cac.c revision 1.45 1 /* $NetBSD: cac.c,v 1.45 2008/04/08 12:07:25 cegger Exp $ */
2
3 /*-
4 * Copyright (c) 2000, 2006, 2007 The NetBSD Foundation, Inc.
5 * All rights reserved.
6 *
7 * This code is derived from software contributed to The NetBSD Foundation
8 * by Andrew Doran.
9 *
10 * Redistribution and use in source and binary forms, with or without
11 * modification, are permitted provided that the following conditions
12 * are met:
13 * 1. Redistributions of source code must retain the above copyright
14 * notice, this list of conditions and the following disclaimer.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. All advertising materials mentioning features or use of this software
19 * must display the following acknowledgement:
20 * This product includes software developed by the NetBSD
21 * Foundation, Inc. and its contributors.
22 * 4. Neither the name of The NetBSD Foundation nor the names of its
23 * contributors may be used to endorse or promote products derived
24 * from this software without specific prior written permission.
25 *
26 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
27 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
28 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
29 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
30 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
31 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
32 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
33 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
34 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
35 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
36 * POSSIBILITY OF SUCH DAMAGE.
37 */
38
39 /*
40 * Driver for Compaq array controllers.
41 */
42
43 #include <sys/cdefs.h>
44 __KERNEL_RCSID(0, "$NetBSD: cac.c,v 1.45 2008/04/08 12:07:25 cegger Exp $");
45
46 #include "bio.h"
47
48 #include <sys/param.h>
49 #include <sys/systm.h>
50 #include <sys/kernel.h>
51 #include <sys/device.h>
52 #include <sys/queue.h>
53 #include <sys/proc.h>
54 #include <sys/buf.h>
55 #include <sys/endian.h>
56 #include <sys/malloc.h>
57 #include <sys/pool.h>
58
59 #include <uvm/uvm_extern.h>
60
61 #include <sys/bswap.h>
62 #include <sys/bus.h>
63
64 #include <dev/ic/cacreg.h>
65 #include <dev/ic/cacvar.h>
66
67 #if NBIO > 0
68 #include <dev/biovar.h>
69 #endif /* NBIO > 0 */
70
71 #include "locators.h"
72
73 static struct cac_ccb *cac_ccb_alloc(struct cac_softc *, int);
74 static void cac_ccb_done(struct cac_softc *, struct cac_ccb *);
75 static void cac_ccb_free(struct cac_softc *, struct cac_ccb *);
76 static int cac_ccb_poll(struct cac_softc *, struct cac_ccb *, int);
77 static int cac_ccb_start(struct cac_softc *, struct cac_ccb *);
78 static int cac_print(void *, const char *);
79 static void cac_shutdown(void *);
80
81 static struct cac_ccb *cac_l0_completed(struct cac_softc *);
82 static int cac_l0_fifo_full(struct cac_softc *);
83 static void cac_l0_intr_enable(struct cac_softc *, int);
84 static int cac_l0_intr_pending(struct cac_softc *);
85 static void cac_l0_submit(struct cac_softc *, struct cac_ccb *);
86
87 static void *cac_sdh; /* shutdown hook */
88
89 #if NBIO > 0
90 int cac_ioctl(struct device *, u_long, void *);
91 int cac_ioctl_vol(struct cac_softc *, struct bioc_vol *);
92 int cac_create_sensors(struct cac_softc *);
93 void cac_sensor_refresh(struct sysmon_envsys *, envsys_data_t *);
94 #endif /* NBIO > 0 */
95
96 const struct cac_linkage cac_l0 = {
97 cac_l0_completed,
98 cac_l0_fifo_full,
99 cac_l0_intr_enable,
100 cac_l0_intr_pending,
101 cac_l0_submit
102 };
103
104 /*
105 * Initialise our interface to the controller.
