisefloor values\n");
2146 return;
2147 }
2148
2149 /* Restore noisefloor values to initial (max) values. */
2150 for (i = 0; i < AR_MAX_CHAINS; i++)
2151 nf[i] = nf_ext[i] = -50 * 2;
2152 ar9003_write_noisefloor(sc, nf, nf_ext);
2153 }
2154 #endif /* notused */
2155
2156 #ifdef notused
2157 Static void
2158 ar9300_noisefloor_calib(struct athn_softc *sc)
2159 {
2160
2161 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
2162 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
2163 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
2164 }
2165 #endif /* notused */
2166
2167 Static void
2168 ar9003_do_noisefloor_calib(struct athn_softc *sc)
2169 {
2170
2171 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);
2172 }
2173
2174 PUBLIC int
2175 ar9003_init_calib(struct athn_softc *sc)
2176 {
2177 uint8_t txchainmask, rxchainmask;
2178 uint32_t reg;
2179 int ntries;
2180
2181 /* Save chains masks. */
2182 txchainmask = sc->sc_txchainmask;
2183 rxchainmask = sc->sc_rxchainmask;
2184 /* Configure hardware before calibration. */
2185 if (AR_READ(sc, AR_ENT_OTP) & AR_ENT_OTP_CHAIN2_DISABLE)
2186 txchainmask = rxchainmask = 0x3;
2187 else
2188 txchainmask = rxchainmask = 0x7;
2189 ar9003_init_chains(sc);
2190
2191 /* Perform Tx IQ calibration. */
2192 ar9003_calib_tx_iq(sc);
2193 /* Disable and re-enable the PHY chips. */
2194 AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
2195 AR_WRITE_BARRIER(sc);
2196 DELAY(5);
2197 AR_WRITE(sc, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
2198
2199 /* Calibrate the AGC. */
2200 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL);
2201 /* Poll for offset calibration completion. */
2202 for (ntries = 0; ntries < 10000; ntries++) {
2203 reg = AR_READ(sc, AR_PHY_AGC_CONTROL);
2204 if (!(reg & AR_PHY_AGC_CONTROL_CAL))
2205 break;
2206 DELAY(10);
2207 }
2208 if (ntries == 10000)
2209 return ETIMEDOUT;
2210
2211 /* Restore chains masks. */
2212 sc->sc_txchainmask = txchainmask;
2213 sc->sc_rxchainmask = rxchainmask;
2214 ar9003_init_chains(sc);
2215
2216 return 0;
2217 }
2218
2219 Static void
2220 ar9003_do_calib(struct athn_softc *sc)
2221 {
2222 uint32_t reg;
2223
2224 if (sc->sc_cur_calib_mask & ATHN_CAL_IQ) {
2225 reg = AR_READ(sc, AR_PHY_TIMING4);
2226 reg = RW(reg, AR_PHY_TIMING4_IQCAL_LOG_COUNT_MAX, 10);
2227 AR_WRITE(sc, AR_PHY_TIMING4, reg);
2228 AR_WRITE(sc, AR_PHY_CALMODE, AR_PHY_CALMODE_IQ);
2229 AR_SETBITS(sc, AR_PHY_TIMING4, AR_PHY_TIMING4_DO_CAL);
2230 AR_WRITE_BARRIER(sc);
2231 }
2232 else if (sc->sc_cur_calib_mask & ATHN_CAL_TEMP) {
2233 AR_SETBITS(sc, AR_PHY_65NM_CH0_THERM,
2234 AR_PHY_65NM_CH0_THERM_LOCAL);
2235 AR_SETBITS(sc, AR_PHY_65NM_CH0_THERM,
2236 AR_PHY_65NM_CH0_THERM_START);
2237 AR_WRITE_BARRIER(sc);
2238 }
2239 }
2240
2241 Static void
2242 ar9003_next_calib(struct athn_softc *sc)
2243 {
2244 /* Check if we have any calibration in progress. */
2245 if (sc->sc_cur_calib_mask != 0) {
2246 if (!(AR_READ(sc, AR_PHY_TIMING4) & AR_PHY_TIMING4_DO_CAL)) {
2247 /* Calibration completed for current sample. */
2248 ar9003_calib_iq(sc);
2249 }
2250 }
2251 }
2252
2253 Static void
2254 ar9003_calib_iq(struct athn_softc *sc)
2255 {
2256 struct athn_iq_cal *cal;
2257 uint32_t reg, i_coff_denom, q_coff_denom;
2258 int32_t i_coff, q_coff;
2259 int i, iq_corr_neg;
2260
2261 for (i = 0; i < AR_MAX_CHAINS; i++) {
2262 cal = &sc->sc_calib.iq[i];
2263
2264 /* Read IQ calibration measures (clear on read). */
2265 cal->pwr_meas_i = AR_READ(sc, AR_PHY_IQ_ADC_MEAS_0_B(i));
2266 cal->pwr_meas_q = AR_READ(sc, AR_PHY_IQ_ADC_MEAS_1_B(i));
2267 cal->iq_corr_meas =
2268 (int32_t)AR_READ(sc, AR_PHY_IQ_ADC_MEAS_2_B(i));
2269 }
2270
2271 for (i = 0; i < sc->sc_nrxchains; i++) {
2272 cal = &sc->sc_calib.iq[i];
2273
2274 if (cal->pwr_meas_q == 0)
2275 continue;
2276
2277 if ((iq_corr_neg = cal->iq_corr_meas) < 0)
2278 cal->iq_corr_meas = -cal->iq_corr_meas;
2279
2280 i_coff_denom =
2281 (cal->pwr_meas_i / 2 + cal->pwr_meas_q / 2) / 256;
2282 q_coff_denom = cal->pwr_meas_q / 64;
2283
2284 if (i_coff_denom == 0 || q_coff_denom == 0)
2285 continue; /* Prevents division by zero. */
2286
2287 i_coff = cal->iq_corr_meas / i_coff_denom;
2288 q_coff = (cal->pwr_meas_i / q_coff_denom) - 64;
2289
2290 if (i_coff > 63)
2291 i_coff = 63;
2292 else if (i_coff < -63)
2293 i_coff = -63;
2294 /* Negate i_coff if iq_corr_meas is positive. */
2295 if (!iq_corr_neg)
2296 i_coff = -i_coff;
2297 if (q_coff > 63)
2298 q_coff = 63;
2299 else if (q_coff < -63)
2300 q_coff = -63;
2301
2302 DPRINTFN(DBG_RF, sc, "IQ calibration for chain %d\n", i);
2303 reg = AR_READ(sc, AR_PHY_RX_IQCAL_CORR_B(i));
2304 reg = RW(reg, AR_PHY_RX_IQCAL_CORR_IQCORR_Q_I_COFF, i_coff);
2305 reg = RW(reg, AR_PHY_RX_IQCAL_CORR_IQCORR_Q_Q_COFF, q_coff);
2306 AR_WRITE(sc, AR_PHY_RX_IQCAL_CORR_B(i), reg);
2307 }
2308
2309 /* Apply new settings. */
2310 AR_SETBITS(sc, AR_PHY_RX_IQCAL_CORR_B(0),
2311 AR_PHY_RX_IQCAL_CORR_IQCORR_ENABLE);
