1 /* $NetBSD: arn9285.c,v 1.5 2022/09/25 18:43:32 thorpej Exp $ */ 2 /* $OpenBSD: ar9285.c,v 1.19 2012/06/10 21:23:36 kettenis Exp $ */ 3 4 /*- 5 * Copyright (c) 2009-2010 Damien Bergamini <damien.bergamini (at) free.fr> 6 * Copyright (c) 2008-2010 Atheros Communications Inc. 7 * 8 * Permission to use, copy, modify, and/or distribute this software for any 9 * purpose with or without fee is hereby granted, provided that the above 10 * copyright notice and this permission notice appear in all copies. 11 * 12 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 13 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 14 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 15 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 16 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 17 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 18 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 19 */ 20 21 /* 22 * Driver for Atheros 802.11a/g/n chipsets. 23 * Routines for AR9285 and AR9271 chipsets. 24 */ 25 26 #include <sys/cdefs.h> 27 __KERNEL_RCSID(0, "$NetBSD: arn9285.c,v 1.5 2022/09/25 18:43:32 thorpej Exp $"); 28 29 #ifndef _MODULE 30 #include "athn_usb.h" 31 #endif 32 33 #include <sys/param.h> 34 #include <sys/sockio.h> 35 #include <sys/mbuf.h> 36 #include <sys/kernel.h> 37 #include <sys/socket.h> 38 #include <sys/systm.h> 39 #include <sys/queue.h> 40 #include <sys/callout.h> 41 #include <sys/conf.h> 42 #include <sys/device.h> 43 44 #include <sys/bus.h> 45 #include <sys/endian.h> 46 #include <sys/intr.h> 47 48 #include <net/bpf.h> 49 #include <net/if.h> 50 #include <net/if_arp.h> 51 #include <net/if_dl.h> 52 #include <net/if_ether.h> 53 #include <net/if_media.h> 54 #include <net/if_types.h> 55 56 #include <netinet/in.h> 57 #include <netinet/in_systm.h> 58 #include <netinet/in_var.h> 59 #include <netinet/ip.h> 60 61 #include <net80211/ieee80211_var.h> 62 #include <net80211/ieee80211_amrr.h> 63 #include <net80211/ieee80211_radiotap.h> 64 65 #include <dev/ic/athnreg.h> 66 #include <dev/ic/athnvar.h> 67 #include <dev/ic/arn9285.h> 68 69 #include <dev/ic/arn5008reg.h> 70 #include <dev/ic/arn9280reg.h> 71 #include <dev/ic/arn9285reg.h> 72 73 #include <dev/ic/arn5008.h> 74 #include <dev/ic/arn9280.h> 75 #include <dev/ic/arn9285.h> 76 77 #define Static static 78 79 Static int ar9285_cl_cal(struct athn_softc *, struct ieee80211_channel *, 80 struct ieee80211_channel *); 81 Static void ar9285_get_pdadcs(struct athn_softc *, 82 struct ieee80211_channel *, int, uint8_t, uint8_t *, 83 uint8_t *); 84 Static const struct ar_spur_chan * 85 ar9285_get_spur_chans(struct athn_softc *, int); 86 Static void ar9285_init_from_rom(struct athn_softc *, 87 struct ieee80211_channel *, struct ieee80211_channel *); 88 Static void ar9285_set_power_calib(struct athn_softc *, 89 struct ieee80211_channel *); 90 Static void ar9285_set_txpower(struct athn_softc *, 91 struct ieee80211_channel *, struct ieee80211_channel *); 92 Static void ar9285_setup(struct athn_softc *); 93 Static void ar9285_swap_rom(struct athn_softc *); 94 95 PUBLIC int 96 ar9285_attach(struct athn_softc *sc) 97 { 98 99 sc->sc_eep_base = AR9285_EEP_START_LOC; 100 sc->sc_eep_size = sizeof(struct ar9285_eeprom); 101 sc->sc_def_nf = AR9285_PHY_CCA_MAX_GOOD_VALUE; 102 sc->sc_ngpiopins = (sc->sc_flags & ATHN_FLAG_USB) ? 16 : 12; 103 sc->sc_led_pin = (sc->sc_flags & ATHN_FLAG_USB) ? 