106 */
107 int
108 cac_init(struct cac_softc *sc, const char *intrstr, int startfw)
109 {
110 struct cac_controller_info cinfo;
111 struct cac_attach_args caca;
112 int error, rseg, size, i;
113 bus_dma_segment_t seg;
114 struct cac_ccb *ccb;
115 int locs[CACCF_NLOCS];
116 char firm[8];
117
118 if (intrstr != NULL)
119 aprint_normal_dev(&sc->sc_dv, "interrupting at %s\n",
120 intrstr);
121
122 SIMPLEQ_INIT(&sc->sc_ccb_free);
123 SIMPLEQ_INIT(&sc->sc_ccb_queue);
124 mutex_init(&sc->sc_mutex, MUTEX_DEFAULT, IPL_VM);
125 cv_init(&sc->sc_ccb_cv, "cacccb");
126
127 size = sizeof(struct cac_ccb) * CAC_MAX_CCBS;
128
129 if ((error = bus_dmamem_alloc(sc->sc_dmat, size, PAGE_SIZE, 0, &seg, 1,
130 &rseg, BUS_DMA_NOWAIT)) != 0) {
131 aprint_error_dev(&sc->sc_dv, "unable to allocate CCBs, error = %d\n",
132 error);
133 return (-1);
134 }
135
136 if ((error = bus_dmamem_map(sc->sc_dmat, &seg, rseg, size,
137 (void **)&sc->sc_ccbs,
138 BUS_DMA_NOWAIT | BUS_DMA_COHERENT)) != 0) {
139 aprint_error_dev(&sc->sc_dv, "unable to map CCBs, error = %d\n",
140 error);
141 return (-1);
142 }
143
144 if ((error = bus_dmamap_create(sc->sc_dmat, size, 1, size, 0,
145 BUS_DMA_NOWAIT, &sc->sc_dmamap)) != 0) {
146 aprint_error_dev(&sc->sc_dv, "unable to create CCB DMA map, error = %d\n",
147 error);
148 return (-1);
149 }
150
151 if ((error = bus_dmamap_load(sc->sc_dmat, sc->sc_dmamap, sc->sc_ccbs,
152 size, NULL, BUS_DMA_NOWAIT)) != 0) {
153 aprint_error_dev(&sc->sc_dv, "unable to load CCB DMA map, error = %d\n",
154 error);
155 return (-1);
156 }
157
158 sc->sc_ccbs_paddr = sc->sc_dmamap->dm_segs[0].ds_addr;
159 memset(sc->sc_ccbs, 0, size);
160 ccb = (struct cac_ccb *)sc->sc_ccbs;
161
162 for (i = 0; i < CAC_MAX_CCBS; i++, ccb++) {
163 /* Create the DMA map for this CCB's data */
164 error = bus_dmamap_create(sc->sc_dmat, CAC_MAX_XFER,
165 CAC_SG_SIZE, CAC_MAX_XFER, 0,
166 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
167 &ccb->ccb_dmamap_xfer);
168
169 if (error) {
170 aprint_error_dev(&sc->sc_dv, "can't create ccb dmamap (%d)\n",
171 error);
172 break;
173 }
174
175 ccb->ccb_flags = 0;
176 ccb->ccb_paddr = sc->sc_ccbs_paddr + i * sizeof(struct cac_ccb);
177 SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_free, ccb, ccb_chain);
178 }
179
180 /* Start firmware background tasks, if needed. */
181 if (startfw) {
182 if (cac_cmd(sc, CAC_CMD_START_FIRMWARE, &cinfo, sizeof(cinfo),
183 0, 0, CAC_CCB_DATA_IN, NULL)) {
184 aprint_error_dev(&sc->sc_dv, "CAC_CMD_START_FIRMWARE failed\n");
185 return (-1);
186 }
187 }
188
189 if (cac_cmd(sc, CAC_CMD_GET_CTRL_INFO, &cinfo, sizeof(cinfo), 0, 0,
190 CAC_CCB_DATA_IN, NULL)) {
191 aprint_error_dev(&sc->sc_dv, "CAC_CMD_GET_CTRL_INFO failed\n");
192 return (-1);
193 }
194
195 strlcpy(firm, cinfo.firm_rev, 4+1);
196 printf("%s: %d channels, firmware <%s>\n", device_xname(&sc->sc_dv),
197 cinfo.scsi_chips, firm);
198
199 sc->sc_nunits = cinfo.num_drvs;
200 for (i = 0; i < cinfo.num_drvs; i++) {
201 caca.caca_unit = i;
202
203 locs[CACCF_UNIT] = i;
204
205 config_found_sm_loc(&sc->sc_dv, "cac", locs, &caca,
206 cac_print, config_stdsubmatch);
207 }
208
209 /* Set our `shutdownhook' before we start any device activity. */
210 if (cac_sdh == NULL)
211 cac_sdh = shutdownhook_establish(cac_shutdown, NULL);
212
213 mutex_enter(&sc->sc_mutex);
214 (*sc->sc_cl.cl_intr_enable)(sc, CAC_INTR_ENABLE);
215 mutex_exit(&sc->sc_mutex);
216
217 #if NBIO > 0
218 if (bio_register(&sc->sc_dv, cac_ioctl) != 0)
219 aprint_error_dev(&sc->sc_dv, "controller registration failed");
220 else
221 sc->sc_ioctl = cac_ioctl;
222 if (cac_create_sensors(sc) != 0)
223 aprint_error_dev(&sc->sc_dv, "unable to create sensors\n");
224 #endif
225
226 return (0);
227 }
228
229 /*
230 * Shut down all `cac' controllers.