2312 AR_WRITE_BARRIER(sc);
2313
2314 /* IQ calibration done. */
2315 sc->sc_cur_calib_mask &= ~ATHN_CAL_IQ;
2316 memset(&sc->sc_calib, 0, sizeof(sc->sc_calib));
2317 }
2318
2319 #define DELPT 32
2320 Static int
2321 ar9003_get_iq_corr(struct athn_softc *sc, int32_t res[6], int32_t coeff[2])
2322 {
2323 /* Sign-extends 12-bit value (assumes upper bits are zeroes). */
2324 #define SIGN_EXT(v) (((v) ^ 0x800) - 0x800)
2325 #define SCALE (1 << 15)
2326 #define SHIFT (1 << 8)
2327 struct {
2328 int32_t m, p, c;
2329 } val[2][2];
2330 int32_t mag[2][2], phs[2][2], cos[2], sin[2];
2331 int32_t div, f1, f2, f3, m, p, c;
2332 int32_t txmag, txphs, rxmag, rxphs;
2333 int32_t q_coff, i_coff;
2334 int i, j;
2335
2336 /* Extract our twelve signed 12-bit values from res[] array. */
2337 val[0][0].m = res[0] & 0xfff;
2338 val[0][0].p = (res[0] >> 12) & 0xfff;
2339 val[0][0].c = ((res[0] >> 24) & 0xff) | (res[1] & 0xf) << 8;
2340
2341 val[0][1].m = (res[1] >> 4) & 0xfff;
2342 val[0][1].p = res[2] & 0xfff;
2343 val[0][1].c = (res[2] >> 12) & 0xfff;
2344
2345 val[1][0].m = ((res[2] >> 24) & 0xff) | (res[3] & 0xf) << 8;
2346 val[1][0].p = (res[3] >> 4) & 0xfff;
2347 val[1][0].c = res[4] & 0xfff;
2348
2349 val[1][1].m = (res[4] >> 12) & 0xfff;
2350 val[1][1].p = ((res[4] >> 24) & 0xff) | (res[5] & 0xf) << 8;
2351 val[1][1].c = (res[5] >> 4) & 0xfff;
2352
2353 for (i = 0; i < 2; i++) {
2354 int32_t ymin, ymax;
2355 for (j = 0; j < 2; j++) {
2356 m = SIGN_EXT(val[i][j].m);
2357 p = SIGN_EXT(val[i][j].p);
2358 c = SIGN_EXT(val[i][j].c);
2359
2360 if (p == 0)
2361 return 1; /* Prevent division by 0. */
2362
2363 mag[i][j] = (m * SCALE) / p;
2364 phs[i][j] = (c * SCALE) / p;
2365 }
2366 sin[i] = ((mag[i][0] - mag[i][1]) * SHIFT) / DELPT;
2367 cos[i] = ((phs[i][0] - phs[i][1]) * SHIFT) / DELPT;
2368 /* Find magnitude by approximation. */
2369 ymin = MIN(abs(sin[i]), abs(cos[i]));
2370 ymax = MAX(abs(sin[i]), abs(cos[i]));
2371 div = ymax - (ymax / 32) + (ymin / 8) + (ymin / 4);
2372 if (div == 0)
2373 return 1; /* Prevent division by 0. */
2374 /* Normalize sin and cos by magnitude. */
2375 sin[i] = (sin[i] * SCALE) / div;
2376 cos[i] = (cos[i] * SCALE) / div;
2377 }
2378
2379 /* Compute IQ mismatch (solve 4x4 linear equation). */
2380 f1 = cos[0] - cos[1];
2381 f3 = sin[0] - sin[1];
2382 f2 = (f1 * f1 + f3 * f3) / SCALE;
2383 if (f2 == 0)
2384 return 1; /* Prevent division by 0. */
2385
2386 /* Compute Tx magnitude mismatch. */
2387 txmag = (f1 * ( mag[0][0] - mag[1][0]) +
2388 f3 * ( phs[0][0] - phs[1][0])) / f2;
2389 /* Compute Tx phase mismatch. */
2390 txphs = (f3 * (-mag[0][0] + mag[1][0]) +
2391 f1 * ( phs[0][0] - phs[1][0])) / f2;
2392
2393 if (txmag == SCALE)
2394 return 1; /* Prevent division by 0. */
2395
2396 /* Compute Rx magnitude mismatch. */
2397 rxmag = mag[0][0] - (cos[0] * txmag + sin[0] * txphs) / SCALE;
2398 /* Compute Rx phase mismatch. */
2399 rxphs = phs[0][0] + (sin[0] * txmag - cos[0] * txphs) / SCALE;
2400
2401 if (-rxmag == SCALE)
2402 return 1; /* Prevent division by 0. */
2403
2404 txmag = (txmag * SCALE) / (SCALE - txmag);
2405 txphs = -txphs;
2406
2407 q_coff = (txmag * 128) / SCALE;
2408 if (q_coff < -63)
2409 q_coff = -63;
2410 else if (q_coff > 63)
2411 q_coff = 63;
2412 i_coff = (txphs * 256) / SCALE;
2413 if (i_coff < -63)
2414 i_coff = -63;
2415 else if (i_coff > 63)
2416 i_coff = 63;
2417 coeff[0] = q_coff * 128 + i_coff;
2418
2419 rxmag = (-rxmag * SCALE) / (SCALE + rxmag);
2420 rxphs = -rxphs;
2421
2422 q_coff = (rxmag * 128) / SCALE;
2423 if (q_coff < -63)
2424 q_coff = -63;
2425 else if (q_coff > 63)
2426 q_coff = 63;
2427 i_coff = (rxphs * 256) / SCALE;
2428 if (i_coff < -63)
2429 i_coff = -63;
2430 else if (i_coff > 63)
2431 i_coff = 63;
2432 coeff[1] = q_coff * 128 + i_coff;
2433
2434 return 0;
2435 #undef SHIFT
2436 #undef SCALE
2437 #undef SIGN_EXT
2438 }
2439
2440 Static int
2441 ar9003_calib_tx_iq(struct athn_softc *sc)
2442 {
2443 uint32_t reg;
2444 int32_t res[6], coeff[2];
2445 int i, j, ntries;
2446
2447 reg = AR_READ(sc, AR_PHY_TX_IQCAL_CONTROL_1);
2448 reg = RW(reg, AR_PHY_TX_IQCAQL_CONTROL_1_IQCORR_I_Q_COFF_DELPT, DELPT);
2449 AR_WRITE(sc, AR_PHY_TX_IQCAL_CONTROL_1, reg);
2450
2451 /* Start Tx IQ calibration. */
2452 AR_SETBITS(sc, AR_PHY_TX_IQCAL_START, AR_PHY_TX_IQCAL_START_DO_CAL);
2453 /* Wait for completion. */
2454 for (ntries = 0; ntries < 10000; ntries++) {
2455 reg = AR_READ(sc, AR_PHY_TX_IQCAL_START);
2456 if (!(reg & AR_PHY_TX_IQCAL_START_DO_CAL))
2457 break;
2458 DELAY(10);
2459 }
2460 if (ntries == 10000)
2461 return ETIMEDOUT;
2462
2463 for (i = 0; i < sc->sc_ntxchains; i++) {
2464 /* Read Tx IQ calibration status for this chain. */
2465 reg = AR_READ(sc, AR_PHY_TX_IQCAL_STATUS_B(i));
2466 if (reg & AR_PHY_TX_IQCAL_STATUS_FAILED)
2467 return EIO;
2468 /*
2469 * Read Tx IQ calibration results for this chain.
2470 * This consists in twelve signed 12-bit values.
