iscsi_utils.c revision 1.24 1 1.24 christos /* $NetBSD: iscsi_utils.c,v 1.24 2017/12/03 19:07:10 christos Exp $ */
2 1.1 agc
3 1.1 agc /*-
4 1.1 agc * Copyright (c) 2004,2005,2006,2008 The NetBSD Foundation, Inc.
5 1.1 agc * All rights reserved.
6 1.1 agc *
7 1.1 agc * This code is derived from software contributed to The NetBSD Foundation
8 1.1 agc * by Wasabi Systems, Inc.
9 1.1 agc *
10 1.1 agc * Redistribution and use in source and binary forms, with or without
11 1.1 agc * modification, are permitted provided that the following conditions
12 1.1 agc * are met:
13 1.1 agc * 1. Redistributions of source code must retain the above copyright
14 1.1 agc * notice, this list of conditions and the following disclaimer.
15 1.1 agc * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 agc * notice, this list of conditions and the following disclaimer in the
17 1.1 agc * documentation and/or other materials provided with the distribution.
18 1.1 agc *
19 1.1 agc * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 agc * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 agc * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 agc * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 agc * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 agc * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 agc * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 agc * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 agc * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 agc * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 agc * POSSIBILITY OF SUCH DAMAGE.
30 1.1 agc */
31 1.1 agc #include "iscsi_globals.h"
32 1.1 agc
33 1.1 agc #include <sys/systm.h>
34 1.1 agc #include <sys/buf.h>
35 1.1 agc #include <sys/socketvar.h>
36 1.4 mlelstv #include <sys/bswap.h>
37 1.9 mlelstv #include <sys/atomic.h>
38 1.1 agc
39 1.1 agc
40 1.1 agc /*****************************************************************************
41 1.1 agc * Digest functions
42 1.1 agc *****************************************************************************/
43 1.1 agc
44 1.1 agc /*****************************************************************
45 1.1 agc *
46 1.1 agc * CRC LOOKUP TABLE
47 1.1 agc * ================
48 1.1 agc * The following CRC lookup table was generated automagically
49 1.1 agc * by the Rocksoft^tm Model CRC Algorithm Table Generation
50 1.1 agc * Program V1.0 using the following model parameters:
51 1.1 agc *
52 1.1 agc * Width : 4 bytes.
53 1.1 agc * Poly : 0x1EDC6F41L
54 1.1 agc * Reverse : TRUE.
55 1.1 agc *
56 1.1 agc * For more information on the Rocksoft^tm Model CRC Algorithm,
57 1.1 agc * see the document titled "A Painless Guide to CRC Error
58 1.1 agc * Detection Algorithms" by Ross Williams
59 1.1 agc * (ross (at) guest.adelaide.edu.au.). This document is likely to be
60 1.1 agc * in the FTP archive "ftp.adelaide.edu.au/pub/rocksoft".
61 1.1 agc *
62 1.1 agc *****************************************************************/
63 1.1 agc
64 1.1 agc STATIC uint32_t crc_table[256] = {
65 1.1 agc 0x00000000L, 0xF26B8303L, 0xE13B70F7L, 0x1350F3F4L,
66 1.1 agc 0xC79A971FL, 0x35F1141CL, 0x26A1E7E8L, 0xD4CA64EBL,
67 1.1 agc 0x8AD958CFL, 0x78B2DBCCL, 0x6BE22838L, 0x9989AB3BL,
68 1.1 agc 0x4D43CFD0L, 0xBF284CD3L, 0xAC78BF27L, 0x5E133C24L,
69 1.1 agc 0x105EC76FL, 0xE235446CL, 0xF165B798L, 0x030E349BL,
70 1.1 agc 0xD7C45070L, 0x25AFD373L, 0x36FF2087L, 0xC494A384L,
71 1.1 agc 0x9A879FA0L, 0x68EC1CA3L, 0x7BBCEF57L, 0x89D76C54L,
72 1.1 agc 0x5D1D08BFL, 0xAF768BBCL, 0xBC267848L, 0x4E4DFB4BL,
73 1.1 agc 0x20BD8EDEL, 0xD2D60DDDL, 0xC186FE29L, 0x33ED7D2AL,
