iscsi_utils.c revision 1.29 1 1.29 mlelstv /* $NetBSD: iscsi_utils.c,v 1.29 2023/11/25 10:08:27 mlelstv Exp $ */
2 1.1 agc
3 1.1 agc /*-
4 1.1 agc * Copyright (c) 2004,2005,2006,2008 The NetBSD Foundation, Inc.
5 1.1 agc * All rights reserved.
6 1.1 agc *
7 1.1 agc * This code is derived from software contributed to The NetBSD Foundation
8 1.1 agc * by Wasabi Systems, Inc.
9 1.1 agc *
10 1.1 agc * Redistribution and use in source and binary forms, with or without
11 1.1 agc * modification, are permitted provided that the following conditions
12 1.1 agc * are met:
13 1.1 agc * 1. Redistributions of source code must retain the above copyright
14 1.1 agc * notice, this list of conditions and the following disclaimer.
15 1.1 agc * 2. Redistributions in binary form must reproduce the above copyright
16 1.1 agc * notice, this list of conditions and the following disclaimer in the
17 1.1 agc * documentation and/or other materials provided with the distribution.
18 1.1 agc *
19 1.1 agc * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
20 1.1 agc * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
21 1.1 agc * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
22 1.1 agc * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
23 1.1 agc * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
24 1.1 agc * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
25 1.1 agc * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
26 1.1 agc * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
27 1.1 agc * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
28 1.1 agc * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
29 1.1 agc * POSSIBILITY OF SUCH DAMAGE.
30 1.1 agc */
31 1.1 agc #include "iscsi_globals.h"
32 1.1 agc
33 1.1 agc #include <sys/systm.h>
34 1.1 agc #include <sys/buf.h>
35 1.1 agc #include <sys/socketvar.h>
36 1.4 mlelstv #include <sys/bswap.h>
37 1.9 mlelstv #include <sys/atomic.h>
38 1.1 agc
39 1.1 agc
40 1.1 agc /*****************************************************************************
41 1.1 agc * Digest functions
42 1.1 agc *****************************************************************************/
43 1.1 agc
44 1.1 agc /*****************************************************************
45 1.1 agc *
46 1.1 agc * CRC LOOKUP TABLE
47 1.1 agc * ================
48 1.1 agc * The following CRC lookup table was generated automagically
49 1.1 agc * by the Rocksoft^tm Model CRC Algorithm Table Generation
50 1.1 agc * Program V1.0 using the following model parameters:
51 1.1 agc *
52 1.1 agc * Width : 4 bytes.
53 1.1 agc * Poly : 0x1EDC6F41L
54 1.1 agc * Reverse : TRUE.
55 1.1 agc *
56 1.1 agc * For more information on the Rocksoft^tm Model CRC Algorithm,
57 1.1 agc * see the document titled "A Painless Guide to CRC Error
58 1.1 agc * Detection Algorithms" by Ross Williams
59 1.1 agc * (ross (at) guest.adelaide.edu.au.). This document is likely to be
60 1.1 agc * in the FTP archive "ftp.adelaide.edu.au/pub/rocksoft".
61 1.1 agc *
62 1.1 agc *****************************************************************/
63 1.1 agc
64 1.1 agc STATIC uint32_t crc_table[256] = {
65 1.1 agc 0x00000000L, 0xF26B8303L, 0xE13B70F7L, 0x1350F3F4L,
66 1.1 agc 0xC79A971FL, 0x35F1141CL, 0x26A1E7E8L, 0xD4CA64EBL,
67 1.1 agc 0x8AD958CFL, 0x78B2DBCCL, 0x6BE22838L, 0x9989AB3BL,
68 1.1 agc 0x4D43CFD0L, 0xBF284CD3L, 0xAC78BF27L, 0x5E133C24L,
69 1.1 agc 0x105EC76FL, 0xE235446CL, 0xF165B798L, 0x030E349BL,
70 1.1 agc 0xD7C45070L, 0x25AFD373L, 0x36FF2087L, 0xC494A384L,
71 1.1 agc 0x9A879FA0L, 0x68EC1CA3L, 0x7BBCEF57L, 0x89D76C54L,
72 1.1 agc 0x5D1D08BFL, 0xAF768BBCL, 0xBC267848L, 0x4E4DFB4BL,
73 1.1 agc 0x20BD8EDEL, 0xD2D60DDDL, 0xC186FE29L, 0x33ED7D2AL,