2471 */
2472 for (j = 0; j < 3; j++) {
2473 AR_CLRBITS(sc, AR_PHY_CHAN_INFO_MEMORY,
2474 AR_PHY_CHAN_INFO_TAB_S2_READ);
2475 reg = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(i, j));
2476 res[j * 2 + 0] = reg;
2477
2478 AR_SETBITS(sc, AR_PHY_CHAN_INFO_MEMORY,
2479 AR_PHY_CHAN_INFO_TAB_S2_READ);
2480 reg = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(i, j));
2481 res[j * 2 + 1] = reg & 0xffff;
2482 }
2483
2484 /* Compute Tx IQ correction. */
2485 if (ar9003_get_iq_corr(sc, res, coeff) != 0)
2486 return EIO;
2487
2488 /* Write Tx IQ correction coefficients. */
2489 reg = AR_READ(sc, AR_PHY_TX_IQCAL_CORR_COEFF_01_B(i));
2490 reg = RW(reg, AR_PHY_TX_IQCAL_CORR_COEFF_01_COEFF_TABLE,
2491 coeff[0]);
2492 AR_WRITE(sc, AR_PHY_TX_IQCAL_CORR_COEFF_01_B(i), reg);
2493
2494 reg = AR_READ(sc, AR_PHY_RX_IQCAL_CORR_B(i));
2495 reg = RW(reg, AR_PHY_RX_IQCAL_CORR_LOOPBACK_IQCORR_Q_Q_COFF,
2496 coeff[1] >> 7);
2497 reg = RW(reg, AR_PHY_RX_IQCAL_CORR_LOOPBACK_IQCORR_Q_I_COFF,
2498 coeff[1]);
2499 AR_WRITE(sc, AR_PHY_RX_IQCAL_CORR_B(i), reg);
2500 AR_WRITE_BARRIER(sc);
2501 }
2502
2503 /* Enable Tx IQ correction. */
2504 AR_SETBITS(sc, AR_PHY_TX_IQCAL_CONTROL_3,
2505 AR_PHY_TX_IQCAL_CONTROL_3_IQCORR_EN);
2506 AR_SETBITS(sc, AR_PHY_RX_IQCAL_CORR_B(0),
2507 AR_PHY_RX_IQCAL_CORR_B0_LOOPBACK_IQCORR_EN);
2508 AR_WRITE_BARRIER(sc);
2509 return 0;
2510 }
2511 #undef DELPT
2512
2513 /*-
2514 * The power amplifier predistortion state machine works as follows:
2515 * 1) Disable digital predistorters for all Tx chains
2516 * 2) Repeat steps 3~7 for all Tx chains
2517 * 3) Force Tx gain to that of training signal
2518 * 4) Send training signal (asynchronous)
2519 * 5) Wait for training signal to complete (asynchronous)
2520 * 6) Read PA measurements (input power, output power, output phase)
2521 * 7) Compute the predistortion function that linearizes PA output
2522 * 8) Write predistortion functions to hardware tables for all Tx chains
2523 * 9) Enable digital predistorters for all Tx chains
2524 */
2525 #ifdef notused
2526 Static void
2527 ar9003_paprd_calib(struct athn_softc *sc, struct ieee80211_channel *c)
2528 {
2529 static const int scaling[] = {
2530 261376, 248079, 233759, 220464,
2531 208194, 196949, 185706, 175487
2532 };
2533 struct athn_ops *ops = &sc->sc_ops;
2534 uint32_t reg, ht20mask, ht40mask;
2535 int i;
2536
2537 /* Read PA predistortion masks from ROM. */
2538 ops->get_paprd_masks(sc, c, &ht20mask, &ht40mask);
2539
2540 /* AM-to-AM: amplifier's amplitude characteristic. */
2541 reg = AR_READ(sc, AR_PHY_PAPRD_AM2AM);
2542 reg = RW(reg, AR_PHY_PAPRD_AM2AM_MASK, ht20mask);
2543 AR_WRITE(sc, AR_PHY_PAPRD_AM2AM, reg);
2544
2545 /* AM-to-PM: amplifier's phase transfer characteristic. */
2546 reg = AR_READ(sc, AR_PHY_PAPRD_AM2PM);
2547 reg = RW(reg, AR_PHY_PAPRD_AM2PM_MASK, ht20mask);
2548 AR_WRITE(sc, AR_PHY_PAPRD_AM2PM, reg);
2549
2550 reg = AR_READ(sc, AR_PHY_PAPRD_HT40);
2551 reg = RW(reg, AR_PHY_PAPRD_HT40_MASK, ht40mask);
2552 AR_WRITE(sc, AR_PHY_PAPRD_HT40, reg);
2553
2554 for (i = 0; i < AR9003_MAX_CHAINS; i++) {
2555 AR_SETBITS(sc, AR_PHY_PAPRD_CTRL0_B(i),
2556 AR_PHY_PAPRD_CTRL0_USE_SINGLE_TABLE);
2557
2558 reg = AR_READ(sc, AR_PHY_PAPRD_CTRL1_B(i));
2559 reg = RW(reg, AR_PHY_PAPRD_CTRL1_PA_GAIN_SCALE_FACT, 181);
2560 reg = RW(reg, AR_PHY_PAPRD_CTRL1_MAG_SCALE_FACT, 361);
2561 reg &= ~AR_PHY_PAPRD_CTRL1_ADAPTIVE_SCALING_ENA;
2562 reg |= AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2AM_ENA;
2563 reg |= AR_PHY_PAPRD_CTRL1_ADAPTIVE_AM2PM_ENA;
2564 AR_WRITE(sc, AR_PHY_PAPRD_CTRL1_B(i), reg);
2565
2566 reg = AR_READ(sc, AR_PHY_PAPRD_CTRL0_B(i));
2567 reg = RW(reg, AR_PHY_PAPRD_CTRL0_PAPRD_MAG_THRSH, 3);
2568 AR_WRITE(sc, AR_PHY_PAPRD_CTRL0_B(i), reg);
2569 }
2570
2571 /* Disable all digital predistorters during calibration. */
2572 for (i = 0; i < AR9003_MAX_CHAINS; i++) {
2573 AR_CLRBITS(sc, AR_PHY_PAPRD_CTRL0_B(i),
2574 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE);
2575 }
2576 AR_WRITE_BARRIER(sc);
2577
2578 /*
2579 * Configure training signal.
2580 */
2581 reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL1);
2582 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL1_AGC2_SETTLING, 28);
2583 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL1_LB_SKIP, 0x30);
2584 reg &= ~AR_PHY_PAPRD_TRAINER_CNTL1_RX_BB_GAIN_FORCE;
2585 reg &= ~AR_PHY_PAPRD_TRAINER_CNTL1_IQCORR_ENABLE;
2586 reg |= AR_PHY_PAPRD_TRAINER_CNTL1_LB_ENABLE;
2587 reg |= AR_PHY_PAPRD_TRAINER_CNTL1_TX_GAIN_FORCE;
2588 reg |= AR_PHY_PAPRD_TRAINER_CNTL1_TRAIN_ENABLE;
2589 AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL1, reg);
2590
2591 AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL2, 147);
2592
2593 reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL3);
2594 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_FINE_CORR_LEN, 4);
2595 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_COARSE_CORR_LEN, 4);
2596 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_NUM_CORR_STAGES, 7);
2597 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_MIN_LOOPBACK_DEL, 1);
2598 if (AR_SREV_9485(sc))
2599 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_QUICK_DROP, -3);
2600 else
2601 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_QUICK_DROP, -6);
2602 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL3_ADC_DESIRED_SIZE, -15);
2603 reg |= AR_PHY_PAPRD_TRAINER_CNTL3_BBTXMIX_DISABLE;
2604 AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL3, reg);
2605
2606 reg = AR_READ(sc, AR_PHY_PAPRD_TRAINER_CNTL4);
2607 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_SAFETY_DELTA, 0);
2608 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_MIN_CORR, 400);
2609 reg = RW(reg, AR_PHY_PAPRD_TRAINER_CNTL4_NUM_TRAIN_SAMPLES, 100);
2610 AR_WRITE(sc, AR_PHY_PAPRD_TRAINER_CNTL4, reg);
2611
2612 for (i = 0; i < __arraycount(scaling); i++) {
2613 reg = AR_READ(sc, AR_PHY_PAPRD_PRE_POST_SCALE_B0(i));
2614 reg = RW(reg, AR_PHY_PAPRD_PRE_POST_SCALING, scaling[i]);
2615 AR_WRITE(sc, AR_PHY_PAPRD_PRE_POST_SCALE_B0(i), reg);
2616 }
2617
2618 /* Save Tx gain table. */
2619 for (i = 0; i < AR9003_TX_GAIN_TABLE_SIZE; i++)
2620 sc->sc_txgain[i] = AR_READ(sc, AR_PHY_TXGAIN_TABLE(i));
2621
2622 /* Set Tx power of training signal (use setting for MCS0). */
2623 sc->sc_trainpow = MS(AR_READ(sc, AR_PHY_PWRTX_RATE5),
2624 AR_PHY_PWRTX_RATE5_POWERTXHT20_0) - 4;
2625
2626 /*
2627 * Start PA predistortion calibration state machine.