74 1.1 agc 0xE72719C1L, 0x154C9AC2L, 0x061C6936L, 0xF477EA35L,
75 1.1 agc 0xAA64D611L, 0x580F5512L, 0x4B5FA6E6L, 0xB93425E5L,
76 1.1 agc 0x6DFE410EL, 0x9F95C20DL, 0x8CC531F9L, 0x7EAEB2FAL,
77 1.1 agc 0x30E349B1L, 0xC288CAB2L, 0xD1D83946L, 0x23B3BA45L,
78 1.1 agc 0xF779DEAEL, 0x05125DADL, 0x1642AE59L, 0xE4292D5AL,
79 1.1 agc 0xBA3A117EL, 0x4851927DL, 0x5B016189L, 0xA96AE28AL,
80 1.1 agc 0x7DA08661L, 0x8FCB0562L, 0x9C9BF696L, 0x6EF07595L,
81 1.1 agc 0x417B1DBCL, 0xB3109EBFL, 0xA0406D4BL, 0x522BEE48L,
82 1.1 agc 0x86E18AA3L, 0x748A09A0L, 0x67DAFA54L, 0x95B17957L,
83 1.1 agc 0xCBA24573L, 0x39C9C670L, 0x2A993584L, 0xD8F2B687L,
84 1.1 agc 0x0C38D26CL, 0xFE53516FL, 0xED03A29BL, 0x1F682198L,
85 1.1 agc 0x5125DAD3L, 0xA34E59D0L, 0xB01EAA24L, 0x42752927L,
86 1.1 agc 0x96BF4DCCL, 0x64D4CECFL, 0x77843D3BL, 0x85EFBE38L,
87 1.1 agc 0xDBFC821CL, 0x2997011FL, 0x3AC7F2EBL, 0xC8AC71E8L,
88 1.1 agc 0x1C661503L, 0xEE0D9600L, 0xFD5D65F4L, 0x0F36E6F7L,
89 1.1 agc 0x61C69362L, 0x93AD1061L, 0x80FDE395L, 0x72966096L,
90 1.1 agc 0xA65C047DL, 0x5437877EL, 0x4767748AL, 0xB50CF789L,
91 1.1 agc 0xEB1FCBADL, 0x197448AEL, 0x0A24BB5AL, 0xF84F3859L,
92 1.1 agc 0x2C855CB2L, 0xDEEEDFB1L, 0xCDBE2C45L, 0x3FD5AF46L,
93 1.1 agc 0x7198540DL, 0x83F3D70EL, 0x90A324FAL, 0x62C8A7F9L,
94 1.1 agc 0xB602C312L, 0x44694011L, 0x5739B3E5L, 0xA55230E6L,
95 1.1 agc 0xFB410CC2L, 0x092A8FC1L, 0x1A7A7C35L, 0xE811FF36L,
96 1.1 agc 0x3CDB9BDDL, 0xCEB018DEL, 0xDDE0EB2AL, 0x2F8B6829L,
97 1.1 agc 0x82F63B78L, 0x709DB87BL, 0x63CD4B8FL, 0x91A6C88CL,
98 1.1 agc 0x456CAC67L, 0xB7072F64L, 0xA457DC90L, 0x563C5F93L,
99 1.1 agc 0x082F63B7L, 0xFA44E0B4L, 0xE9141340L, 0x1B7F9043L,
100 1.1 agc 0xCFB5F4A8L, 0x3DDE77ABL, 0x2E8E845FL, 0xDCE5075CL,
101 1.1 agc 0x92A8FC17L, 0x60C37F14L, 0x73938CE0L, 0x81F80FE3L,
102 1.1 agc 0x55326B08L, 0xA759E80BL, 0xB4091BFFL, 0x466298FCL,
103 1.1 agc 0x1871A4D8L, 0xEA1A27DBL, 0xF94AD42FL, 0x0B21572CL,
104 1.1 agc 0xDFEB33C7L, 0x2D80B0C4L, 0x3ED04330L, 0xCCBBC033L,
105 1.1 agc 0xA24BB5A6L, 0x502036A5L, 0x4370C551L, 0xB11B4652L,
106 1.1 agc 0x65D122B9L, 0x97BAA1BAL, 0x84EA524EL, 0x7681D14DL,
107 1.1 agc 0x2892ED69L, 0xDAF96E6AL, 0xC9A99D9EL, 0x3BC21E9DL,
108 1.1 agc 0xEF087A76L, 0x1D63F975L, 0x0E330A81L, 0xFC588982L,
109 1.1 agc 0xB21572C9L, 0x407EF1CAL, 0x532E023EL, 0xA145813DL,
110 1.1 agc 0x758FE5D6L, 0x87E466D5L, 0x94B49521L, 0x66DF1622L,
111 1.1 agc 0x38CC2A06L, 0xCAA7A905L, 0xD9F75AF1L, 0x2B9CD9F2L,
112 1.1 agc 0xFF56BD19L, 0x0D3D3E1AL, 0x1E6DCDEEL, 0xEC064EEDL,
113 1.1 agc 0xC38D26C4L, 0x31E6A5C7L, 0x22B65633L, 0xD0DDD530L,
114 1.1 agc 0x0417B1DBL, 0xF67C32D8L, 0xE52CC12CL, 0x1747422FL,
115 1.1 agc 0x49547E0BL, 0xBB3FFD08L, 0xA86F0EFCL, 0x5A048DFFL,
116 1.1 agc 0x8ECEE914L, 0x7CA56A17L, 0x6FF599E3L, 0x9D9E1AE0L,
117 1.1 agc 0xD3D3E1ABL, 0x21B862A8L, 0x32E8915CL, 0xC083125FL,
118 1.1 agc 0x144976B4L, 0xE622F5B7L, 0xF5720643L, 0x07198540L,
119 1.1 agc 0x590AB964L, 0xAB613A67L, 0xB831C993L, 0x4A5A4A90L,
120 1.1 agc 0x9E902E7BL, 0x6CFBAD78L, 0x7FAB5E8CL, 0x8DC0DD8FL,
121 1.1 agc 0xE330A81AL, 0x115B2B19L, 0x020BD8EDL, 0xF0605BEEL,
122 1.1 agc 0x24AA3F05L, 0xD6C1BC06L, 0xC5914FF2L, 0x37FACCF1L,
123 1.1 agc 0x69E9F0D5L, 0x9B8273D6L, 0x88D28022L, 0x7AB90321L,
124 1.1 agc 0xAE7367CAL, 0x5C18E4C9L, 0x4F48173DL, 0xBD23943EL,
125 1.1 agc 0xF36E6F75L, 0x0105EC76L, 0x12551F82L, 0xE03E9C81L,
126 1.1 agc 0x34F4F86AL, 0xC69F7B69L, 0xD5CF889DL, 0x27A40B9EL,
127 1.1 agc 0x79B737BAL, 0x8BDCB4B9L, 0x988C474DL, 0x6AE7C44EL,
128 1.1 agc 0xBE2DA0A5L, 0x4C4623A6L, 0x5F16D052L, 0xAD7D5351L
129 1.1 agc };
130 1.1 agc
131 1.1 agc
132 1.1 agc /*
133 1.1 agc * gen_digest:
134 1.1 agc * Generate an iSCSI CRC32C digest over the given data.