74 1.1 agc 0xE72719C1L, 0x154C9AC2L, 0x061C6936L, 0xF477EA35L,
75 1.1 agc 0xAA64D611L, 0x580F5512L, 0x4B5FA6E6L, 0xB93425E5L,
76 1.1 agc 0x6DFE410EL, 0x9F95C20DL, 0x8CC531F9L, 0x7EAEB2FAL,
77 1.1 agc 0x30E349B1L, 0xC288CAB2L, 0xD1D83946L, 0x23B3BA45L,
78 1.1 agc 0xF779DEAEL, 0x05125DADL, 0x1642AE59L, 0xE4292D5AL,
79 1.1 agc 0xBA3A117EL, 0x4851927DL, 0x5B016189L, 0xA96AE28AL,
80 1.1 agc 0x7DA08661L, 0x8FCB0562L, 0x9C9BF696L, 0x6EF07595L,
81 1.1 agc 0x417B1DBCL, 0xB3109EBFL, 0xA0406D4BL, 0x522BEE48L,
82 1.1 agc 0x86E18AA3L, 0x748A09A0L, 0x67DAFA54L, 0x95B17957L,
83 1.1 agc 0xCBA24573L, 0x39C9C670L, 0x2A993584L, 0xD8F2B687L,
84 1.1 agc 0x0C38D26CL, 0xFE53516FL, 0xED03A29BL, 0x1F682198L,
85 1.1 agc 0x5125DAD3L, 0xA34E59D0L, 0xB01EAA24L, 0x42752927L,
86 1.1 agc 0x96BF4DCCL, 0x64D4CECFL, 0x77843D3BL, 0x85EFBE38L,
87 1.1 agc 0xDBFC821CL, 0x2997011FL, 0x3AC7F2EBL, 0xC8AC71E8L,
88 1.1 agc 0x1C661503L, 0xEE0D9600L, 0xFD5D65F4L, 0x0F36E6F7L,
89 1.1 agc 0x61C69362L, 0x93AD1061L, 0x80FDE395L, 0x72966096L,
90 1.1 agc 0xA65C047DL, 0x5437877EL, 0x4767748AL, 0xB50CF789L,
91 1.1 agc 0xEB1FCBADL, 0x197448AEL, 0x0A24BB5AL, 0xF84F3859L,
92 1.1 agc 0x2C855CB2L, 0xDEEEDFB1L, 0xCDBE2C45L, 0x3FD5AF46L,
93 1.1 agc 0x7198540DL, 0x83F3D70EL, 0x90A324FAL, 0x62C8A7F9L,
94 1.1 agc 0xB602C312L, 0x44694011L, 0x5739B3E5L, 0xA55230E6L,
95 1.1 agc 0xFB410CC2L, 0x092A8FC1L, 0x1A7A7C35L, 0xE811FF36L,
96 1.1 agc 0x3CDB9BDDL, 0xCEB018DEL, 0xDDE0EB2AL, 0x2F8B6829L,
97 1.1 agc 0x82F63B78L, 0x709DB87BL, 0x63CD4B8FL, 0x91A6C88CL,
98 1.1 agc 0x456CAC67L, 0xB7072F64L, 0xA457DC90L, 0x563C5F93L,
99 1.1 agc 0x082F63B7L, 0xFA44E0B4L, 0xE9141340L, 0x1B7F9043L,
100 1.1 agc 0xCFB5F4A8L, 0x3DDE77ABL, 0x2E8E845FL, 0xDCE5075CL,
101 1.1 agc 0x92A8FC17L, 0x60C37F14L, 0x73938CE0L, 0x81F80FE3L,
102 1.1 agc 0x55326B08L, 0xA759E80BL, 0xB4091BFFL, 0x466298FCL,
103 1.1 agc 0x1871A4D8L, 0xEA1A27DBL, 0xF94AD42FL, 0x0B21572CL,
104 1.1 agc 0xDFEB33C7L, 0x2D80B0C4L, 0x3ED04330L, 0xCCBBC033L,
105 1.1 agc 0xA24BB5A6L, 0x502036A5L, 0x4370C551L, 0xB11B4652L,
106 1.1 agc 0x65D122B9L, 0x97BAA1BAL, 0x84EA524EL, 0x7681D14DL,
107 1.1 agc 0x2892ED69L, 0xDAF96E6AL, 0xC9A99D9EL, 0x3BC21E9DL,
108 1.1 agc 0xEF087A76L, 0x1D63F975L, 0x0E330A81L, 0xFC588982L,
109 1.1 agc 0xB21572C9L, 0x407EF1CAL, 0x532E023EL, 0xA145813DL,
110 1.1 agc 0x758FE5D6L, 0x87E466D5L, 0x94B49521L, 0x66DF1622L,
111 1.1 agc 0x38CC2A06L, 0xCAA7A905L, 0xD9F75AF1L, 0x2B9CD9F2L,
112 1.1 agc 0xFF56BD19L, 0x0D3D3E1AL, 0x1E6DCDEEL, 0xEC064EEDL,
113 1.1 agc 0xC38D26C4L, 0x31E6A5C7L, 0x22B65633L, 0xD0DDD530L,
114 1.1 agc 0x0417B1DBL, 0xF67C32D8L, 0xE52CC12CL, 0x1747422FL,
115 1.1 agc 0x49547E0BL, 0xBB3FFD08L, 0xA86F0EFCL, 0x5A048DFFL,
116 1.1 agc 0x8ECEE914L, 0x7CA56A17L, 0x6FF599E3L, 0x9D9E1AE0L,
117 1.1 agc 0xD3D3E1ABL, 0x21B862A8L, 0x32E8915CL, 0xC083125FL,
118 1.1 agc 0x144976B4L, 0xE622F5B7L, 0xF5720643L, 0x07198540L,
119 1.1 agc 0x590AB964L, 0xAB613A67L, 0xB831C993L, 0x4A5A4A90L,
120 1.1 agc 0x9E902E7BL, 0x6CFBAD78L, 0x7FAB5E8CL, 0x8DC0DD8FL,
121 1.1 agc 0xE330A81AL, 0x115B2B19L, 0x020BD8EDL, 0xF0605BEEL,
122 1.1 agc 0x24AA3F05L, 0xD6C1BC06L, 0xC5914FF2L, 0x37FACCF1L,
123 1.1 agc 0x69E9F0D5L, 0x9B8273D6L, 0x88D28022L, 0x7AB90321L,
124 1.1 agc 0xAE7367CAL, 0x5C18E4C9L, 0x4F48173DL, 0xBD23943EL,
125 1.1 agc 0xF36E6F75L, 0x0105EC76L, 0x12551F82L, 0xE03E9C81L,
126 1.1 agc 0x34F4F86AL, 0xC69F7B69L, 0xD5CF889DL, 0x27A40B9EL,
127 1.1 agc 0x79B737BAL, 0x8BDCB4B9L, 0x988C474DL, 0x6AE7C44EL,
128 1.1 agc 0xBE2DA0A5L, 0x4C4623A6L, 0x5F16D052L, 0xAD7D5351L
129 1.1 agc };
130 1.1 agc
131 1.1 agc
132 1.1 agc /*
133 1.1 agc * gen_digest:
134 1.1 agc * Generate an iSCSI CRC32C digest over the given data.