2628 */
2629 /* Find first available Tx chain. */
2630 sc->sc_paprd_curchain = 0;
2631 while (!(sc->sc_txchainmask & (1 << sc->sc_paprd_curchain)))
2632 sc->sc_paprd_curchain++;
2633
2634 /* Make sure training done bit is clear. */
2635 AR_CLRBITS(sc, AR_PHY_PAPRD_TRAINER_STAT1,
2636 AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE);
2637 AR_WRITE_BARRIER(sc);
2638
2639 /* Transmit training signal. */
2640 ar9003_paprd_tx_tone(sc);
2641 }
2642 #endif /* notused */
2643
2644 Static int
2645 ar9003_get_desired_txgain(struct athn_softc *sc, int chain, int pow)
2646 {
2647 int32_t scale, atemp, avolt, tempcal, voltcal, temp, volt;
2648 int32_t tempcorr, voltcorr;
2649 uint32_t reg;
2650 int8_t delta;
2651
2652 scale = MS(AR_READ(sc, AR_PHY_TPC_12),
2653 AR_PHY_TPC_12_DESIRED_SCALE_HT40_5);
2654
2655 reg = AR_READ(sc, AR_PHY_TPC_19);
2656 atemp = MS(reg, AR_PHY_TPC_19_ALPHA_THERM);
2657 avolt = MS(reg, AR_PHY_TPC_19_ALPHA_VOLT);
2658
2659 reg = AR_READ(sc, AR_PHY_TPC_18);
2660 tempcal = MS(reg, AR_PHY_TPC_18_THERM_CAL);
2661 voltcal = MS(reg, AR_PHY_TPC_18_VOLT_CAL);
2662
2663 reg = AR_READ(sc, AR_PHY_BB_THERM_ADC_4);
2664 temp = MS(reg, AR_PHY_BB_THERM_ADC_4_LATEST_THERM);
2665 volt = MS(reg, AR_PHY_BB_THERM_ADC_4_LATEST_VOLT);
2666
2667 delta = (int8_t)MS(AR_READ(sc, AR_PHY_TPC_11_B(chain)),
2668 AR_PHY_TPC_11_OLPC_GAIN_DELTA);
2669
2670 /* Compute temperature and voltage correction. */
2671 tempcorr = (atemp * (temp - tempcal) + 128) / 256;
2672 voltcorr = (avolt * (volt - voltcal) + 64) / 128;
2673
2674 /* Compute desired Tx gain. */
2675 return pow - delta - tempcorr - voltcorr + scale;
2676 }
2677
2678 Static void
2679 ar9003_force_txgain(struct athn_softc *sc, uint32_t txgain)
2680 {
2681 uint32_t reg;
2682
2683 reg = AR_READ(sc, AR_PHY_TX_FORCED_GAIN);
2684 reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXBB1DBGAIN,
2685 MS(txgain, AR_PHY_TXGAIN_TXBB1DBGAIN));
2686 reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXBB6DBGAIN,
2687 MS(txgain, AR_PHY_TXGAIN_TXBB6DBGAIN));
2688 reg = RW(reg, AR_PHY_TX_FORCED_GAIN_TXMXRGAIN,
2689 MS(txgain, AR_PHY_TXGAIN_TXMXRGAIN));
2690 reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNA,
2691 MS(txgain, AR_PHY_TXGAIN_PADRVGNA));
2692 reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNB,
2693 MS(txgain, AR_PHY_TXGAIN_PADRVGNB));
2694 reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGNC,
2695 MS(txgain, AR_PHY_TXGAIN_PADRVGNC));
2696 reg = RW(reg, AR_PHY_TX_FORCED_GAIN_PADRVGND,
2697 MS(txgain, AR_PHY_TXGAIN_PADRVGND));
2698 reg &= ~AR_PHY_TX_FORCED_GAIN_ENABLE_PAL;
2699 reg &= ~AR_PHY_TX_FORCED_GAIN_FORCE_TX_GAIN;
2700 AR_WRITE(sc, AR_PHY_TX_FORCED_GAIN, reg);
2701
2702 reg = AR_READ(sc, AR_PHY_TPC_1);
2703 reg = RW(reg, AR_PHY_TPC_1_FORCED_DAC_GAIN, 0);
2704 reg &= ~AR_PHY_TPC_1_FORCE_DAC_GAIN;
2705 AR_WRITE(sc, AR_PHY_TPC_1, reg);
2706 AR_WRITE_BARRIER(sc);
2707 }
2708
2709 Static void
2710 ar9003_set_training_gain(struct athn_softc *sc, int chain)
2711 {
2712 size_t i;
2713 int gain;
2714
2715 /*
2716 * Get desired gain for training signal power (take into account
2717 * current temperature/voltage).
2718 */
2719 gain = ar9003_get_desired_txgain(sc, chain, sc->sc_trainpow);
2720 /* Find entry in table. */
2721 for (i = 0; i < AR9003_TX_GAIN_TABLE_SIZE - 1; i++)
2722 if ((int)MS(sc->sc_txgain[i], AR_PHY_TXGAIN_INDEX) >= gain)
2723 break;
2724 ar9003_force_txgain(sc, sc->sc_txgain[i]);
2725 }
2726
2727 Static int
2728 ar9003_paprd_tx_tone(struct athn_softc *sc)
2729 {
2730 #define TONE_LEN 1800
2731 struct ieee80211com *ic = &sc->sc_ic;
2732 struct ieee80211_frame *wh;
2733 struct ieee80211_node *ni;
2734 struct mbuf *m;
2735 int error;
2736
2737 /* Build a Null (no data) frame of TONE_LEN bytes. */
2738 m = MCLGETI(NULL, M_DONTWAIT, NULL, TONE_LEN);
2739 if (m == NULL)
2740 return ENOBUFS;
2741 memset(mtod(m, void *), 0, TONE_LEN);
2742 wh = mtod(m, struct ieee80211_frame *);
2743 wh->i_fc[0] = IEEE80211_FC0_TYPE_DATA | IEEE80211_FC0_SUBTYPE_NODATA;
2744 wh->i_fc[1] = IEEE80211_FC1_DIR_NODS;
2745 *(uint16_t *)wh->i_dur = htole16(10); /* XXX */
2746 IEEE80211_ADDR_COPY(wh->i_addr1, ic->ic_myaddr);
2747 IEEE80211_ADDR_COPY(wh->i_addr2, ic->ic_myaddr);
2748 IEEE80211_ADDR_COPY(wh->i_addr3, ic->ic_myaddr);
2749 m->m_pkthdr.len = m->m_len = TONE_LEN;
2750
2751 /* Set gain of training signal. */
2752 ar9003_set_training_gain(sc, sc->sc_paprd_curchain);
2753
2754 /* Transmit training signal. */
2755 ni = ieee80211_ref_node(ic->ic_bss);
2756 if ((error = ar9003_tx(sc, m, ni, ATHN_TXFLAG_PAPRD)) != 0)
2757 ieee80211_free_node(ni);
2758 return error;
2759 #undef TONE_LEN
2760 }
2761
2762 static __inline int
2763 get_scale(int val)
2764 {
2765 int log = 0;
2766
2767 /* Find the log base 2 (position of highest bit set). */
2768 while (val >>= 1)
2769 log++;
2770
2771 return (log > 10) ? log - 10 : 0;
2772 }
2773
2774 /*
2775 * Compute predistortion function to linearize power amplifier output based
2776 * on feedback from training signal.