231 */
232 static void
233 cac_shutdown(void *cookie)
234 {
235 extern struct cfdriver cac_cd;
236 struct cac_softc *sc;
237 u_int8_t tbuf[512];
238 int i;
239
240 for (i = 0; i < cac_cd.cd_ndevs; i++) {
241 if ((sc = device_lookup(&cac_cd, i)) == NULL)
242 continue;
243 memset(tbuf, 0, sizeof(tbuf));
244 tbuf[0] = 1;
245 cac_cmd(sc, CAC_CMD_FLUSH_CACHE, tbuf, sizeof(tbuf), 0, 0,
246 CAC_CCB_DATA_OUT, NULL);
247 }
248 }
249
250 /*
251 * Print autoconfiguration message for a sub-device.
252 */
253 static int
254 cac_print(void *aux, const char *pnp)
255 {
256 struct cac_attach_args *caca;
257
258 caca = (struct cac_attach_args *)aux;
259
260 if (pnp != NULL)
261 aprint_normal("block device at %s", pnp);
262 aprint_normal(" unit %d", caca->caca_unit);
263 return (UNCONF);
264 }
265
266 /*
267 * Handle an interrupt from the controller: process finished CCBs and
268 * dequeue any waiting CCBs.
269 */
270 int
271 cac_intr(void *cookie)
272 {
273 struct cac_softc *sc;
274 struct cac_ccb *ccb;
275 int rv;
276
277 sc = (struct cac_softc *)cookie;
278
279 mutex_enter(&sc->sc_mutex);
280
281 if ((*sc->sc_cl.cl_intr_pending)(sc)) {
282 while ((ccb = (*sc->sc_cl.cl_completed)(sc)) != NULL) {
283 cac_ccb_done(sc, ccb);
284 cac_ccb_start(sc, NULL);
285 }
286 rv = 1;
287 } else
288 rv = 0;
289
290 mutex_exit(&sc->sc_mutex);
291
292 return (rv);
293 }
294
295 /*
296 * Execute a [polled] command.
297 */
298 int
299 cac_cmd(struct cac_softc *sc, int command, void *data, int datasize,
300 int drive, int blkno, int flags, struct cac_context *context)
301 {
302 struct cac_ccb *ccb;
303 struct cac_sgb *sgb;
304 int i, rv, size, nsegs;
305
306 size = 0;
307
308 if ((ccb = cac_ccb_alloc(sc, 1)) == NULL) {
309 aprint_error_dev(&sc->sc_dv, "unable to alloc CCB");
310 return (EAGAIN);