135 1.1 agc *
136 1.1 agc * Parameters:
137 1.1 agc * buff The data
138 1.1 agc * len The length of the data in bytes
139 1.1 agc *
140 1.1 agc * Returns: The digest in network byte order
141 1.1 agc */
142 1.1 agc
143 1.1 agc uint32_t
144 1.24 christos gen_digest(const void *buff, size_t len)
145 1.1 agc {
146 1.24 christos const uint8_t *bp = (const uint8_t *) buff;
147 1.1 agc uint32_t crc = 0xffffffff;
148 1.1 agc
149 1.1 agc while (len--) {
150 1.1 agc crc = ((crc >> 8) & 0x00ffffff) ^ crc_table[(crc ^ *bp++) & 0xff];
151 1.1 agc }
152 1.4 mlelstv return htonl(bswap32(crc ^ 0xffffffff));
153 1.1 agc }
154 1.1 agc
155 1.1 agc
156 1.1 agc /*
157 1.1 agc * gen_digest_2:
158 1.1 agc * Generate an iSCSI CRC32C digest over the given data, which is split over
159 1.1 agc * two buffers.
160 1.1 agc *
161 1.1 agc * Parameters:
162 1.1 agc * buf1, buf2 The data
163 1.1 agc * len1, len2 The length of the data in bytes
164 1.1 agc *
165 1.1 agc * Returns: The digest in network byte order
166 1.1 agc */
167 1.1 agc
168 1.1 agc uint32_t
169 1.24 christos gen_digest_2(const void *buf1, size_t len1, const void *buf2, size_t len2)
170 1.1 agc {
171 1.24 christos const uint8_t *bp = (const uint8_t *) buf1;
172 1.1 agc uint32_t crc = 0xffffffff;
173 1.1 agc
174 1.1 agc while (len1--) {
175 1.1 agc crc = ((crc >> 8) & 0x00ffffff) ^ crc_table[(crc ^ *bp++) & 0xff];
176 1.1 agc }
177 1.24 christos bp = (const uint8_t *) buf2;
178 1.1 agc while (len2--) {
179 1.1 agc crc = ((crc >> 8) & 0x00ffffff) ^ crc_table[(crc ^ *bp++) & 0xff];
180 1.1 agc }
181 1.4 mlelstv return htonl(bswap32(crc ^ 0xffffffff));
182 1.1 agc }
183 1.1 agc
184 1.1 agc /*****************************************************************************
185 1.1 agc * CCB management functions
186 1.1 agc *****************************************************************************/
187 1.1 agc
188 1.1 agc /*
189 1.1 agc * get_ccb:
190 1.1 agc * Get a CCB for the SCSI operation, waiting if none is available.
191 1.1 agc *
192 1.1 agc * Parameter:
193 1.1 agc * sess The session containing this CCB
194 1.1 agc * waitok Whether waiting for a CCB is OK
195 1.1 agc *
196 1.1 agc * Returns: The CCB.