2777 */
2778 Static int
2779 ar9003_compute_predistortion(struct athn_softc *sc, const uint32_t *lo,
2780 const uint32_t *hi)
2781 {
2782 #define NBINS 23
2783 int chain = sc->sc_paprd_curchain;
2784 int x[NBINS + 1], y[NBINS + 1], t[NBINS + 1];
2785 int b1[NBINS + 1], b2[NBINS + 1], xtilde[NBINS + 1];
2786 int nsamples, txsum, rxsum, rosum, maxidx;
2787 int order, order5x, order5xrem, order3x, order3xrem, y5, y3;
2788 int icept, G, I, L, M, angle, xnonlin, y2, y4, sumy2, sumy4;
2789 int alpha, beta, scale, Qalpha, Qbeta, Qscale, Qx, Qb1, Qb2;
2790 int tavg, ttilde, maxb1abs, maxb2abs, maxxtildeabs, in;
2791 int tmp, i;
2792
2793 /* Set values at origin. */
2794 x[0] = y[0] = t[0] = 0;
2795
2796 #define SCALE 32
2797 maxidx = 0;
2798 for (i = 0; i < NBINS; i++) {
2799 nsamples = lo[i] & 0xffff;
2800 /* Skip bins that contain 16 or less samples. */
2801 if (nsamples <= 16) {
2802 x[i + 1] = y[i + 1] = t[i + 1] = 0;
2803 continue;
2804 }
2805 txsum = (hi[i] & 0x7ff) << 16 | lo[i] >> 16;
2806 rxsum = (lo[i + NBINS] & 0xffff) << 5 |
2807 ((hi[i] >> 11) & 0x1f);
2808 rosum = (hi[i + NBINS] & 0x7ff) << 16 | hi[i + NBINS] >> 16;
2809 /* Sign-extend 27-bit value. */
2810 rosum = (rosum ^ 0x4000000) - 0x4000000;
2811
2812 txsum *= SCALE;
2813 rxsum *= SCALE;
2814 rosum *= SCALE;
2815
2816 x[i + 1] = ((txsum + nsamples) / nsamples + SCALE) / SCALE;
2817 y[i + 1] = ((rxsum + nsamples) / nsamples + SCALE) / SCALE +
2818 SCALE * maxidx + SCALE / 2;
2819 t[i + 1] = (rosum + nsamples) / nsamples;
2820 maxidx++;
2821 }
2822 #undef SCALE
2823
2824 #define SCALE_LOG 8
2825 #define SCALE (1 << SCALE_LOG)
2826 if (x[6] == x[3])
2827 return 1; /* Prevent division by 0. */
2828 G = ((y[6] - y[3]) * SCALE + (x[6] - x[3])) / (x[6] - x[3]);
2829 if (G == 0)
2830 return 1; /* Prevent division by 0. */
2831
2832 sc->sc_gain1[chain] = G; /* Save low signal gain. */
2833
2834 /* Find interception point. */
2835 icept = (G * (x[0] - x[3]) + SCALE) / SCALE + y[3];
2836 for (i = 0; i <= 3; i++) {
2837 y[i] = i * 32;
2838 x[i] = (y[i] * SCALE + G) / G;
2839 }
2840 for (i = 4; i <= maxidx; i++)
2841 y[i] -= icept;
2842
2843 xnonlin = x[maxidx] - (y[maxidx] * SCALE + G) / G;
2844 order = (xnonlin + y[maxidx]) / y[maxidx];
2845 if (order == 0)
2846 M = 10;
2847 else if (order == 1)
2848 M = 9;
2849 else
2850 M = 8;
2851
2852 I = (maxidx >= 16) ? 7 : maxidx / 2;
2853 L = maxidx - I;
2854
2855 sumy2 = sumy4 = y2 = y4 = 0;
2856 for (i = 0; i <= L; i++) {
2857 if (y[i + I] == 0)
2858 return 1; /* Prevent division by 0. */
2859
2860 xnonlin = x[i + I] - ((y[i + I] * SCALE) + G) / G;
2861 xtilde[i] = ((xnonlin << M) + y[i + I]) / y[i + I];
2862 xtilde[i] = ((xtilde[i] << M) + y[i + I]) / y[i + I];
2863 xtilde[i] = ((xtilde[i] << M) + y[i + I]) / y[i + I];
2864
2865 y2 = (y[i + I] * y[i + I] + SCALE * SCALE) / (SCALE * SCALE);
2866
2867 sumy2 += y2;
2868 sumy4 += y2 * y2;
2869
2870 b1[i] = y2 * (L + 1);
2871 b2[i] = y2;
2872 }
2873 for (i = 0; i <= L; i++) {
2874 b1[i] -= sumy2;
2875 b2[i] = sumy4 - sumy2 * b2[i];
2876 }
2877
2878 maxxtildeabs = maxb1abs = maxb2abs = 0;
2879 for (i = 0; i <= L; i++) {
2880 tmp = abs(xtilde[i]);
2881 if (tmp > maxxtildeabs)
2882 maxxtildeabs = tmp;
2883
2884 tmp = abs(b1[i]);
2885 if (tmp > maxb1abs)
2886 maxb1abs = tmp;
2887
2888 tmp = abs(b2[i]);
2889 if (tmp > maxb2abs)
2890 maxb2abs = tmp;
2891 }
2892 Qx = get_scale(maxxtildeabs);
2893 Qb1 = get_scale(maxb1abs);
2894 Qb2 = get_scale(maxb2abs);
2895 for (i = 0; i <= L; i++) {
2896 xtilde[i] /= 1 << Qx;
2897 b1[i] /= 1 << Qb1;
2898 b2[i] /= 1 << Qb2;
2899 }
2900
2901 alpha = beta = 0;
2902 for (i = 0; i <= L; i++) {
2903 alpha += b1[i] * xtilde[i];
2904 beta += b2[i] * xtilde[i];
2905 }
2906
2907 scale = ((y4 / SCALE_LOG) * (L + 1) -
2908 (y2 / SCALE_LOG) * sumy2) * SCALE_LOG;
2909
2910 Qscale = get_scale(abs(scale));
2911 scale /= 1 << Qscale;
2912 Qalpha = get_scale(abs(alpha));
2913 alpha /= 1 << Qalpha;
2914 Qbeta = get_scale(abs(beta));
2915 beta /= 1 << Qbeta;
2916
2917 order = 3 * M - Qx - Qb1 - Qbeta + 10 + Qscale;
2918 order5x = 1 << (order / 5);
2919 order5xrem = 1 << (order % 5);
2920
2921 order = 3 * M - Qx - Qb2 - Qalpha + 10 + Qscale;
2922 order3x = 1 << (order / 3);
2923 order3xrem = 1 << (order % 3);
2924
2925 for (i = 0; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) {
2926 tmp = i * 32;
2927
2928 /* Fifth order. */
2929 y5 = ((beta * tmp) / 64) / order5x;
2930 y5 = (y5 * tmp) / order5x;
2931 y5 = (y5 * tmp) / order5x;
2932 y5 = (y5 * tmp) / order5x;
2933 y5 = (y5 * tmp) / order5x;
2934 y5 = y5 / order5xrem;
2935
2936 /* Third oder. */
2937 y3 = (alpha * tmp) / order3x;
2938 y3 = (y3 * tmp) / order3x;
2939 y3 = (y3 * tmp) / order3x;
2940 y3 = y3 / order3xrem;
2941
2942 in = y5 + y3 + (SCALE * tmp) / G;
2943 if (i >= 2 && in < sc->sc_pa_in[chain][i - 1]) {
2944 in = sc->sc_pa_in[chain][i - 1] +
2945 (sc->sc_pa_in[chain][i - 1] -
2946 sc->sc_pa_in[chain][i - 2]);
2947 }
2948 if (in > 1400)
2949 in = 1400;
2950 sc->sc_pa_in[chain][i] = in;
2951 }
2952
2953 /* Compute average theta of first 5 bins (linear region). */
2954 tavg = 0;
2955 for (i = 1; i <= 5; i++)
2956 tavg += t[i];
2957 tavg /= 5;
2958 for (i = 1; i <= 5; i++)
2959 t[i] = 0;
2960 for (i = 6; i <= maxidx; i++)
2961 t[i] -= tavg;
2962
2963 alpha = beta = 0;
2964 for (i = 0; i <= L; i++) {
2965 ttilde = ((t[i + I] << M) + y[i + I]) / y[i + I];
2966 ttilde = ((ttilde << M) + y[i + I]) / y[i + I];
2967 ttilde = ((ttilde << M) + y[i + I]) / y[i + I];
2968
2969 alpha += b2[i] * ttilde;
2970 beta += b1[i] * ttilde;
2971 }