135 1.1 agc *
136 1.1 agc * Parameters:
137 1.1 agc * buff The data
138 1.1 agc * len The length of the data in bytes
139 1.1 agc *
140 1.1 agc * Returns: The digest in network byte order
141 1.1 agc */
142 1.1 agc
143 1.1 agc uint32_t
144 1.24 christos gen_digest(const void *buff, size_t len)
145 1.1 agc {
146 1.24 christos const uint8_t *bp = (const uint8_t *) buff;
147 1.1 agc uint32_t crc = 0xffffffff;
148 1.1 agc
149 1.1 agc while (len--) {
150 1.1 agc crc = ((crc >> 8) & 0x00ffffff) ^ crc_table[(crc ^ *bp++) & 0xff];
151 1.1 agc }
152 1.4 mlelstv return htonl(bswap32(crc ^ 0xffffffff));
153 1.1 agc }
154 1.1 agc
155 1.1 agc
156 1.1 agc /*
157 1.1 agc * gen_digest_2:
158 1.1 agc * Generate an iSCSI CRC32C digest over the given data, which is split over
159 1.1 agc * two buffers.
160 1.1 agc *
161 1.1 agc * Parameters:
162 1.1 agc * buf1, buf2 The data
163 1.1 agc * len1, len2 The length of the data in bytes
164 1.1 agc *
165 1.1 agc * Returns: The digest in network byte order
166 1.1 agc */
167 1.1 agc
168 1.1 agc uint32_t
169 1.24 christos gen_digest_2(const void *buf1, size_t len1, const void *buf2, size_t len2)
170 1.1 agc {
171 1.24 christos const uint8_t *bp = (const uint8_t *) buf1;
172 1.1 agc uint32_t crc = 0xffffffff;
173 1.1 agc
174 1.1 agc while (len1--) {
175 1.1 agc crc = ((crc >> 8) & 0x00ffffff) ^ crc_table[(crc ^ *bp++) & 0xff];
176 1.1 agc }
177 1.24 christos bp = (const uint8_t *) buf2;
178 1.1 agc while (len2--) {
179 1.1 agc crc = ((crc >> 8) & 0x00ffffff) ^ crc_table[(crc ^ *bp++) & 0xff];
180 1.1 agc }
181 1.4 mlelstv return htonl(bswap32(crc ^ 0xffffffff));
182 1.1 agc }
183 1.1 agc
184 1.1 agc /*****************************************************************************
185 1.1 agc * CCB management functions
186 1.1 agc *****************************************************************************/
187 1.1 agc
188 1.1 agc /*
189 1.1 agc * get_ccb:
190 1.1 agc * Get a CCB for the SCSI operation, waiting if none is available.
191 1.1 agc *
192 1.1 agc * Parameter:
193 1.1 agc * sess The session containing this CCB
194 1.1 agc * waitok Whether waiting for a CCB is OK
195 1.1 agc *
196 1.1 agc * Returns: The CCB.