197 1.1 agc */
198 1.1 agc
199 1.1 agc ccb_t *
200 1.1 agc get_ccb(connection_t *conn, bool waitok)
201 1.1 agc {
202 1.1 agc ccb_t *ccb;
203 1.24 christos session_t *sess = conn->c_session;
204 1.1 agc
205 1.24 christos mutex_enter(&sess->s_lock);
206 1.28 mlelstv for (;;) {
207 1.24 christos ccb = TAILQ_FIRST(&sess->s_ccb_pool);
208 1.28 mlelstv
209 1.9 mlelstv DEB(100, ("get_ccb: ccb = %p, waitok = %d\n", ccb, waitok));
210 1.9 mlelstv
211 1.9 mlelstv if (ccb != NULL) {
212 1.24 christos TAILQ_REMOVE(&sess->s_ccb_pool, ccb, ccb_chain);
213 1.28 mlelstv break;
214 1.1 agc }
215 1.28 mlelstv
216 1.28 mlelstv if (!waitok)
217 1.28 mlelstv break;
218 1.28 mlelstv
219 1.28 mlelstv cv_wait(&sess->s_ccb_cv, &sess->s_lock);
220 1.28 mlelstv }
221 1.24 christos mutex_exit(&sess->s_lock);
222 1.1 agc
223 1.28 mlelstv if (ccb == NULL) {
224 1.28 mlelstv DEB(15, ("get_ccb: failed"));
225 1.28 mlelstv return NULL;
226 1.28 mlelstv }
227 1.28 mlelstv
228 1.24 christos ccb->ccb_flags = 0;
229 1.24 christos ccb->ccb_timedout = TOUT_NONE;
230 1.24 christos ccb->ccb_xs = NULL;
231 1.24 christos ccb->ccb_temp_data = NULL;
232 1.24 christos ccb->ccb_text_data = NULL;
233 1.24 christos ccb->ccb_status = ISCSI_STATUS_SUCCESS;
234 1.24 christos ccb->ccb_ITT = (ccb->ccb_ITT & 0xffffff);
235 1.24 christos ccb->ccb_disp = CCBDISP_NOWAIT;
236 1.24 christos ccb->ccb_connection = conn;
237 1.24 christos ccb->ccb_num_timeouts = 0;
238 1.29 mlelstv mutex_enter(&conn->c_lock);
239 1.29 mlelstv conn->c_usecount++;
240 1.29 mlelstv mutex_exit(&conn->c_lock);
241 1.9 mlelstv
242 1.12 mlelstv DEBC(conn, 15, (
243 1.9 mlelstv "get_ccb: ccb = %p, usecount = %d\n",
244 1.24 christos ccb, conn->c_usecount));
245 1.1 agc
246 1.1 agc return ccb;
247 1.1 agc }
248 1.1 agc
249 1.1 agc /*
250 1.1 agc * free_ccb:
251 1.1 agc * Put a CCB back onto the free list.
252 1.1 agc *
253 1.1 agc * Parameter: The CCB.
254 1.1 agc */
255 1.1 agc
256 1.1 agc void
257 1.1 agc free_ccb(ccb_t *ccb)
258 1.1 agc {
259 1.24 christos session_t *sess = ccb->ccb_session;
260 1.24 christos connection_t *conn = ccb->ccb_connection;
261 1.1 agc pdu_t *pdu;
262 1.9 mlelstv
263 1.19 mlelstv DEBC(conn, 15, (
264 1.9 mlelstv "free_ccb: ccb = %p, usecount = %d\n",
265 1.24 christos ccb, conn->c_usecount-1));
266 1.5 mlelstv
267 1.24 christos KASSERT((ccb->ccb_flags & CCBF_WAITQUEUE) == 0);
268 1.1 agc
269 1.24 christos ccb->ccb_connection = NULL;
270 1.29 mlelstv mutex_enter(&conn->c_lock);
271 1.29 mlelstv conn->c_usecount--;
272 1.29 mlelstv mutex_exit(&conn->c_lock);
273 1.2 mlelstv
274 1.24 christos if (ccb->ccb_disp > CCBDISP_NOWAIT) {
275 1.24 christos DEBOUT(("Freeing CCB with disp %d\n",ccb->ccb_disp));
276 1.9 mlelstv }
277 1.9 mlelstv
278 1.24 christos ccb->ccb_disp = CCBDISP_UNUSED;
279 1.1 agc
280 1.1 agc /* free temporary data */
281 1.24 christos if (ccb->ccb_temp_data != NULL) {
282 1.24 christos free(ccb->ccb_temp_data, M_TEMP);
283 1.1 agc }
284 1.24 christos if (ccb->ccb_text_data != NULL) {
285 1.24 christos free(ccb->ccb_text_data, M_TEMP);
286 1.1 agc }
287 1.1 agc /* free PDU waiting for ACK */
288 1.24 christos if ((pdu = ccb->ccb_pdu_waiting) != NULL) {
289 1.24 christos ccb->ccb_pdu_waiting = NULL;
290 1.24 christos mutex_enter(&conn->c_lock);
291 1.24 christos if ((pdu->pdu_flags & PDUF_INQUEUE) != 0) {
292 1.24 christos TAILQ_REMOVE(&conn->c_pdus_to_send, pdu, pdu_send_chain);
293 1.24 christos pdu->pdu_flags &= ~PDUF_INQUEUE;
294 1.19 mlelstv }
295 1.24 christos mutex_exit(&conn->c_lock);
296 1.1 agc free_pdu(pdu);
297 1.1 agc }
298 1.1 agc
299 1.24 christos mutex_enter(&sess->s_lock);
300 1.24 christos TAILQ_INSERT_TAIL(&sess->s_ccb_pool, ccb, ccb_chain);
301 1.24 christos cv_broadcast(&sess->s_ccb_cv);
302 1.24 christos mutex_exit(&sess->s_lock);
303 1.1 agc }
304 1.1 agc
305 1.1 agc /*
306 1.1 agc * create_ccbs
307 1.1 agc * "Create" the pool of CCBs. This doesn't actually create the CCBs
308 1.1 agc * (they are allocated with the session structure), but it links them
309 1.1 agc * into the free-list.
310 1.1 agc *
311 1.1 agc * Parameter: The session owning the CCBs.