2972
2973 Qalpha = get_scale(abs(alpha));
2974 alpha /= 1 << Qalpha;
2975 Qbeta = get_scale(abs(beta));
2976 beta /= 1 << Qbeta;
2977
2978 order = 3 * M - Qx - Qb1 - Qbeta + 10 + Qscale + 5;
2979 order5x = 1 << (order / 5);
2980 order5xrem = 1 << (order % 5);
2981
2982 order = 3 * M - Qx - Qb2 - Qalpha + 10 + Qscale + 5;
2983 order3x = 1 << (order / 3);
2984 order3xrem = 1 << (order % 3);
2985
2986 for (i = 0; i <= 4; i++)
2987 sc->sc_angle[chain][i] = 0; /* Linear at that range. */
2988 for (i = 5; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) {
2989 tmp = i * 32;
2990
2991 /* Fifth order. */
2992 if (beta > 0)
2993 y5 = (((beta * tmp - 64) / 64) - order5x) / order5x;
2994 else
2995 y5 = (((beta * tmp - 64) / 64) + order5x) / order5x;
2996 y5 = (y5 * tmp) / order5x;
2997 y5 = (y5 * tmp) / order5x;
2998 y5 = (y5 * tmp) / order5x;
2999 y5 = (y5 * tmp) / order5x;
3000 y5 = y5 / order5xrem;
3001
3002 /* Third oder. */
3003 if (beta > 0) /* XXX alpha? */
3004 y3 = (alpha * tmp - order3x) / order3x;
3005 else
3006 y3 = (alpha * tmp + order3x) / order3x;
3007 y3 = (y3 * tmp) / order3x;
3008 y3 = (y3 * tmp) / order3x;
3009 y3 = y3 / order3xrem;
3010
3011 angle = y5 + y3;
3012 if (angle < -150)
3013 angle = -150;
3014 else if (angle > 150)
3015 angle = 150;
3016 sc->sc_angle[chain][i] = angle;
3017 }
3018 /* Angle for entry 4 is derived from angle for entry 5. */
3019 sc->sc_angle[chain][4] = (sc->sc_angle[chain][5] + 2) / 2;
3020
3021 return 0;
3022 #undef SCALE
3023 #undef SCALE_LOG
3024 #undef NBINS
3025 }
3026
3027 Static void
3028 ar9003_enable_predistorter(struct athn_softc *sc, int chain)
3029 {
3030 uint32_t reg;
3031 int i;
3032
3033 /* Write digital predistorter lookup table. */
3034 for (i = 0; i < AR9003_PAPRD_MEM_TAB_SIZE; i++) {
3035 AR_WRITE(sc, AR_PHY_PAPRD_MEM_TAB_B(chain, i),
3036 SM(AR_PHY_PAPRD_PA_IN, sc->sc_pa_in[chain][i]) |
3037 SM(AR_PHY_PAPRD_ANGLE, sc->sc_angle[chain][i]));
3038 }
3039
3040 reg = AR_READ(sc, AR_PHY_PA_GAIN123_B(chain));
3041 reg = RW(reg, AR_PHY_PA_GAIN123_PA_GAIN1, sc->sc_gain1[chain]);
3042 AR_WRITE(sc, AR_PHY_PA_GAIN123_B(chain), reg);
3043
3044 /* Indicate Tx power used for calibration (training signal). */
3045 reg = AR_READ(sc, AR_PHY_PAPRD_CTRL1_B(chain));
3046 reg = RW(reg, AR_PHY_PAPRD_CTRL1_POWER_AT_AM2AM_CAL, sc->sc_trainpow);
3047 AR_WRITE(sc, AR_PHY_PAPRD_CTRL1_B(chain), reg);
3048
3049 /* Enable digital predistorter for this chain. */
3050 AR_SETBITS(sc, AR_PHY_PAPRD_CTRL0_B(chain),
3051 AR_PHY_PAPRD_CTRL0_PAPRD_ENABLE);
3052 AR_WRITE_BARRIER(sc);
3053 }
3054
3055 Static void
3056 ar9003_paprd_enable(struct athn_softc *sc)
3057 {
3058 int i;
3059
3060 /* Enable digital predistorters for all Tx chains. */
3061 for (i = 0; i < AR9003_MAX_CHAINS; i++)
3062 if (sc->sc_txchainmask & (1 << i))
3063 ar9003_enable_predistorter(sc, i);
3064 }
3065
3066 /*
3067 * This function is called when our training signal has been sent.
3068 */
3069 Static void
3070 ar9003_paprd_tx_tone_done(struct athn_softc *sc)
3071 {
3072 uint32_t lo[48], hi[48];
3073 size_t i;
3074
3075 /* Make sure training is complete. */
3076 if (!(AR_READ(sc, AR_PHY_PAPRD_TRAINER_STAT1) &
3077 AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE))
3078 return;
3079
3080 /* Read feedback from training signal. */
3081 AR_CLRBITS(sc, AR_PHY_CHAN_INFO_MEMORY, AR_PHY_CHAN_INFO_TAB_S2_READ);
3082 for (i = 0; i < __arraycount(lo); i++)
3083 lo[i] = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(0, i));
3084 AR_SETBITS(sc, AR_PHY_CHAN_INFO_MEMORY, AR_PHY_CHAN_INFO_TAB_S2_READ);
3085 for (i = 0; i < __arraycount(hi); i++)
3086 hi[i] = AR_READ(sc, AR_PHY_CHAN_INFO_TAB(0, i));
3087
3088 AR_CLRBITS(sc, AR_PHY_PAPRD_TRAINER_STAT1,
3089 AR_PHY_PAPRD_TRAINER_STAT1_TRAIN_DONE);
3090
3091 /* Compute predistortion function based on this feedback. */
3092 if (ar9003_compute_predistortion(sc, lo, hi) != 0)
3093 return;
3094
3095 /* Get next available Tx chain. */
3096 while (++sc->sc_paprd_curchain < AR9003_MAX_CHAINS)
3097 if (sc->sc_txchainmask & (1 << sc->sc_paprd_curchain))
3098 break;
3099 if (sc->sc_paprd_curchain == AR9003_MAX_CHAINS) {
3100 /* All Tx chains measured; enable digital predistortion. */
3101 ar9003_paprd_enable(sc);
3102 }
3103 else /* Measure next Tx chain. */
3104 ar9003_paprd_tx_tone(sc);
3105 }
3106
3107 PUBLIC void
3108 ar9003_write_txpower(struct athn_softc *sc, int16_t power[ATHN_POWER_COUNT])
3109 {
3110
3111 /* Make sure forced gain is disabled. */
3112 AR_WRITE(sc, AR_PHY_TX_FORCED_GAIN, 0);
3113
3114 AR_WRITE(sc, AR_PHY_PWRTX_RATE1,
3115 (power[ATHN_POWER_OFDM18 ] & 0x3f) << 24 |
3116 (power[ATHN_POWER_OFDM12 ] & 0x3f) << 16 |
3117 (power[ATHN_POWER_OFDM9 ] & 0x3f) << 8 |
3118 (power[ATHN_POWER_OFDM6 ] & 0x3f));
3119 AR_WRITE(sc, AR_PHY_PWRTX_RATE2,
3120 (power[ATHN_POWER_OFDM54 ] & 0x3f) << 24 |
3121 (power[ATHN_POWER_OFDM48 ] & 0x3f) << 16 |
3122 (power[ATHN_POWER_OFDM36 ] & 0x3f) << 8 |
3123 (power[ATHN_POWER_OFDM24 ] & 0x3f));
3124 AR_WRITE(sc, AR_PHY_PWRTX_RATE3,
3125 (power[ATHN_POWER_CCK2_SP ] & 0x3f) << 24 |
3126 (power[ATHN_POWER_CCK2_LP ] & 0x3f) << 16 |
3127 /* NB: No eXtended Range for AR9003. */
3128 (power[ATHN_POWER_CCK1_LP ] & 0x3f));
3129 AR_WRITE(sc, AR_PHY_PWRTX_RATE4,
3130 (power[ATHN_POWER_CCK11_SP] & 0x3f) << 24 |
3131 (power[ATHN_POWER_CCK11_LP] & 0x3f) << 16 |
3132 (power[ATHN_POWER_CCK55_SP] & 0x3f) << 8 |
3133 (power[ATHN_POWER_CCK55_LP] & 0x3f));
3134 /*
3135 * NB: AR_PHY_PWRTX_RATE5 needs to be written even if HT is disabled
3136 * because it is read by PA predistortion functions.