15 : 1; 104 sc->sc_workaround = AR9285_WA_DEFAULT; 105 sc->sc_ops.setup = ar9285_setup; 106 sc->sc_ops.swap_rom = ar9285_swap_rom; 107 sc->sc_ops.init_from_rom = ar9285_init_from_rom; 108 sc->sc_ops.set_txpower = ar9285_set_txpower; 109 sc->sc_ops.set_synth = ar9280_set_synth; 110 sc->sc_ops.spur_mitigate = ar9280_spur_mitigate; 111 sc->sc_ops.get_spur_chans = ar9285_get_spur_chans; 112 #if NATHN_USB > 0 113 if (AR_SREV_9271(sc)) 114 sc->sc_ini = &ar9271_ini; 115 else 116 #endif 117 sc->sc_ini = &ar9285_1_2_ini; 118 sc->sc_serdes = &ar9280_2_0_serdes; 119 120 return ar5008_attach(sc); 121 } 122 123 Static void 124 ar9285_setup(struct athn_softc *sc) 125 { 126 const struct ar9285_eeprom *eep = sc->sc_eep; 127 uint8_t type; 128 129 /* Select initialization values based on ROM. */ 130 type = eep->baseEepHeader.txGainType; 131 DPRINTFN(DBG_TX, sc, "Tx gain type=0x%x\n", type); 132 #if NATHN_USB > 0 133 if (AR_SREV_9271(sc)) { 134 if (type == AR_EEP_TXGAIN_HIGH_POWER) 135 sc->sc_tx_gain = &ar9271_tx_gain_high_power; 136 else 137 sc->sc_tx_gain = &ar9271_tx_gain; 138 } 139 else 140 #endif /* NATHN_USB */ 141 if ((AR_READ(sc, AR_AN_SYNTH9) & 0x7) == 0x1) { /* XE rev. */ 142 if (type == AR_EEP_TXGAIN_HIGH_POWER) 143 sc->sc_tx_gain = &ar9285_2_0_tx_gain_high_power; 144 else 145 sc->sc_tx_gain = &ar9285_2_0_tx_gain; 146 } 147 else { 148 if (type == AR_EEP_TXGAIN_HIGH_POWER) 149 sc->sc_tx_gain = &ar9285_1_2_tx_gain_high_power; 150 else 151 sc->sc_tx_gain = &ar9285_1_2_tx_gain; 152 } 153 } 154 155 Static void 156 ar9285_swap_rom(struct athn_softc *sc) 157 { 158 struct ar9285_eeprom *eep = sc->sc_eep; 159 int i; 160 161 eep->modalHeader.antCtrlCommon = 162 bswap32(eep->modalHeader.antCtrlCommon); 163 eep->modalHeader.antCtrlChain = 164 bswap32(eep->modalHeader.antCtrlChain); 165 166 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { 167 eep->modalHeader.spurChans[i].spurChan = 168 bswap16(eep->modalHeader.spurChans[i].spurChan); 169 } 170 } 171 172 Static const struct ar_spur_chan * 173 ar9285_get_spur_chans(struct athn_softc *sc, int is2ghz) 174 { 175 const struct ar9285_eeprom *eep = sc->sc_eep; 176 177 KASSERT(is2ghz); 178 return eep->modalHeader.spurChans; 179 } 180 181 Static void 182 ar9285_init_from_rom(struct athn_softc *sc, struct ieee80211_channel *c, 183 struct ieee80211_channel *extc) 184 { 185 const struct ar9285_eeprom *eep = sc->sc_eep; 186 const struct ar9285_modal_eep_header *modal = &eep->modalHeader; 187 uint32_t reg, offset = 0x1000; 188 uint8_t ob[5], db1[5], db2[5]; 189 uint8_t txRxAtten; 190 191 AR_WRITE(sc, AR_PHY_SWITCH_COM, modal->antCtrlCommon); 192 AR_WRITE(sc, AR_PHY_SWITCH_CHAIN_0, modal->antCtrlChain); 193 194 reg = AR_READ(sc, AR_PHY_TIMING_CTRL4_0); 195 reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF, modal->iqCalI); 196 reg = RW(reg, AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF, modal->iqCalQ); 197 AR_WRITE(sc, AR_PHY_TIMING_CTRL4_0, reg); 198 199 if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_3) { 200 reg = AR_READ(sc, AR_PHY_GAIN_2GHZ); 201 reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, 202 modal->bswMargin); 203 reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_DB, 204 modal->bswAtten); 205 reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, 206 modal->xatten2Margin); 207 reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_DB, 208 modal->xatten2Db); 209 AR_WRITE(sc, AR_PHY_GAIN_2GHZ, reg); 210 211 /* Duplicate values of chain 0 for chain 1. */ 212 reg = AR_READ(sc, AR_PHY_GAIN_2GHZ + offset); 213 reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, 214 modal->bswMargin); 215 reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN1_DB, 216 modal->bswAtten); 217 reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN, 218 modal->xatten2Margin); 219 reg = RW(reg, AR_PHY_GAIN_2GHZ_XATTEN2_DB, 220 modal->xatten2Db); 221 AR_WRITE(sc, AR_PHY_GAIN_2GHZ + offset, reg); 222 } 223 if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_3) 224 txRxAtten = modal->txRxAtten; 225 else /* Workaround for ROM versions < 14.3. */ 226 txRxAtten = 23; 227 reg = AR_READ(sc, AR_PHY_RXGAIN); 228 reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAtten); 229 reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_MARGIN, modal->rxTxMargin); 