312 1.1 agc */
313 1.1 agc
314 1.1 agc void
315 1.1 agc create_ccbs(session_t *sess)
316 1.1 agc {
317 1.1 agc int i;
318 1.1 agc ccb_t *ccb;
319 1.24 christos int sid = sess->s_id << 8;
320 1.1 agc
321 1.1 agc /* Note: CCBs are initialized to 0 with connection structure */
322 1.1 agc
323 1.24 christos for (i = 0, ccb = sess->s_ccb; i < CCBS_PER_SESSION; i++, ccb++) {
324 1.24 christos ccb->ccb_ITT = i | sid;
325 1.24 christos ccb->ccb_session = sess;
326 1.1 agc
327 1.24 christos callout_init(&ccb->ccb_timeout, CALLOUT_MPSAFE);
328 1.24 christos callout_setfunc(&ccb->ccb_timeout, ccb_timeout_co, ccb);
329 1.1 agc
330 1.24 christos DEB(9, ("Create_ccbs: ccb %p itt %x\n", ccb, ccb->ccb_ITT));
331 1.24 christos TAILQ_INSERT_HEAD(&sess->s_ccb_pool, ccb, ccb_chain);
332 1.1 agc }
333 1.1 agc }
334 1.1 agc
335 1.5 mlelstv /*
336 1.23 mlelstv * destroy_ccbs
337 1.23 mlelstv * Kill the callouts
338 1.23 mlelstv *
339 1.23 mlelstv * Parameter: The session owning the CCBs.
340 1.23 mlelstv */
341 1.23 mlelstv
342 1.23 mlelstv void
343 1.23 mlelstv destroy_ccbs(session_t *sess)
344 1.23 mlelstv {
345 1.23 mlelstv int i;
346 1.23 mlelstv ccb_t *ccb;
347 1.23 mlelstv
348 1.23 mlelstv /* Note: CCBs are initialized to 0 with connection structure */
349 1.23 mlelstv
350 1.24 christos for (i = 0, ccb = sess->s_ccb; i < CCBS_PER_SESSION; i++, ccb++) {
351 1.23 mlelstv
352 1.24 christos callout_halt(&ccb->ccb_timeout, NULL);
353 1.24 christos callout_destroy(&ccb->ccb_timeout);
354 1.23 mlelstv
355 1.24 christos DEB(9, ("destroy_ccbs: ccb %p itt %x\n", ccb, ccb->ccb_ITT));
356 1.24 christos KASSERT((ccb->ccb_flags & CCBF_WAITQUEUE) == 0);
357 1.24 christos KASSERT(ccb->ccb_disp == CCBDISP_UNUSED);
358 1.24 christos KASSERT(ccb->ccb_connection == NULL);
359 1.24 christos TAILQ_REMOVE(&sess->s_ccb_pool, ccb, ccb_chain);
360 1.23 mlelstv }
361 1.23 mlelstv }
362 1.23 mlelstv
363 1.23 mlelstv /*
364 1.5 mlelstv * suspend_ccb:
365 1.5 mlelstv * Put CCB on wait queue
366 1.5 mlelstv */
367 1.5 mlelstv void
368 1.5 mlelstv suspend_ccb(ccb_t *ccb, bool yes)
369 1.5 mlelstv {
370 1.5 mlelstv connection_t *conn;
371 1.5 mlelstv
372 1.24 christos conn = ccb->ccb_connection;
373 1.22 mlelstv KASSERT(conn != NULL);
374 1.21 mlelstv
375 1.24 christos KASSERT(mutex_owned(&conn->c_lock));
376 1.21 mlelstv
377 1.5 mlelstv if (yes) {
378 1.24 christos KASSERT((ccb->ccb_flags & CCBF_WAITQUEUE) == 0);
379 1.24 christos TAILQ_INSERT_TAIL(&conn->c_ccbs_waiting, ccb, ccb_chain);
380 1.24 christos ccb->ccb_flags |= CCBF_WAITQUEUE;
381 1.24 christos } else if (ccb->ccb_flags & CCBF_WAITQUEUE) {
382 1.24 christos TAILQ_REMOVE(&conn->c_ccbs_waiting, ccb, ccb_chain);
383 1.24 christos ccb->ccb_flags &= ~CCBF_WAITQUEUE;
384 1.5 mlelstv }
385 1.5 mlelstv }
386 1.5 mlelstv
387 1.5 mlelstv /*
388 1.1 agc * wake_ccb:
389 1.1 agc * Wake up (or dispose of) a CCB. Depending on the CCB's disposition,
390 1.1 agc * either wake up the requesting thread, signal SCSIPI that we're done,
391 1.1 agc * or just free the CCB for CCBDISP_FREE.