197 1.1 agc */
198 1.1 agc
199 1.1 agc ccb_t *
200 1.1 agc get_ccb(connection_t *conn, bool waitok)
201 1.1 agc {
202 1.1 agc ccb_t *ccb;
203 1.24 christos session_t *sess = conn->c_session;
204 1.1 agc
205 1.24 christos mutex_enter(&sess->s_lock);
206 1.1 agc do {
207 1.24 christos ccb = TAILQ_FIRST(&sess->s_ccb_pool);
208 1.9 mlelstv DEB(100, ("get_ccb: ccb = %p, waitok = %d\n", ccb, waitok));
209 1.9 mlelstv
210 1.9 mlelstv if (ccb != NULL) {
211 1.24 christos TAILQ_REMOVE(&sess->s_ccb_pool, ccb, ccb_chain);
212 1.9 mlelstv } else {
213 1.24 christos if (!waitok || conn->c_terminating) {
214 1.24 christos mutex_exit(&sess->s_lock);
215 1.1 agc return NULL;
216 1.1 agc }
217 1.24 christos cv_wait(&sess->s_ccb_cv, &sess->s_lock);
218 1.1 agc }
219 1.1 agc } while (ccb == NULL);
220 1.24 christos mutex_exit(&sess->s_lock);
221 1.1 agc
222 1.24 christos ccb->ccb_flags = 0;
223 1.24 christos ccb->ccb_timedout = TOUT_NONE;
224 1.24 christos ccb->ccb_xs = NULL;
225 1.24 christos ccb->ccb_temp_data = NULL;
226 1.24 christos ccb->ccb_text_data = NULL;
227 1.24 christos ccb->ccb_status = ISCSI_STATUS_SUCCESS;
228 1.24 christos ccb->ccb_ITT = (ccb->ccb_ITT & 0xffffff);
229 1.24 christos ccb->ccb_disp = CCBDISP_NOWAIT;
230 1.24 christos ccb->ccb_connection = conn;
231 1.24 christos ccb->ccb_num_timeouts = 0;
232 1.24 christos atomic_inc_uint(&conn->c_usecount);
233 1.9 mlelstv
234 1.12 mlelstv DEBC(conn, 15, (
235 1.9 mlelstv "get_ccb: ccb = %p, usecount = %d\n",
236 1.24 christos ccb, conn->c_usecount));
237 1.1 agc
238 1.1 agc return ccb;
239 1.1 agc }
240 1.1 agc
241 1.1 agc /*
242 1.1 agc * free_ccb:
243 1.1 agc * Put a CCB back onto the free list.
244 1.1 agc *
245 1.1 agc * Parameter: The CCB.
246 1.1 agc */
247 1.1 agc
248 1.1 agc void
249 1.1 agc free_ccb(ccb_t *ccb)
250 1.1 agc {
251 1.24 christos session_t *sess = ccb->ccb_session;
252 1.24 christos connection_t *conn = ccb->ccb_connection;
253 1.1 agc pdu_t *pdu;
254 1.9 mlelstv
255 1.19 mlelstv DEBC(conn, 15, (
256 1.9 mlelstv "free_ccb: ccb = %p, usecount = %d\n",
257 1.24 christos ccb, conn->c_usecount-1));
258 1.5 mlelstv
259 1.24 christos KASSERT((ccb->ccb_flags & CCBF_WAITQUEUE) == 0);
260 1.1 agc
261 1.24 christos atomic_dec_uint(&conn->c_usecount);
262 1.24 christos ccb->ccb_connection = NULL;
263 1.2 mlelstv
264 1.24 christos if (ccb->ccb_disp > CCBDISP_NOWAIT) {
265 1.24 christos DEBOUT(("Freeing CCB with disp %d\n",ccb->ccb_disp));
266 1.9 mlelstv }
267 1.9 mlelstv
268 1.24 christos ccb->ccb_disp = CCBDISP_UNUSED;
269 1.1 agc
270 1.1 agc /* free temporary data */
271 1.24 christos if (ccb->ccb_temp_data != NULL) {
272 1.24 christos free(ccb->ccb_temp_data, M_TEMP);
273 1.1 agc }
274 1.24 christos if (ccb->ccb_text_data != NULL) {
275 1.24 christos free(ccb->ccb_text_data, M_TEMP);
276 1.1 agc }
277 1.1 agc /* free PDU waiting for ACK */
278 1.24 christos if ((pdu = ccb->ccb_pdu_waiting) != NULL) {
279 1.24 christos ccb->ccb_pdu_waiting = NULL;
280 1.24 christos mutex_enter(&conn->c_lock);
281 1.24 christos if ((pdu->pdu_flags & PDUF_INQUEUE) != 0) {
282 1.24 christos TAILQ_REMOVE(&conn->c_pdus_to_send, pdu, pdu_send_chain);
283 1.24 christos pdu->pdu_flags &= ~PDUF_INQUEUE;
284 1.19 mlelstv }
285 1.24 christos mutex_exit(&conn->c_lock);
286 1.1 agc free_pdu(pdu);
287 1.1 agc }
288 1.1 agc
289 1.24 christos mutex_enter(&sess->s_lock);
290 1.24 christos TAILQ_INSERT_TAIL(&sess->s_ccb_pool, ccb, ccb_chain);
291 1.24 christos cv_broadcast(&sess->s_ccb_cv);
292 1.24 christos mutex_exit(&sess->s_lock);
293 1.1 agc }
294 1.1 agc
295 1.1 agc /*
296 1.1 agc * create_ccbs
297 1.1 agc * "Create" the pool of CCBs. This doesn't actually create the CCBs
298 1.1 agc * (they are allocated with the session structure), but it links them
299 1.1 agc * into the free-list.
300 1.1 agc *
301 1.1 agc * Parameter: The session owning the CCBs.