230 AR_WRITE(sc, AR_PHY_RXGAIN, reg); 231 232 /* Duplicate values of chain 0 for chain 1. */ 233 reg = AR_READ(sc, AR_PHY_RXGAIN + offset); 234 reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAtten); 235 reg = RW(reg, AR9280_PHY_RXGAIN_TXRX_MARGIN, modal->rxTxMargin); 236 AR_WRITE(sc, AR_PHY_RXGAIN + offset, reg); 237 238 if (modal->version >= 3) { 239 /* Setup antenna diversity from ROM. */ 240 reg = AR_READ(sc, AR_PHY_MULTICHAIN_GAIN_CTL); 241 reg = RW(reg, AR9285_PHY_ANT_DIV_CTL_ALL, 0); 242 reg = RW(reg, AR9285_PHY_ANT_DIV_CTL, 243 (modal->ob_234 >> 12) & 0x1); 244 reg = RW(reg, AR9285_PHY_ANT_DIV_ALT_LNACONF, 245 (modal->db1_234 >> 12) & 0x3); 246 reg = RW(reg, AR9285_PHY_ANT_DIV_MAIN_LNACONF, 247 (modal->db1_234 >> 14) & 0x3); 248 reg = RW(reg, AR9285_PHY_ANT_DIV_ALT_GAINTB, 249 (modal->ob_234 >> 13) & 0x1); 250 reg = RW(reg, AR9285_PHY_ANT_DIV_MAIN_GAINTB, 251 (modal->ob_234 >> 14) & 0x1); 252 AR_WRITE(sc, AR_PHY_MULTICHAIN_GAIN_CTL, reg); 253 reg = AR_READ(sc, AR_PHY_MULTICHAIN_GAIN_CTL); /* Flush. */ 254 255 reg = AR_READ(sc, AR_PHY_CCK_DETECT); 256 if (modal->ob_234 & (1 << 15)) 257 reg |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV; 258 else 259 reg &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV; 260 AR_WRITE(sc, AR_PHY_CCK_DETECT, reg); 261 reg = AR_READ(sc, AR_PHY_CCK_DETECT); /* Flush. */ 262 } 263 if (modal->version >= 2) { 264 ob [0] = (modal->ob_01 >> 0) & 0xf; 265 ob [1] = (modal->ob_01 >> 4) & 0xf; 266 ob [2] = (modal->ob_234 >> 0) & 0xf; 267 ob [3] = (modal->ob_234 >> 4) & 0xf; 268 ob [4] = (modal->ob_234 >> 8) & 0xf; 269 270 db1[0] = (modal->db1_01 >> 0) & 0xf; 271 db1[1] = (modal->db1_01 >> 4) & 0xf; 272 db1[2] = (modal->db1_234 >> 0) & 0xf; 273 db1[3] = (modal->db1_234 >> 4) & 0xf; 274 db1[4] = (modal->db1_234 >> 8) & 0xf; 275 276 db2[0] = (modal->db2_01 >> 0) & 0xf; 277 db2[1] = (modal->db2_01 >> 4) & 0xf; 278 db2[2] = (modal->db2_234 >> 0) & 0xf; 279 db2[3] = (modal->db2_234 >> 4) & 0xf; 280 db2[4] = (modal->db2_234 >> 8) & 0xf; 281 282 } 283 else if (modal->version == 1) { 284 ob [0] = (modal->ob_01 >> 0) & 0xf; 285 ob [1] = (modal->ob_01 >> 4) & 0xf; 286 /* Field ob_234 does not exist, use ob_01. */ 287 ob [2] = ob [3] = ob [4] = ob [1]; 288 289 db1[0] = (modal->db1_01 >> 0) & 0xf; 290 db1[1] = (modal->db1_01 >> 4) & 0xf; 291 /* Field db1_234 does not exist, use db1_01. */ 292 db1[2] = db1[3] = db1[4] = db1[1]; 293 294 db2[0] = (modal->db2_01 >> 0) & 0xf; 295 db2[1] = (modal->db2_01 >> 4) & 0xf; 296 /* Field db2_234 does not exist, use db2_01. */ 297 db2[2] = db2[3] = db2[4] = db2[1]; 298 299 } 300 else { 301 ob [0] = modal->ob_01; 302 ob [1] = ob [2] = ob [3] = ob [4] = ob [0]; 303 304 db1[0] = modal->db1_01; 305 db1[1] = db1[2] = db1[3] = db1[4] = db1[0]; 306 307 /* Field db2_01 does not exist, use db1_01. */ 308 db2[0] = modal->db1_01; 309 db2[1] = db2[2] = db2[3] = db2[4] = db2[0]; 310 } 311 #if NATHN_USB > 0 312 if (AR_SREV_9271(sc)) { 313 reg = AR_READ(sc, AR9285_AN_RF2G3); 314 reg = RW(reg, AR9271_AN_RF2G3_OB_CCK, ob [0]); 315 reg = RW(reg, AR9271_AN_RF2G3_OB_PSK, ob [1]); 316 reg = RW(reg, AR9271_AN_RF2G3_OB_QAM, ob [2]); 317 reg = RW(reg, AR9271_AN_RF2G3_DB1, db1[0]); 318 AR_WRITE(sc, AR9285_AN_RF2G3, reg); 319 AR_WRITE_BARRIER(sc); 320 DELAY(100); 321 reg = AR_READ(sc, AR9285_AN_RF2G4); 322 reg = RW(reg, AR9271_AN_RF2G4_DB2, (uint32_t)db2[0]); 323 AR_WRITE(sc, AR9285_AN_RF2G4, reg); 324 AR_WRITE_BARRIER(sc); 325 DELAY(100); 326 } 327 else 328 #endif /* ATHN_USB */ 329 { 330 reg = AR_READ(sc, AR9285_AN_RF2G3); 331 reg = RW(reg, AR9285_AN_RF2G3_OB_0, ob [0]); 332 reg = RW(reg, AR9285_AN_RF2G3_OB_1, ob [1]); 333 reg = RW(reg, AR9285_AN_RF2G3_OB_2, ob [2]); 334 reg = RW(reg, AR9285_AN_RF2G3_OB_3, ob [3]); 335 reg = RW(reg, AR9285_AN_RF2G3_OB_4, ob [4]); 336 reg = RW(reg, AR9285_AN_RF2G3_DB1_0, db1[0]); 