392 1.1 agc *
393 1.5 mlelstv * Parameter: The CCB to handle and the new status of the CCB
394 1.1 agc */
395 1.1 agc
396 1.1 agc void
397 1.5 mlelstv wake_ccb(ccb_t *ccb, uint32_t status)
398 1.1 agc {
399 1.1 agc ccb_disp_t disp;
400 1.1 agc connection_t *conn;
401 1.1 agc
402 1.24 christos conn = ccb->ccb_connection;
403 1.22 mlelstv KASSERT(conn != NULL);
404 1.1 agc
405 1.21 mlelstv DEBC(conn, 9, ("CCB %d done, ccb = %p, disp = %d\n",
406 1.24 christos ccb->ccb_CmdSN, ccb, ccb->ccb_disp));
407 1.1 agc
408 1.11 mlelstv ccb_timeout_stop(ccb);
409 1.1 agc
410 1.24 christos mutex_enter(&conn->c_lock);
411 1.24 christos disp = ccb->ccb_disp;
412 1.1 agc if (disp <= CCBDISP_NOWAIT ||
413 1.24 christos (disp == CCBDISP_DEFER && conn->c_state <= ST_WINDING_DOWN)) {
414 1.24 christos mutex_exit(&conn->c_lock);
415 1.1 agc return;
416 1.1 agc }
417 1.1 agc
418 1.5 mlelstv suspend_ccb(ccb, FALSE);
419 1.1 agc
420 1.1 agc /* change the disposition so nobody tries this again */
421 1.24 christos ccb->ccb_disp = CCBDISP_BUSY;
422 1.24 christos ccb->ccb_status = status;
423 1.22 mlelstv
424 1.22 mlelstv if (disp == CCBDISP_WAIT)
425 1.24 christos cv_broadcast(&conn->c_ccb_cv);
426 1.24 christos mutex_exit(&conn->c_lock);
427 1.1 agc
428 1.22 mlelstv switch(disp) {
429 1.1 agc case CCBDISP_WAIT:
430 1.22 mlelstv case CCBDISP_DEFER:
431 1.1 agc break;
432 1.1 agc
433 1.1 agc case CCBDISP_SCSIPI:
434 1.1 agc iscsi_done(ccb);
435 1.25 mrg /* FALLTHROUGH */
436 1.22 mlelstv case CCBDISP_FREE:
437 1.5 mlelstv free_ccb(ccb);
438 1.1 agc break;
439 1.1 agc default:
440 1.5 mlelstv DEBC(conn, 1, ("CCB done, ccb = %p, invalid disposition %d", ccb, disp));
441 1.1 agc free_ccb(ccb);
442 1.1 agc break;
443 1.1 agc }
444 1.1 agc }
445 1.1 agc
446 1.1 agc /*****************************************************************************
447 1.1 agc * PDU management functions
448 1.1 agc *****************************************************************************/
449 1.1 agc
450 1.1 agc /*
451 1.5 mlelstv * get_pdu:
452 1.1 agc * Get a PDU for the SCSI operation.
453 1.1 agc *
454 1.1 agc * Parameter:
455 1.1 agc * conn The connection this PDU should be associated with
456 1.1 agc * waitok OK to wait for PDU if TRUE
457 1.1 agc *
458 1.1 agc * Returns: The PDU or NULL if none is available and waitok is FALSE.
459 1.1 agc */
460 1.1 agc
461 1.1 agc pdu_t *
462 1.5 mlelstv get_pdu(connection_t *conn, bool waitok)
463 1.1 agc {
464 1.1 agc pdu_t *pdu;
465 1.1 agc
466 1.24 christos mutex_enter(&conn->c_lock);
467 1.28 mlelstv for (;;) {
468 1.24 christos pdu = TAILQ_FIRST(&conn->c_pdu_pool);
469 1.28 mlelstv
470 1.28 mlelstv if (pdu != NULL) {
471 1.24 christos TAILQ_REMOVE(&conn->c_pdu_pool, pdu, pdu_chain);
472 1.28 mlelstv conn->c_pducount++;
473 1.28 mlelstv break;
474 1.28 mlelstv }
475 1.5 mlelstv
476 1.28 mlelstv if (!waitok)
477 1.28 mlelstv break;
478 1.28 mlelstv
479 1.28 mlelstv cv_wait(&conn->c_pdu_cv, &conn->c_lock);
480 1.28 mlelstv }
481 1.24 christos mutex_exit(&conn->c_lock);
482 1.1 agc
483 1.28 mlelstv if (pdu == NULL) {
484 1.28 mlelstv DEB(15, ("get_pdu: failed"));
485 1.28 mlelstv return NULL;
486 1.28 mlelstv }
487 1.28 mlelstv
488 1.1 agc memset(pdu, 0, sizeof(pdu_t));
489 1.24 christos pdu->pdu_connection = conn;
490 1.24 christos pdu->pdu_disp = PDUDISP_FREE;
491 1.1 agc
492 1.24 christos DEBC(conn, 15, ("get_pdu: pdu = %p, usecount = %d\n", pdu, conn->c_pducount));
493 1.21 mlelstv
494 1.1 agc return pdu;
495 1.1 agc }
496 1.1 agc
497 1.1 agc /*
498 1.1 agc * free_pdu:
499 1.1 agc * Put a PDU back onto the free list.
500 1.1 agc *
501 1.1 agc * Parameter: The PDU.