311 }
312
313 if ((flags & (CAC_CCB_DATA_IN | CAC_CCB_DATA_OUT)) != 0) {
314 bus_dmamap_load(sc->sc_dmat, ccb->ccb_dmamap_xfer,
315 (void *)data, datasize, NULL, BUS_DMA_NOWAIT |
316 BUS_DMA_STREAMING | ((flags & CAC_CCB_DATA_IN) ?
317 BUS_DMA_READ : BUS_DMA_WRITE));
318
319 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0, datasize,
320 (flags & CAC_CCB_DATA_IN) != 0 ? BUS_DMASYNC_PREREAD :
321 BUS_DMASYNC_PREWRITE);
322
323 sgb = ccb->ccb_seg;
324 nsegs = min(ccb->ccb_dmamap_xfer->dm_nsegs, CAC_SG_SIZE);
325
326 for (i = 0; i < nsegs; i++, sgb++) {
327 size += ccb->ccb_dmamap_xfer->dm_segs[i].ds_len;
328 sgb->length =
329 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_len);
330 sgb->addr =
331 htole32(ccb->ccb_dmamap_xfer->dm_segs[i].ds_addr);
332 }
333 } else {
334 size = datasize;
335 nsegs = 0;
336 }
337
338 ccb->ccb_hdr.drive = drive;
339 ccb->ccb_hdr.priority = 0;
340 ccb->ccb_hdr.size = htole16((sizeof(struct cac_req) +
341 sizeof(struct cac_sgb) * CAC_SG_SIZE) >> 2);
342
343 ccb->ccb_req.next = 0;
344 ccb->ccb_req.error = 0;
345 ccb->ccb_req.reserved = 0;
346 ccb->ccb_req.bcount = htole16(howmany(size, DEV_BSIZE));
347 ccb->ccb_req.command = command;
348 ccb->ccb_req.sgcount = nsegs;
349 ccb->ccb_req.blkno = htole32(blkno);
350
351 ccb->ccb_flags = flags;
352 ccb->ccb_datasize = size;
353
354 mutex_enter(&sc->sc_mutex);
355
356 if (context == NULL) {
357 memset(&ccb->ccb_context, 0, sizeof(struct cac_context));
358
359 /* Synchronous commands musn't wait. */
360 if ((*sc->sc_cl.cl_fifo_full)(sc)) {
361 cac_ccb_free(sc, ccb);
362 rv = EAGAIN;
363 } else {
364 #ifdef DIAGNOSTIC
365 ccb->ccb_flags |= CAC_CCB_ACTIVE;
366 #endif
367 (*sc->sc_cl.cl_submit)(sc, ccb);
368 rv = cac_ccb_poll(sc, ccb, 2000);
369 cac_ccb_free(sc, ccb);
370 }
371 } else {
372 memcpy(&ccb->ccb_context, context, sizeof(struct cac_context));
373 (void)cac_ccb_start(sc, ccb);
374 rv = 0;
375 }
376
377 mutex_exit(&sc->sc_mutex);
378 return (rv);
379 }
380
381 /*
382 * Wait for the specified CCB to complete.
383 */
384 static int
385 cac_ccb_poll(struct cac_softc *sc, struct cac_ccb *wantccb, int timo)
386 {
387 struct cac_ccb *ccb;
388
389 KASSERT(mutex_owned(&sc->sc_mutex));
390
391 timo *= 1000;
392
393 do {
394 for (; timo != 0; timo--) {
395 ccb = (*sc->sc_cl.cl_completed)(sc);
396 if (ccb != NULL)
397 break;
398 DELAY(1);
399 }
400
401 if (timo == 0) {
402 printf("%s: timeout\n", device_xname(&sc->sc_dv));
403 return (EBUSY);
404 }
405 cac_ccb_done(sc, ccb);
406 } while (ccb != wantccb);
407
408 return (0);
409 }
410
411 /*
412 * Enqueue the specified command (if any) and attempt to start all enqueued
413 * commands.
414 */
415 static int
416 cac_ccb_start(struct cac_softc *sc, struct cac_ccb *ccb)
417 {
418
419 KASSERT(mutex_owned(&sc->sc_mutex));
420
421 if (ccb != NULL)
422 SIMPLEQ_INSERT_TAIL(&sc->sc_ccb_queue, ccb, ccb_chain);
423
424 while ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_queue)) != NULL) {
425 if ((*sc->sc_cl.cl_fifo_full)(sc))
426 return (EAGAIN);
427 SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_queue, ccb_chain);
428 #ifdef DIAGNOSTIC
429 ccb->ccb_flags |= CAC_CCB_ACTIVE;
430 #endif
431 (*sc->sc_cl.cl_submit)(sc, ccb);
432 }
433
434 return (0);
435 }
436
437 /*
438 * Process a finished CCB.