337 reg = RW(reg, AR9285_AN_RF2G3_DB1_1, db1[1]); 338 reg = RW(reg, AR9285_AN_RF2G3_DB1_2, db1[2]); 339 AR_WRITE(sc, AR9285_AN_RF2G3, reg); 340 AR_WRITE_BARRIER(sc); 341 DELAY(100); 342 reg = AR_READ(sc, AR9285_AN_RF2G4); 343 reg = RW(reg, AR9285_AN_RF2G4_DB1_3, db1[3]); 344 reg = RW(reg, AR9285_AN_RF2G4_DB1_4, db1[4]); 345 reg = RW(reg, AR9285_AN_RF2G4_DB2_0, db2[0]); 346 reg = RW(reg, AR9285_AN_RF2G4_DB2_1, db2[1]); 347 reg = RW(reg, AR9285_AN_RF2G4_DB2_2, db2[2]); 348 reg = RW(reg, AR9285_AN_RF2G4_DB2_3, db2[3]); 349 reg = RW(reg, AR9285_AN_RF2G4_DB2_4, db2[4]); 350 AR_WRITE(sc, AR9285_AN_RF2G4, reg); 351 AR_WRITE_BARRIER(sc); 352 DELAY(100); 353 } 354 355 reg = AR_READ(sc, AR_PHY_SETTLING); 356 reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->switchSettling); 357 AR_WRITE(sc, AR_PHY_SETTLING, reg); 358 359 reg = AR_READ(sc, AR_PHY_DESIRED_SZ); 360 reg = RW(reg, AR_PHY_DESIRED_SZ_ADC, modal->adcDesiredSize); 361 AR_WRITE(sc, AR_PHY_DESIRED_SZ, reg); 362 363 reg = SM(AR_PHY_RF_CTL4_TX_END_XPAA_OFF, modal->txEndToXpaOff); 364 reg |= SM(AR_PHY_RF_CTL4_TX_END_XPAB_OFF, modal->txEndToXpaOff); 365 reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAA_ON, modal->txFrameToXpaOn); 366 reg |= SM(AR_PHY_RF_CTL4_FRAME_XPAB_ON, modal->txFrameToXpaOn); 367 AR_WRITE(sc, AR_PHY_RF_CTL4, reg); 368 369 reg = AR_READ(sc, AR_PHY_RF_CTL3); 370 reg = RW(reg, AR_PHY_TX_END_TO_A2_RX_ON, modal->txEndToRxOn); 371 AR_WRITE(sc, AR_PHY_RF_CTL3, reg); 372 373 reg = AR_READ(sc, AR_PHY_CCA(0)); 374 reg = RW(reg, AR9280_PHY_CCA_THRESH62, modal->thresh62); 375 AR_WRITE(sc, AR_PHY_CCA(0), reg); 376 377 reg = AR_READ(sc, AR_PHY_EXT_CCA0); 378 reg = RW(reg, AR_PHY_EXT_CCA0_THRESH62, modal->thresh62); 379 AR_WRITE(sc, AR_PHY_EXT_CCA0, reg); 380 381 if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_2) { 382 reg = AR_READ(sc, AR_PHY_RF_CTL2); 383 reg = RW(reg, AR_PHY_TX_END_PA_ON, 384 modal->txFrameToPaOn); 385 reg = RW(reg, AR_PHY_TX_END_DATA_START, 386 modal->txFrameToDataStart); 387 AR_WRITE(sc, AR_PHY_RF_CTL2, reg); 388 } 389 #ifndef IEEE80211_NO_HT 390 if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_3 && extc != NULL) { 391 reg = AR_READ(sc, AR_PHY_SETTLING); 392 reg = RW(reg, AR_PHY_SETTLING_SWITCH, modal->swSettleHt40); 393 AR_WRITE(sc, AR_PHY_SETTLING, reg); 394 } 395 #endif 396 AR_WRITE_BARRIER(sc); 397 } 398 399 PUBLIC void 400 ar9285_pa_calib(struct athn_softc *sc) 401 { 402 /* List of registers that need to be saved/restored. */ 403 static const uint16_t regs[] = { 404 AR9285_AN_TOP3, 405 AR9285_AN_RXTXBB1, 406 AR9285_AN_RF2G1, 407 AR9285_AN_RF2G2, 408 AR9285_AN_TOP2, 409 AR9285_AN_RF2G8, 410 AR9285_AN_RF2G7 411 }; 412 uint32_t svg[7], reg, ccomp_svg; 413 size_t i; 414 415 /* No PA calibration needed for high power solutions. */ 416 if (AR_SREV_9285(sc) && 417 ((struct ar9285_base_eep_header *)sc->sc_eep)->txGainType == 418 AR_EEP_TXGAIN_HIGH_POWER) /* XXX AR9287? */ 419 return; 420 421 /* Save registers. */ 422 for (i = 0; i < __arraycount(regs); i++) 423 svg[i] = AR_READ(sc, regs[i]); 424 425 AR_CLRBITS(sc, AR9285_AN_RF2G6, 1); 426 AR_SETBITS(sc, AR_PHY(2), 1 << 27); 427 428 AR_SETBITS(sc, AR9285_AN_TOP3, AR9285_AN_TOP3_PWDDAC); 429 AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDRXTXBB1); 430 AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDV2I); 431 AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDDACIF); 432 AR_CLRBITS(sc, AR9285_AN_RF2G2, AR9285_AN_RF2G2_OFFCAL); 433 AR_CLRBITS(sc, AR9285_AN_RF2G7, AR9285_AN_RF2G7_PWDDB); 434 AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_ENPACAL); 435 /* Power down PA drivers. */ 436 AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV1); 437 AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV2); 438 AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPAOUT); 439 440 reg = AR_READ(sc, AR9285_AN_RF2G8); 441 reg = RW(reg, AR9285_AN_RF2G8_PADRVGN2TAB0, 7); 442 AR_WRITE(sc, AR9285_AN_RF2G8, reg); 443 444 reg = AR_READ(sc, AR9285_AN_RF2G7); 445 reg = RW(reg, AR9285_AN_RF2G7_PADRVGN2TAB0, 0); 446 AR_WRITE(sc, AR9285_AN_RF2G7, reg); 447 448 reg = AR_READ(sc, AR9285_AN_RF2G6); 449 /* Save compensation capacitor value. */ 450 ccomp_svg = MS(reg, AR9285_AN_RF2G6_CCOMP); 451 /* Program compensation capacitor for dynamic PA. */ 452 reg = RW(reg, AR9285_AN_RF2G6_CCOMP, 0xf); 453 AR_WRITE(sc, AR9285_AN_RF2G6, reg); 454 455 AR_WRITE(sc, AR9285_AN_TOP2, AR9285_AN_TOP2_DEFAULT); 456 AR_WRITE_BARRIER(sc); 457 DELAY(30); 458 459 /* Clear offsets 6-1. */ 460 AR_CLRBITS(sc, AR9285_AN_RF2G6, AR9285_AN_RF2G6_OFFS_6_1); 461 /* Clear offset 0. */ 462 AR_CLRBITS(sc, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP); 463 /* Set offsets 6-1. */ 464 for (i = 6; i >= 1; i--) { 465 AR_SETBITS(sc, AR9285_AN_RF2G6, AR9285_AN_RF2G6_OFFS(i)); 466 AR_WRITE_BARRIER(sc); 467 DELAY(1); 468 if (AR_READ(sc, AR9285_AN_RF2G9) & AR9285_AN_RXTXBB1_SPARE9) { 469 AR_SETBITS(sc, AR9285_AN_RF2G6, 470 AR9285_AN_RF2G6_OFFS(i)); 471 } 472 else { 473 AR_CLRBITS(sc, AR9285_AN_RF2G6, 474 AR9285_AN_RF2G6_OFFS(i)); 475 } 476 } 477 /* Set offset 0. */ 478 AR_SETBITS(sc, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP); 479 AR_WRITE_BARRIER(sc); 480 DELAY(1); 481 if (AR_READ(sc, AR9285_AN_RF2G9) & AR9285_AN_RXTXBB1_SPARE9) 482 AR_SETBITS(sc, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP); 483 else 484 AR_CLRBITS(sc, AR9285_AN_RF2G3, AR9285_AN_RF2G3_PDVCCOMP); 485 486 AR_WRITE_BARRIER(sc); 487 488 AR_SETBITS(sc, AR9285_AN_RF2G6, 1); 489 AR_CLRBITS(sc, AR_PHY(2), 1 << 27); 490 491 /* Restore registers. */ 492 for (i = 0; i < __arraycount(regs); i++) 493 AR_WRITE(sc, regs[i], svg[i]); 494 495 /* Restore compensation capacitor value. */ 496 reg = AR_READ(sc, AR9285_AN_RF2G6); 497 reg = RW(reg, AR9285_AN_RF2G6_CCOMP, ccomp_svg); 498 AR_WRITE(sc, AR9285_AN_RF2G6, reg); 499 AR_WRITE_BARRIER(sc); 500 } 501 502 PUBLIC void 503 ar9271_pa_calib(struct athn_softc *sc) 504 { 505 #if NATHN_USB > 0 506 /* List of registers that need to be saved/restored. */ 507 static const uint16_t regs[] = { 508 AR9285_AN_TOP3, 509 AR9285_AN_RXTXBB1, 510 AR9285_AN_RF2G1, 511 AR9285_AN_RF2G2, 512 AR9285_AN_TOP2, 513 AR9285_AN_RF2G8, 514 AR9285_AN_RF2G7 515 }; 516 uint32_t svg[7], reg, rf2g3_svg; 517 size_t i; 518 519 /* Save registers. */ 520 for (i = 0; i < __arraycount(regs); i++) 521 svg[i] = AR_READ(sc, regs[i]); 522 523 AR_CLRBITS(sc, AR9285_AN_RF2G6, 1); 524 AR_SETBITS(sc, AR_PHY(2), 1 << 27); 525 526 AR_SETBITS(sc, AR9285_AN_TOP3, AR9285_AN_TOP3_PWDDAC); 527 AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDRXTXBB1); 528 AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDV2I); 529 AR_SETBITS(sc, AR9285_AN_RXTXBB1, AR9285_AN_RXTXBB1_PDDACIF); 530 AR_CLRBITS(sc, AR9285_AN_RF2G2, AR9285_AN_RF2G2_OFFCAL); 531 AR_CLRBITS(sc, AR9285_AN_RF2G7, AR9285_AN_RF2G7_PWDDB); 532 AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_ENPACAL); 533 /* Power down PA drivers. */ 534 AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV1); 535 AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPADRV2); 536 AR_CLRBITS(sc, AR9285_AN_RF2G1, AR9285_AN_RF2G1_PDPAOUT); 537 538 reg = AR_READ(sc, AR9285_AN_RF2G8); 539 reg = RW(reg, AR9285_AN_RF2G8_PADRVGN2TAB0, 7); 540 AR_WRITE(sc, AR9285_AN_RF2G8, reg); 541 542 reg = AR_READ(sc, AR9285_AN_RF2G7); 543 reg = RW(reg, AR9285_AN_RF2G7_PADRVGN2TAB0, 0); 544 AR_WRITE(sc, AR9285_AN_RF2G7, reg); 545 546 /* Save compensation capacitor value. */ 547 reg = rf2g3_svg = AR_READ(sc, AR9285_AN_RF2G3); 548 /* Program compensation capacitor for dynamic PA. */ 549 reg = RW(reg, AR9271_AN_RF2G3_CCOMP, 0xfff); 550 AR_WRITE(sc, AR9285_AN_RF2G3, reg); 551 552 AR_WRITE(sc, AR9285_AN_TOP2, AR9285_AN_TOP2_DEFAULT); 553 AR_WRITE_BARRIER(sc); 554 DELAY(30); 555 556 /* Clear offsets 6-0. */ 557 AR_CLRBITS(sc, AR9285_AN_RF2G6, AR9271_AN_RF2G6_OFFS_6_0); 558 /* Set offsets 6-1. */ 559 for (i = 6; i >= 1; i--) { 560 reg = AR_READ(sc, AR9285_AN_RF2G6); 561 reg |= AR9271_AN_RF2G6_OFFS(i); 562 AR_WRITE(sc, AR9285_AN_RF2G6, reg); 563 AR_WRITE_BARRIER(sc); 564 DELAY(1); 565 if (!