3137 */
3138 AR_WRITE(sc, AR_PHY_PWRTX_RATE5,
3139 (power[ATHN_POWER_HT20( 5)] & 0x3f) << 24 |
3140 (power[ATHN_POWER_HT20( 4)] & 0x3f) << 16 |
3141 (power[ATHN_POWER_HT20( 1)] & 0x3f) << 8 |
3142 (power[ATHN_POWER_HT20( 0)] & 0x3f));
3143 #ifndef IEEE80211_NO_HT
3144 AR_WRITE(sc, AR_PHY_PWRTX_RATE6,
3145 (power[ATHN_POWER_HT20(13)] & 0x3f) << 24 |
3146 (power[ATHN_POWER_HT20(12)] & 0x3f) << 16 |
3147 (power[ATHN_POWER_HT20( 7)] & 0x3f) << 8 |
3148 (power[ATHN_POWER_HT20( 6)] & 0x3f));
3149 AR_WRITE(sc, AR_PHY_PWRTX_RATE7,
3150 (power[ATHN_POWER_HT40( 5)] & 0x3f) << 24 |
3151 (power[ATHN_POWER_HT40( 4)] & 0x3f) << 16 |
3152 (power[ATHN_POWER_HT40( 1)] & 0x3f) << 8 |
3153 (power[ATHN_POWER_HT40( 0)] & 0x3f));
3154 AR_WRITE(sc, AR_PHY_PWRTX_RATE8,
3155 (power[ATHN_POWER_HT40(13)] & 0x3f) << 24 |
3156 (power[ATHN_POWER_HT40(12)] & 0x3f) << 16 |
3157 (power[ATHN_POWER_HT40( 7)] & 0x3f) << 8 |
3158 (power[ATHN_POWER_HT40( 6)] & 0x3f));
3159 AR_WRITE(sc, AR_PHY_PWRTX_RATE10,
3160 (power[ATHN_POWER_HT20(21)] & 0x3f) << 24 |
3161 (power[ATHN_POWER_HT20(20)] & 0x3f) << 16 |
3162 (power[ATHN_POWER_HT20(15)] & 0x3f) << 8 |
3163 (power[ATHN_POWER_HT20(14)] & 0x3f));
3164 AR_WRITE(sc, AR_PHY_PWRTX_RATE11,
3165 (power[ATHN_POWER_HT40(23)] & 0x3f) << 24 |
3166 (power[ATHN_POWER_HT40(22)] & 0x3f) << 16 |
3167 (power[ATHN_POWER_HT20(23)] & 0x3f) << 8 |
3168 (power[ATHN_POWER_HT20(22)] & 0x3f));
3169 AR_WRITE(sc, AR_PHY_PWRTX_RATE12,
3170 (power[ATHN_POWER_HT40(21)] & 0x3f) << 24 |
3171 (power[ATHN_POWER_HT40(20)] & 0x3f) << 16 |
3172 (power[ATHN_POWER_HT40(15)] & 0x3f) << 8 |
3173 (power[ATHN_POWER_HT40(14)] & 0x3f));
3174 #endif
3175 AR_WRITE_BARRIER(sc);
3176 }
3177
3178 Static void
3179 ar9003_reset_rx_gain(struct athn_softc *sc, struct ieee80211_channel *c)
3180 {
3181 #define X(x) ((uint32_t)(x) << 2)
3182 const struct athn_gain *prog = sc->sc_rx_gain;
3183 const uint32_t *pvals;
3184 int i;
3185
3186 if (IEEE80211_IS_CHAN_2GHZ(c))
3187 pvals = prog->vals_2g;
3188 else
3189 pvals = prog->vals_5g;
3190 for (i = 0; i < prog->nregs; i++)
3191 AR_WRITE(sc, X(prog->regs[i]), pvals[i]);
3192 AR_WRITE_BARRIER(sc);
3193 #undef X
3194 }
3195
3196 Static void
3197 ar9003_reset_tx_gain(struct athn_softc *sc, struct ieee80211_channel *c)
3198 {
3199 #define X(x) ((uint32_t)(x) << 2)
3200 const struct athn_gain *prog = sc->sc_tx_gain;
3201 const uint32_t *pvals;
3202 int i;
3203
3204 if (IEEE80211_IS_CHAN_2GHZ(c))
3205 pvals = prog->vals_2g;
3206 else
3207 pvals = prog->vals_5g;
3208 for (i = 0; i < prog->nregs; i++)
3209 AR_WRITE(sc, X(prog->regs[i]), pvals[i]);
3210 AR_WRITE_BARRIER(sc);
3211 #undef X
3212 }
3213
3214 Static void
3215 ar9003_hw_init(struct athn_softc *sc, struct ieee80211_channel *c,
3216 struct ieee80211_channel *extc)
3217 {
3218 #define X(x) ((uint32_t)(x) << 2)
3219 struct athn_ops *ops = &sc->sc_ops;
3220 const struct athn_ini *ini = sc->sc_ini;
3221 const uint32_t *pvals;
3222 uint32_t reg;
3223 int i;
3224
3225 /*
3226 * The common init values include the pre and core phases for the
3227 * SoC, MAC, BB and Radio subsystems.
3228 */
3229 DPRINTFN(DBG_INIT, sc, "writing pre and core init vals\n");
3230 for (i = 0; i < ini->ncmregs; i++) {
3231 AR_WRITE(sc, X(ini->cmregs[i]), ini->cmvals[i]);
3232 if (AR_IS_ANALOG_REG(X(ini->cmregs[i])))
3233 DELAY(100);
3234 if ((i & 0x1f) == 0)
3235 DELAY(1);
3236 }
3237
3238 /*
3239 * The modal init values include the post phase for the SoC, MAC,
3240 * BB and Radio subsystems.
3241 */
3242 #ifndef IEEE80211_NO_HT
3243 if (extc != NULL) {
3244 if (IEEE80211_IS_CHAN_2GHZ(c))
3245 pvals = ini->vals_2g40;
3246 else
3247 pvals = ini->vals_5g40;
3248 }
3249 else
3250 #endif
3251 {
3252 if (IEEE80211_IS_CHAN_2GHZ(c))
3253 pvals = ini->vals_2g20;
3254 else
3255 pvals = ini->vals_5g20;
3256 }
3257 DPRINTFN(DBG_INIT, sc, "writing post init vals\n");
3258 for (i = 0; i < ini->nregs; i++) {
3259 AR_WRITE(sc, X(ini->regs[i]), pvals[i]);
3260 if (AR_IS_ANALOG_REG(X(ini->regs[i])))
3261 DELAY(100);
3262 if ((i & 0x1f) == 0)
3263 DELAY(1);
3264 }
3265
3266 if (sc->sc_rx_gain != NULL)
3267 ar9003_reset_rx_gain(sc, c);
3268 if (sc->sc_tx_gain != NULL)
3269 ar9003_reset_tx_gain(sc, c);
3270
3271 if (IEEE80211_IS_CHAN_5GHZ(c) &&
3272 (sc->sc_flags & ATHN_FLAG_FAST_PLL_CLOCK)) {
3273 /* Update modal values for fast PLL clock. */
3274 #ifndef IEEE80211_NO_HT
3275 if (extc != NULL)
3276 pvals = ini->fastvals_5g40;
3277 else
3278 #endif
3279 pvals = ini->fastvals_5g20;
3280 DPRINTFN(DBG_INIT, sc, "writing fast pll clock init vals\n");
3281 for (i = 0; i < ini->nfastregs; i++) {
3282 AR_WRITE(sc, X(ini->fastregs[i]), pvals[i]);
3283 if (AR_IS_ANALOG_REG(X(ini->fastregs[i])))
3284 DELAY(100);
3285 if ((i & 0x1f) == 0)
3286 DELAY(1);
3287 }
3288 }
3289
3290 /*
3291 * Set the RX_ABORT and RX_DIS bits to prevent frames with corrupted
3292 * descriptor status.