439 */
440 static void
441 cac_ccb_done(struct cac_softc *sc, struct cac_ccb *ccb)
442 {
443 struct device *dv;
444 void *context;
445 int error;
446
447 error = 0;
448
449 KASSERT(mutex_owned(&sc->sc_mutex));
450
451 #ifdef DIAGNOSTIC
452 if ((ccb->ccb_flags & CAC_CCB_ACTIVE) == 0)
453 panic("cac_ccb_done: CCB not active");
454 ccb->ccb_flags &= ~CAC_CCB_ACTIVE;
455 #endif
456
457 if ((ccb->ccb_flags & (CAC_CCB_DATA_IN | CAC_CCB_DATA_OUT)) != 0) {
458 bus_dmamap_sync(sc->sc_dmat, ccb->ccb_dmamap_xfer, 0,
459 ccb->ccb_datasize, ccb->ccb_flags & CAC_CCB_DATA_IN ?
460 BUS_DMASYNC_POSTREAD : BUS_DMASYNC_POSTWRITE);
461 bus_dmamap_unload(sc->sc_dmat, ccb->ccb_dmamap_xfer);
462 }
463
464 error = ccb->ccb_req.error;
465 if (ccb->ccb_context.cc_handler != NULL) {
466 dv = ccb->ccb_context.cc_dv;
467 context = ccb->ccb_context.cc_context;
468 cac_ccb_free(sc, ccb);
469 (*ccb->ccb_context.cc_handler)(dv, context, error);
470 } else {
471 if ((error & CAC_RET_SOFT_ERROR) != 0)
472 aprint_error_dev(&sc->sc_dv, "soft error; array may be degraded\n");
473 if ((error & CAC_RET_HARD_ERROR) != 0)
474 aprint_error_dev(&sc->sc_dv, "hard error\n");
475 if ((error & CAC_RET_CMD_REJECTED) != 0) {
476 error = 1;
477 aprint_error_dev(&sc->sc_dv, "invalid request\n");
478 }
479 }
480 }
481
482 /*
483 * Allocate a CCB.
484 */
485 static struct cac_ccb *
486 cac_ccb_alloc(struct cac_softc *sc, int nosleep)
487 {
488 struct cac_ccb *ccb;
489
490 mutex_enter(&sc->sc_mutex);
491
492 for (;;) {
493 if ((ccb = SIMPLEQ_FIRST(&sc->sc_ccb_free)) != NULL) {
494 SIMPLEQ_REMOVE_HEAD(&sc->sc_ccb_free, ccb_chain);
495 break;
496 }
497 if (nosleep) {
498 ccb = NULL;
499 break;
500 }
501 cv_wait(&sc->sc_ccb_cv, &sc->sc_mutex);
502 }
503
504 mutex_exit(&sc->sc_mutex);
505 return (ccb);
506 }
507
508 /*
509 * Put a CCB onto the freelist.
510 */
511 static void
512 cac_ccb_free(struct cac_softc *sc, struct cac_ccb *ccb)
513 {
514
515 KASSERT(mutex_owned(&sc->sc_mutex));
516
517 ccb->ccb_flags = 0;
518 if (SIMPLEQ_EMPTY(&sc->sc_ccb_free))
519 cv_signal(&sc->sc_ccb_cv);
520 SIMPLEQ_INSERT_HEAD(&sc->sc_ccb_free, ccb, ccb_chain);
521 }
522
523 /*
524 * Board specific linkage shared between multiple bus types.