(AR_READ(sc, AR9285_AN_RF2G9) & AR9285_AN_RXTXBB1_SPARE9)) 566 reg &= ~AR9271_AN_RF2G6_OFFS(i); 567 AR_WRITE(sc, AR9285_AN_RF2G6, reg); 568 } 569 AR_WRITE_BARRIER(sc); 570 571 AR_SETBITS(sc, AR9285_AN_RF2G6, 1); 572 AR_CLRBITS(sc, AR_PHY(2), 1 << 27); 573 574 /* Restore registers. */ 575 for (i = 0; i < __arraycount(regs); i++) 576 AR_WRITE(sc, regs[i], svg[i]); 577 578 /* Restore compensation capacitor value. */ 579 AR_WRITE(sc, AR9285_AN_RF2G3, rf2g3_svg); 580 AR_WRITE_BARRIER(sc); 581 #endif /* NATHN_USB */ 582 } 583 584 /* 585 * Carrier Leakage Calibration. 586 */ 587 int 588 ar9285_cl_cal(struct athn_softc *sc, struct ieee80211_channel *c, 589 struct ieee80211_channel *extc) 590 { 591 int ntries; 592 593 AR_SETBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE); 594 #ifndef IEEE80211_NO_HT 595 if (0 && extc == NULL) { /* XXX IS_CHAN_HT20!! */ 596 AR_SETBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_PARALLEL_CAL_ENABLE); 597 AR_SETBITS(sc, AR_PHY_TURBO, AR_PHY_FC_DYN2040_EN); 598 AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, 599 AR_PHY_AGC_CONTROL_FLTR_CAL); 600 AR_CLRBITS(sc, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_CAL_ENABLE); 601 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL); 602 for (ntries = 0; ntries < 10000; ntries++) { 603 if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) & 604 AR_PHY_AGC_CONTROL_CAL)) 605 break; 606 DELAY(10); 607 } 608 if (ntries == 10000) 609 return ETIMEDOUT; 610 AR_CLRBITS(sc, AR_PHY_TURBO, AR_PHY_FC_DYN2040_EN); 611 AR_CLRBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_PARALLEL_CAL_ENABLE); 612 AR_CLRBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE); 613 } 614 #endif 615 AR_CLRBITS(sc, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC); 616 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL); 617 AR_SETBITS(sc, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_CAL_ENABLE); 618 AR_SETBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_CAL); 619 for (ntries = 0; ntries < 10000; ntries++) { 620 if (!(AR_READ(sc, AR_PHY_AGC_CONTROL) & 621 AR_PHY_AGC_CONTROL_CAL)) 622 break; 623 DELAY(10); 624 } 625 if (ntries == 10000) 626 return ETIMEDOUT; 627 AR_SETBITS(sc, AR_PHY_ADC_CTL, AR_PHY_ADC_CTL_OFF_PWDADC); 628 AR_CLRBITS(sc, AR_PHY_CL_CAL_CTL, AR_PHY_CL_CAL_ENABLE); 629 AR_CLRBITS(sc, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_FLTR_CAL); 630 AR_WRITE_BARRIER(sc); 631 return 0; 632 } 633 634 PUBLIC void 635 ar9271_load_ani(struct athn_softc *sc) 636 { 637 638 #if NATHN_USB > 0 639 /* Write ANI registers. */ 640 AR_WRITE(sc, AR_PHY_DESIRED_SZ, 0x6d4000e2); 641 AR_WRITE(sc, AR_PHY_AGC_CTL1, 0x3139605e); 642 AR_WRITE(sc, AR_PHY_FIND_SIG, 0x7ec84d2e); 643 AR_WRITE(sc, AR_PHY_SFCORR_LOW, 0x06903881); 644 AR_WRITE(sc, AR_PHY_SFCORR, 0x5ac640d0); 645 AR_WRITE(sc, AR_PHY_CCK_DETECT, 0x803e68c8); 646 AR_WRITE(sc, AR_PHY_TIMING5, 0xd00a8007); 647 AR_WRITE(sc, AR_PHY_SFCORR_EXT, 0x05eea6d4); 648 AR_WRITE_BARRIER(sc); 649 #endif /* NATHN_USB */ 650 } 651 652 int 653 ar9285_init_calib(struct athn_softc *sc, struct ieee80211_channel *c, 654 struct ieee80211_channel *extc) 655 { 656 uint32_t reg, mask, clcgain, rf2g5_svg; 657 int i, maxgain, nclcs, thresh, error; 658 659 /* Do carrier leakage calibration. */ 660 if ((error = ar9285_cl_cal(sc, c, extc)) != 0) 661 return error; 662 663 /* Workaround for high temperature is not applicable on AR9271. */ 664 if (AR_SREV_9271(sc)) 665 return 0; 666 667 mask = 0; 668 nclcs = 0; 669 reg = AR_READ(sc, AR_PHY_TX_PWRCTRL7); 670 maxgain = MS(reg, AR_PHY_TX_PWRCTRL_TX_GAIN_TAB_MAX); 671 for (i = 0; i <= maxgain; i++) { 672 reg = AR_READ(sc, AR_PHY_TX_GAIN_TBL(i)); 673 clcgain = MS(reg, AR_PHY_TX_GAIN_CLC); 674 /* NB: clcgain <= 0xf. */ 675 if (!