302 1.1 agc */
303 1.1 agc
304 1.1 agc void
305 1.1 agc create_ccbs(session_t *sess)
306 1.1 agc {
307 1.1 agc int i;
308 1.1 agc ccb_t *ccb;
309 1.24 christos int sid = sess->s_id << 8;
310 1.1 agc
311 1.1 agc /* Note: CCBs are initialized to 0 with connection structure */
312 1.1 agc
313 1.24 christos for (i = 0, ccb = sess->s_ccb; i < CCBS_PER_SESSION; i++, ccb++) {
314 1.24 christos ccb->ccb_ITT = i | sid;
315 1.24 christos ccb->ccb_session = sess;
316 1.1 agc
317 1.24 christos callout_init(&ccb->ccb_timeout, CALLOUT_MPSAFE);
318 1.24 christos callout_setfunc(&ccb->ccb_timeout, ccb_timeout_co, ccb);
319 1.1 agc
320 1.24 christos DEB(9, ("Create_ccbs: ccb %p itt %x\n", ccb, ccb->ccb_ITT));
321 1.24 christos TAILQ_INSERT_HEAD(&sess->s_ccb_pool, ccb, ccb_chain);
322 1.1 agc }
323 1.1 agc }
324 1.1 agc
325 1.5 mlelstv /*
326 1.23 mlelstv * destroy_ccbs
327 1.23 mlelstv * Kill the callouts
328 1.23 mlelstv *
329 1.23 mlelstv * Parameter: The session owning the CCBs.
330 1.23 mlelstv */
331 1.23 mlelstv
332 1.23 mlelstv void
333 1.23 mlelstv destroy_ccbs(session_t *sess)
334 1.23 mlelstv {
335 1.23 mlelstv int i;
336 1.23 mlelstv ccb_t *ccb;
337 1.23 mlelstv
338 1.23 mlelstv /* Note: CCBs are initialized to 0 with connection structure */
339 1.23 mlelstv
340 1.24 christos for (i = 0, ccb = sess->s_ccb; i < CCBS_PER_SESSION; i++, ccb++) {
341 1.23 mlelstv
342 1.24 christos callout_halt(&ccb->ccb_timeout, NULL);
343 1.24 christos callout_destroy(&ccb->ccb_timeout);
344 1.23 mlelstv
345 1.24 christos DEB(9, ("destroy_ccbs: ccb %p itt %x\n", ccb, ccb->ccb_ITT));
346 1.24 christos KASSERT((ccb->ccb_flags & CCBF_WAITQUEUE) == 0);
347 1.24 christos KASSERT(ccb->ccb_disp == CCBDISP_UNUSED);
348 1.24 christos KASSERT(ccb->ccb_connection == NULL);
349 1.24 christos TAILQ_REMOVE(&sess->s_ccb_pool, ccb, ccb_chain);
350 1.23 mlelstv }
351 1.23 mlelstv }
352 1.23 mlelstv
353 1.23 mlelstv /*
354 1.5 mlelstv * suspend_ccb:
355 1.5 mlelstv * Put CCB on wait queue
356 1.5 mlelstv */
357 1.5 mlelstv void
358 1.5 mlelstv suspend_ccb(ccb_t *ccb, bool yes)
359 1.5 mlelstv {
360 1.5 mlelstv connection_t *conn;
361 1.5 mlelstv
362 1.24 christos conn = ccb->ccb_connection;
363 1.22 mlelstv KASSERT(conn != NULL);
364 1.21 mlelstv
365 1.24 christos KASSERT(mutex_owned(&conn->c_lock));
366 1.21 mlelstv
367 1.5 mlelstv if (yes) {
368 1.24 christos KASSERT((ccb->ccb_flags & CCBF_WAITQUEUE) == 0);
369 1.24 christos TAILQ_INSERT_TAIL(&conn->c_ccbs_waiting, ccb, ccb_chain);
370 1.24 christos ccb->ccb_flags |= CCBF_WAITQUEUE;
371 1.24 christos } else if (ccb->ccb_flags & CCBF_WAITQUEUE) {
372 1.24 christos TAILQ_REMOVE(&conn->c_ccbs_waiting, ccb, ccb_chain);
373 1.24 christos ccb->ccb_flags &= ~CCBF_WAITQUEUE;
374 1.5 mlelstv }
375 1.5 mlelstv }
376 1.5 mlelstv
377 1.5 mlelstv /*
378 1.1 agc * wake_ccb:
379 1.1 agc * Wake up (or dispose of) a CCB. Depending on the CCB's disposition,
380 1.1 agc * either wake up the requesting thread, signal SCSIPI that we're done,
381 1.1 agc * or just free the CCB for CCBDISP_FREE.