525 */
526
527 static int
528 cac_l0_fifo_full(struct cac_softc *sc)
529 {
530
531 KASSERT(mutex_owned(&sc->sc_mutex));
532
533 return (cac_inl(sc, CAC_REG_CMD_FIFO) == 0);
534 }
535
536 static void
537 cac_l0_submit(struct cac_softc *sc, struct cac_ccb *ccb)
538 {
539
540 KASSERT(mutex_owned(&sc->sc_mutex));
541
542 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap,
543 (char *)ccb - (char *)sc->sc_ccbs,
544 sizeof(struct cac_ccb), BUS_DMASYNC_PREWRITE | BUS_DMASYNC_PREREAD);
545 cac_outl(sc, CAC_REG_CMD_FIFO, ccb->ccb_paddr);
546 }
547
548 static struct cac_ccb *
549 cac_l0_completed(struct cac_softc *sc)
550 {
551 struct cac_ccb *ccb;
552 paddr_t off;
553
554 KASSERT(mutex_owned(&sc->sc_mutex));
555
556 if ((off = cac_inl(sc, CAC_REG_DONE_FIFO)) == 0)
557 return (NULL);
558
559 if ((off & 3) != 0)
560 aprint_error_dev(&sc->sc_dv, "failed command list returned: %lx\n",
561 (long)off);
562
563 off = (off & ~3) - sc->sc_ccbs_paddr;
564 ccb = (struct cac_ccb *)((char *)sc->sc_ccbs + off);
565
566 bus_dmamap_sync(sc->sc_dmat, sc->sc_dmamap, off, sizeof(struct cac_ccb),
567 BUS_DMASYNC_POSTWRITE | BUS_DMASYNC_POSTREAD);
568
569 if ((off & 3) != 0 && ccb->ccb_req.error == 0)
570 ccb->ccb_req.error = CAC_RET_CMD_REJECTED;
571
572 return (ccb);
573 }
574
575 static int
576 cac_l0_intr_pending(struct cac_softc *sc)
577 {
578
579 KASSERT(mutex_owned(&sc->sc_mutex));
580
581 return (cac_inl(sc, CAC_REG_INTR_PENDING) & CAC_INTR_ENABLE);
582 }
583
584 static void
585 cac_l0_intr_enable(struct cac_softc *sc, int state)
586 {
587
588 KASSERT(mutex_owned(&sc->sc_mutex));
589
590 cac_outl(sc, CAC_REG_INTR_MASK,
591 state ? CAC_INTR_ENABLE : CAC_INTR_DISABLE);
592 }
593
594 #if NBIO > 0
595 const int cac_level[] = { 0, 4, 1, 5, 51, 7 };
596 const int cac_stat[] = { BIOC_SVONLINE, BIOC_SVOFFLINE, BIOC_SVOFFLINE,
597 BIOC_SVDEGRADED, BIOC_SVREBUILD, BIOC_SVREBUILD, BIOC_SVDEGRADED,
598 BIOC_SVDEGRADED, BIOC_SVINVALID, BIOC_SVINVALID, BIOC_SVBUILDING,
599 BIOC_SVOFFLINE, BIOC_SVBUILDING };
600
601 int
602 cac_ioctl(struct device *dev, u_long cmd, void *addr)
603 {
604 struct cac_softc *sc = (struct cac_softc *)dev;
605 struct bioc_inq *bi;
606 struct bioc_disk *bd;
607 cac_lock_t lock;
608 int error = 0;
609
610 lock = CAC_LOCK(sc);
611 switch (cmd) {
612 case BIOCINQ:
613 bi = (struct bioc_inq *)addr;
614 strlcpy(bi->bi_dev, device_xname(&sc->sc_dv), sizeof(bi->bi_dev));
615 bi->bi_novol = sc->sc_nunits;
616 bi->bi_nodisk = 0;
617 break;
618
619 case BIOCVOL:
620 error = cac_ioctl_vol(sc, (struct bioc_vol *)addr);
621 break;
622
623 case BIOCDISK:
624 case BIOCDISK_NOVOL:
625 bd = (struct bioc_disk *)addr;
626 if (bd->bd_volid > sc->sc_nunits) {
627 error = EINVAL;
628 break;
629 }
630 /* No disk information yet */
631 break;
632
633 case BIOCBLINK:
634 case BIOCALARM:
635 case BIOCSETSTATE:
636 default:
637 error = EINVAL;
638 }
639 CAC_UNLOCK(sc, lock);
640
641 return (error);
642 }
643
644 int
645 cac_ioctl_vol(struct cac_softc *sc, struct bioc_vol *bv)
646 {
647 struct cac_drive_info dinfo;
648 struct cac_drive_status dstatus;
649 u_int32_t blks;
650
651 if (bv->bv_volid > sc->sc_nunits) {
652 return EINVAL;
653 }
654 if (cac_cmd(sc, CAC_CMD_GET_LOG_DRV_INFO, &dinfo, sizeof(dinfo),