(mask & (1 << clcgain))) { 676 mask |= 1 << clcgain; 677 nclcs++; 678 } 679 } 680 thresh = 0; 681 for (i = 0; i < nclcs; i++) { 682 reg = AR_READ(sc, AR_PHY_CLC_TBL(i)); 683 if (MS(reg, AR_PHY_CLC_I0) == 0) 684 thresh++; 685 if (MS(reg, AR_PHY_CLC_Q0) == 0) 686 thresh++; 687 } 688 if (thresh <= AR9285_CL_CAL_REDO_THRESH) 689 return 0; /* No need to redo. */ 690 691 /* Threshold reached, redo carrier leakage calibration. */ 692 DPRINTFN(DBG_INIT, sc, "CLC threshold=%d\n", thresh); 693 rf2g5_svg = reg = AR_READ(sc, AR9285_AN_RF2G5); 694 if ((AR_READ(sc, AR_AN_SYNTH9) & 0x7) == 0x1) /* XE rev. */ 695 reg = RW(reg, AR9285_AN_RF2G5_IC50TX, 0x5); 696 else 697 reg = RW(reg, AR9285_AN_RF2G5_IC50TX, 0x4); 698 AR_WRITE(sc, AR9285_AN_RF2G5, reg); 699 AR_WRITE_BARRIER(sc); 700 error = ar9285_cl_cal(sc, c, extc); 701 AR_WRITE(sc, AR9285_AN_RF2G5, rf2g5_svg); 702 AR_WRITE_BARRIER(sc); 703 return error; 704 } 705 706 Static void 707 ar9285_get_pdadcs(struct athn_softc *sc, struct ieee80211_channel *c, 708 int nxpdgains, uint8_t overlap, uint8_t *boundaries, uint8_t *pdadcs) 709 { 710 const struct ar9285_eeprom *eep = sc->sc_eep; 711 const struct ar9285_cal_data_per_freq *pierdata; 712 const uint8_t *pierfreq; 713 struct athn_pier lopier, hipier; 714 uint8_t fbin; 715 int i, lo, hi, npiers; 716 717 pierfreq = eep->calFreqPier2G; 718 pierdata = eep->calPierData2G; 719 npiers = AR9285_NUM_2G_CAL_PIERS; 720 721 /* Find channel in ROM pier table. */ 722 fbin = athn_chan2fbin(c); 723 athn_get_pier_ival(fbin, pierfreq, npiers, &lo, &hi); 724 725 lopier.fbin = pierfreq[lo]; 726 hipier.fbin = pierfreq[hi]; 727 for (i = 0; i < nxpdgains; i++) { 728 lopier.pwr[i] = pierdata[lo].pwrPdg[i]; 729 lopier.vpd[i] = pierdata[lo].vpdPdg[i]; 730 hipier.pwr[i] = pierdata[lo].pwrPdg[i]; 731 hipier.vpd[i] = pierdata[lo].vpdPdg[i]; 732 } 733 ar5008_get_pdadcs(sc, fbin, &lopier, &hipier, nxpdgains, 734 AR9285_PD_GAIN_ICEPTS, overlap, boundaries, pdadcs); 735 } 736 737 Static void 738 ar9285_set_power_calib(struct athn_softc *sc, struct ieee80211_channel *c) 739 { 740 const struct ar9285_eeprom *eep = sc->sc_eep; 741 uint8_t boundaries[AR_PD_GAINS_IN_MASK]; 742 uint8_t pdadcs[AR_NUM_PDADC_VALUES]; 743 uint8_t xpdgains[AR9285_NUM_PD_GAINS]; 744 uint8_t overlap; 745 uint32_t reg; 746 int i, nxpdgains; 747 748 if (sc->sc_eep_rev < AR_EEP_MINOR_VER_2) { 749 overlap = MS(AR_READ(sc, AR_PHY_TPCRG5), 750 AR_PHY_TPCRG5_PD_GAIN_OVERLAP); 751 } 752 else 753 overlap = eep->modalHeader.pdGainOverlap; 754 755 nxpdgains = 0; 756 memset(xpdgains, 0, sizeof(xpdgains)); 757 for (i = AR9285_PD_GAINS_IN_MASK - 1; i >= 0; i--) { 758 if (nxpdgains >= AR9285_NUM_PD_GAINS) 759 break; 760 if (eep->modalHeader.xpdGain & (1 << i)) 761 xpdgains[nxpdgains++] = i; 762 } 763 reg = AR_READ(sc, AR_PHY_TPCRG1); 764 reg = RW(reg, AR_PHY_TPCRG1_NUM_PD_GAIN, nxpdgains - 1); 765 reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_1, xpdgains[0]); 766 reg = RW(reg, AR_PHY_TPCRG1_PD_GAIN_2, xpdgains[1]); 767 AR_WRITE(sc, AR_PHY_TPCRG1, reg); 768 769 /* NB: No open loop power control for AR9285. */ 770 ar9285_get_pdadcs(sc, c, nxpdgains, overlap, boundaries, pdadcs); 771 772 /* Write boundaries. */ 773 reg = SM(AR_PHY_TPCRG5_PD_GAIN_OVERLAP, overlap); 774 reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1, boundaries[0]); 775 reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2, boundaries[1]); 776 reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3, boundaries[2]); 777 reg |= SM(AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4, boundaries[3]); 