382 1.1 agc *
383 1.5 mlelstv * Parameter: The CCB to handle and the new status of the CCB
384 1.1 agc */
385 1.1 agc
386 1.1 agc void
387 1.5 mlelstv wake_ccb(ccb_t *ccb, uint32_t status)
388 1.1 agc {
389 1.1 agc ccb_disp_t disp;
390 1.1 agc connection_t *conn;
391 1.1 agc
392 1.24 christos conn = ccb->ccb_connection;
393 1.22 mlelstv KASSERT(conn != NULL);
394 1.1 agc
395 1.21 mlelstv DEBC(conn, 9, ("CCB %d done, ccb = %p, disp = %d\n",
396 1.24 christos ccb->ccb_CmdSN, ccb, ccb->ccb_disp));
397 1.1 agc
398 1.11 mlelstv ccb_timeout_stop(ccb);
399 1.1 agc
400 1.24 christos mutex_enter(&conn->c_lock);
401 1.24 christos disp = ccb->ccb_disp;
402 1.1 agc if (disp <= CCBDISP_NOWAIT ||
403 1.24 christos (disp == CCBDISP_DEFER && conn->c_state <= ST_WINDING_DOWN)) {
404 1.24 christos mutex_exit(&conn->c_lock);
405 1.1 agc return;
406 1.1 agc }
407 1.1 agc
408 1.5 mlelstv suspend_ccb(ccb, FALSE);
409 1.1 agc
410 1.1 agc /* change the disposition so nobody tries this again */
411 1.24 christos ccb->ccb_disp = CCBDISP_BUSY;
412 1.24 christos ccb->ccb_status = status;
413 1.22 mlelstv
414 1.22 mlelstv if (disp == CCBDISP_WAIT)
415 1.24 christos cv_broadcast(&conn->c_ccb_cv);
416 1.24 christos mutex_exit(&conn->c_lock);
417 1.1 agc
418 1.22 mlelstv switch(disp) {
419 1.1 agc case CCBDISP_WAIT:
420 1.22 mlelstv case CCBDISP_DEFER:
421 1.1 agc break;
422 1.1 agc
423 1.1 agc case CCBDISP_SCSIPI:
424 1.1 agc iscsi_done(ccb);
425 1.22 mlelstv /* FALLTRHOUGH */
426 1.22 mlelstv case CCBDISP_FREE:
427 1.5 mlelstv free_ccb(ccb);
428 1.1 agc break;
429 1.1 agc default:
430 1.5 mlelstv DEBC(conn, 1, ("CCB done, ccb = %p, invalid disposition %d", ccb, disp));
431 1.1 agc free_ccb(ccb);
432 1.1 agc break;
433 1.1 agc }
434 1.1 agc }
435 1.1 agc
436 1.1 agc /*****************************************************************************
437 1.1 agc * PDU management functions
438 1.1 agc *****************************************************************************/
439 1.1 agc
440 1.1 agc /*
441 1.5 mlelstv * get_pdu:
442 1.1 agc * Get a PDU for the SCSI operation.
443 1.1 agc *
444 1.1 agc * Parameter:
445 1.1 agc * conn The connection this PDU should be associated with
446 1.1 agc * waitok OK to wait for PDU if TRUE
447 1.1 agc *
448 1.1 agc * Returns: The PDU or NULL if none is available and waitok is FALSE.
449 1.1 agc */
450 1.1 agc
451 1.1 agc pdu_t *
452 1.5 mlelstv get_pdu(connection_t *conn, bool waitok)
453 1.1 agc {
454 1.1 agc pdu_t *pdu;
455 1.1 agc
456 1.24 christos mutex_enter(&conn->c_lock);
457 1.1 agc do {
458 1.24 christos pdu = TAILQ_FIRST(&conn->c_pdu_pool);
459 1.5 mlelstv if (pdu != NULL)
460 1.24 christos TAILQ_REMOVE(&conn->c_pdu_pool, pdu, pdu_chain);
461 1.5 mlelstv
462 1.1 agc if (pdu == NULL) {
463 1.24 christos if (!waitok || conn->c_terminating) {
464 1.24 christos mutex_exit(&conn->c_lock);
465 1.21 mlelstv DEB(15, ("get_pdu: failed"));
466 1.1 agc return NULL;
467 1.9 mlelstv }
468 1.24 christos cv_wait(&conn->c_pdu_cv, &conn->c_lock);
469 1.1 agc }
470 1.1 agc } while (pdu == NULL);
471 1.24 christos atomic_inc_uint(&conn->c_pducount);
472 1.24 christos mutex_exit(&conn->c_lock);
473 1.1 agc
474 1.1 agc memset(pdu, 0, sizeof(pdu_t));
475 1.24 christos pdu->pdu_connection = conn;
476 1.24 christos pdu->pdu_disp = PDUDISP_FREE;
477 1.1 agc
478 1.24 christos DEBC(conn, 15, ("get_pdu: pdu = %p, usecount = %d\n", pdu, conn->c_pducount));
479 1.21 mlelstv
480 1.1 agc return pdu;
481 1.1 agc }
482 1.1 agc
483 1.1 agc /*
484 1.1 agc * free_pdu:
485 1.1 agc * Put a PDU back onto the free list.
486 1.1 agc *
487 1.1 agc * Parameter: The PDU.