502 1.1 agc */
503 1.1 agc
504 1.1 agc void
505 1.1 agc free_pdu(pdu_t *pdu)
506 1.1 agc {
507 1.24 christos connection_t *conn = pdu->pdu_connection;
508 1.1 agc pdu_disp_t pdisp;
509 1.1 agc
510 1.24 christos DEBC(conn, 15, ("free_pdu: pdu = %p, usecount = %d\n", pdu, conn->c_pducount-1));
511 1.21 mlelstv
512 1.24 christos KASSERT((pdu->pdu_flags & PDUF_INQUEUE) == 0);
513 1.14 mlelstv
514 1.28 mlelstv if (PDUDISP_UNUSED == (pdisp = pdu->pdu_disp)) {
515 1.28 mlelstv DEBC(conn, 0, ("freeing UNUSED pdu\n"));
516 1.1 agc return;
517 1.28 mlelstv }
518 1.28 mlelstv
519 1.24 christos pdu->pdu_disp = PDUDISP_UNUSED;
520 1.1 agc
521 1.1 agc /* free temporary data in this PDU */
522 1.24 christos if (pdu->pdu_temp_data)
523 1.24 christos free(pdu->pdu_temp_data, M_TEMP);
524 1.1 agc
525 1.24 christos mutex_enter(&conn->c_lock);
526 1.28 mlelstv conn->c_pducount--;
527 1.24 christos TAILQ_INSERT_TAIL(&conn->c_pdu_pool, pdu, pdu_chain);
528 1.24 christos cv_broadcast(&conn->c_pdu_cv);
529 1.24 christos mutex_exit(&conn->c_lock);
530 1.1 agc }
531 1.1 agc
532 1.1 agc /*
533 1.1 agc * create_pdus
534 1.1 agc * "Create" the pool of PDUs. This doesn't actually create the PDUs
535 1.1 agc * (they are allocated with the connection structure), but it links them
536 1.1 agc * into the free-list.
537 1.1 agc *
538 1.1 agc * Parameter: The connection owning the PDUs.
539 1.1 agc */
540 1.1 agc
541 1.1 agc void
542 1.1 agc create_pdus(connection_t *conn)
543 1.1 agc {
544 1.1 agc int i;
545 1.1 agc pdu_t *pdu;
546 1.1 agc
547 1.1 agc /* Note: PDUs are initialized to 0 with connection structure */
548 1.1 agc
549 1.24 christos for (i = 0, pdu = conn->c_pdu; i < PDUS_PER_CONNECTION; i++, pdu++) {
550 1.24 christos TAILQ_INSERT_HEAD(&conn->c_pdu_pool, pdu, pdu_chain);
551 1.1 agc }
552 1.1 agc }
553 1.1 agc
554 1.1 agc
555 1.1 agc /*****************************************************************************
556 1.1 agc * Serial Number management functions
557 1.1 agc *****************************************************************************/
558 1.1 agc
559 1.1 agc /*
560 1.1 agc * init_sernum:
561 1.1 agc * Initialize serial number buffer variables.
562 1.1 agc *
563 1.1 agc * Parameter:
564 1.1 agc * buff The serial number buffer.
565 1.1 agc */
566 1.1 agc
567 1.1 agc void
568 1.1 agc init_sernum(sernum_buffer_t *buff)
569 1.1 agc {
570 1.1 agc
571 1.1 agc buff->bottom = 0;
572 1.1 agc buff->top = 0;
573 1.1 agc buff->next_sn = 0;
574 1.1 agc buff->ExpSN = 0;
575 1.1 agc }
576 1.1 agc
577 1.1 agc
578 1.1 agc /*
579 1.1 agc * add_sernum:
580 1.1 agc * Add a received serial number to the buffer.
581 1.1 agc * If the serial number is smaller than the expected one, it is ignored.
582 1.1 agc * If it is larger, all missing serial numbers are added as well.
583 1.1 agc *
584 1.1 agc * Parameter:
585 1.1 agc * buff The serial number buffer.
586 1.1 agc * num The received serial number
587 1.1 agc *
588 1.1 agc * Returns:
589 1.1 agc * 0 if the received block is a duplicate
590 1.1 agc * 1 if the number is the expected one
591 1.26 msaitoh * >1 if the number is > the expected value, in this case the
592 1.1 agc * return value is the number of unacknowledged blocks
593 1.1 agc * <0 if the buffer is full (i.e. an excessive number of blocks
594 1.1 agc * is unacknowledged)
595 1.1 agc */
596 1.1 agc
597 1.1 agc int
598 1.1 agc add_sernum(sernum_buffer_t *buff, uint32_t num)
599 1.1 agc {
600 1.3 mlelstv int i, t, b;
601 1.3 mlelstv uint32_t n;
602 1.3 mlelstv int32_t diff;
603 1.1 agc
604 1.1 agc /*
605 1.1 agc * next_sn is the next expected SN, so normally diff should be 1.
606 1.1 agc */
607 1.1 agc n = buff->next_sn;
608 1.1 agc diff = (num - n) + 1;
609 1.1 agc
610 1.1 agc if (diff <= 0) {
611 1.1 agc return 0; /* ignore if SN is smaller than expected (dup or retransmit) */
612 1.1 agc }
613 1.1 agc
614 1.1 agc buff->next_sn = num + 1;
615 1.1 agc t = buff->top;
616 1.1 agc b = buff->bottom;
617 1.1 agc
618 1.1 agc for (i = 0; i < diff; i++) {
619 1.1 agc buff->sernum[t] = n++;
620 1.8 joerg buff->ack[t] = false;
621 1.1 agc t = (t + 1) % SERNUM_BUFFER_LENGTH;
622 1.1 agc if (t == b) {
623 1.1 agc DEB(1, ("AddSernum: Buffer Full! num %d, diff %d\n", num, diff));
624 1.1 agc return -1;
625 1.1 agc }
626 1.1 agc }
627 1.1 agc
628 1.1 agc buff->top = t;
629 1.12 mlelstv DEB(11, ("AddSernum bottom %d [%d], top %d, num %u, diff %d\n",
630 1.1 agc b, buff->sernum[b], buff->top, num, diff));
631 1.1 agc
632 1.1 agc return diff;
633 1.1 agc }
634 1.1 agc
635 1.1 agc
636 1.1 agc /*
637 1.1 agc * ack_sernum:
638 1.1 agc * Mark a received serial number as acknowledged. This does not necessarily
639 1.1 agc * change the associated ExpSN if there are lower serial numbers in the
640 1.1 agc * buffer.