655 bv->bv_volid, 0, CAC_CCB_DATA_IN, NULL)) {
656 return EIO;
657 }
658 if (cac_cmd(sc, CAC_CMD_SENSE_DRV_STATUS, &dstatus, sizeof(dstatus),
659 bv->bv_volid, 0, CAC_CCB_DATA_IN, NULL)) {
660 return EIO;
661 }
662 blks = CAC_GET2(dinfo.ncylinders) * CAC_GET1(dinfo.nheads) *
663 CAC_GET1(dinfo.nsectors);
664 bv->bv_size = (off_t)blks * CAC_GET2(dinfo.secsize);
665 bv->bv_level = cac_level[CAC_GET1(dinfo.mirror)]; /*XXX limit check */
666 bv->bv_nodisk = 0; /* XXX */
667 bv->bv_status = 0; /* XXX */
668 bv->bv_percent = -1;
669 bv->bv_seconds = 0;
670 if (dstatus.stat < sizeof(cac_stat)/sizeof(cac_stat[0]))
671 bv->bv_status = cac_stat[dstatus.stat];
672 if (bv->bv_status == BIOC_SVREBUILD ||
673 bv->bv_status == BIOC_SVBUILDING)
674 bv->bv_percent = ((blks - CAC_GET4(dstatus.prog)) * 1000ULL) /
675 blks;
676 return 0;
677 }
678
679 int
680 cac_create_sensors(struct cac_softc *sc)
681 {
682 int i;
683 int nsensors = sc->sc_nunits;
684
685 sc->sc_sme = sysmon_envsys_create();
686 sc->sc_sensor = malloc(sizeof(envsys_data_t) * nsensors,
687 M_DEVBUF, M_NOWAIT | M_ZERO);
688 if (sc->sc_sensor == NULL) {
689 aprint_error_dev(&sc->sc_dv, "can't allocate envsys_data_t\n");
690 return(ENOMEM);
691 }
692
693 for (i = 0; i < nsensors; i++) {
694 sc->sc_sensor[i].units = ENVSYS_DRIVE;
695 sc->sc_sensor[i].monitor = true;
696 /* Enable monitoring for drive state changes */
697 sc->sc_sensor[i].flags |= ENVSYS_FMONSTCHANGED;
698 /* logical drives */
699 snprintf(sc->sc_sensor[i].desc,
700 sizeof(sc->sc_sensor[i].desc), "%s:%d",
701 device_xname(&sc->sc_dv), i);
702 if (sysmon_envsys_sensor_attach(sc->sc_sme,
703 &sc->sc_sensor[i]))
704 goto out;
705 }
706 sc->sc_sme->sme_name = device_xname(&sc->sc_dv);
707 sc->sc_sme->sme_cookie = sc;
708 sc->sc_sme->sme_refresh = cac_sensor_refresh;
709 if (sysmon_envsys_register(sc->sc_sme)) {
710 aprint_error_dev(&sc->sc_dv, "unable to register with sysmon\n");
711 return(1);
712 }
713 return (0);
714
715 out:
716 free(sc->sc_sensor, M_DEVBUF);
717 sysmon_envsys_destroy(sc->sc_sme);
718 return EINVAL;
719 }
720
721 void
722 cac_sensor_refresh(struct sysmon_envsys *sme, envsys_data_t *edata)
723 {
724 struct cac_softc *sc = sme->sme_cookie;
725 struct bioc_vol bv;
726 int s;
727
728 if (edata->sensor >= sc->sc_nunits)
729 return;
730
731 bzero(&bv, sizeof(bv));
732 bv.bv_volid = edata->sensor;
733 s = splbio();
734 if (cac_ioctl_vol(sc, &bv)) {
735 splx(s);
736 return;
737 }
738 splx(s);
739
740 switch(bv.bv_status) {
741 case BIOC_SVOFFLINE:
742 edata->value_cur = ENVSYS_DRIVE_FAIL;
743 edata->state = ENVSYS_SCRITICAL;
744 break;
745
746 case BIOC_SVDEGRADED:
747 edata->value_cur = ENVSYS_DRIVE_PFAIL;
748 edata->state = ENVSYS_SCRITICAL;
749 break;
750
751 case BIOC_SVSCRUB:
752 case BIOC_SVONLINE:
753 edata->value_cur = ENVSYS_DRIVE_ONLINE;
754 edata->state = ENVSYS_SVALID;
755 break;
756
757 case BIOC_SVREBUILD:
758 case BIOC_SVBUILDING:
759 edata->value_cur = ENVSYS_DRIVE_REBUILD;
760 edata->state = ENVSYS_SVALID;
761 break;
762
763 case BIOC_SVINVALID:
764 /* FALLTRHOUGH */
765 default:
766 edata->value_cur = 0; /* unknown */
767 edata->state = ENVSYS_SINVALID;
768 }
769 }
770 #endif /* NBIO > 0 */
771