488 1.1 agc */
489 1.1 agc
490 1.1 agc void
491 1.1 agc free_pdu(pdu_t *pdu)
492 1.1 agc {
493 1.24 christos connection_t *conn = pdu->pdu_connection;
494 1.1 agc pdu_disp_t pdisp;
495 1.1 agc
496 1.24 christos DEBC(conn, 15, ("free_pdu: pdu = %p, usecount = %d\n", pdu, conn->c_pducount-1));
497 1.21 mlelstv
498 1.24 christos KASSERT((pdu->pdu_flags & PDUF_INQUEUE) == 0);
499 1.14 mlelstv
500 1.24 christos if (PDUDISP_UNUSED == (pdisp = pdu->pdu_disp))
501 1.1 agc return;
502 1.24 christos pdu->pdu_disp = PDUDISP_UNUSED;
503 1.1 agc
504 1.1 agc /* free temporary data in this PDU */
505 1.24 christos if (pdu->pdu_temp_data)
506 1.24 christos free(pdu->pdu_temp_data, M_TEMP);
507 1.1 agc
508 1.24 christos mutex_enter(&conn->c_lock);
509 1.24 christos atomic_dec_uint(&conn->c_pducount);
510 1.24 christos TAILQ_INSERT_TAIL(&conn->c_pdu_pool, pdu, pdu_chain);
511 1.24 christos cv_broadcast(&conn->c_pdu_cv);
512 1.24 christos mutex_exit(&conn->c_lock);
513 1.1 agc }
514 1.1 agc
515 1.1 agc /*
516 1.1 agc * create_pdus
517 1.1 agc * "Create" the pool of PDUs. This doesn't actually create the PDUs
518 1.1 agc * (they are allocated with the connection structure), but it links them
519 1.1 agc * into the free-list.
520 1.1 agc *
521 1.1 agc * Parameter: The connection owning the PDUs.
522 1.1 agc */
523 1.1 agc
524 1.1 agc void
525 1.1 agc create_pdus(connection_t *conn)
526 1.1 agc {
527 1.1 agc int i;
528 1.1 agc pdu_t *pdu;
529 1.1 agc
530 1.1 agc /* Note: PDUs are initialized to 0 with connection structure */
531 1.1 agc
532 1.24 christos for (i = 0, pdu = conn->c_pdu; i < PDUS_PER_CONNECTION; i++, pdu++) {
533 1.24 christos TAILQ_INSERT_HEAD(&conn->c_pdu_pool, pdu, pdu_chain);
534 1.1 agc }
535 1.1 agc }
536 1.1 agc
537 1.1 agc
538 1.1 agc /*****************************************************************************
539 1.1 agc * Serial Number management functions
540 1.1 agc *****************************************************************************/
541 1.1 agc
542 1.1 agc /*
543 1.1 agc * init_sernum:
544 1.1 agc * Initialize serial number buffer variables.
545 1.1 agc *
546 1.1 agc * Parameter:
547 1.1 agc * buff The serial number buffer.
548 1.1 agc */
549 1.1 agc
550 1.1 agc void
551 1.1 agc init_sernum(sernum_buffer_t *buff)
552 1.1 agc {
553 1.1 agc
554 1.1 agc buff->bottom = 0;
555 1.1 agc buff->top = 0;
556 1.1 agc buff->next_sn = 0;
557 1.1 agc buff->ExpSN = 0;
558 1.1 agc }
559 1.1 agc
560 1.1 agc
561 1.1 agc /*
562 1.1 agc * add_sernum:
563 1.1 agc * Add a received serial number to the buffer.
564 1.1 agc * If the serial number is smaller than the expected one, it is ignored.
565 1.1 agc * If it is larger, all missing serial numbers are added as well.
566 1.1 agc *
567 1.1 agc * Parameter:
568 1.1 agc * buff The serial number buffer.
569 1.1 agc * num The received serial number
570 1.1 agc *
571 1.1 agc * Returns:
572 1.1 agc * 0 if the received block is a duplicate
573 1.1 agc * 1 if the number is the expected one
574 1.1 agc * >1 if the numer is > the expected value, in this case the
575 1.1 agc * return value is the number of unacknowledged blocks
576 1.1 agc * <0 if the buffer is full (i.e. an excessive number of blocks
577 1.1 agc * is unacknowledged)
578 1.1 agc */
579 1.1 agc
580 1.1 agc int
581 1.1 agc add_sernum(sernum_buffer_t *buff, uint32_t num)
582 1.1 agc {
583 1.3 mlelstv int i, t, b;
584 1.3 mlelstv uint32_t n;
585 1.3 mlelstv int32_t diff;
586 1.1 agc
587 1.1 agc /*
588 1.1 agc * next_sn is the next expected SN, so normally diff should be 1.
589 1.1 agc */
590 1.1 agc n = buff->next_sn;
591 1.1 agc diff = (num - n) + 1;
592 1.1 agc
593 1.1 agc if (diff <= 0) {
594 1.1 agc return 0; /* ignore if SN is smaller than expected (dup or retransmit) */
595 1.1 agc }
596 1.1 agc
597 1.1 agc buff->next_sn = num + 1;
598 1.1 agc t = buff->top;
599 1.1 agc b = buff->bottom;
600 1.1 agc
601 1.1 agc for (i = 0; i < diff; i++) {
602 1.1 agc buff->sernum[t] = n++;
603 1.8 joerg buff->ack[t] = false;
604 1.1 agc t = (t + 1) % SERNUM_BUFFER_LENGTH;
605 1.1 agc if (t == b) {
606 1.1 agc DEB(1, ("AddSernum: Buffer Full! num %d, diff %d\n", num, diff));
607 1.1 agc return -1;
608 1.1 agc }
609 1.1 agc }
610 1.1 agc
611 1.1 agc buff->top = t;
612 1.12 mlelstv DEB(11, ("AddSernum bottom %d [%d], top %d, num %u, diff %d\n",
613 1.1 agc b, buff->sernum[b], buff->top, num, diff));
614 1.1 agc
615 1.1 agc return diff;
616 1.1 agc }
617 1.1 agc
618 1.1 agc
619 1.1 agc /*
620 1.1 agc * ack_sernum:
621 1.1 agc * Mark a received serial number as acknowledged. This does not necessarily
622 1.1 agc * change the associated ExpSN if there are lower serial numbers in the
623 1.1 agc * buffer.