641 1.1 agc *
642 1.1 agc * Parameter:
643 1.1 agc * buff The serial number buffer.
644 1.1 agc * num The serial number to acknowledge.
645 1.1 agc *
646 1.1 agc * Returns: The value of ExpSN.
647 1.1 agc */
648 1.1 agc
649 1.1 agc uint32_t
650 1.1 agc ack_sernum(sernum_buffer_t *buff, uint32_t num)
651 1.1 agc {
652 1.1 agc int b = buff->bottom;
653 1.1 agc int t = buff->top;
654 1.1 agc
655 1.1 agc /* shortcut for most likely case */
656 1.1 agc if (t == (b + 1) && num == buff->sernum[b]) {
657 1.1 agc /* buffer is now empty, reset top */
658 1.1 agc buff->top = b;
659 1.1 agc } else if (b != t) {
660 1.1 agc for (; b != t; b = (b + 1) % SERNUM_BUFFER_LENGTH) {
661 1.1 agc if (!sn_a_lt_b(buff->sernum[b], num))
662 1.1 agc break;
663 1.1 agc }
664 1.1 agc if (num == buff->sernum[b]) {
665 1.1 agc if (b == buff->bottom)
666 1.1 agc buff->bottom = (b + 1) % SERNUM_BUFFER_LENGTH;
667 1.1 agc else
668 1.8 joerg buff->ack[b] = true;
669 1.1 agc }
670 1.1 agc
671 1.1 agc for (b = buff->bottom, num = buff->sernum[b] - 1;
672 1.1 agc b != t && buff->ack[b]; b = (b + 1) % SERNUM_BUFFER_LENGTH) {
673 1.1 agc num = buff->sernum[b];
674 1.1 agc }
675 1.1 agc }
676 1.1 agc
677 1.1 agc if (!sn_a_lt_b(num, buff->ExpSN))
678 1.1 agc buff->ExpSN = num + 1;
679 1.1 agc
680 1.12 mlelstv DEB(11, ("AckSernum bottom %d, top %d, num %d ExpSN %d\n",
681 1.1 agc buff->bottom, buff->top, num, buff->ExpSN));
682 1.1 agc
683 1.1 agc return buff->ExpSN;
684 1.1 agc }
685 1.10 mlelstv
686 1.10 mlelstv /*
687 1.10 mlelstv * next_sernum:
688 1.10 mlelstv * Return the current command serial number of the session
689 1.10 mlelstv * and optionally increment it for the next query
690 1.10 mlelstv */
691 1.10 mlelstv uint32_t
692 1.21 mlelstv get_sernum(session_t *sess, pdu_t *pdu)
693 1.10 mlelstv {
694 1.10 mlelstv uint32_t sn;
695 1.10 mlelstv
696 1.24 christos KASSERT(mutex_owned(&sess->s_lock));
697 1.10 mlelstv
698 1.24 christos sn = sess->s_CmdSN;
699 1.24 christos if ((pdu->pdu_hdr.pduh_Opcode & OP_IMMEDIATE) == 0)
700 1.24 christos atomic_inc_32(&sess->s_CmdSN);
701 1.10 mlelstv return sn;
702 1.10 mlelstv }
703 1.10 mlelstv
704 1.10 mlelstv /*
705 1.10 mlelstv * sernum_in_window:
706 1.27 maya * Check whether serial number is in send window
707 1.10 mlelstv *
708 1.10 mlelstv */
709 1.10 mlelstv int
710 1.10 mlelstv sernum_in_window(session_t *sess)
711 1.10 mlelstv {
712 1.10 mlelstv
713 1.24 christos KASSERT(mutex_owned(&sess->s_lock));
714 1.24 christos return sn_a_le_b(sess->s_CmdSN, sess->s_MaxCmdSN);
715 1.10 mlelstv }
716 1.10 mlelstv
717 1.21 mlelstv /*
718 1.21 mlelstv * window_size:
719 1.21 mlelstv * Compute send window size
720 1.21 mlelstv */
721 1.21 mlelstv int
722 1.21 mlelstv window_size(session_t *sess, int limit)
723 1.21 mlelstv {
724 1.21 mlelstv uint32_t win;
725 1.21 mlelstv
726 1.24 christos KASSERT(mutex_owned(&sess->s_lock));
727 1.21 mlelstv
728 1.21 mlelstv win = 0;
729 1.24 christos if (sn_a_le_b(sess->s_CmdSN, sess->s_MaxCmdSN))
730 1.24 christos win = sess->s_MaxCmdSN - sess->s_CmdSN + 1;
731 1.21 mlelstv if (win > INT_MAX || win > limit)
732 1.21 mlelstv win = limit;
733 1.21 mlelstv
734 1.21 mlelstv return win;
735 1.21 mlelstv }
736