778 AR_WRITE(sc, AR_PHY_TPCRG5, reg); 779 780 /* Write PDADC values. */ 781 for (i = 0; i < AR_NUM_PDADC_VALUES; i += 4) { 782 AR_WRITE(sc, AR_PHY_PDADC_TBL_BASE + i, 783 pdadcs[i + 0] << 0 | 784 pdadcs[i + 1] << 8 | 785 pdadcs[i + 2] << 16 | 786 (uint32_t)pdadcs[i + 3] << 24); 787 } 788 AR_WRITE_BARRIER(sc); 789 } 790 791 Static void 792 ar9285_set_txpower(struct athn_softc *sc, struct ieee80211_channel *c, 793 struct ieee80211_channel *extc) 794 { 795 const struct ar9285_eeprom *eep = sc->sc_eep; 796 #ifdef notyet 797 const struct ar9285_modal_eep_header *modal = &eep->modalHeader; 798 #endif 799 uint8_t tpow_cck[4], tpow_ofdm[4]; 800 #ifndef IEEE80211_NO_HT 801 uint8_t tpow_cck_ext[4], tpow_ofdm_ext[4]; 802 uint8_t tpow_ht20[8], tpow_ht40[8]; 803 uint8_t ht40inc; 804 #endif 805 int16_t power[ATHN_POWER_COUNT]; 806 int i; 807 808 ar9285_set_power_calib(sc, c); 809 810 #ifdef notyet 811 /* Compute transmit power reduction due to antenna gain. */ 812 uint16_t max_ant_gain = modal->antennaGain; 813 /* XXX */ 814 #endif 815 816 /* Get CCK target powers. */ 817 ar5008_get_lg_tpow(sc, c, AR_CTL_11B, eep->calTargetPowerCck, 818 AR9285_NUM_2G_CCK_TARGET_POWERS, tpow_cck); 819 820 /* Get OFDM target powers. */ 821 ar5008_get_lg_tpow(sc, c, AR_CTL_11G, eep->calTargetPower2G, 822 AR9285_NUM_2G_20_TARGET_POWERS, tpow_ofdm); 823 824 #ifndef IEEE80211_NO_HT 825 /* Get HT-20 target powers. */ 826 ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT20, eep->calTargetPower2GHT20, 827 AR9285_NUM_2G_20_TARGET_POWERS, tpow_ht20); 828 829 if (extc != NULL) { 830 /* Get HT-40 target powers. */ 831 ar5008_get_ht_tpow(sc, c, AR_CTL_2GHT40, 832 eep->calTargetPower2GHT40, AR9285_NUM_2G_40_TARGET_POWERS, 833 tpow_ht40); 834 835 /* Get secondary channel CCK target powers. */ 836 ar5008_get_lg_tpow(sc, extc, AR_CTL_11B, 837 eep->calTargetPowerCck, AR9285_NUM_2G_CCK_TARGET_POWERS, 838 tpow_cck_ext); 839 840 /* Get secondary channel OFDM target powers. */ 841 ar5008_get_lg_tpow(sc, extc, AR_CTL_11G, 842 eep->calTargetPower2G, AR9285_NUM_2G_20_TARGET_POWERS, 843 tpow_ofdm_ext); 844 } 845 #endif 846 847 memset(power, 0, sizeof(power)); 848 /* Shuffle target powers accross transmit rates. */ 849 power[ATHN_POWER_OFDM6 ] = 850 power[ATHN_POWER_OFDM9 ] = 851 power[ATHN_POWER_OFDM12 ] = 852 power[ATHN_POWER_OFDM18 ] = 853 power[ATHN_POWER_OFDM24 ] = tpow_ofdm[0]; 854 power[ATHN_POWER_OFDM36 ] = tpow_ofdm[1]; 855 power[ATHN_POWER_OFDM48 ] = tpow_ofdm[2]; 856 power[ATHN_POWER_OFDM54 ] = tpow_ofdm[3]; 857 power[ATHN_POWER_XR ] = tpow_ofdm[0]; 858 power[ATHN_POWER_CCK1_LP ] = tpow_cck[0]; 859 power[ATHN_POWER_CCK2_LP ] = 860 power[ATHN_POWER_CCK2_SP ] = tpow_cck[1]; 861 power[ATHN_POWER_CCK55_LP] = 862 power[ATHN_POWER_CCK55_SP] = tpow_cck[2]; 863 power[ATHN_POWER_CCK11_LP] = 864 power[ATHN_POWER_CCK11_SP] = tpow_cck[3]; 865 #ifndef IEEE80211_NO_HT 866 for (i = 0; i < __arraycount(tpow_ht20); i++) 867 power[ATHN_POWER_HT20(i)] = tpow_ht20[i]; 868 if (extc != NULL) { 869 /* Correct PAR difference between HT40 and HT20/Legacy. */ 870 if (sc->sc_eep_rev >= AR_EEP_MINOR_VER_2) 871 ht40inc = modal->ht40PowerIncForPdadc; 872 else 873 ht40inc = AR_HT40_POWER_INC_FOR_PDADC; 874 for (i = 0; i < __arraycount(tpow_ht40); i++) 875 power[ATHN_POWER_HT40(i)] = tpow_ht40[i] + ht40inc; 876 power[ATHN_POWER_OFDM_DUP] = tpow_ht40[0]; 877 power[ATHN_POWER_CCK_DUP ] = tpow_ht40[0]; 878 power[ATHN_POWER_OFDM_EXT] = tpow_ofdm_ext[0]; 879 power[ATHN_POWER_CCK_EXT ] = tpow_cck_ext[0]; 880 } 881 #endif 882 883 for (i = 0; i < ATHN_POWER_COUNT; i++) { 884 power[i] -= AR_PWR_TABLE_OFFSET_DB * 2; /* In half dB. */ 885 if (power[i] > AR_MAX_RATE_POWER) 886 power[i] = AR_MAX_RATE_POWER; 887 } 888 889 /* Commit transmit power values to hardware. */ 890 ar5008_write_txpower(sc, power); 891 } 892