624 1.1 agc *
625 1.1 agc * Parameter:
626 1.1 agc * buff The serial number buffer.
627 1.1 agc * num The serial number to acknowledge.
628 1.1 agc *
629 1.1 agc * Returns: The value of ExpSN.
630 1.1 agc */
631 1.1 agc
632 1.1 agc uint32_t
633 1.1 agc ack_sernum(sernum_buffer_t *buff, uint32_t num)
634 1.1 agc {
635 1.1 agc int b = buff->bottom;
636 1.1 agc int t = buff->top;
637 1.1 agc
638 1.1 agc /* shortcut for most likely case */
639 1.1 agc if (t == (b + 1) && num == buff->sernum[b]) {
640 1.1 agc /* buffer is now empty, reset top */
641 1.1 agc buff->top = b;
642 1.1 agc } else if (b != t) {
643 1.1 agc for (; b != t; b = (b + 1) % SERNUM_BUFFER_LENGTH) {
644 1.1 agc if (!sn_a_lt_b(buff->sernum[b], num))
645 1.1 agc break;
646 1.1 agc }
647 1.1 agc if (num == buff->sernum[b]) {
648 1.1 agc if (b == buff->bottom)
649 1.1 agc buff->bottom = (b + 1) % SERNUM_BUFFER_LENGTH;
650 1.1 agc else
651 1.8 joerg buff->ack[b] = true;
652 1.1 agc }
653 1.1 agc
654 1.1 agc for (b = buff->bottom, num = buff->sernum[b] - 1;
655 1.1 agc b != t && buff->ack[b]; b = (b + 1) % SERNUM_BUFFER_LENGTH) {
656 1.1 agc num = buff->sernum[b];
657 1.1 agc }
658 1.1 agc }
659 1.1 agc
660 1.1 agc if (!sn_a_lt_b(num, buff->ExpSN))
661 1.1 agc buff->ExpSN = num + 1;
662 1.1 agc
663 1.12 mlelstv DEB(11, ("AckSernum bottom %d, top %d, num %d ExpSN %d\n",
664 1.1 agc buff->bottom, buff->top, num, buff->ExpSN));
665 1.1 agc
666 1.1 agc return buff->ExpSN;
667 1.1 agc }
668 1.10 mlelstv
669 1.10 mlelstv /*
670 1.10 mlelstv * next_sernum:
671 1.10 mlelstv * Return the current command serial number of the session
672 1.10 mlelstv * and optionally increment it for the next query
673 1.10 mlelstv */
674 1.10 mlelstv uint32_t
675 1.21 mlelstv get_sernum(session_t *sess, pdu_t *pdu)
676 1.10 mlelstv {
677 1.10 mlelstv uint32_t sn;
678 1.10 mlelstv
679 1.24 christos KASSERT(mutex_owned(&sess->s_lock));
680 1.10 mlelstv
681 1.24 christos sn = sess->s_CmdSN;
682 1.24 christos if ((pdu->pdu_hdr.pduh_Opcode & OP_IMMEDIATE) == 0)
683 1.24 christos atomic_inc_32(&sess->s_CmdSN);
684 1.10 mlelstv return sn;
685 1.10 mlelstv }
686 1.10 mlelstv
687 1.10 mlelstv /*
688 1.10 mlelstv * sernum_in_window:
689 1.10 mlelstv * Check wether serial number is in send window
690 1.10 mlelstv *
691 1.10 mlelstv */
692 1.10 mlelstv int
693 1.10 mlelstv sernum_in_window(session_t *sess)
694 1.10 mlelstv {
695 1.10 mlelstv
696 1.24 christos KASSERT(mutex_owned(&sess->s_lock));
697 1.24 christos return sn_a_le_b(sess->s_CmdSN, sess->s_MaxCmdSN);
698 1.10 mlelstv }
699 1.10 mlelstv
700 1.21 mlelstv /*
701 1.21 mlelstv * window_size:
702 1.21 mlelstv * Compute send window size
703 1.21 mlelstv */
704 1.21 mlelstv int
705 1.21 mlelstv window_size(session_t *sess, int limit)
706 1.21 mlelstv {
707 1.21 mlelstv uint32_t win;
708 1.21 mlelstv
709 1.24 christos KASSERT(mutex_owned(&sess->s_lock));
710 1.21 mlelstv
711 1.21 mlelstv win = 0;
712 1.24 christos if (sn_a_le_b(sess->s_CmdSN, sess->s_MaxCmdSN))
713 1.24 christos win = sess->s_MaxCmdSN - sess->s_CmdSN + 1;
714 1.21 mlelstv if (win > INT_MAX || win > limit)
715 1.21 mlelstv win = limit;
716 1.21 mlelstv
717 1.21 mlelstv return win;
718 1.21 mlelstv }
719