3293 */
3294 AR_SETBITS(sc, AR_DIAG_SW, AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT);
3295
3296 reg = AR_READ(sc, AR_PCU_MISC_MODE2);
3297 reg &= ~AR_PCU_MISC_MODE2_ADHOC_MCAST_KEYID_ENABLE;
3298 reg |= AR_PCU_MISC_MODE2_AGG_WEP_ENABLE_FIX;
3299 reg |= AR_PCU_MISC_MODE2_ENABLE_AGGWEP;
3300 AR_WRITE(sc, AR_PCU_MISC_MODE2, reg);
3301 AR_WRITE_BARRIER(sc);
3302
3303 ar9003_set_phy(sc, c, extc);
3304 ar9003_init_chains(sc);
3305
3306 ops->set_txpower(sc, c, extc);
3307 #undef X
3308 }
3309
3310 PUBLIC void
3311 ar9003_get_lg_tpow(struct athn_softc *sc, struct ieee80211_channel *c,
3312 uint8_t ctl, const uint8_t *fbins,
3313 const struct ar_cal_target_power_leg *tgt, int nchans, uint8_t tpow[4])
3314 {
3315 uint8_t fbin;
3316 int i, delta, lo, hi;
3317
3318 lo = hi = -1;
3319 fbin = athn_chan2fbin(c);
3320 for (i = 0; i < nchans; i++) {
3321 delta = fbin - fbins[i];
3322 /* Find the largest sample that is <= our frequency. */
3323 if (delta >= 0 && (lo == -1 || delta < fbin - fbins[lo]))
3324 lo = i;
3325 /* Find the smallest sample that is >= our frequency. */
3326 if (delta <= 0 && (hi == -1 || delta > fbin - fbins[hi]))
3327 hi = i;
3328 }
3329 if (lo == -1)
3330 lo = hi;
3331 else if (hi == -1)
3332 hi = lo;
3333 /* Interpolate values. */
3334 for (i = 0; i < 4; i++) {
3335 tpow[i] = athn_interpolate(fbin,
3336 fbins[lo], tgt[lo].tPow2x[i],
3337 fbins[hi], tgt[hi].tPow2x[i]);
3338 }
3339 /* XXX Apply conformance test limit. */
3340 }
3341
3342 PUBLIC void
3343 ar9003_get_ht_tpow(struct athn_softc *sc, struct ieee80211_channel *c,
3344 uint8_t ctl, const uint8_t *fbins,
3345 const struct ar_cal_target_power_ht *tgt, int nchans, uint8_t tpow[14])
3346 {
3347 uint8_t fbin;
3348 int i, delta, lo, hi;
3349
3350 lo = hi = -1;
3351 fbin = athn_chan2fbin(c);
3352 for (i = 0; i < nchans; i++) {
3353 delta = fbin - fbins[i];
3354 /* Find the largest sample that is <= our frequency. */
3355 if (delta >= 0 && (lo == -1 || delta < fbin - fbins[lo]))
3356 lo = i;
3357 /* Find the smallest sample that is >= our frequency. */
3358 if (delta <= 0 && (hi == -1 || delta > fbin - fbins[hi]))
3359 hi = i;
3360 }
3361 if (lo == -1)
3362 lo = hi;
3363 else if (hi == -1)
3364 hi = lo;
3365 /* Interpolate values. */
3366 for (i = 0; i < 14; i++) {
3367 tpow[i] = athn_interpolate(fbin,
3368 fbins[lo], tgt[lo].tPow2x[i],
3369 fbins[hi], tgt[hi].tPow2x[i]);
3370 }
3371 /* XXX Apply conformance test limit. */
3372 }
3373
3374 /*
3375 * Adaptive noise immunity.
3376 */
3377 Static void
3378 ar9003_set_noise_immunity_level(struct athn_softc *sc, int level)
3379 {
3380 int high = level == 4;
3381 uint32_t reg;
3382
3383 reg = AR_READ(sc, AR_PHY_DESIRED_SZ);
3384 reg = RW(reg, AR_PHY_DESIRED_SZ_TOT_DES, high ? -62 : -55);
3385 AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg);
3386
3387 reg = AR_READ(sc, AR_PHY_AGC);
3388 reg = RW(reg, AR_PHY_AGC_COARSE_LOW, high ? -70 : -64);
3389 reg = RW(reg, AR_PHY_AGC_COARSE_HIGH, high ? -12 : -14);
3390 AR_WRITE(sc, AR_PHY_AGC, reg);
3391
3392 reg = AR_READ(sc, AR_PHY_FIND_SIG);
3393 reg = RW(reg, AR_PHY_FIND_SIG_FIRPWR, high ? -80 : -78);
3394 AR_WRITE(sc, AR_PHY_FIND_SIG, reg);
3395 AR_WRITE_BARRIER(sc);
3396 }
3397
3398 Static void
3399 ar9003_enable_ofdm_weak_signal(struct athn_softc *sc)
3400 {
3401 uint32_t reg;
3402
3403 reg = AR_READ(sc, AR_PHY_SFCORR_LOW);
3404 reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 50);
3405 reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 40);
3406 reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 48);
3407 AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg);
3408
3409 reg = AR_READ(sc, AR_PHY_SFCORR);
3410 reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 77);
3411 reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 64);
3412 reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 16);
3413 AR_WRITE(sc, AR_PHY_SFCORR, reg);
3414
3415 reg = AR_READ(sc, AR_PHY_SFCORR_EXT);
3416 reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 50);
3417 reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 40);
3418 reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 77);
3419 reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 64);
3420 AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg);
3421
3422 AR_SETBITS(sc, AR_PHY_SFCORR_LOW,
3423 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
3424 AR_WRITE_BARRIER(sc);
3425 }
3426
3427 Static void
3428 ar9003_disable_ofdm_weak_signal(struct athn_softc *sc)
3429 {
3430 uint32_t reg;
3431
3432 reg = AR_READ(sc, AR_PHY_SFCORR_LOW);
3433 reg = RW(reg, AR_PHY_SFCORR_LOW_M1_THRESH_LOW, 127);
3434 reg = RW(reg, AR_PHY_SFCORR_LOW_M2_THRESH_LOW, 127);
3435 reg = RW(reg, AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW, 63);
3436 AR_WRITE(sc, AR_PHY_SFCORR_LOW, reg);
3437
3438 reg = AR_READ(sc, AR_PHY_SFCORR);
3439 reg = RW(reg, AR_PHY_SFCORR_M1_THRESH, 127);
3440 reg = RW(reg, AR_PHY_SFCORR_M2_THRESH, 127);
3441 reg = RW(reg, AR_PHY_SFCORR_M2COUNT_THR, 31);
3442 AR_WRITE(sc, AR_PHY_SFCORR, reg);
3443
3444 reg = AR_READ(sc, AR_PHY_SFCORR_EXT);
3445 reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH_LOW, 127);
3446 reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH_LOW, 127);
3447 reg = RW(reg, AR_PHY_SFCORR_EXT_M1_THRESH, 127);
3448 reg = RW(reg, AR_PHY_SFCORR_EXT_M2_THRESH, 127);
3449 AR_WRITE(sc, AR_PHY_SFCORR_EXT, reg);
3450
3451 AR_CLRBITS(sc, AR_PHY_SFCORR_LOW,
3452 AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
3453 AR_WRITE_BARRIER(sc);
3454 }
3455
3456 Static void
3457 ar9003_set_cck_weak_signal(struct athn_softc *sc, int high)
3458 {
3459 uint32_t reg;
3460
3461 reg = AR_READ(sc, AR_PHY_CCK_DETECT);
3462 reg = RW(reg, AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK, high ? 6 : 8);
3463 AR_WRITE(sc, AR_PHY_CCK_DETECT, reg);
3464 AR_WRITE_BARRIER(sc);
3465 }
3466
3467 Static void
3468 ar9003_set_firstep_level(struct athn_softc *sc, int level)
3469 {
3470 uint32_t reg;
3471
3472 reg = AR_READ(sc, AR_PHY_FIND_SIG);
3473 reg = RW(reg, AR_PHY_FIND_SIG_FIRSTEP, level * 4);
3474 AR_WRITE(sc, AR_PHY_FIND_SIG, reg);
3475 AR_WRITE_BARRIER(sc);
3476 }
3477
3478 Static void
3479 ar9003_set_spur_immunity_level(struct athn_softc *sc, int level)
3480 {
3481 uint32_t reg;
3482
3483 reg = AR_READ(sc, AR_PHY_TIMING5);
3484 reg = RW(reg, AR_PHY_TIMING5_CYCPWR_THR1, (level + 1) * 2);
3485 AR_WRITE(sc, AR_PHY_TIMING5, reg);
3486 AR_WRITE_BARRIER(sc);
3487 }
3488